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We consider the asymmetry of the buoyancy field in the vertical direction in stratified
turbulence. While this asymmetry is known, its causes are not well understood and
it has not been systematically quantified previously. Using theoretical arguments, it is
shown that both stratified turbulence and isotropic turbulence in the presence of a mean
scalar gradient will become positively skewed, as a direct consequence of the presence
of stratification and mean scalar gradient, respectively. Assuming a rapid adjustment of
isotropic turbulence to a stable stratification on a timescale τ ∼ N−1, where N is the
Brunt-Väisälä frequency, a scaling for the skewness of the vertical buoyancy gradient
is obtained. Direct numerical simulations (DNS) of stratified turbulence with forcing
are performed and the positive skewness of ∂b/∂z is confirmed (b is the buoyancy).
Both the volume-averaged dimensional skewness, 〈(∂b/∂z)3〉, and the non-dimensional
skewness, S, are computed and compared against the theoretical predictions. There is
a good agreement for 〈(∂b/∂z)3〉, while there is a discrepancy in the behaviour of S.
The theory predicts S ∼ 1 and a constant skewness, while the DNS confirm that the
skewness is O(1) but with a remaining dependence on the Froude number. The results
are interpreted as being due to the concurrent action of linear and non-linear processes
in stratified turbulence leading to S > 0 and to the formation of layers and interfaces in
vertical profiles of buoyancy.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Stratified turbulence is turbulence in the presence of a stable density stratification.
Depending on the strength of the stratification, this turbulent flow can be altered
to different degrees by the buoyancy forces that the internal density differences of
the fluid bring about. As a result, stratified turbulence can be very different from
homogeneous isotropic turbulence. Because of its significance for atmospheric and oceanic
turbulence, there has been a continuous fluorishing of research dealing with this subject.
In their recent review of mixing in the ocean, Gregg et al. (2018) point out that in the
stratified turbulence literature a layer-interface model is often assumed. In this model,
the turbulence is seen to evolve and to create regions of partially mixed fluid, with weaker
density gradient than the background density gradient (the layers), separated by thin
regions of high density gradient (the interfaces). We will refer to this model density
profile as a staircase profile, as it is sometimes called in the literature. Note also that
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Figure 1. Sketch of the staircase profile of the total buoyancy btot = b̄ + b and of the
corresponding buoyancy profile. In the plot of total buoyancy the dashed line represents the
background linear buoyancy profile, b̄(z) = N2z.

the high-gradient interfaces are sometimes referred to as sheets and the layers as steps
in previous studies (see, e.g., Browand et al. 1987; Gregg et al. 2018).

To describe the layer-interface model quantitatively it is necessary to introduce the
total density of the fluid, ρ = ρ0 + ρ̄(z) + ρ′(x). The three terms making up ρ are a
constant reference density ρ0, the linear density profile ρ̄(z) and the three-dimensional
perturbation ρ′(x) created by the turbulent flow. It is worth introducing the buoyancy
b, a quantity related to the density perturbation in the following way, b = −ρ′g/ρ0.
The buoyancy b is again a perturbation quantity, away from the background buoyancy
b̄, where db̄/dz = N2. As a result 〈b〉 = 0 as well as 〈∂b/∂z〉 = 0, where 〈. . .〉 denotes
an average. Note that in terms of the buoyancy the background gradient is positive, in
contrast to the background density gradient, which is negative and a more customary
quantity. The staircase profile composed of repeating layers and interfaces is sketched in
terms of buoyancy in figure 1. Let us imagine for a moment that this profile is a vertical
profile of buoyancy measured in a stratified flow. Then it is relatively clear that most
of the fluid particles are within layers and so have a total buoyancy gradient that is
weaker than the background. On the other hand, a small number of fluid particles have
strongly positive total buoyancy gradients, corresponding to the highly stable interfaces
in the staircase profile. This feature can also be seen from the plot of the buoyancy b,
corresponding to the idealized staircase profile, also shown in figure 1. Now, the profile of
b is clearly asymmetric, with large extents of mildly negative ∂b/∂z and small extents of
strongly positive ∂b/∂z. This means that if we consider statistics of the local buoyancy
gradient we will obtain results that are not symmetric about ∂b/∂z = 0 but that are
skewed towards positive values of ∂b/∂z. Hence, this simple and widely used staircase
profile contains a statistical asymmetry of the vertical buoyancy gradient. It is here argued
that this is an important feature of this turbulent flow which should be considered in
more detail than has been done previously.

Such asymmetry in stratified turbulence has first been noted and connected to the
staircase profile by Kimura et al. (2016). They performed Direct Numerical Simulations
(DNS) of stratified turbulence with forcing, which was vertically coherent and excited
only the vortex mode of the stratified flow and not the wave mode (see Riley & Lelong
2000). The visualisations of buoyancy in a vertical slice showed the presence of layers, and
total buoyancy profiles beared some resemblence with the staircase profile idealization of
figure 1, while being significantly more irregular. Probability density functions (PDFs) of
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the buoyancy gradients from the DNS had an asymmetric shape for ∂b/∂z with a positive
skewness, while the PDFs of the horizontal buoyancy gradients, ∂b/∂x and ∂b/∂y, were
symmetric. In this study (Kimura et al. 2016), the asymmetry of the vertical buoyancy
gradient was not quantified and values of the skewness of ∂b/∂z were not reported. The
skewness of ∂b/∂z is defined as follows:

S ≡

〈(
∂b

∂z

)3
〉

〈(
∂b

∂z

)2
〉3/2

(1.1)

In the context of ocean turbulence, Desaubies & Gregg (1981) reported statistics
of vertical temperature gradient in the pycnocline varying the differencing interval or
scale; these statistics have a high skewness at relatively fine scales of ∼ 1m, while
the skewness was considerably reduced at larger scales of ∼ 10m. Similar results on
the vertical gradients of vertical isopycnal displacements, which are related to vertical
density gradients, were obtained by Pinkel et al. (1991). Both of these studies (Desaubies
& Gregg 1981; Pinkel et al. 1991) found some evidence of layer-interface structure but,
as stated by Gregg et al. (2018), “the typical pycnocline is ‘irregularly steppy’ precluding
objective identification of high-gradient sheets separating homogeneous layers”. Internal
waves were found to be the dominant process at large scales (∼ 10m) whereas at the
smaller highly-skewed scales (∼ 1m) turbulence and mixing events were interpreted as
being the important process.

