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Abstract

Sparse Blind Source Separation (sBSS) plays a key role in scientific do-

mains as different as biomedical imaging, remote sensing or astrophysics,

which require the development of increasingly faster and scalable BSS meth-

ods without sacrificing the separation performances. To that end, a new

distributed sparse BSS algorithm is introduced based on a mini-batch ex-

tension of the Generalized Morphological Component Analysis algorithm

(GMCA). Precisely, it combines a robust projected alternate least-squares

method with mini-batches optimization. The originality further lies in the

use of a manifold-based aggregation of asynchronously estimated mixing ma-

trices. Numerical experiments are carried out on realistic spectroscopic spec-

tra, and highlight the ability of the proposed distributed GMCA (dGMCA) to

provide very good separation results even when very small mini-batches are

used. Quite unexpectedly, it can further outperform the (non-distributed)

state-of-the-art methods for highly sparse sources.
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1. Introduction

1.1. Towards large-scale BSS

During the last decades, Blind source separation (BSS) has become a ma-

jor analysis tool to learn meaningful decompositions of multivalued data, in

a wide variety of scientific fields such as audio processing [1, 2], biomedical

data processing [3] or astrophysics [4], to only cite three of them. According

to the standard linear mixture model, the data are composed of m obser-

vations, which stem from linear combinations of n elementary signals called

sources, each of them having t samples. In matrix form, the model then

writes as:

X = AS + N (1)

where X (size m × t) is called the observation matrix and N is the noise

matrix accounting for model perturbations. As such, the goal of BSS is to

retrieve the mixing coefficients A (size m× n) as well as the sources S (size

n× t) up to a mere scaling and permutation indeterminacy. BSS is a special

case of constrained matrix factorization. Being an ill-posed problem, extra

prior information needs to be exploited, such as the statistical independence

of the sources (Independent Component Analysis family – ICA [5]), the non-

negativity of A and S (Non-negative Matrix Factorization – NMF [6, 7, 8, 9]).

In this work, we will focus on sparse modelling [10, 11, 12] and assume the

sources to be sparse in some domain ΦS. This signal representation should
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be adapted to the geometrical content of the sources to be separated [13].

The rapid increase of the data size to be analysed mandates the development

of fast and scalable algorithms. So far, sparse BSS has mainly been applied to

small (e.g the space telescope Chandra [14] – a few million pixels) to middle

size data (e.g the data of the space mission Planck [15] – half a billion pixels).

As such, although currently available methods can be very effective, they are

not suited to cope with the data challenges to come in this field (e.g the

Square Kilometer Array radio-telescope [16] will provide several billions of

pixels). The main challenge is then how to design a fast and distributed

sparse BSS algorithm without sacrificing the separation performances ?

1.2. BSS as an unsupervised matrix factorization problem

In this article, we will focus on tackling noisy sparse BSS problems. For

that purpose, the following standard assumptions are made:

• The noise is assumed be Gaussian additive independently and identi-

cally distributed 1. This naturally entails that the cost function will first

be composed of a quadratic data fidelity term: 1
2
‖X−AS‖2F , where

the Frobenius norm ‖.‖F is used to measure the discrepancy between

the data and the model.

• The sources are assumed to be sparse in some signal representation ΦS

(matrix of size T × t, with T > t). For the sake of simplicity, ΦS will

be assumed to be an orthogonal representation. This could also be

1This could be easily extended to non-white Gaussian noise by taking into account the

noise covariance matrix.
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relaxed to more general tight frames [17]. The sparsity of the sources is

classically measured by a re-weighted `1-norm :
∥∥RS � (SΦT

S )
∥∥
1
. The

operator the � denotes the Hadamard product. The regularization

parameters RS (size n × T ) control the trade-off between the data

fidelity and the sparsity terms.

• To alleviate degenerated solutions (‖A‖F → ∞ and ‖S‖F → 0) due

the usual scale indeterminacy in BSS, the last term enforces the mixing

matrix to belong to the oblique ensemble: all the columns Ai, i ∈

[1, n] of the mixing matrix must lie on the `2 unit hypersphere. The

characteristic function of an arbitrary set U is denoted as ιU(.).

Altogether, these assumptions lead to the following generic formulation of

the sparse BSS problem:

minimize
A∈Rm×n,S∈Rn×t

1

2
‖X−AS‖2F +

∥∥RS � (SΦT
S )
∥∥
`1

+ ι{∀i∈[1,n],‖Ai‖2`2=1}(A), (2)

Being a multi-convex matrix factorization [18] problem, it is generally tackled

by sequentially alternating minimization steps with respect to the mixing

matrix A and the sources S.

