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Abstract. Recent works have indicated the potential of using curvature
as a regularizer in image segmentation, in particular for the class of
thin and elongated objects. These are ubiquitous in biomedical imaging
(e.g. vascular networks), in which length regularization can sometime
perform badly, as well as in texture identification. However, curvature is
a second-order differential measure, and so its estimators are sensitive to
noise. The straightforward extensions to Total Variation are not convex,
making them a challenge to optimize. State-of-art techniques make use
of a coarse approximation of curvature that limits practical applications.
We argue that curvature must instead be computed using a multigrid
convergent estimator, and we propose in this paper a new digital cur-
vature flow which mimics continuous curvature flow. We illustrate its
potential as a post-processing step to a variational segmentation frame-
work.

Keywords: Multigrid convergence - Digital estimator - Curvature - Shape
Optimization - Image Segmentation.

1 Introduction

Geometric quantities are particularly useful as regularizers, especially when some
prior information about the object geometry is known. Length penalization is
a general purpose regularizer and the literature is vast on models that make
use of it [3,1]. However, this regularizer shows its limitations when segmenting
thin and elongated objects, as it tends to return disconnected solutions. Such
drawback can sometime be overcome by injecting curvature regularization [7].
One of the first successful uses of curvature in image processing is the in-
painting algorithm described in [12]. The authors evaluate the elastica energy
along the level lines of a simply-connected image to reconstruct its occluded
parts. The non-intersection property of level lines allows the construction of an

* This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant.



2 D. Antunes et al.

efficient dynamic programming algorithm. Nonetheless, it is still a challenging
task to inject curvature in the context of image segmentation.

The state-of-art methods are difficult to optimize and not scalable [7,18,
13]. In order to achieve reasonable running times, such approaches make use
of coarse curvature estimations for which the approximation error is unknown.
Improving the quality of the curvature estimator has an important impact on
the accuracy of the results, but is computationally too costly in these methods.
Recently, new multigrid convergent estimators for curvature have been proposed
[17,5, 16], motivating us to search for models in which they can be applied.

In this work, we investigate the use of a more suitable curvature estimator
with multigrid convergent property and its application as a boundary regularizer
in a digital flow minimizing its squared curvature. Our method decreases the
elastica energy of the contour and its evolution is evaluated on several digital
flows. Finally, we present an application of the model as a post-processing step
in a segmentation framework. The code is freely available on github'.

Outline. Section two reviews the concept of multigrid convergence and high-
lights its importance for the definition of digital estimators. Next, we describe
two convergent estimators used in this paper, one for tangent and the other for
curvature. They are used in the optimization model and in the definition of the
digital elastica. Section three describes the proposed curvature evolution model
along with several illustrations of digital flows. Section four explains how to use
the evolution model as a post-processing step in an image segmentation frame-
work. Finally, sections five and six discuss the results and point directions for
future work.

2 Multigrid Convergent Estimators

A digital image is the result of some quantization process over an object X
lying in some continuous space of dimension 2 (here). For example, the Gauss
digitization of X with grid step h > 0 is defined as

Dy (X) = X N (hZ)%.

Given an object X and its digitization Dy (X), a digital estimator @ for some
geometric quantity u is intended to compute u(X) by using only the digitiza-
tion. This problem is not well-posed, as the same digital object could be the
digitization of infinitely many objects very different from X. Therefore, a char-
acterization of what constitutes a good estimator is necessary.

Let u be some geometric quantity of X (e.g. tangent, curvature). We wish
to devise a digital estimator @ for w. It is reasonable to state that @ is a good
estimator if @(Dp (X)) converges to u(X) as we refine our grid. For example,
counting pixels is a convergent estimator for area (with a rescale of h?); but
counting boundary pixels (with a rescale of h) is not a convergent estimator
for perimeter. Multigrid convergence is the mathematical tool that makes this

! https://www.github.com/danoan/BTools
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definition precise. Given any subset Z of (hZ)?, we can represent it as a union
of axis-aligned squares with edge length h centered on the point of Z. The
topological boundary of this union of cubes is called h-frontier of Z. When
Z = Dp(X), we call it h-boundary of X and denote it by 0, X.