The layer-interface model is relevant also for other turbulent flows. In particular, similar
structure is presented by turbulence with a passive scalar in which the scalar fluctuations
are created by a mean scalar gradient (Warhaft 2000). If the scalar perturbation φ is
advected by a turbulent flow with a mean scalar gradient in the z-direction, dφ̄/dz, then
layers and interfaces emerge in z-profiles of total scalar concentration φ̄ + φ (Warhaft
2000). In the literature of passive scalar advection this structure is known as a “ramp-
cliff structure”. By the above arguments, this structure results in a non-zero skewness
of ∂φ/∂z, as has long been known in the passive scalar literature (see the review of
Warhaft 2000, and references therein). A skewness of ∂φ/∂z can be defined analogously
to the definition of S in equation 1.1 and this quantity was found to be ≈ 1 in the grid
turbulence experiments with a wall-normal temperature gradient of Mydlarski & Warhaft
(1998). In a recent study, de Bruyn Kops (2015) compared the behaviour of passive scalar
advection with a mean scalar gradient to that of stratified turbulence, both of which were
simulated using DNS. It was found that in both situations the vertical scalar gradient
(corresponding to the vertical buoyancy gradient for the stratified turbulence cases) is
positively skewed, and the values reported for the cases with strong stratification are
S ≈ 2−2.3, higher than the value for the experiments with a passive scalar. It therefore
appears that a similar structure of the scalar emerges in the presence of a scalar gradient,
either in the case the scalar is buoyancy (and so has an effect on the momentum equation)
or a passive scalar. In both cases, the scalar is positively skewed but the value of S seems
to be higher for strongly stratified turbulence than for passive scalar turbulence.

The physical mechanism or instability causing the layer-interface structure of stratified
turbulence is not well understood and is the subject of active debate (Park et al. 1994;
Holford & Linden 1999; Thorpe 2016; Taylor & Zhou 2017). An instability leading to
such structure was proposed early on by Phillips (1972) and Posmentier (1977) and is
known as the Phillips-Posmentier instability. In his work, Phillips (1972) considered the
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horizontally-averaged momentum and buoyancy equations in the presence of a mean shear
and stratification. The mean (i.e. horizontally-averaged) profiles of horizontal velocity,
ū, and buoyancy, b̄, of the turbulent flow are then perturbed and an eddy viscosity
and diffusivity are used to close the resulting equations for these “mean perturbations”.
Finally, Phillips found that if the eddy diffusivity decreases sufficiently rapidly with
increasing Rig = N2/(dū/dz)2, then the perturbation of the mean buoyancy profile
will grow leading to a layer-interface structure. Here Rig is the gradient Richardson
number. Laboratory experiments of homogeneous stratified turbulence in which layering
was observed were reviewed by Thorpe (2016) and in a number of cases the above
condition on the decrease of the eddy diffusivity with Rig was not satisfied. This condition
was satisfied in the experiments only when the turbulence was already layered. This led
Thorpe (2016) to conclude that the Phillips-Posmentier instability is not responsible for
the initial formation of the layers in these experiments but may reinforce an existing
layer-interface structure. An additional mechanism that may create a layer-interface
structure is turbulent mixing of a localized “blob” of fluid, which subsequently collapses
and spreads laterally as an intrusion due to the horizontal density differences with
the ambient stratified fluid. Such an intrusion effectively creates a horizontal layer of
relatively well-mixed fluid while spreading; this mechanism was proposed by a number of
authors (Browand et al. 1987; Maffioli et al. 2014; Thorpe 2016). Further instabilities that
may be at work are the decorrelation instability (Lilly 1983) and the zig-zag instability
(Billant & Chomaz 2000) both of which act on vertically coherent flow regions or vortices
and break this coherence leading to the formation of thinner layers.

Another problem in which there is symmetry breaking along an axis is the case of
rotating turbulence. This turbulent flow is known to present a number of analogies with
stratified turbulence (Davidson 2013), and compared to the stratified case in which the
flow is dominated by layered structures, the rotating case is also dominated by anisotropic
structures, but here they are elongated along the axis of rotation. It is also well-known
that these elongated structures are preferentially cyclonic rather than anticyclonic, and
hence preferentially spin in the same sense as the system rotation (see Hopfinger et al.
1982; Bartello et al. 1994). In mathematical terms, this translates in the vertical vorticity
ωz being mostly positive for large values of |ωz| and hence to this quantity having non-zero
positive skewness (if the rotation Ω is in the positive vertical direction). The skewness
of ωz has been measured in a number of experiments (Staplehurst et al. 2008; Gan et al.
2016) and numerical simulations (Bartello et al. 1994; Deusebio et al. 2014) of rotating
turbulence, and typical values are of the order of unity. The explanation put forward by
Bartello et al. (1994) for the cyclone-anticyclone asymmetry in rotating turbulence is that
anticyclones are more susceptible to becoming unstable to the centrifugal instability than
cyclones, at a Rossby number of order unity. Thus, anticyclones would be depleted by
the centrifugal instability and cyclones would remain stable, leading to the asymmetry.

A theoretical explanation for the creation of strong positive vorticity of the same sign
as Ω in rotating turbulence has been suggested more recently by Gence & Frick (2001). In
their study, they considered first homogeneous isotropic turbulence in which the skewness
of ωz is zero and then tried to answer the question of what would happen if the system
rotation is suddenly switched on at t = 0. Focusing on the equation for the evolution
of the “dimensional skewness” of ωz,

〈
ω3
z

〉
, Gence & Frick were able to show that this

reduces to, at the instant after rotation is applied:

d

dt

〈
ω3
z

〉
=

2

5
Ω 〈ωiωjSij〉 (1.2)

where Ω = Ω · ez and Sij is the strain rate tensor. The reason why equation 1.2 is valid
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at the first instant after t = 0 is that all the other terms are zero since the turbulence is
still isotropic. Considering then that the quantity 〈ωiωjSij〉 is positive in homogeneous
isotropic turbulence, Gence & Frick used equation 1.2 to show that, if Ω > 0, the vertical
vorticity skewness becomes positive as a result of the application of a system rotation Ω.
This theoretical argument may explain why there is an inherent tendency for rotating
turbulence to develop vorticity of the same sign as the rotation, and so create prevalence
of cyclones over anticyclones in this flow.

In the present study we consider if similar theoretical arguments as those used by
Gence & Frick for rotating turbulence, can be used in stratified turbulence to show that
the vertical buoyancy gradient has a tendency to become positive for high values of
|∂b/∂z| and so to develop a positive skewness. By extension, we are looking for a natural
tendency of stratified turbulence towards layering of the density and buoyancy fields.

2. Theoretical considerations

2.1. Response of vertical buoyancy gradient to a stable stratification

We consider a similar thought experiment to the one considered by Gence & Frick
(2001) for rotating turbulence, which we briefly summarized previously. We still consider
the case of homogeneous isotropic turbulence but now in the presence of an advected
passive scalar. We focus on the case of an initially decaying scalar field, but the analysis
can be extended to the case of a homogeneous and isotropic source or forcing of the scalar.
In this thought experiment, the passive scalar is advected in a field of fully developed
turbulence until, at t = 0, a linear background stratification of the scalar field as well
as gravity are suddenly “switched on”. This means that the scalar in question, which
we denote as b, suddenly ceases being a passive scalar and becomes an active scalar at
t = 0, i.e. at this time the scalar effectively becomes the buoyancy in a linearly stratified
turbulent flow. Note that the arguments described here can also be applied to the case of
a passive scalar which remains passive for all times and in which a mean scalar gradient is
suddenly applied at t = 0. Hence, the result can provide insight also into the observation
of non-zero scalar gradient skewness and staircase profiles in the case of passive scalar
advection with a background scalar gradient (Warhaft 2000).