Beyond sparse BSS, a standard strategy to cope with large-scale data in

generic matrix factorization problems of the form (2) consists in processing

small size batches (i.e. mini-batches) in a distributed manner. As such, the

data are decomposed into sub-matrices (sets of columns of X). So far, the

generic distributed sparse matrix factorization algorithms in the literature

can be decomposed into two categories :

• Stochastic approximations, which have been introduced in the general

framework of dictionary learning. In [19], the authors proposed an
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online algorithm in which the dictionary (i.e. equivalently the mixing

matrix) is computed only by minimizing an upperbound of the empirical

cost. While the online setting is a special case with mini-batches size

of tb = 1, the algorithm is generalized to arbitrary values of tb. More

recently, this work has been extended in [20] to cope with datasets

that, in our context, would be large both in the number of samples t

and number of observations m.

• Stochastic gradient descent - SGD [21]: [22] extended the use of the

Proximal Alternating Linearized Minimization (PALM) to mini-batches,

making it possible to tackle large datasets. Such an approach has also

been extended to the case of hyperspectral imaging in [23], in which the

authors argue a higher flexibility than in [22] (where the asynchronic-

ity has a high impact on the allowable step sizes, counter-balancing its

positive effects).

On the one hand, these generic algorithms can virtually tackle any sparsity-

regularized matrix factorization problem with a quadratic data fidelity term.

They have however not been particularly adapted for sBSS problems, where

the optimization strategy plays a key role to provide satisfactory results [24].

Furthermore, they are generally based on gradient descent, for which such a

tuning is cumbersome [24].

On the other hand, the GMCA algorithm [11] is a dedicated sparse BSS

algorithm. In contrast, it is based on a projected Alternating Least Square

(pALS) scheme, which originates from early works in NMF [25]. More pre-

cisely, when updating one of the variables A or S, a full minimization of the

(differentiable) data-fidelity term is carried out, and then a projection over
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the non-differentiable constraints is performed by applying the corresponding

proximal operator [26]. In this context, the GMCA has been quite successful

as it comes with an automatic scheme to fix the regularization parameters

RS. This procedure has been showed to increase its robustness to initializa-

tion, local minima and noise. Unfortunately, the GMCA algorithm does not

computationally scale very well to large size data.

As such, existing state of the art methods do not currently handle the large-

scale sBSS problem properly: on the one hand classical sBSS methods do

not scale well with the data size, while generic matrix factorization methods,

although computationally efficient, do not usually gives good results in the

context of sBSS.

1.3. Contributions

The main contribution of this article is to introduce a new algorithm

coined distributed GMCA (dGMCA), which combines projected alternate

least-squares with mini-batch optimization. The dGMCA algorithm builds

upon the parallel computation of estimates of the mixing matrix A from

data mini-batches. The originality of the dGMCA algorithm then lies in

the construction of an aggregated estimate using a robust mean on the hy-

persphere, which better respects the Riemannian geometry of the oblique

constraint. Numerical experiments have been carried out on various mixing

scenarios. They first highlight that the proposed algorithm provides a scal-

able sparse BSS algorithm without sacrificing the quality of the factorization.

Furthermore, and more surprisingly, the dGMCA algorithm can significantly

outperform standard sparse BSS algorithm in challenging problems, such as

cases where the sources have a highly sparse representation. We discuss
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the connections between dGMCA and SGD, which gives some insight into

the behavior of dGMCA based on the exploratory power of stochastic mini-

batch optimization and the resulting implicit regularization. The dGMCA

algorithm is further illustrated on realistic γ-spectroscopy data. Preliminary

results were presented in the SPARS 2019 conference [27].

1.3.1. Notations

In the following, scalars will be written in lower case letters a, vectors

in bold a and matrices as A. Aj stands for the jth column of A, while Ai

is the ith line. These notation are extended to subsets of lines or columns:

if Jb is a subset of [1, t], SJb denotes the columns indexed by Jb. Generally

speaking, we will consider B subsets Jb, b ∈ [1, B] that form a partition of

[1, t], which will be used to index mini-batches. We will furthermore write

#Jb the number of elements in Jb, that is in each mini-batch.

For each mini-batch, we will have access to several estimations of the same

matrix A. Each one will be denoted by A[Jb], b ∈ [1, B]. The aggregated

estimate of the different AJb is denoted as Â.

In iterative algorithm, we will write a(k) the estimation at iteration k of the

variable a.

2. dGMCA: a distributed sparse alternating least-squares algo-

rithm

2.1. The distributed GMCA algorithm

When it comes to distributed computation, a straightforward approach

consists in performing the most intensive computational burden on smaller
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chunks of data. Following generic distributed matrix factorization algo-

rithms, the proposed method performs by first splitting the data matrix

X into B disjoint sub-matrices. Without loss of generality, the number of

samples t is assumed to be a multiple of B, thus leading to a complete de-

composition of the full data X with constant batch size. Therefore, each of

the mini-batches has tb = t/B columns (#Jb = tb).

In the GMCA algorithm, the updates of mixing matrix A and the source

matrix S have the largest computational cost. Each iteration k can be de-

scribed by the following two steps:

1 - S is updated assuming a fixed A.

S(k) = SRS

(
A(k−1)†X

)
, (3)

where A(k−1)† is the pseudo-inverse of A(k−1). The operator SRS
is the

soft-thresholding operator with thresholding parameters RS.