Definition 1 (Multigrid convergence for local geometric quantites) A lo-
cal discrete geometric estimator 4 of some geometric quantity u is (uniformly)
multigrid convergent for the family X if and only if, for any X € X, there ex-
ists a grid step hx > 0 such that the estimate 4(Dp(X), &, h) is defined for all

T € OpX with0 < h < hx, and for any x € 0X,

Vi € Op X with || — x|, < h,||a(Dp(X), &, h) —u(X,z)|| < 7x(h),

where Tx : RT\ {0} — R* has null limit at 0. This function defines the speed of
convergence of U towards u for X.

For a global geometric quantity (e.g. perimeter, area, volume), the definition
remains the same, except that the mapping between X and 0, X is no longer
necessary.

Multigrid convergent estimators provide a quality guaranty and should be
preferred over non-multigrid convergent ones. In the next section, we describe
two estimators that are important for our purpose.

2.1 Tangent and Perimeter Estimators

The literature presents several perimeter estimators that are multigrid conver-
gent (see [4, 6] for a review), but in order to define the digital elastica we need
a local estimation of length and we wish that integration over these local length
elements gives a multigrid convergent estimator for the perimeter.

Definition 2 (Elementary Length) Let a digital curve C be represented as
a sequence of grid vertices in a grid cell representation of digital objects (in grid

with step h). Further, let 6 be a multigrid convergent estimator for tangent. The
elementary length §(e) at some grid edge e € C is defined as

3(e) = h-0(1) - or(e),
where or(e) denotes the grid edge orientation.

The integration of the elementary length along the digital curve is a multigrid
convergent estimator for perimeter if one uses the A-MST [10] tangent estimator
(see [9)).

2.2 Integral Invariant Curvature Estimator

Generally, an invariant ¢ is a real-valued function from some space {2 which
value is unaffected by the action of some group & on the elements of the domain

reNgeBo(zx)=vs—o0(g-z)=0.
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Perimeter and curvature are examples of invariants for shapes on R? with re-
spect to the euclidean group (rigid transformations). Definition of integral area
invariant and its one-to-one correspondence with curvature is proven in [11].

Definition 3 (Integral area invariant) Let X C R? and B,(p) the ball of
radius r centered at point p. Further, let 1x(-) be the characteristic function of
X. The integral area invariant ox ,(-) is defined as

Vp € 0X, ox.(p) = / 1x(z)dz.
B:(p)

The value ox ,(p) is the intersection area of ball B,(p) with shape X. By
locally approximating the shape at point p € X, one can rewrite the intersection
area ox (p) in the form of the Taylor expansion [14]

T k(X )
oxr(p) = Tr2 = MoBa L o,
2 3
where k(X p) is the curvature of X at point p. By isolating x we can define
a curvature estimator

i) = 5 (- os0). &

Such an approximation is convenient as one can simply devise a multigrid
convergent estimator for the area.

Definition 4 Given a digital shape D C (hZ)?, a multigrid convergent estimator
for the area Area(D,h) is defined as

Area(D, h) = h2Card (D). (2)

In [5], the authors combine the approximation(1) and digital estimator (2)
to define a multigrid convergent estimator for the curvature.

Definition 5 (Integral Invariant Curvature Estimator) Let D C (hZ)? a
digital shape. The integral invariant curvature estimator is defined as

3 2
Ar(D,a,h) = (”; — Area (B, (z) N D,h)) .

This estimator is robust to noise and can be extended to estimate the mean
curvature of three dimensional shapes.
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3 Digital Curvature Evolution Model

Our goal is to deform a digital object in order to minimize the elastica energy
along its contour. Our strategy is to define the digital elastica by using the
elementary length and the integral invariant curvature estimators and minimize
its underlying binary energy. However, the derived energy is of order four and
difficult to optimize. Therefore we propose an indirect method to minimize it.

3.1 Ideal Global Optimization Model

We evaluate the quality of a boundary by evaluating the elastica energy along it.
Let x(-) denote the curvature function evaluated on the contour of some shape
X. In continuous terms, the elastica energy is defined as

E(X)= /8X (a+ Br?)ds, for a>0,3>0.

We are going to use the digital version of the energy, using multigrid conver-
gent estimators. The energy, in this case, is also multigrid convergent.

E(Dn(X) = Y 8@)(a+BrN(Dy(X),z,h)), (3)

a:EBDh,(X)

where 0D, (X)) denotes the 4-connected boundary of Dy, (X). In the following we
omit the grid step h to simplify expressions (or, putting it differently, we assume
that X is rescaled by 1/h and we set h = 1).