After the stratification is switched on, the buoyancy behaves according to the following
equation:

∂b

∂t
+ u · ∇b = −N2w +D∇2b (2.1)

where u = [u v w] is the velocity field and D is the buoyancy diffusivity. In order to
consider the vertical buoyancy gradient, we take the z-derivative of this equation to
obtain the evolution equation for ∂b/∂z:

∂

∂t

(
∂b

∂z

)
+ u · ∇

(
∂b

∂z

)
= −N2 ∂w

∂z
− ∂u

∂z
· ∇b+D∇2

(
∂b

∂z

)
(2.2)

which can be found using the identity ∂/∂z(u · ∇b) = ∂u/∂z · ∇b + u · ∇(∂b/∂z). This
equation is an advection-diffusion equation with two additional terms. The first term on
the RHS represents a change in ∂b/∂z due to the vertical strain of the vertical velocity
acting on the background buoyancy gradient. The second term on the RHS represents
creation/destruction of vertical buoyancy gradient due to tilting of the overall buoyancy
gradient by the vertical shear.
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We proceed and multiply equation 2.2 by 3(∂b/∂z)2 to obtain, after some rearrange-
ment, the following evolution equation for (∂b/∂z)3:

∂

∂t

(
∂b

∂z

)3

+ u · ∇
(
∂b

∂z

)3

=

− 3N2 ∂w

∂z

(
∂b

∂z

)2

− 3

(
∂b

∂z

)2(
∂u

∂z
· ∇b

)
+D∇2

(
∂b

∂z

)3

− 6D ∂b
∂z

[
∇
(
∂b

∂z

)
· ∇
(
∂b

∂z

)]
(2.3)

The last step consists in taking the ensemble average of equation 2.3 to obtain an
equation for the “dimensional skewness”, 〈(∂b/∂z)3〉. Before doing this, we observe that
by setting N = 0 in equation 2.3 we obtain the governing equation valid in the absence
of stratification, for t < 0, when b is a passive scalar. It is clear that ensemble averaging
this equation would result in a number of terms such as:

〈
u · ∇

(
∂b

∂z

)3
〉

= C

3

〈(
∂b

∂z

)2(
∂u

∂z
· ∇b

)〉
= D

(2.4)

where C and D are constants which do not depend on spatial position within the
turbulent flow. This follows from homogeneity of the turbulence. Now, because we assume
zero net boundary flux it follows from incompressibility that C = 0 and because of
isotropy of the turbulent flow for t < 0 it is also true that D = 0. To confirm this, one
can verify that the second equation in the set of equations 2.4 would change sign under a
reflection of the z-axis which is impossible for an isotropic flow. Hence the only possibility
is that D = 0. Using similar arguments, one can confirm that the two remaining terms
involving diffusivity are also zero on average. This means that 〈(∂b/∂z)3〉 = 0 for t < 0
and the vertical buoyancy gradient has zero skewness while there is no stratification.
This fact can also be directly explained by realizing that 〈(∂b/∂z)3〉 needs to be zero if
the scalar field is isotropic.

The above picture changes when the stratification is introduced. Considering the above
discussion, ensemble averaging of equation 2.3 leaves us with, at t = 0+:

d

dt

〈(
∂b

∂z

)3
〉

= −3N2

〈
∂w

∂z

(
∂b

∂z

)2
〉

(2.5)

First of all, it is important to apply the above arguments and let 〈∂w/∂z(∂b/∂z)2〉 = E,
which allows us to confirm that the constant E is a priori non-zero in isotropic turbulence
with a passive scalar, since z-reflection maintains its sign. Now, since 〈(∂b/∂z)3〉 = 0 at
t = 0, the above equation shows that the stratification will cause the formation of a non-
zero skewness, and this occurs instantaneously after the application of N . It remains to
determine of what sign the skewness of ∂b/∂z will become. To understand this we need
to know the sign of E. The term under scrutiny is closely related to the velocity-scalar
third-order structure function, DLbb(r) = 〈∆u(∆b)2〉, as we will now see. Here r is the
separation distance of the two-point statistics and ∆u is a longitudinal velocity difference.
There is an exact relationship in homogeneous isotropic turbulence for the velocity-scalar
third-order structure function, known as Yaglom’s relation (Yaglom 1949),
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〈
∆u(∆b)2

〉
= −4

3
χr for ηb � r � L (2.6)

where χ is the dissipation rate of half the scalar variance, χ = D〈∇b ·∇b〉. The Batchelor
scale ηb corresponds to the smallest scale of the scalar field, while L is an integral scale
of the turbulence. This relation is valid in what is called the convective-inertial range
and the negative sign of 〈∆u(∆b)2〉 in this range is related to the flux of scalar variance
from large scales to small scales. The fact that 〈∆u(∆b)2〉 < 0 results in this flux being
positive, indicating a forward cascade of scalar variance.

For small separations r, we can follow the approach of Yeung et al. (2002) and use
first-order Taylor expansions to let the scalar-velocity structure function be approximated
by:

〈
∆u(∆b)2

〉
≈

〈
∂w

∂z

(
∂b

∂z

)2
〉
r3 (2.7)

where we have let the structure function separation be in the z-direction. This is exactly
the term we need to consider. It thus follows that this term is negative since the velocity-
scalar structure function is negative for all r. This feature of 〈∆u(∆b)2〉 has been observed
in several studies of passive scalar advection in isotropic turbulence with or without mean
scalar gradient (Yeung et al. 2002; Watanabe & Gotoh 2004; de Bruyn Kops 2015). It is
simply a consequence of the fact that the direction of the cascade of scalar variance is
always downscale towards the dissipative scales, even at small r.

Taking into account this result that E < 0, equation 2.5 means that the vertical
buoyancy gradient becomes positively skewed at t = 0+. Hence, the effect of the stable
stratification on an isotropic field of turbulence with a scalar b that suddenly becomes
influenced by gravity is to create a positive skewness of ∂b/∂z. Effectively, as argued by
Warhaft (2000) in the context of passive scalar advection, this means that the buoyancy
field instantly becomes anisotropic since reflection of the z-axis no longer leaves all terms
of equation 2.3 invariant (when averaged).

2.2. Symmetry of Boussinesq set of equations in a linearly stratified fluid

The above idealization of the problem evidences an inherent tendency of stratified
turbulence towards symmetry breaking in the vertical direction, and towards the devel-
opment of a positive skewness of the vertical buoyancy gradient, S. It is worth inspecting
the Boussinesq set of equations that governs this turbulent flow and to consider its
symmetry with respect to the z-axis. The full set of equations for a linearly stratified
flow under the Boussinesq approximation is:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ bez + ν∇2u (2.8)

∂b

∂t
+ u · ∇b = −N2w +D∇2b (2.9)

∇ · u = 0 (2.10)

where ν is the viscosity. The pressure p is a perturbation pressure away from the
hydrostatic pressure profile due to the linear background density profile. Equations 2.8
and 2.10 are the momentum and continuity equations. They are both symmetric with
respect to reflections of the z-axis, in a statistical sense. Focusing for example on the z-
component of the momentum equation, it is clear that the vertical velocity w and hence
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also ∂w/∂t change sign at every point under a z-reflection but so do all other terms
in this equation, and so statistics of w remain unchanged in the absence of mean flow.
On the other hand, consideration of the buoyancy equation immediately reveals that all
terms remain of the same sign, except for −N2w, which changes sign. This is because N
is a constant in the equations. Thus, the buoyancy equation is asymmetric in the vertical
direction. The asymmetry of the vertical buoyancy gradient and its positive skewness are
just consequences of this basic property of the buoyancy equation. In some sense this
asymmetry of the governing equations is reassuring because it implies, loosely speaking,
that stratified turbulence knows that gravity is pointing downwards (and not upwards!).