2 - A is updated assuming a fixed S:

A(k) = Π‖.‖2=1

(
XS(k)†) , (4)

where Π‖.‖2=1 is the projection onto the m-sphere.

In the proposed dGMCA, each main iteration or epoch2 of the distributed

GMCA algorithm can be decomposed into the following two stages:

• The first stage amounts to performing an estimation of the sources and

the mixing matrix independently from each batch XJb , b ∈ [1, B]. This

2If one uses the standard machine learning vocabulary.
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is the most computationally intensive part of the algorithm and it is

performed in a distributed way.

• Each mini-batch leads to an independent estimate {A[Jb]}b∈[1,B] of the

mixing matrix. The second stage consists in combining or aggregating

these different estimates to eventually produce a single one.

More formally, the dGMCA algorithm is summarized in Algorithm 1 The

Algorithm 1 dGMCA

1: for k = 1, · · · , K do

2: Choose J1, J2, · · · , JB as a partition of [1, t]

3: for b = 1, · · · , B do

4: ŜJb(k) = SRS
(k)(Â(k−1)†XJb(k)) . Use Eq. (12) for RS choice

5: A[Jb(k)] = Π‖.‖2=1(X
Jb(k)ŜJb(k)†)

6: end for

7: Â(k) = AGGREGATE(A[J1(k)],A[J2(k)], ...,A[JB(k)])

8: end for

9: return Â(K), Ŝ(K)

function AGGREGATE is used as a generic terminology for the aggregation

procedure, which will be described in details in the following section.

2.2. Manifold-based mixing matrix aggregation

The objective of the aggregation step is to build a single estimate of A

from the various estimates A[Jb], b ∈ [1, B]. For that purpose, the aggregated

estimate Â can naturally be defined as the barycenter of the different esti-

mates according to some distance φ, with some weights {ωb}b∈[1,b] as follows:
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Â = ArgminA

B∑
b=1

ωbφ (A,A[Jb]) , (5)

where the barycentric weights are positive and sum to one: ∀b ∈ [1, b], ωb ≥

0 and
∑B

b=1 ωb = 1. A straightforward choice for φ could be the standard

Euclidean distance : φ (A,A[Jb]) =
∑n

j=1 ‖Aj − Aj[Jb]‖2`2 , which eventu-

ally defines Â as a standard weighted average of the estimates. However, a

key property of (2) is that the mixing matrix should belong to the Oblique

manifold, which would not be necessarily satisfied with a standard Euclidean

barycenter. For that purpose, dedicated distances will be rather used to pre-

cisely take into account the Riemannian geometry of the Oblique constraint.

Frechet mean on the hypersphere

The oblique constraint implies that each column of the mixing matrix

A belongs to the hypersphere of dimension m − 1 or m − 1-sphere Sm−1,

which is a Riemannian manifold (see [28] for more details). Building an

aggregation procedure that respects the underlying Riemannian geometry is

naturally done by choosing φ as the geodesic distance on the m − 1-sphere.

The extension of the notion of barycenter of data points onto a Riemannian

manifold equipped with its geodesic distance is known as the Fréchet mean.

Precisely, for each column j of the mixing matrix, the Fréchet mean of the

individual estimators A[Jb] is defined as:

∀j ∈ [1, n], Âj = Argmina∈Rm

∑
b∈[1,B]

ωb d
β
(
a,A[Jb]

j
)
, (6)

where 1 ≤ β < +∞. The case β = 2 corresponds to the `2 norm along

geodesics of the m− 1-sphere.
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Finding the solution to the above minimization problem is not straightfor-

ward but can be computed thanks to a dedicated iterative gradient descent

algorithm [29]. Under some conditions, this algorithm is proved to converge

to a critical point of the above problem. More precisely, each iteration of

Afari’s algorithm (cf. Algorithm 2) are decomposed into two stages:

• Computation of the gradient : for β ≥ 1 the gradient ∇J β(Âj(k)) of

the cost function J β(Âj(k)) =
∑B

b=1 ωb d
β
(
Âj(k) ,Aj[Jb]

)
is defined as :

∇J β(Âj(k)) = −
B∑
b=1

ωbd
β−2
(
Âj(k) ,Aj[Jb]

)
log

Âj(k)

(
Aj[Jb]

)
, (7)

where the logmap log
Âj(k) is roughly speaking the projection onto the

tangent plane of the m− 1-sphere about Âj(k) [28].

• Update of the current mean estimate : the updated estimate is then

defined as the exponential map about Aj[Jb] applied to the gradient

with step size ρ3. This step merely “back-projects” the gradient – which

belongs to the tangent space about Âj(k) – onto the m− 1-sphere.

Robust Fréchet mean on the hypersphere

The use of small mini-batches makes the separation process more prone

to generate outliers in the estimated A[Jb] (cf. Section 3.4 and numerical

experiments of Section 3). Unfortunately, the Fréchet mean is not robust

to such outliers. As such, more robust distances have been used [30, 31].