A segmentation energy can be devised by including some data fidelity term g
in (3), but we need to restrict the optimization domain to consistent regions. We
cannot properly estimate length and curvature along anything different from
a boundary. Let {2 be the digital domain and T the family of subsets of (2
satisfying the property

DeT = DcC 2 and 4B(0D),

where 4B(+) is the 4-connected closed boundary predicate.
For some v > 0, the segmented region D* is defined as

D* = argmin Z 3(x) (a+ BK.2(D, z) ) +7-9(D). (4)

In its integer linear programming model [18], Schoenemann restricts the op-
timization domain by imposing a set of constraints that enforces compact sets as
solutions. However, the main difficulty here is the minimization of a third order
binary energy. We are going to explore an alternative strategy.
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3.2 Nonzero Curvature Identification

We can use the curvature estimator to detect regions of positive curvature. Given
a digital object D embedded in a domain {2, we define its pixel boundary set
P(D) as

P(D)={z|z € D,|Ny(z)ND| <4},

where Ny(x) denotes the 4-adjacent neighbor set of z (without x). The following
optimization regions are important in our process.

O =P(D) Optimization region.
F =D-P(D) Trust foreground.
B =02-D Trust background.

A =P(F)UP(B) Computation region.

Note that our definition of the optimization region guarantees that only con-
nected solutions are produced. The computation region is defined around O for
symmetric issues. We proceed by minimizing the squared curvature energy along
A with respect to the optimization region O.

Y* = argmin Zf%%(p) (5)
ve{o.3ol 54

We expand the squared curvature esimator for a single point p € A using
(1). Define constants ¢; = (3/73)2, ca = 7r?/2. Hence,

R2(p)=c1- (e2—opys(p))’

=c1- (3 —2c20p,(p) + 0D, (p)).
Let F,.(p) C F denote the intersection set between the estimating ball applied

at p with the foreground region. The subset Y,.(p) C Y is defined analogously.
Substituting op»(p) = |F5(p)| + X2y, e, (p) ¥i» We obtain

Rr(p)=ci- | C+2(|F(p)] —c2) - Z Yi + Z yi+2- Z YiYs | >
yi€Yr(p) vi€Yr(p) i,y; €Y (p)
1<J
where C = ¢3 — 2¢o - |F.(p)| + | F-(p)|*. By ignoring constants and multipli-
cation factors and using the binary character of the variables, problem (5) is
equivalent to

Y* = argmin Z (1/2+ |F.(p)| — c2) Z Yi + Z viys |- (6)
Ye{o,1}10l = Yi €Yy (p) Yi,Y; €Yo (p)
1<j
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Energy (6) is non-submodular, and minimizing it is a NP-Hard problem in
the general case. The QPBOP [15] method provides a partial labeling for the
optimization variables with the property that all labeled variables belong to some
optimal solution. However, some pixels may be left unlabeled. The optimization
method is further discussed in section 3.4. For r = 3, evaluation of the model on
a digital square produces figure 1la.

(a) (b) (c)

Fig.1: Figure (a): White pixels denote variables labeled as one by QPBOP,
while light gray pixels variables are labeled zero; Figure (b): Inverted labeling;
Figure (c): Regions of interest: Background (black); Foreground (dark gray);
Computation (light gray); and Optimization (white) regions.

We interpret positive curvature at some point p as a shortage of intersection
points between the digital object and the estimating ball. The curvature can be
reduced if the estimating ball is pulled towards the interior of the digital object,
which is done by removing the highlighted pixels in figure la. In other words,
the partial labeling is inverted, and unlabeled pixels remain unchanged. Points
with negative curvature are detected similarly if we evaluate the model on the
digital object complement.

3.3 Digital Curvature Flow

We derive the digital curvature flow by iteratively evaluating model (6) with
a slight modification. We extend the computation region to take into account
more level sets (¢) of the original object. As a practical consequence, zones of
high curvature are more likely to be detected, leading to a smaller number of
unlabeled pixels by QPBOP.

A=|Jor~uoB™,

i<t

where the —i exponent means an erosion by a square of side ¢. Figure 1c illus-
trates the different regions of the optimization model.