Finally, it is worth pointing out that since equations 2.8-2.10 are coupled there may be
an effect of the asymmetry of ∂b/∂z on the statistics of u and its gradients. In particular,
the buoyancy will have a direct effect on the vertical velocity, which will in turn affect
the horizontal components of the velocity. However, since the direct effects are felt by w
which is small in strongly stratified turbulence, it is expected that the overall effect on
u will be weak.

2.3. Scaling prediction for the skewness

2.3.1. Stratified turbulence

Having described the behaviour of the vertical buoyancy gradient skewness, we now
look for an estimate of this quantity. From equation 2.5, which is the main result of the
above analysis, we can make some steps forward by assuming that 〈∂w/∂z(∂b/∂z)2〉 ≈
const up to a certain time τ after the application of the stratification. This gives an
estimate for the dimensional skewness (which we denote as Bz3 from this point onwards),

Bz3 ≡

〈(
∂b

∂z

)3
〉
≈ −3N2τ

〈
∂w

∂z

(
∂b

∂z

)2
〉

(2.11)

For our estimate of Bz3 to be reliable, the second hypothesis which must hold is that
most of the skewness of the “fully developed” stratified turbulence is created in this initial
adjustment period. In their work, Gence & Frick (2001) assumed the relevant timescale for
turbulence subjected suddenly to solid-body rotation to be τ = τk, where τk = (ν/ε)1/2

is the Kolmogorov timescale. In the present case of strongly stratified turbulence we use
a different timescale. We expect the vertical scales of the layer-interface structure to
be significantly larger than the Kolmogorov lengthscale, η. Since the steps observed by
Holford & Linden (1999); Kimura et al. (2016) are sharp we expect this to be true even
for the vertical scale of the interfaces. As a result, we envisage that a significantly larger
timescale than τk is relevant. Moreover, the fact that the stratification is strong implies
that the horizontal Froude number is small, Frh � 1. The horizontal Froude number is
given by Frh = uh/(N`h), where uh is a typical velocity scale of the horizontal motions
and `h is a horizontal lengthscale. Hence, it is clear that there are two natural timescales
in this problem, whose ratio is equal to Frh. The first timescale is N−1, the buoyancy
timescale, and the second timescale is `h/uh, the horizontal eddy turnover time. Since
Frh � 1, we have N−1 � `h/uh, meaning that the buoyancy timescale is much smaller
than the non-linear timescale. Considering that we expect the turbulence to adjust to
the imposition of the stratification on a fast timescale over which equation 2.11 holds, we

set τ ∼ N−1. Note that with this choice of timescale, τ/τk ∼ ε1/2/(ν1/2N) = Re
1/2
b � 1

since Reb � 1 in strongly stratified turbulence. Hence, the scaling for the dimensional
skewness is:
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Bz3 ∼ N

〈
∂w

∂z

(
∂b

∂z

)2
〉
∼ SubN

〈(
∂w

∂z

)2
〉1/2〈(

∂b

∂z

)2
〉

(2.12)

in which we have followed Yeung et al. (2002) and introduced the quantity Sub defined
as Sub ≡ 〈∂w/∂z(∂b/∂z)2〉/[〈(∂w/∂z)2〉1/2〈(∂b/∂z)2〉]. This quantity was found to be
Sub ∼ 1 (and its sign was negative) in the DNS of turbulence in the presence of a passive
scalar with a mean scalar gradient of Yeung et al. (2002). For the present case we will also
assume Sub ∼ 1. Furthermore, we use the isotropic turbulence relations for the spatial
gradients, which leads to:

Bz3 ∼ N
√

ε

15ν

χ

3D
(2.13)

where ε is the kinetic energy dissipation rate, ε = 2ν〈SijSij〉. In stratified turbulence,
the buoyancy b is related to the potential energy EP = 〈b2〉/(2N2), which is actually
a surrogate for the available potential energy in this flow. The related potential energy
dissipation is εp = χ/N2. Substitution of this expression in equation 2.13 gives, after
dropping the numeric constants,

Bz3 ∼
√
ε

ν

εpN
3

D
(2.14)

We make our final assumption that εp ∼ ε, a scaling which is valid for strongly stratified
turbulence, a regime in which the mixing efficiency Γ = εp/ε is found theoretically and
numerically to be a constant of order unity, Γ ∼ 1 (Maffioli et al. 2016). This is a strong
assumption since the scaling for the mixing efficiency is in theory only valid when the
stratified turbulence is in a fully developed state, and not in a transient adjustment
phase. Nonetheless, we proceed and with this assumption we obtain the following scaling
expression for the dimensional skewness:

Bz3 ∼
ε3/2N3

ν1/2D
(2.15)

If this scaling for Bz3 holds we can obtain a scaling for the vertical buoyancy gradient
skewness S. Referring back to equation 1.1, and using the isotropic relation for the vertical
buoyancy gradient variance, which we will from this point denote as Bz2 ≡ 〈(∂b/∂z)2〉,
we obtain:

S ∼

ε3/2N3

ν1/2D(
εpN

2

D

)3/2
∼ Pr−1/2 (2.16)

where Pr = ν/D is the Prandtl number. The case of non-unity Prandtl number may be
relevant for ocean turbulence where Pr (or actually the Schmidt number in this case)
is between O(10) and O(103). On the other hand, if we set Pr = 1, we can obtain a
simplified expression for the dimensional skewness,

Bz3 ∼
ε3/2N3

ν3/2
(2.17)

and for the skewness, S,
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S ∼ 1 (2.18)

A Prandtl number of unity is relevant for stratified turbulence in the atmosphere, where
Pr ∼ 1, and this is the value used in the present numerical simulations. With this choice,
we predict the vertical buoyancy gradient skewness in strongly stratified turbulence to
be of order unity, S ∼ 1. Both this result and the expression for Bz3, equation 2.17, can
be tested using DNS, and this will be the subject of the following section.

The main assumption of the scaling analysis leading to equations 2.17 and 2.18 is that
the relevant timescale for the generation of positive skewness of the vertical buoyancy
gradient is the fast timescale τ ∼ N−1. It is important to note that this timescale is of
the order of the period of linear internal gravity waves, which will be generated at t = 0+

and at subsequent times. As a result τ ∼ N−1 is often thought of as a linear timescale
(Riley & Lelong 2000). If the analysis is appropriate for this problem and so if the above
expressions for the skewness turn out to be accurate, one could interpret this result as
being due to the action of internal gravity waves. It is plausible that, at least in our
thought experiment, the fast propagation of the waves generated at t = 0+ could create
a skewness in the initially isotropic scalar field. By extension, the waves may be playing
a role in setting up the staircase profile of the buoyancy field.