In the present setting, a natural choice would be to choose β = 1, which

3It can possibly vary during the optimization process. It will be kept fixed in this

article.
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Algorithm 2 Fréchet mean

1: procedure Fréchet mean on the Oblique ensemble Ob (m)

2: for j = 1, · · · , n do

3: while convergence is not reached do

4: ∇J β(Âj(k)) = −
∑B

b=1 ωblog
Âj(k) (Aj[Jb])

5: Âj(k+1)
= exp

Âj(k)

(
−ρ∇J β(Âj(k)))

)
6: end while

7: end for

8: end procedure

corresponds to the usual `1 norm. However, the `1 norm is not differentiable

about 0. In dGMCA, this is mitigated by building a smooth approximation

d1µ of d1 based on Nesterov’s smoothing technique [32]:

d1µ(a,b) = Argmax‖u‖∞≤1 < a− b,u > −µ
2
‖u‖2`2 . (8)

For a,b ∈ Rm. This approximated distance is differentiable and its gradient

is µ-Lipschitz4. This entails that the gradient of the cost function takes the

form:

∇J β(Âj(k)) = −
B∑
b=1

ωp∇d1µ
(
Âj(k) −Aj[Jb]

)
log

Âj(k)

(
Aj[Jb]

)
, (9)

where the gradient of d1µ is given by [33] for all i ∈ [1,m]:

∇d1µ(Âj(k))i =

µ
−1 Âj(k)

i , if |Âj(k)

i | < µ,

sign(Âj(k)

i ), otherwise.

(10)

4In practice, Nesterov’s smoothing parameter was fixed to 0.1, which provides a good

balance between speed of convergence and approximation accuracy for this application.
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The resulting algorithm is similar to Algorithm 2, with the exception that

the distance and its gradient are evaluated according to Equations 8 and 10.

2.3. Implementation details

Use of a reweighted aggregation

Using mini-batches of small size generally yields very diverse estimates

of the mixing matrix. For instance, in mini-batches where a source is dimly

active or inactive at all, the estimated mixing matrix is likely to exhibit a

degraded condition number, which eventually leads to a dramatic increase of

the noise that contaminates the estimated sources. Therefore, the barycentric

weights used for either the Fréchet mean or its robust version are proportional

to the noise variance of the estimated sources. Let’s denote by W[Jb] =

A[Jb]
+ the pseudo-inverse of the mixing matrix estimated from batch Jb,

each weight is defined as ωjb :

∀b ∈ [1, B]; ωjb =

(
W[Jb]jΣNW[Jb]j

T
)−1

∑B
p=1

(
W[Jp]jΣNW[Jp]j

T
)−1 (11)

where ΣN is the data noise covariance matrix and W[Jb]j is the j-th line

of W[Jb]. The maximum number of iterations of the (robust) Fréchet mean

evaluation algorithm was fixed to 1000 with a stopping rule so that the

algorithm stops when the angle between two iterates is lower than 10−6.

Choosing the regularization parameters

As pointed out earlier, the regularization parameters play a key role,

as they correspond to thresholds applied to the sources. Thus, they select

specific entries of the sources during the separation process. Following the
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morphological diversity principle [17], the last versions of the GMCA algo-

rithm make use of a strategy where the percentile of retained entries of S(k)

linearly increases from step to step, which enables to keep an increasing num-

ber of entries in a way which is well adapted to the actual distribution of the

sources. This strategy has been shown to lead to a high robustness of the al-

gorithm with respect to spurious local critical points. However, to be applied

it requires the knowledge of all the source samples, which is impossible in

the proposed distributed optimization procedure, where the mini-batches are

processed separately (i.e. without communication between the distributed

processes). To that end, a strategy based on an exponential decay of the

parameters is used:

R
i(k)
iSi

= κσi +
(∥∥∥Ŝ(k)

i

∥∥∥
∞
− κσi

)
exp(−kαi), (12)

where σi is the estimated standard deviation5 of the noise contaminating

the source Si, the constant κ is generally chosen between 1 and 3 based

on a desired probability of false discoveries and αi is a parameter control-

ling the exponential decay decrease. In practice, αi is fixed to 2 for all the

sources; other choices close to the unit do not change significantly the sepa-

ration results. The proposed strategy is adapted to distributed computing as∥∥∥Ŝ(k)
i

∥∥∥
∞

can be evaluated as the maximum over each mini-batch:
∥∥∥Ŝ(k)

i

∥∥∥
∞

=

maxb∈[1,B]

∥∥∥ŜJb(k)i

∥∥∥
∞

. As well, σi can be evaluated empirically as the median

of its estimations over the mini-batches: σi = medianb∈[1,b] σi[Jb(k)].

