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ABSTRACT
Sparse Blind source separation (sBSS) is an unsupervised ma-
trix factorization problem, which is now a key tool to anal-
yse multispectral data, especially in astrophysics. Being an
ill-posed problem, designing priors is crucial. In the present
paper, we investigate how the prior knowledge based on ex-
amples of physical spectra can be exploited in sBSS, based
on the projection onto the barycentric span of these exam-
ples. For that purpose, we investigate different metrics to
build such projections, and further introduce a novel machine
learning approach to build physically relevant reconstruction.
Secondly, we show how this can be deployed to design a
semi-blind sparse BSS method coined. Preliminary numer-
ical results on realistic astrophysical X-ray images show very
promising separation results.

1. INTRODUCTION

Multi/hyperspectral data are formed of m observations Xi,
each of which is made of t samples. The standard mixture
model defines each observation as a linear combination of n
sources Sj to which Gaussian noise is added:X = AS + N,
where X ∈ Rm×t is the data matrix, S ∈ Rn×t the source
matrix, A ∈ Rm×n the mixing matrix and N ∈ Rm×t for
the noise contribution. BSS aims at recovering both the mix-
ing matrix A and the sources S from the data X only, which
is an unsupervised matrix factorization. Since it is ill-posed,
it requires additional assumptions about the sources and/or
the mixing matrix, such as statistical independence [1], non-
negativity [2] or sparsity [3] to only name three.
In a very large number of physical applications, examples of
spectra (i.e. columns of A) are available that can originate
from simulations of parametric models or measurements. The
goal of this article is to investigate how these examples can
be exploited to constrain the estimated mixing matrix. To the
best of our knowledge, this approach has never been investi-
gated so far in the scope of BSS. The proposed approach first
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builds upon constraining the estimated mixing matrix to lie in
the barycentric span of the available examples, according to
given metric. Several metrics will be studied. Different phys-
ical examples will be considered, for which fixed metrics do
not yield physically relevant estimates. For that purpose we
introduce in Section 2 a machine learning approach that al-
lows learning such relevant metric based on some training set.
In Section 3, we show how this example-based constraint can
be exploited in the semi-blind BSS setting.

2. BUILDING MODEL-BASED CONSTRAINTS

Barycentric span and orthogonal projection: In the next,
it is assumed that some column a of the mixing matrix
can be described by some model M, for which d exam-
ples {ϕeM}e=1,··· ,d are known. Each example is normalized
to have unit `1 norm. If the model is parametric, it could be
possible to directly estimate the underlying parameters. How-
ever, this has two major drawbacks: i) the model can be rather
complex to cope with as it can include highly non-linear phys-
ical effects as well as instrumental responses, which general
leads to highly challenging non-linear optimization problems,
and ii) the model may not be known and only some examples
of spectra are available. To alleviate these caveats, we pro-
pose to constrain a to belong to the barycentric span of the
examples according to some metric φ.
Formally, this assumption means that there exists some pos-
itive weights {λe}e=1,··· ,d and

∑
e λe = 1 so that a is the

solution to:

mina

d∑
e=1

λeφ(a, ϕeM), (1)

Several metrics (distances or divergences) can be considered.
We will investigate the following three standard metrics: i)
the Euclidean distance, which leads to barycenters that are the
weighted sum of the examples, ii) the Kullback-Leibler (KL)
divergence and iii) the Wasserstein or Earth Mover’s dis-
tance [4], which has recently attracted a lot of interest (see [5]
and references therein). With the Euclidean and KL metrics,
computing barycenters, as defined in Eq. 1, can be tackled us-
ing a proximal gradient descent algorithm [6]. Following [5],
Wasserstein barycenters can be efficiently evaluated thanks to



an entropic regularization of the original Wasserstein distance
and the use of the Sinkhorn iterative algorithm [7].
In the sequel, enforcing a to belong to some barycentric
span requires computing its orthogonal projection onto the
barycentric span Bφ({ϕeM}), which requires finding the
weights {λe}e=1,··· ,d so that:

min
{λe}
J ({λe}) =

∥∥a− bM({λe})
∥∥2
`2
, (2)

where bM({λe}) is the barycenter that is the solution to
Eq. 1. The function J ({λe}) being a smooth, the orthogonal
projection PBφ({ϕeM}) (a) can be evaluated using a standard
gradient descent algorithm with fixed stepsize τ . In practice,
evaluating the gradient with respect to the barycentric weights
{λe}e can be tackled using Theano’s auto-differentiation
function 1 as done for the Wasserstein distance in [5]. A
similar strategy also applies to the Euclidean distance and
the Kullback-Leibler divergence. In this article, preliminary
results have been obtained with fixed gradient stepsize τ (in
the range [1e − 4, 1e − 3]), whose value has been adapted to
the metric.

2.1. Learning a data-driven metric

The ability of fixed metrics to build physically relevant es-
timations of spectra will highly depend on the shape of the
spectra as well as the evolution of their shape when their
underlying physical characteristics evolve. In this article, two
distinct meaningful cases will be investigated in the field of
X-ray astrophysical imaging: i) emission lines are the in-
strumental response to a single Dirac at a fixed wavelength,
which are generally well described by diracs convolved with a
Gaussian-shaped kernel, with a wavelength-dependent width
ii) thermal emissions, which lead to observed spectra with
several Gaussian-shaped emission lines on top of a contin-
uum. In astrophysical X-ray imaging, the evolution of the
continuum yields spectra with different slopes and maximum
positions. The amplitude of the emission lines may vary. An
example is featured by the purple solid line of Figure 1.
In these cases, improving the accuracy of the proposed
barycentric constraint requires designing data-driven metrics,
which are more adapted to capture the physically meaningful
variations of the sought-after spectra. For that purpose, we
introduce a new approach that consists in learning metrics
that are adapted to build physically relevant barycenters
from examples, which makes perfect sense in a large num-
ber of applications where training/validation sets can be built
based on physical/instrumental models.
Let ΩM be some training set made of T samples for a given
modelM. The proposed metric learning method builds upon
the structure of a standard autoencoder [8], which is defined
by an encoder Φ that maps the input to the feature space, and
a decoder Ψ that maps back to the input space. In contrast

1https://github.com/Theano/Theano

to standard autoencoders, metric learning is performed by
minimizing the error between the input and the reconstructed
projection (according to the Euclidean distance) onto the sub-
space spanned by the examples i.e. in the learnt/encoded
feature space.
More precisely, for some encoder Φ, the representation of
some input ω ∈ ΩM (resp. some example ϕe) is denoted
by Φ (ω) (resp. Φ (ϕe)). One can then define the orthogonal
projection of Φ (ω) onto the span of {Φ (ϕe)}e. To that end,
we resort to a simple scheme that further ease the learning
process:

• The reconstructed spectra are not enforced to belong to
the simplex (i.e. with positive entries and unit `1 norm).
Since the reconstruction error in the input domain is
minimized, it should be close to be the case.

• The interpolation in the feature space is not enforced
to be a convex combination of the transformed exam-
ples. It is substituted by the orthogonal projection onto
the subspace spanned by {Φ(ϕe)}e, which admits a
closed-form expression. The weights are then obtained
by minimizing the Euclidean distance between the in-
put spectrum and the examples in the feature space:

{λ̂e(ω)}e = argmin{λe}e

∥∥∥∥∥Φ(ω)−
∑
e

λeΦ(ϕe)

∥∥∥∥∥
`2

,

(3)
which is a standard least-square problem for fixed Φ.
The reconstruction is then defined as bM(λ̂e(ω)) =

Ψ
(∑

e λ̂e(ω)Φ(ϕe)
)

Learning the metric means estimating Φ and Ψ as follows:

min
Φ,Ψ

∑
ω∈ΩM

∥∥∥∥∥ω −Ψ

(∑
e

λ̂e(ω)Φ(ϕe)