2.3.2. Passive scalar advection

We consider a similar analysis of equation 2.5 for the case in which b is a passive
scalar. For consistency with the literature on passive scalar advection, we change the
symbol of the scalar in this section to φ ≡ b. As we saw in the previous section, the
most important choice of the analysis was the choice of the timescale and we expect the
same to be true in the present case. We again depart from Gence & Frick (2001) who
considered the Kolmogorov timescale to be relevant in the case of rotating turbulence. It
is believed that the approximate relation for the third moment of the vertical scalar
gradient, see equation 2.19 below, is again valid for a significantly longer time. In
saying this we follow Bos (2014), who proposed that the relevant timescale of third-
order statistics of passive scalars in turbulence in the presence of a mean scalar gradient
is the integral timescale. Using the integral timescale, T , in triadic closure equations as
well as in a dimensional analysis of the problem, Bos (2014) was able to recover a vertical
scalar gradient skewness, Sφz = O(1), in agreement with experiments and simulations
(Mydlarski & Warhaft 1998; Yeung et al. 2002). It is interesting to test if using τ ∼ T will
give similar results within the present analysis. In passive scalar advection the turbulent
flow is isotropic and the integral lengthscale of the scalar field is determined by the
large eddies and so is of the same order of magnitude as the integral lengthscale of the
turbulence, Lφ ∼ Φ/(dφ̄/dz) ∼ L, where Φ = 〈φ2〉1/2. The integral timescale is thus
T ∼ L/u ∼ Φ/(u dφ̄/dz). Using this timescale in the “initial adjustment” approximation
of equation 2.5 we obtain (φz3 is the dimensional skewness of ∂φ/∂z):

φz3 ∼
dφ̄

dz
T

〈
∂w

∂z

(
∂φ

∂z

)2
〉
∼ Φχε1/2

uDν1/2
(2.19)

To proceed we use the asymptotic finite limits reached by kinetic energy and scalar
dissipation rates at high Reynolds number, ε ∼ u3/L and χ ∼ Φ2u/L (see Donzis et al.
2005). Hence, the expression for φz3 simplifies to:

φz3 ∼
χ3/2

Dν1/2
(2.20)
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Finally we use the isotropic scaling for the vertical scalar gradient variance, φz2 ∼ χ/D,
to arrive at an estimate for the vertical scalar gradient skewness, Sφz:

Sφz ∼

(
χ3/2

Dν1/2

)
(
χ3/2

D3/2

) ∼ D1/2

ν1/2
= 1 (2.21)

in the case Pr = 1. Hence, the scaling analysis predicts a skewness of order unity, similarly
to the case of stratified turbulence. This result is in agreement with previous studies on
passive scalar advection at Pr ∼ 1 (Mydlarski & Warhaft 1998; Yeung et al. 2002). It
is of interest to also consider the case Pr 6= 1, which, as before, results in the following
scaling for the skewness:

Sφz ∼ Pr−1/2 (2.22)

and so the skewness is predicted to decrease with increasing values of Pr . Two previous
numerical studies focusing on the skewness of passive scalar gradients have considered
non-unity Prandtl number cases over a large range of Pr (Yeung et al. 2002; Schumacher
& Sreenivasan 2003) and they both found a weakly decreasing skewness with increasing
Pr , qualitatively in agreement with equation 2.22. This result may have an important
implication since it predicts that at high Pr the skewness Sφz → 0, meaning that the
scalar field becomes isotropic. The reduction of the scalar anisotropy up to relatively
high Pr for what is attainable by numerical simulations, Pr = 64, was confirmed by the
results of Schumacher & Sreenivasan (2003).

3. Numerical simulations

3.1. Description of DNS simulations

A series of DNS of forced stratified turbulence was carried out, starting from random-
phase initial conditions for u and b = 0 at all points in the case of the buoyancy.
The exception is the highest resolution run (run R4) which was initialized using a
snapshot of another run (run R3). This means that the configuration of the simulations
is very different from the thought experiment described in §2 but it was chosen for
numerical convenience and may lead to a similar structure of stratified turbulence,
for which equations 2.17-2.18 are still applicable. The Boussinesq set of equations was
solved numerically using a pseudo-spectral method, with an algorithm based on Rogallo’s
method (Rogallo 1981). An artificial body force, f , was added to the RHS of the
momentum equation, equation 2.8, to obtain a statistically stationary field of stratified
turbulence. In total six runs were performed, with two significantly different forcing
schemes. In four of the runs, the forcing was applied to the vortical component of the
velocity field only and this was done only for vertical wavenumbers kz = 0 so that f
points in the horizontal direction and does not change along the vertical (this forcing is
very similar to that of Kimura et al. 2016). The forcing was concentrated in horizontal

wavenumbers in a circular shell at kh =
√
k2x + k2y = 3. For more details on these four

DNS simulations, the forcing scheme and the choice of box aspect ratio, the reader is
referred to our previous study, Maffioli (2017). For the final two DNS runs the well-known
stochastic forcing scheme of Eswaran & Pope was used (see Eswaran & Pope 1988). Unlike
the forcing scheme used in the other simulations, this forcing is isotropic and so equally
forces the vortex and the wave component of the flow. Another important difference is
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that the forcing scheme of the first four runs is white noise in time (uncorrelated in time),
while the Eswaran & Pope stochastic forcing has a finite correlation timescale. In our
application of Eswaran & Pope forcing, the force is applied in Fourier space for all modes
within the sphere of radius |k| = 3, where k = [kx ky kz] is the wavevector.

Time advancement is performed with a second-order Runge-Kutta scheme and dealias-
ing of the advective terms is obtained using a combination of truncation and phase
shifting (see Rogallo 1981). Since phase shifting is used, only partial truncation is
employed, with truncation of modes with |k| > kmax =

√
2/3(2π/Lx)Nx. The number of

grid points in the three directions is given by Nx, Ny, Nz, and the box dimensions are
Lx, Ly, Lz. In all runs Lx = Ly = 2π, while in some runs the vertical box dimension, Lz,
is smaller than Lx to reduce the computational cost, taking advantage of the anisotropy
of stratified turbulence. The grid spacing is uniform in all three directions. A list of
computational and physical parameters of the runs is given in table 1. The vertical box
dimension for each run is given by Lz = Lx(Nz/Nx) = 2π(Nz/Nx). The good resolution
of the smallest scales is achieved for the DNS runs, all of which have kmaxη ≈ 1.5 during
the statistically stationary period. The Prandtl number is unity for all simulations.