5For instance, using the Median Absolute Deviation (MAD) estimator.
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dGMCA convergence and stopping rule

From the theoretical point of view, the convergence of the distributed

GMCA can hardly be proved since: i) it is based on an inexact minimization

scheme that alternates least-squares estimates and projections/proximal step,

and ii) for the sake of robustness, the thresholding strategy is based on the

decrease of the regularization parameter value during the separation process,

and iii) each iterate is obtained as a non-linear aggregation of batch-based

estimates. However, experiments tend to show that the algorithm stabi-

lizes after a certain number of iterates. If convergence cannot be rigorously

claimed, there are empirical clues that support the stabilization of the algo-

rithm in practice. To obtain convergence guarantees, one could envision to

incorporate dGMCA as a warm-up step of a two-step algorithm, similarly as

in [24]. The second refinement step would then be an asynchronous PALM

algorithm [22]. This is out of the scope of this article and left to future work.

The stopping rule is based on the maximum (across columns) angular dis-

tance between two iterates of the estimated mixing matrix. The algorithm

stops when such distance is smaller than 10−6. The maximum number of

iterations is fixed to 104. As a pre-processing, the columns of the data may

be randomized to provide more homogeneous batches. Similarly, randomiza-

tion has also been tested at each iteration to mimic stochastic mini-batch

optimization in the projected ALS framework. For the experiments below,

randomisation at each iteration did not provide further significant improve-

ments.
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3. Numerical experiments

In this section, the performances of the dGMCA algorithm are investi-

gated in various experimental settings, on both simulated and realistic data.

3.1. Experiments on simulated data

Comparison set-up

In this subsection, we first make use of synthetic random data, which

allows to assess the robustness of the different methods in various experi-

mental scenarios. The influence of several parameters has been evaluated:

the number of sources n and observations m, the condition number of the

mixing matrix and the sparsity level of the sources. Since all led to similar

conclusions, we hereafter focus more specifically on the two last items, which

yield to the most insightful results. To that end, the data are synthesized as

follows:

• The entries of the sources Sj, j ∈ [1, n] are independently and identi-

cally distributed according to a Generalized Gaussian distribution with

parameter 0 < γ ≤ 1.

• The mixing matrix is picked at random from a Gaussian distribution,

and further processed to have columns with unit `2 norm and a pre-

defined condition number.

Unless stated differently, each single experimental result will be given as

the mean over 25 Monte-Carlo simulations with different mixing matrices,

sources and noise realizations.

Comparisons will be carried out with the following unsupervised matrix fac-

torization algorithms:
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• GMCA : This non-distributed algorithm [11] serves as a baseline to

evaluate the proposed distributed separation procedure.

• Online dictionary learning : This algorithm [19] is a classical one

for solving large-scale sparse matrix factorization problems. For fairer

comparisons, the regularization parameter has been optimised based

on several simulations.

• distributed GMCA : the dGMCA will come with two distinct ag-

gregation procedures, namely with the Fréchet mean and its robust

alternative.

To assess the separation quality, the mixing matrix criterion CA is used:

CA = mean(|PÂ†A− I|) (13)

With A the true mixing matrix and PÂ
†

the pseudo-inverse of the solution

found by the algorithm corrected through P for the scale and permutation

indeterminacy. The mean is the average of all the elements inside the matrix.

In contrast to more standard criteria that are based on the estimated sources,

the advantage of the mixing matrix criterion is that it is less sensitive to the

regularization of the sources, which generally differs between algorithms.

Sparsity level ρ

The sparsity level ρ of the sources impacts the separation process in two

ways:

• The sources are generated so as to be statistically stationary. However,

in the very sparse regime (e.g. ρ = 0.1), the values taken by a single
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small mini-batch may largely change between two realizations. This can

lead to outlier mini-batches that will impact the aggregation process. In

contrast, mildly sparse sources should lead to a more stable aggregation

procedure;

• Very sparse sources tend to lead to sharper critical points that are much

harder to escape. These local minima are more likely to be smoothed

out when the sparsity level decreases.

The number of observations is set to 20, the number of sources to 5 and the

number of samples per sources to 10000. The signal-to-noise ratio is fixed

to 40dB. The condition number of the mixing matrix is set to 3. As an

illustration, Figure 1 displays the evolution of the mixing matrix criterion

CA with respect to the mini-batch size for two values of the sparsity level of

the mixing matrix: ρ = 0.25 in the left panel and ρ = 0.5 in the right panel.

These results reveal two first distinct regimes:

i) For mildly sparse sources (left panel of Fig. 1), the GMCA algorithm

yields better results and there is only a slight discrepancy between the

two dGMCA methods. This highlights that equipped with the (ro-

bust) Fréchet mean, combining mini-batch optimization and aggrega-

tion leads no performance loss: dGMCA allows to perform distributed

computation without deteriorating significantly the separation quality.

ii) For less sparse sources (cf. right panel of Fig. 1), the results of ro-

bust dGMCA are consistent with the previous regime: robust dGMCA

reaches a separation quality that is very close to GMCA for even smaller
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mini-batches. One of the differences with regime i) is that GMCA ob-

tains slightly worse results. This is expected, as more partial correla-

tions may occur in this regime. Furthermore, the discrepancy between

Fréchet mean aggregation and its robust counterpart increases again

strongly when the batch size becomes smaller than 100 samples. This

might also be due to an increased number of partial correlations: small

mini-batches containing such samples might be much more difficult to

unmix, generating more inhomogeneous mini-batches.