)∥∥∥∥∥
2

`2

, (4)

where the weights {λ̂e(ω)}e are defined in Eq. 3. In this arti-
cle both the encoder and decoder are implemented with mul-
tilayer neural networks, such as in standard autoencoders [8].
The number of layers is L, the number of hidden units per
layer is fixed tom and activation functions are hyperbolic tan-
gents. The learning stage described in Eq. 4 then boils down
to estimating the weight matrices and biases of each layer of
both Φ and Ψ. For that purpose, we use the autograd python
module 2 along with the Adam optimizer.

Illustration In this section, fixed metrics as well as the pro-
posed metric learning approach are evaluated on two distinct
cases of spectra that are generally used to describe astrophys-
ical X-ray spectra in the energy range 2 − 6keV. These two
types of spectra are the Gaussian-shaped emission lines and

2https://pypi.org/project/autograd/



thermal emissions (see Fig. 1). In these experiments, the num-
ber of channels is fixed to m = 50 and d = 2 examples
have been selected. For both models 24 samples are available.
Amongst them 2 significantly different spectra have been se-
lected at random as examples, 15 have been chosen at random
to compose the training set and the remaining 7 form the test
set. The same number of training and test samples have been
chosen for the two types of spectra. For the fixed metrics (i.e.
Euclidean, KL and Wasserstein), the optimization parameters
are fixed as follows: i) barycenter evaluation: the step-size
is fixed to 10−3 and the number of iterations to 500, and ii)
computation of the orthogonal projection: the gradient step-
size is set to 10−4 and the number of iterations to 2000. These
quantities have been set empirically so that they provide good
results for both types of spectra. As for the metric learning
method, the number of iterations is fixed to 2.104 and the step-
size to 1e− 4. These values numerically led to solutions with
stable values of the cost function for all tested number of lay-
ers and for the various kinds of spectra. The number of layers
is set to L = 4 and the number of hidden units per layer to
m = 50. In the case of the thermal emission (see Figure 1),
none of the fixed metrics are able to capture with accuracy the
peak height/position, the slope of the spectrum at high energy
and the emission lines. Interestingly, as testified by the re-
construction error (right panel), the metric learning approach
leads to a very precise reconstruction of these different struc-
tures from only d = 2 examples. More quantitatively, the
mean-squared error of the reconstruction from the test set is
reported in Table 1. It includes the results obtained for the
metric learning method for different numbers of layers. This
confirms that learning the metric significantly improves the
reconstruction results. Additionally, the accuracy increases
with the number of layers up to L = 4; it then collapses for a
deeper network. This could very likely be fixed by resorting
to standard techniques such as batch normalization or resid-
ual network structure, which are known to ease the learning
of deep networks. These investigations are left to future work.

3. SEMI-BLIND SPARSE BSS

The sGMCA algorithm ‘ In this section, we investigate
how the proposed example-based constraint can be combined
with sparse BSS to provide more physical and more accurate
separation results. To that end, let assume that amongst the n
sought-after sources some are perfectly unknown and should
be treated blindly and others, say n′ admit spectra that can be
described with n′ different physical models {Mη}η=1,··· ,n′ .
The indices of these sources and their corresponding mix-
ing matrix column is denoted by I. In this article, we will
only consider cases where a single model applies to a sin-
gle source; relaxing this limitation is left for future work.
Each spectrum Aj for j ∈ I is then enforced to belong to
the barycentric span of the examples related to modelMj as

follows:
argminA,S‖Λ� SW‖1 +

∑
j 6=I ιSm

(
Aj
)

+ · · ·
· · ·
∑
j∈I ιBφj ({ϕ

e
Mj
})
(
Aj
)

+ 1
2 ‖X−AS‖2F ,

(5)

where ιSm is the characteristic function of the m-dimensional
hypersphere (i.e. the corresponding columns of A are en-
forced to have unit `2 norm), ιBφj ({ϕeMj