Our working definitions of the horizontal Froude number, buoyancy Reynolds number
and Reynolds number are Frh ≡ ε/(Nu2h), Reb ≡ ε/(νN2) and Re ≡ u4h/(νε), respec-
tively. These relations make use of the dissipation scaling expected to hold in strongly
stratified turbulence, ε ∼ u3h/`h (Lindborg 2006). In this way we avoid the explicit use
of a lengthscale in the definitions of Frh and Re. This makes the values of the Froude
number and Reynolds number easier to compare with other works, considering there are
several definitions of the integral lengthscale used in turbulence studies. Note that the
definition of the horizontal velocity scale used here is uh =

√
〈u2 + v2 − u2sm − v2sm〉/2,

where 1/2〈u2sm+v2sm〉 is the kinetic energy contained in the “shear modes”, the horizontal
box-filling motions (i.e. modes with horizontal wavenumbers kx = ky = 0). The kinetic
energy in the shear modes continues to grow over the course of a run and they appear to
not participate in the transfer of energy to small scales. Since Eswaran & Pope forcing
directly excites the shear modes, the kinetic energy at the end of runs R5ep and R6ep is
dominated by these modes and hence it was decided to remove their contribution to uh.
For consistency this procedure was repeated for all runs. Note also that in the simulation
work presented in this section, the symbol 〈. . .〉 changes meaning and denotes a volume
average over the numerical domain but because of ergodicity this should not have an
effect on the results. In terms of the stratified turbulence regimes, these simulations have
Frh = O(10−2) and Reb = O(10) and so they are within, or at least close to being
within, the strongly stratified turbulence regime, which requires Frh � 1 and Reb � 1
(see, e.g., Brethouwer et al. 2007). The exception to these parameter magnitudes is run
R6ep which has a significantly higher buoyancy Reynolds number than the other runs,
Reb = 64.1, and maintains a relatively low Froude number. In table 1, the value of the
mixing efficiency Γ = εp/ε, with ε and εp time averaged over the steady state period,
is given for each run. From these values it is possible to see that indeed Γ ∼ 1 and in
particular that Γ is approximately constant across the runs, lying within the narrow
range Γ = 0.3−0.45.

3.2. Asymmetry in the visualisations and vertical profiles of buoyancy

In this section we focus on the run at highest resolution, run R4, and present visualisa-
tions and vertical profiles taken during the steady state period. In figure 2, visualisations
of a horizontal component of velocity, u, and of buoyancy in a vertical slice through the
centre of the domain are shown. It is possible to appreciate the anisotropic structure of
stratified turbulence, composed of horizontal layers in both the velocity and buoyancy.
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Run Nx = Ny Nz Frh Reb Re (×103) Γ Forcing

R1 1024 512 0.051 13.6 5.2 0.39 Vortical mode
R2 2048 512 0.031 14.1 14.6 0.38 Vortical mode
R3 4096 1024 0.024 17.0 29.1 0.31 Vortical mode
R4 8192 2048 0.017 21.7 77.8 0.31 Vortical mode
R5ep 1024 1024 0.047 16.8 7.6 0.40 Eswaran & Pope
R6ep 2048 2048 0.054 64.1 22.1 0.44 Eswaran & Pope

Table 1. List of DNS simulations including relevant physical parameters. These parameters
are obtained using time-averaged physical quantities over the statistically stationary period of
the simulation.
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Figure 2. Visualisation of u and b in a vertical x-z plane taken through the centre of the
domain in the final snapshot of run R4, at the last time instant of this run.

The complexity and three-dimensionality of the turbulence in this high-Re simulation
is also evident, with a number of instabilities seemingly taking place at the interface
between layers, which are sometimes slightly inclined to the horizontal. This can be seen
in more detail in the zoom-in of the same vertical slice, presented in figure 3.

We now assess the symmetry of the velocity and buoyancy fields. It should be relatively
clear from figures 2-3 that the horizontal velocity component is approximately symmetric
with respect to reflection of the z-axis, in agreement with our previous considerations.
On the other hand, it can be clearly observed that the buoyancy field is asymmetric
with respect to z-reflection. Taking a point at the bottom of the visualisations of b and
moving upwards, it is possible to see that positive changes in b (from black to white) occur
rather abruptly while negative changes in b (from white to black) are more gradual. This
means positive ∂b/∂z tends to be stronger in magnitude than negative ∂b/∂z. We have
hence confirmed, for now in a qualitative way, that the vertical gradient of the buoyancy
field indeed becomes positively skewed in DNS of stratified turbulence. To go back to
figures 2-3, it appears that the visualisations of u could be turned upside down without
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Figure 3. Zoom-in of a portion of the vertical slices in figure 2.

significant change but the same is not true for the visualisations of b, which would be
different.

Are vertical profiles of buoyancy in the DNS similar to the staircase profile shown in
figure 1? To answer this question we need to consider vertical profiles of total buoyancy,
btot = b + N2z, in the DNS. Figure 4 shows four vertical buoyancy profiles sampled
throughout the domain, again in a snapshot of run R4 during steady state. While strongly
stable interfaces adjacent to almost perfectly mixed layers are frequently observed, a
regular staircase profile is not observed (in agreement with the discussion of Gregg et al.
2018). Layer-interface segments are often isolated and not in periodic succession as in
figure 1. In fact, large portions of the profiles are irregular and do not deviate significantly
from the mean stratification, indicating a more complicated picture. Nonetheless, it is
clear that the buoyancy profiles shown in figure 4 should lead to a positive vertical
buoyancy gradient skewness.

3.3. PDFs of buoyancy gradient

A good instrument to check if a quantity has asymmetric statistics is, of course, its
PDF. As is well known, all the moments of a quantity — mean, variance, skewness and
higher order moments — can be obtained from this single curve. Our focus is the vertical
buoyancy gradient and so we consider its PDF and, for comparison, also that of the
horizontal buoyancy gradients. In figure 5, the average of the PDFs of the two horizontal
gradients of buoyancy and the PDF of the vertical gradient are given, both at the final
snapshot of run R4. The horizontal buoyancy gradients can be seen to be approximately
symmetric with a low non-dimensional skewness; this PDF does not compare well with
the Gaussian PDF (not shown) of the same standard deviation, σ, as the tails of the
average PDF of ∂b/∂x and ∂b/∂y are significantly wider. Turning to the PDF of ∂b/∂z,
important differences are evident: the PDF of ∂b/∂z is clearly asymmetric and is skewed
towards positive values of ∂b/∂z. This is reflected in the strong positive value of the
skewness, S ≈ 3, a value which is significantly higher than the skewness observed for
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Figure 4. Vertical profiles of btot taken at four locations in the final snapshot of run R4. The
profiles are at the following set of x-y grid points: [1 1], [6308 64], [3501 4096], [7000 6680]. From
the second profile onward, the profiles are shifted along the x-axis for illustrative purpose.
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Figure 5. PDFs of horizontal and vertical buoyancy gradients for the final snapshot of run R4:
(a) average of PDF of ∂b/∂x and of ∂b/∂y, (b) PDF of ∂b/∂z. In the subfigure (a), f1(θ) is the
PDF of ∂b/∂x, f2(θ) is the PDF of ∂b/∂y and θ is the sample-space variable.

passive scalar advection (Mydlarski & Warhaft 1998) and also higher than the values of
S found previously for stratified turbulence (de Bruyn Kops 2015).