At each flow step, the model is evaluated twice. In the second evaluation,
we take care of concavities. The model is executed on D+!, the complement of
the dilation by a square of side one, and we swap foreground and background
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regions. Figure 2 presents several digital curvature flows and table 1 lists the
initial and final digital elastica energy for the tested shapes.

We observe that the choice of ball radius (r) and level sets (¢) should take
into account the image scale. For example, using a radius that is too large might
lead to a disconnected intersection zone and the accuracy of the estimator is
compromised. This explains the difference in flows in figure 2. In practice, we
observe that using a ball of radius 3 is sufficient to produce good results while
achieving a reasonable running time.

Digital Elastica
Ball | Triangle|Square|Flower
Initial value [0.156| 2.55 1.81 | 4.196
r=3,¢4=3 1]0.192| 0.335 | 0.286 | 0.298
r=>5/¢=2 0.156] 0.556 | 0.423 | 1.477
r=5/¢=3 ]0.166] 0.375 | 0.321 | 0.364
r=5/¢=4 ]0.207] 0.508 | 0.311 | 0.174
r=5/¢=5 ]0.193] 0.52 | 0.278 | 0.163
r =10,/ =10|0.216] 1.33 | 0.333 | 0.159
Table 1: Evaluation of digital elastica (a = 0) for start and end curves of the
flow. Except for the ball, all the elastica energies were decreased significantly.

3.4 Optimization Method

Let F' be a function of n binary variables, i.e.

F(yi,-+yn) = ZFz(yz) + ZFi,j(yivyj)

1<J

Function F' is submodular if and only if the following inequality holds for
each pairwise term F; ; [8]

F; ;(0,0)+ F; ;(1,1) < F; ;(0,1) + F; ;(1,0)

Energy (6) is non-submodular and optimizing it is a difficult problem, which
constrained us to use heuristics and approximation algorithms. The QPBO
method [15] transforms the original problem in a max-flow/min-cut formulation
and returns a full optimal labeling for submodular energies. For non-submodular
energies the method is guaranteed to return a partial labeling with the property
that the set of labeled variables is part of an optimal solution. That property is
called partial optimality.

In practice, QPBO can leave many pixels unlabeled. There exist two exten-
sions of QPBO that ameliorate this limitation: QPBOI (improve) and QPBOP
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(d) r =5, =5 (1.5x scaling)

Fig. 2: Digital curvature flow for four different shapes. A total of 20 iterations
were executed for each flow, except for (c) (7 iterations). Curves are displayed
every 2 iterations. The initial curve (countour of the original shape) is in red
and the end curve in blue.

(probe). The first is an approximation method that is guaranteed to not in-
crease the energy, but we lost the property of partial optimality. The second is
an exact method which is reported to label more variables than QPBO. We use
QPBOP. The extended computation region also regularizes the energy and we
have checked that it induces a higher number of labeled variables.
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4 Application in Image Segmentation

The digital curvature flow can be applied as a post-processing step in an image
segmentation framework. We use graph cut [2] as segmentation method and we
execute the flow for n iterations. We include the graph cut data fidelity term g
and standard length penalization s to the flow energy.

min Y (o s(y) +7-9() + 8- DA p). (7)

yey pEA

Let Ny(p) denote the four neighborhood of pixel p. Length penalization is
defined as

sp)= Y, (p—m)"

pr€N4(p)

In Figure 3 we show some results. The flow clearly regularizes the contour
of figures produced by the comparison segmentation via graph cut. In both
figures, the flow is able to correct zones of high positive curvature and expand
regions of low negative curvature, but without invading the background zone.
Nonetheless, the flow does not expand zones of convexity. Unfortunately, as we
follow a local strategy, we are unable to expand some zones that clearly belongs
to the segmented object, like the cow’s leg.

5 Conclusion

We have shown that the integral invariant curvature estimator can be inte-
grated into an optimization model and can be applied together with classical
penalization terms as length and data fidelity in an image processing task. We
demonstrated its potential by designing a digital curvature flow that mimics
continuous flow in an accurate way. Finally, we show how it can be used as a
post-processing tool in an image segmentation framework.

We have some directions for future work. First, optimize the code and evalu-
ate a runtime analysis to compare with competitor methods. We also think that
we can reformulate the model in [18] using the digital estimator K.
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(8) (h) @

Fig. 3: Digital flow post-processing results for a total of 5 iterations (« = 0.1, 8 =
1,y=1).