}) is the characteristic

function of the barycentric span of the examples {ϕeMj
} ac-

cording to the metric φj and W is the operator that is associ-
ated with some sparsifying transform.
The problem in Eq. 5 is globally nonconvex but is convex
with respect to S. Convexity with respect to A is not ensured
since the constraint onto the hypersphere is not rigourously
convex and, equipped with the learnt metric, the convexity
of the example-based constraint is not guaranteed as well.
However, orthogonal projections onto these constraints can
be defined and used in an optimization procedure. While sev-
eral methods can be considered optimization, we opted for a
projected alternate least-squares method such as GMCA [3],
which allows designing algorithms that have a low computa-
tional burden, with easy-to-tune parameters. Extending the
GMCA algorithm to the proposed semi-blind setting leads to
a two-step algorithm semi-blind GMCA (sGMCA), which is
detailed in Alg. 1. More precisely, step 1 is composed of two
stages: i) the least-squares estimation of the sources, which
boils down to applying the left pseudo-inverse of the current
estimate of the mixing matrix to the data as in step 1 − a,
ii) apply the soft-thresholding operator T with parameter Λi
to each source bfSi. The determination of the values for Λ
are described in the next paragraph. The second step copes
with the update of the mixing matrix, which is formed of three
stages: i) computing the least-squares estimate of A as in step
2− a, ii) projection each column of A with indices in I onto
the barycentric span Bφj ({ϕeMj

}) (described in 2) and iii)
normalize the remaining columns to have unit `2 norm.

Parameter setting The initialization is performed using the
GMCA algorithm [9]. The number of sources n is assumed
to be known and we assume in this article that only a single
column of the mixing matrix is described by a single model.
Hence, constraining each model to apply to only a single
source helps avoiding extra degeneracies. This assumption
already allows to tackle a wide range of application scenarios
and can be generalized. Then, initialization includes identify-
ing the indices I that associate each model to a single source
from the first guess. For each model, this is carried out by
finding the column of mixing matrix that provides the min-
imum Euclidean distance with respect to its projection onto
the barycentric span.
As emphasized in [3], the role of sparsity in BSS is to improve
the separation process by increasing the contrast between the
sought-after sources, and to increase its robustness with re-
spect to noise. At a given iteration, the error that contami-
nates a given source estimate is mainly comprised of noise



and interferences between the sources, which comes from an
imperfect estimation of the mixing matrix. The goal of the
thresholding step is then to remove a large part of these two
terms. Assuming that they are morphology dense and there-
fore non-sparse, the standard deviation of this combination of
errors can be empirically evaluated using the Median Abso-
lute Deviation estimator (MAD). The regularization param-
eters Λ can include both a noise-related value based on the
MAD and a signal-related term that limits the thresholding
bias in the spirit of re-weighted `1 regularization. In this ar-
ticle, the threshold for each source Sj will be constant and
equal to 3σj , where σj is the MAD-based estimate of the
contamination standard deviation (see [10] for more details).
The maximum number of iterations is fixed to 1000. The
stopping criterion is based on the spectral angular distance
between consecutive iterates of the mixing matrix. More pre-
cisely, for normalized columns of A with unit `2 norm, the al-
gorithm stops when maxj