The PDFs of ∂b/∂z across the six DNS runs are shown in figure 6. Firstly, the shape
of the PDF is noticeably asymmetric and positively skewed for all runs. Secondly, it
seems that the skewness increases with increasing resolution, being small for run R1
and larger for run R4. This result is not immediately intuitive and appears to be in
disagreement with our prediction of equation 2.18, according to which S should be of
order one and approximately constant. We will return to this question in the following
section. Note that, as the resolution is increased, viscosity and diffusivity are decreased
and the stratification is increased. This can be confirmed by inspection of the values
of the non-dimensional parameters in table 1. The Reynolds number increases in the
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Figure 6. PDF of non-dimensional vertical buoyancy gradient for the final snapshot of each of
the six simulations.

order Re(R1) < Re(R5ep) < Re(R2) < Re(R6ep) < Re(R3) < Re(R4), following the
resolution. On the other hand, for all runs except run R6ep the Froude number decreases
continuously with resolution, Frh(R1) > Frh(R5ep) > Frh(R2) > Frh(R3) > Frh(R4).
This is a result of the fact that for these five runs the buoyancy Reynolds number, Reb,
does not vary strongly. The above ordering then follows from the relation between these
three parameters, Reb = ReFr2

h.
All the PDFs shown in figures 5 and 6 have been calculated from a single snapshot

of each run taken at the end of the simulation. For runs R1, R2, R3 and R4 only this
snapshot of the entire simulation was stored and the PDFs are available only at this time
instant but for the final two runs, R5ep and R6ep, time-resolved PDFs are available. To
obtain an idea of the spread of the statistics in these two runs, a plot of the mean PDF of
∂b/∂z throughout the statistically stationary period is given in figure 7, including error
bars corresponding to the standard deviation calculated for every sample value of ∂b/∂z.
The scatter of the PDFs is not large: for run R6ep the PDF at the final snapshot lies
within the error bars and so does the PDF of run R5ep, except for very large positive
values of buoyancy gradient.

3.4. The scaling of the skewness in the DNS

In this section we test the predictions of the scaling analysis of §2 and the expressions
for the dimensional and non-dimensional skewness, Bz3 and S. In order to do this, from
the PDFs of ∂b/∂z shown in figure 6, we have calculated values of Bz2, Bz3 and S for
each run. A positive test of equation 2.17 would give a linear relation between Bz3 and
ε3/2N3/ν3/2. Figure 8 shows a plot of one quantity against the other. It is important
to notice that all three physical quantities, ε, ν and N , change significantly across the
DNS runs, and so this represents a thorough test on the scaling of Bz3. As can be
seen from figure 8, the agreement between Bz3 from the DNS and its predicted scaling
is remarkable. The scaling is seen to hold over five orders of magnitude in Bz3. We
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Figure 7. Comparison of mean PDF of ∂b/∂z of all the PDFs calculated during the statistically
stationary period and PDF of the final snapshot: (a) run R5ep, (b) run R6ep. Error bars
correspond to ±σ(PDF) calculated using all non-zero sample numbers in the O(100) PDFs
calculated over the statistically stationary period.
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Figure 8. Dimensional skewness Bz3 computed at the last time instant of the statistically
stationary period for each DNS run as a function of ε3/2N3/ν3/2 (ε is not taken at this time
but is a time average throughout the entire period of statistical stationarity). The data points,
from left to right, correspond to runs R5ep, R6ep, R1, R2, R3, R4.

emphasize again that the thought experiment of the scaling analysis and the present
DNS are significantly different, given the continuous presence of stratification (and of
forcing) in the simulations. Despite this and the several assumptions made in deriving
equation 2.17, the DNS are in good agreement with this result. The physical basis of
equation 2.17 for the dimensional skewness is further confirmed by the fact that Bz3 and
ε3/2N3/ν3/2 are of the same order of magnitude.
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Figure 9. Variance of ∂b/∂z at the last time instant of each DNS run as a function of εN2/ν.
The data points have the same correspondence as in figure 8.

It is also worth verifying if the scaling for the variance of vertical buoyancy gradient,
which we used to obtain the expressions for Bz3 and S, is approximately met in the
DNS. This scaling is Bz2 ∼ εN2/ν. A plot of Bz2 against its expected scaling is given in
figure 9. There is again a good agreement between values from the simulations and the
prediction.

We now consider the behaviour of the skewness of vertical buoyancy gradient and test
whether there is agreement between equation 2.18 and DNS results. In figure 10, the
skewness is plotted as a function of the horizontal Froude number. It is clear that, as
anticipated previously, the skewness varies somewhat across the six DNS runs and is not

a constant as predicted by the scaling analysis. Since S = Bz3/B
3/2
z2 , this result may be

surprising but is probably due to the weak departures of Bz2 and Bz3 from their expected
scalings (partially visible in figures 8-9). These small departures have a significant effect
on S because it is the fraction of two large numbers, which are of the same order of
magnitude. The outcome is that there appears to be a systematic increase in S with
decreasing Frh, which is not accounted for by the theory. It should also be mentioned
that the dependence of S on Frh is approximately given by S ∼ Fr−0.41h , and so is not
a strong dependence. The variation of S recast in terms of the Reynolds number (not
shown) does not provide a clear dependence of S on Re. This can be appreciated by the
fact that runs R1 and R6ep have similar values of S but significantly different values of
Re. This is probably because Frh and not Re is the parameter determining the variation
of S. In terms of the magnitude of S, the scaling analysis is successful in predicting an
O(1) skewness, as observed in all the DNS runs.

4. Discussion and conclusions

The DNS results have confirmed some of the predictions of the scaling analysis based
on the simple physical picture of the response of an isotropic scalar field to the imposition
of a stable density gradient. The simulations also highlight a discrepancy with the simple
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Figure 10. Skewness of ∂b/∂z as a function of Frh. Log-log plot shown in inset including the
best fit power law. Error bars are given for the data points corresponding to runs R5ep and
R6ep and they show the minimum and maximum values of S during steady state.

analysis in that the skewness of ∂b/∂z varies across the DNS runs, while maintaining a
value of order one. The analysis has the merit of capturing the main trends in the variance
and dimensional skewness of ∂b/∂z. Altogether, these results confirm that there is a
physical basis to the theoretical arguments of §2. It is therefore worth briefly reconsidering
them in the light of the numerical simulations. In the DNS, stratification is present for the
whole duration of the simulation and the initial condition for b is not an isotropic and fully
developed scalar field with a convective-inertial range, as in our thought experiment. In
the simulations, the setup of forward transfers of buoyancy variance towards small scales
and the growth of a positive skewness of ∂b/∂z rather take place simultaneously. The
fact that the scaling for Bz3 still holds, suggests these two processes are still related.
In other words, a positive skewness still follows from a forward cascade of b2 giving a
negative 〈∆u(∆b)2〉 at all scales. Hence, the continuous “rearrangement” of the gradients
on a timescale τ ∼ N−1 may be what leads to a positive skewness. This appears to be
only a partial description of the mechanism leading to the buoyancy profiles of figure 4
with S > 0. Nonetheless, if it is true it does show that non-linear transfers of b2 to small
scales are a necessary prerequisite, given which a positive skewness may grow on a linear
timescale. So both linear and non-linear processes could be important in this problem.