To go further, Fig. 2 shows the evolution of the mixing matrix criterion as a

function of the sparsity level for two different mini-batch sizes: tb = 10 and

tb = 100 samples. For ρ > 0.2, this figure confirms the above comments:

equipped with the robust Fréchet mean, the dGMCA and GMCA algorithms

provide very close results. As well, the proposed robust aggregation proce-

dure yields significantly better separation quality.

When the sources are highly sparse (typically for ρ < 0.1), the performances

of the GMCA algorithm rapidly degrade. Very likely, this originates from

the sharpness of the critical points, which are much harder to escape. Quite

astonishingly, in this precise case, the dGMCA algorithm with the robust

Fréchet mean aggregation performs much better than GMCA for small batch

size. This surprising results originate from the exploratory power of small

batch sizes, which better prevents the dGMCA algorithm to be trapped in

sharp critical points. This phenomenon will be discussed in more details in

Section 3.4.
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(a) ρ = 0.25 (b) ρ = 0.5

Figure 1: Evolution of the mixing matrix criterion as a function of the sparsity level with

ρ = 0.25 (left panel) and ρ = 0.5.

(a) tb = 10 (b) tb = 100

Figure 2: Evolution of mixing matrix criterion as a function of the sparsity level for mini-

batch sizes tb = 10 and tb = 100.

Condition number

Ill-conditioned mixtures, as measured by the condition number of the

mixing matrix A, generally lead to arduous separation problems. Mixing
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matrices with large condition numbers yield two major bottlenecks: i) an

increased noise level in the source domain, and ii) the mixtures are closer to

co-linearity, which makes the sources harder to distinguish.

In these experiments, the noise level is fixed to 40 dB and the sparsity level

is ρ = 0.1. The number of observations is set to 20, the number of sources

to 5 and the number of samples per sources to 10000. Figure 3 shows the

evolution of the mixing matrix criterion CA as a function of the mini-batch

size tb for two values of the condition numbers: left panel 2.5 and right panel

7. As expected, the quality of the separation results of all methods decrease

when the condition number increases. Similarly to the tests performed in

the previous section, the dGMCA algorithm has better results for relatively

small mini-batch sizes (but when the Fréchet mean is used, it eventually de-

teriorates for tb < 25, cf. Fig. 3). The use of small batches along with the

robust Fréchet mean leads to an improvement for tb < 25, which becomes

more significant when the condition number increases up to a gain of about

one order of magnitude. Similarly, when the mini-batch size decreases, the

discrepancy between the two methods increases.

3.2. Implementation and computation time

We now conclude this experimental section with the computation time

of dGMCA, which depends both on the complexity of one epoch and the

number of required epochs.
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(a) Condition number of 2.5 (b) Condition number of 7

Figure 3: Evolution of the mixing matrix criterion as a function of the mini-batch size for

two distinct values of the mixing matrix condition number.

Complexity of a single epoch

Each iteration of the GMCA algorithm has a complexity of O(t(mn +

n2 + m)). The complexity of one epoch of dGMCA is similar, once the cost

of the Frechet mean has been taken into account:

O(b(mn+ n2 +m) +
t

b
nmK), (14)

where the last term correspond to the Fréchet mean and K corresponds

to the number of iterations required for its computation. As such, except

for very small mini-batches, the linear gain of using dGMCA over GMCA

dominates. This is experimentally confirmed (cf. Fig. 4): in practice the

computation time for a given number of iteration does not deviate much from

linearity (in particular, the transfer costs between the nodes are negligible in

comparison to the computation time).
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Figure 4: Computation time gain of the dGMCA algorithm with respect to the GMCA

algorithm as a function of the reduction gain t/B. The dGMCA algorithm has been run

on a PC equipped with 8 Amd CPUs, each one has 6 cores Istanbul Opteron 8431 at

2, 4Ghz. The parallelization of the code has been carried out via python/C++ wrappers

with OpenMP.

3.3. Application to γ-ray spectroscopy realistic simulations: sparse case

In this section, the behavior of the dGMCA algorithm is evaluated in

the context of γ-ray spectroscopy. This is one of the main methods used for

measuring the activity concentrations of radionuclides in environmental sam-

ples. It particularly plays a key role to monitor the radiological environment

or perform radioecology studies and nuclear incident preparedness. A γ-ray

spectrum is the histogram of the number of detected γ-ray photons in the

detectors. In this context, an observation is formed by the linear combination

of the contribution from various radionuclides. Each one is described by a

signature in energy that is composed of one or several emission lines to which

a compton continuum is associated as displayed in Figure 5. The goal of this

experiment is to jointly estimate the activity of each radionuclide (a.k.a. the
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mixing matrix) as well as their signature (a.k.a. the sources) from several

observations. These simulations are composed of 5 radionuclides: 7Be, 22Na,

40K, 137Cs, 210Pb, which are representative of aerosol samples [34] and fea-

tured in Figure 5. The number of observations is fixed to m = 20 and the

number of samples per source is equal to 16940.