∣∣∣arcsin | < Aj(k),Aj(k+1)
>
∣∣∣ ≤

ε, where ε = 1e− 6

4. NUMERICAL EXPERIMENTS

Experimental setting In this section, comparisons are car-
ried out on realistic simulations of X-ray images provided
by the Chandra space telescope 3. These data correspond to
observations of the Cassiopea A supernova remnants [11].
They are comprised of a linear combination of 3 astrophysi-
cal components (displayed in Fig. 3): synchrotron emission,
a thermal emission and a redshifted iron (Fe) emission lines
(described by the Gaussian-shape emission line) as shown
in Fig. 2. These components are representative of typical
supernovae remnants in the energy band 5000 − 6000 eV
(electron-volt) - see [11]. In the next experiments, the data
are composed of 50 observations of size 128× 128 pixels.
In addition to the sGMCA algorithm, comparisons will be
performed with the HALS algorithm [2], which is a NMF
algorithm that minimizes a standard quadratic data fidelity
term under positivity constraints. In both the GMCA and
sGMCA algorithms, the signal representation W is chosen
as the isotropic undecimated wavelet transform [12]. The
sGMCA algorithm is tested with two distinct metrics: i) the
KL divergence, and ii) the metric learnt with the machine
learning approach introduced in Section 2. The metric-based
constraint applies to the thermal and line emissions.
In the following comparisons are carried out based on the
mixing matrix criterion CA, which is defined as: CA =
‖QA+A? − I‖`1 , where QA+ is the pseudo-inverse of
the estimated mixing matrix that has been corrected for the
scale/permutation indeterminacies with the matrix Q . A?

is the true mixing matrix. Low values of CA then relates
to better separation performances. Each result has been ob-
tained given as the mean of 10 Monte-Carlo simulations with

3http://chandra.harvard.edu/

different noise realisations.

Results The contribution of the synchrotron emission is es-
timated blindly. Furthermore, it is often a dominant emis-
sion that hampers the extraction of dimmer emissions. In this
paragraph, the robustness of the methods is assessed when
the relative flux (ratio with respect to the total `2 norm of the
contribution of the other sources) of the synchrotron emis-
sion increases from 1 to 20; the SNR is fixed to 15dB. As
displayed in Fig. 4, the sGMCA algorithm leads to an im-
provement of about one order of magnitude, even when the
synchrotron emission is highly dominant.

5. CONCLUSION

We introduce a novel semi-blind source separation method,
based on examples. In the proposed approach, semi-blindness
is exploited by enforcing the sought-after mixing matrix to
have columns that belong to some example-based barycentric
span. While fixed metric do not generally yield physically
relevant spectra, we further introduce a machine learning ap-
proach – inspired by the autoencoders – to learn a metric that
is adapted to build accurate and relevant estimations from ex-
amples. This constraint is employed in the proposed sGMCA
algorithm to tackle sparse semi-blind source separation. Pre-
liminary results based on realistic X-ray astrophysical data,
show very promising results, which will be further detailed
during the conference.

L = 3 4 5 Eucl. Wass. KL
G-shaped 6.7 39.3 4.6 -0.5 13.5 25.4
Thermal 40.5 47.2 21.8 13.5 10.6 13.7

Table 1: MSE in dB of the reconstructed spectra from differ-
ent metrics.

Algorithm 1 semi-blind GMCA

1: procedure
2: Initialization based on GMCA
3: while Convergence is not reached do
4: (1-a) Least-square estimation: S′ = A(k)+X
5: (1-b) Thresholding: S(k+1) = TΛ (S′W) WT

6: (2-a) Least-square estimation: A′ = XS(k+1)+

7: (2-b) Projection onto the barycentric span:
8: ∀j ∈ I,Aj(k+1)

= PBφj ({ϕ
e
Mj
})

(
A′

j
)

9: (2-c) Normalize all columns A′
j with j /∈ I

10: end while
11: bM({λe}) = argmina

∑d
e=1 λeφ(a, ϕeM)

12: end procedure



(a) Reconstructed (b) Error

Fig. 1: Left: reconstructed thermal emission spectra of the
KL, Wasserstein, Euclidean and learnt metrics. Right: esti-
mation errors.

(a) Reconstructed (b) Error

Fig. 2: Left: input and estimated spectra with sGMCA. Right:
Estimation errors for HALS and dGMCA with the KL and the
learnt metric.

(a) Sync. (b) Fe (c) Datum

Fig. 3: Left: input synchrotron source. Middle: input iron
(with emission line spectrum). Right: observation at 5548eV.

Fig. 4: Evolution of the mixing matrix criterion as a function
of the synchrotron relative amplitude.
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