The present DNS have shown that all cases become positively skewed, with relatively
large values of S in the range S ≈ 1.9−3. These values are higher than those reported
for the scalar gradient skewness (skewness ≈ 1) in the passive scalar literature and are
generally higher than, but consistent with the values, S ≈ 2−2.3, for the two most
strongly stratified DNS of de Bruyn Kops (2015). Hence the skewness of the buoyancy,
an active scalar, is greater than the skewness of a passive scalar, both of which are
in the presence of a mean gradient. The reason for this difference between the two
cases could be that in the case of buoyancy there is an additional mechanism to the
one we presented in §2 that can generate skewness. This mechanism is analogous to
the centrifugal destabilization of anticyclones, which was used to explain the cyclone-
anticyclone asymmetry in rotating turbulence by Bartello et al. (1994). In stratified
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turbulence, the layers, which have a negative ∂b/∂z, will become gravitationally unstable
if ∂b/∂z < −N2, where N2 is the background buoyancy gradient. Indeed, in this scenario
∂btot/∂z < 0 and the layer is gravitationally unstable, since it presents an overturning of
the buoyancy field. This mechanism caps the negative buoyancy gradients of the layers to
be at most |∂b/∂z| = N2, which leads to an increase in the buoyancy gradient skewness.
Since this mechanism is not present in passive scalar advection, it is likely the reason
why the skewness is greater in stratified turbulence.

Considering the variation of S expressed in terms of the horizontal Froude number,
the DNS gave results close to a power law, S ∼ Fr−0.42h . A similar power of the Froude

number, Fr
−1/2
h , has a particular significance in stratified turbulence since Fr

−1/2
h =

`b/`o. Here `b = uh/N is the buoyancy lengthscale and `o =
√
ε/N3 is the Ozmidov

lengthscale. It is well known that `b is the vertical height of the layers in stratified
turbulence (Billant & Chomaz 2001), while `o is the smallest lengthscale in the turbulence
that is strongly influenced by the stratification. Considering that, where present, layers
and interfaces are expected to be set up because of the presence of the stratification, it
could be reasonable to expect that the height of the interfaces is the smallest lengthscale
influenced by N , i.e. hinterf ∼ `o. This suggestion has long been made in the stratified
turbulence community but, to the best of the author’s knowledge, it has not been shown
rigorously in a simulation or experiment. If we accept that hinterf ∼ `o, together with
hlayer ∼ `b, and assume a highly simplified cartoon in which layers and interfaces are
piecewise linear profiles of buoyancy with a constant buoyancy gradient, we obtain:

BzL ≡
∣∣∣∣ ∂b∂z

∣∣∣∣
layer

∼ ∆bL
`b

BzI ≡
∣∣∣∣ ∂b∂z

∣∣∣∣
interf

∼ ∆bI
`o

(4.1)

where ∆bL and ∆bI are the absolute values of the changes in buoyancy across a layer
and an interface, respectively. However, referring back to the b-profile within the staircase
profile in figure 1, it is clear that ∆bL = ∆bI . This leaves us with BzI/BzL ∼ `b/`o =

Fr
−1/2
h . It is clear that an increase in the ratio of the buoyancy gradients in this cartoon,

BzI/BzL, would make a layer-interface “step” sharper and increase the buoyancy gradient
skewness, S. This provides a tentative rationalization of the observed dependency of S
on the Froude number. It is believed that this rationalization captures the long-time
evolution of layers and interfaces, which depends on the detailed distribution of kinetic
and potential energy across scales in stratified turbulence. As such, it cannot be captured
by our theoretical considerations of §2, which are based on a rapid adjustment process.

In the light of the present results for the vertical buoyancy gradient skewness and
of the above cartoon, we can revisit the physical mechanisms that create and sustain
the layer-interface structure in stratified turbulence. A discussion on the dynamics
necessarily requires consideration of the velocity field, which we have thus far left aside.
A good starting point is the vertical energy spectrum Eh(kv), where kv is the vertical
wavenumber. The vertical spectrum of the large horizontal scales, i.e. of the layers, was
found recently to be Elarge(kv) ∼ N2k−3v in simulations of stratified turbulence from
kv ≈ kb = 1/`b up to kv ≈ ko = 1/`o (Maffioli 2017), as predicted theoretically by
Billant & Chomaz (2001). This means that the scale-by-scale gradient Richardson number
is Rig(kv) = N2/S(kv)

2 ∼ N2/(k3vElarge(kv)) ∼ 1, with the shear S(kv) calculated over
vertical scales going from the buoyancy lengthscale `b to the Ozmidov lengthscale `o. It
is clear that Rig(kv) ∼ 1 over this range implies that shear instability could take place
over vertical scales from `b down to `o. It is suggested that shear instability does take
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place and leads to overturns that mix the fluid locally and create a layer, either through
the mixed region collapse described in §1 or through merging of the horizontal series
of billows or overturns that shear instabilities create. Note that even if shear instability
occurred at the lower end of this range of vertical scales, at `o, it is expected that the
ensuing mixed region would grow vertically up to `b, and at this point the vertical scale
cannot grow further (Billant & Chomaz 2001). This dynamical picture is speculative but
it has the merit of providing a possible explanation for the presence of layers of height `b,
in agreement with the above cartoon for the layer-interface structure. It builds upon a
recurring suggestion (see Lilly 1983; Riley & de Bruyn Kops 2003) that shear instabilities
are important in stratified turbulence. More than a layer formation mechanism, it is
believed that the above provides a sustaining mechanism of the layer-interface structure
in which vertical portions of this structure go unstable, depleting the interface that was
part of the unstable portion and forming a new layer of size `b, which will be separated
from the remaining structure by new interfaces of size `o, and the process then repeats
in a cyclic manner.

As a final point, we consider Warhaft’s discussion of passive scalar advection in the
presence of a mean scalar gradient in the limit Re → ∞. Warhaft argues that strong
interfaces in the total scalar concentration will remain in this limit, resulting in the
small scales being anisotropic (due to the asymmetry along the direction of the mean
scalar gradient) at all Reynolds numbers (Warhaft 2000). According to this work, this
means that Kolmogorov’s hypothesis of small-scale isotropy is contravened (Warhaft
2000). We consider this question in stratified turbulence. The specification of the limit of
large Reynolds number is not enough, since in stratified turbulence there are two control
parameters, the Froude number and the Reynolds number or the Froude number and
the buoyancy Reynolds number, as we will use. The relevant limit for strongly stratified
turbulence is Frh → 0 and Reb →∞, which corresponds to the limit of an infinitely large
range of scales between L and `o and of an infinitely large range of scales between `o
and η. In terms of the distribution of ∂b/∂z across these scales, we expect that this will
be maximum at the smallest scales, so somewhere close to the Kolmogorov lengthscale
η. However, in the above cartoon of the layer-interface model, ∂b/∂z is concentrated in
the interfaces and so is maximum at the Ozmidov lengthscale `o. It could be that as
Reb → ∞, the maximum buoyancy gradient moves from `o to η as we effectively would
have isotropic turbulence with a passive scalar and a mean scalar gradient below `o,
and a convective-inertial range for `o � r � η. It is possible that in this scenario the
skewness would start decreasing towards the value observed for passive scalar advection.
This is an open question which we believe deserves further attention.
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