These data are particularly interesting as they allow to evaluate the per-

formances of dGMCA when the samples are clearly non-stationary, highly

sparse and with a large dynamic range (the source samples basically span 2

to 3 orders of magnitude). The sources are modeled in the wavelet domain:

γ-ray observations are first decomposed into an undecimated uni-dimensional

wavelet frame [35] before applying any BSS method. The number of scales

is fixed to 5, which yields a number of wavelet coefficients that is equal to

81200; these are obviously not large-scale data but it already allows to high-

light some remarkable results.

Figure 6 shows the reconstructed solution with GMCA, ODL and dGMCA

equipped with the robust Fréchet mean with tb = 10; it also displays the esti-

mation error in transparent solide line. This figure first shows that dGMCA

provides a very good reconstruction of 2
2Na signature, while both GMCA and

ODL exhibit clear leakage from other sources. The estimation error of the

dGMCA solution does not present any structure and is mainly dominated by

noise.

Figure 7 features the evolution of the mixing matrix criterion as a function

of the mini-batch size for two different levels of the signal-to-noise ratio: 40

and 80 dB. These values might seem large but it has to be recalled that the

dynamic range is very large; a small amount of noise might already erase
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a significant part of the compton continuum while leaving only the photon

peaks. This experiment first shows that GMCA, ODL and dGMCA with

the standard Fréchet mean performs rather poorly. In agreement with the

results of the previous subsection studying the impact of the sparsity level

ρ, the use of the robust aggregation makes the dGMCA algorithm largely

outperforms these methods, especially when the mini-batch size is smaller

than tb = 50. Further randomizing the mini-batches entails an extra im-

provement, especially for middle-size mini-batches for 100 < tb < 1000. The

gain is particularly large when the noise level is small.

To explain the results of such a setting, we advocate the fact that the sources

are by a large extent dominated by few photon peaks, which is likely to cre-

ate spurious critical points that are hard to escape. This might explain why

neither the GMCA algorithm nor the dGMCA algorithm without the robust

aggregation are able to perform correctly. The use of the robust Fréchet

mean makes the algorithm less prone to be stuck in sharp critical points.

This will be discussed in the next section.

3.4. Discussion - robustness and implicit regularization

3.4.1. Summing-up the experimental results

From these experiments, two distinct regimes can be highlighted:

• Mildly sparse sources: in this setting, the robust dGMCA and

GMCA algorithms perform similarly; going distributed comes at al-

most no cost as soon as the mini-batch size is large enough. For small

mini-batch sizes (typically smaller than tb = 100 and even for very

small mini-batch sizes), the dGMCA algorithm with the robust aggre-

gation leads to performances that are very close to GMCA. This shows

25



Figure 5: γ-ray spectroscopy: example of a single observation and the contribution of

each of the radionuclide sources.

that the proposed dGMCA is an efficient approach for separation of

large-scale mildly sparse signals, which are typical of natural images

with a multiscale representation such as wavelets.

• Sparse to very sparse sources: As expected, small mini-batch sizes

lead to more heterogeneous mini-batches, which are more likely to be

seen as outliers. In this case, the proposed robust Fréchet mean pro-

vides superior and more robust separation performances with respect

to the standard Fréchet mean. Interestingly, using small mini-batch

sizes with dGMCA in its robust version leads to significantly enhanced
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Figure 6: γ-ray spectroscopy: estimated 22Na radionuclide with GMCA, ODL and

dGMCA equipped with the robust Fréchet mean. Errors with respect to the input spec-

trum are displayed in transparent solid lines.

results with respect to the GMCA algorithm, which can also be ob-

served for ill-conditioned mixtures. We now give insights concerning

this astonishing phenomenon.

3.4.2. Stochasticity of mini-batch optimization and implicit regularization

Connections with mini-batch GD :. A first remark is that either for the up-

date of the mixing matrix or for the sources – and ignoring the projection

step – a least-square update is virtually equivalent to a Newton iteration with

gradient path length equal to 1. As such, our explanation will be based on

links between Gradient Descent (GD) and ALS. More precisely, mini-batch
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(a) SNR = 40dB (b) SNR = 80dB

Figure 7: γ-ray spectroscopy: evolution of the mixing matrix criterion as a function of

the mini-batch size for SNR 40dB and 80dB.

optimization has been a widespread strategy in minimization methods rely-

ing on GD6.

Mini-batch GD induces implicit regularization :. Understanding the impact

of optimization in learning parameters from matrix factorization problems

[36] or (deep) neural networks [37] has attracted a lot of interest during

the last few years. More specifically, it has been emphasized that a specific

optimization method might enable some implicit regularization, which tends

to favor the convergence towards critical points with specific properties. Such

a phenomenon is well known in the context of machine learning, where it has

6Note that in GD, mini-batch optimization can be implemented in a rather natural way

as it requires no aggregation step; the computation of the gradient naturally accumulates

information from the different mini-batches.
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been noticed for long that using small stochastic mini-batches along with

GD can improve the results over full batch methods [38, 39, 40]. A common

interpretation is that using small size mini-batches is important as it injects

noise in the optimization process, which is essential to escape certain types

of critical points. More specifically, it has been empirically shown in [41]

that using stochastic mini-batches enables to explore broader areas further

away from the initial point. The authors also argue that the stochasticity

introduced by small size mini-batches through a structured noise strongly

favors flat minimizers that are akin to generalize better [42].

As for BSS, the factorization problem at play is furthermore determined or

over-determined, which means that the optimization landscape is likely to

be largely different and probably less smooth, leading to the presence of

spurious local critical points. In this setting, regularization, either being

explicit or implicit, is of paramount importance. To that respect, the case

of highly sparse sources is particularly illustrative (e.g. the γ-spectroscopy

application): dGMCA performs very well as the mini-batch size decreases,

while GMCA does not. As such, a similar implicit regularization is very

likely to be at play within dGMCA, for which the generalization notion would

translate into minimizers that are less sensitive to a given realization of the

sources. Indeed, as shown by the γ-ray spectroscopy example, the algorithm

performs much better in the highly sparse case, where spurious critical points

tend to be sharper and more difficult to escape. The stochasticity induced

by mini-batches is likely to prevent the dGMCA algorithm to be stuck in

such solutions of the optimization landscape.

To further illustrate this phenomenon, Figure 8 displays the histograms of the
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mixing matrix criterion over the different mini-batches after 1000 iterations

of dGMCA (close to “convergence”) when the Fréchet mean (left panel) or

its robust version (right panel) is used. In this experiment, the number of

observations is set to 20, the number of sources to 5, the sparsity level to

ρ = 0.1, and the condition number of mixing matrix to 1. The number of

samples per source is fixed to 100000. In the first case, one can notice that

using large size mini-batches provide more stable solutions, with a smaller

scatter of the criterion across mini-batches. In contrast, using smaller mini-

batches leads to a broader exploration of the parameter space as testified by

more widespread values of the mixing matrix criterion. As most of the values

are quite poor (close to 10 dB), the aggregated estimate is not satisfactory.

Switching to robust aggregation (right panel Figure 8), the observed scatter

is very similar but now the aggregated value is much more robust to outlier

mini-batches. At first sight, it might look strange to produce an aggregated

estimate that is much better than the majority of each individual estimate:

it is largely on the left side of the distribution. However, it is likely that the

exploration of the optimization landscape goes in random directions, which

are not measured in this histogram. It further reveals that the aggregation

step is essential to capture an average (and robust) estimate out of this

stochastic exploration.

Figure 9 shows the evolution of the mixing matrix criterion when the mini-

batch size increases from 10 to 50. 103 for B = 10, 100 and 1000. One can

first point out that for large mini-batch size (i.e. tb = 1000), the separation

accuracy is poor and does not improve when the number of mini-batches

increases. In this regime, it is likely that the various estimates of the mixing
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matrix do not present enough stochasticity to prevent the algorithm from

being stuck in a spurious critical point. For a larger number of mini-batches

of smaller sizes, the exploration power highly increases. This define a clearly

distinct regime, which suggests some “phase transition” with respect to the

mini-batch size for a fixed number of mini-batches.

To sum up, an optimization landscape exploratory phenomenon related to the

stochasticity of mini-batch optimization occurs when small mini-batches are

considered (typically a few times the number of sources n). In this regime, the

separation quality will improve when the number of mini-batches increases.

This phenomenon will vanish when the mini-batch size is too large.

(a) Fréchet mean (b) robust Fréchet mean

Figure 8: Histogram of log10 of the mixing matrix criterion across mini-batches with the

Fréchet mean (left) and robust Fréchet mean (right) and B = 500 and B = 10.

Software

The dGMCA algorithm will be made available online as part of the pyGM-

CALab toolbox (https://github.com/jbobin/pyGMCALab).
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Figure 9: Evolution of the mixing matrix criterion as a function of the mini-batches size

for a fixed number of batches of 10, 100 and 1000.

Conclusion

To tackle the large-scale sparse BSS problem, we introduced in this work

the dGMCA algorithm, which combines mini-batches with the projected Al-

ternating Least-Square framework. At each iteration, the algorithm sepa-

rately builds estimators of the mixing matrix from data mini-batches in a

distributed manner. These estimates are further aggregated by using two

versions of the Fréchet mean, which takes into account the Riemannian ge-

ometry of the Oblique constraint. For mildly sparse sources, the dGMCA

equipped with the robust Fréchet mean leads to a huge gain in computation

time without sacrificing the separation accuracy. More surprisingly, dGMCA

outperforms standard algorithms in challenging blind separation problems,

such as ill-conditioned mixtures and/or very sparse sources. Borrowing ideas

from the machine learning community, this phenomenon shares similarities

with stochastic mini-batch gradient descent, that enables a better explo-

ration of the optimization landscape. Numerical experiments with synthetic
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and realistic simulations have been carried out to illustrate the relevance of

the approach.
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