
HAL Id: hal-02426661
https://hal.science/hal-02426661v1

Submitted on 2 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MAPEL: Multi-Agent Pursuer-Evader Learning using
Situation Report

Sagar Verma, Richa Verma, P.B. B Sujit

To cite this version:
Sagar Verma, Richa Verma, P.B. B Sujit. MAPEL: Multi-Agent Pursuer-Evader Learning using Situ-
ation Report. IJCNN 2019 - International Joint Conference on Neural Networks, Jul 2019, Budapest,
France. pp.1-8, �10.1109/IJCNN.2019.8852457�. �hal-02426661�

https://hal.science/hal-02426661v1
https://hal.archives-ouvertes.fr


MAPEL: Multi-Agent Pursuer-Evader Learning
using Situation Report

Sagar Verma
CVN, CentraleSupélec, Université Paris-Saclay

sagar.verma@centralesupelec.fr

Richa Verma
TCS Innovation Lab

richa15054@iiitd.ac.in

P.B. Sujit
IIIT Delhi

sujit@iiitd.ac.in

Abstract—In this paper, we consider a territory guarding game
involving pursuers, evaders and a target in an environment that
contains obstacles. The goal of the evaders is to capture the target,
while that of the pursuers is to capture the evaders before they
reach the target. All the agents have limited sensing range and can
only detect each other when they are in their observation space.
We focus on the challenge of effective cooperation between agents
of a team. Finding exact solutions for such multi-agent systems
is difficult because of the inherent complexity. We present Multi-
Agent Pursuer-Evader Learning (MAPEL), a class of algorithms
that use spatio-temporal graph representation to learn structured
cooperation. The key concept is that the learning takes place in a
decentralized manner and agents use situation report updates to
learn about the whole environment from each others’ partial
observations. We use Recurrent Neural Networks (RNNs) to
parameterize the spatio-temporal graph. An agent in MAPEL
only updates all the other agents if an opponent or the target
is inside its observation space by using situation report. We
present two methods for cooperation via situation report update:
a) Peer-to-Peer Situation Report (P2PSR) and b) Ring Situation
Report (RSR). We present a detailed analysis of how these two
cooperation methods perform when the number of agents in the
game are increased. We provide empirical results to show how
agents cooperate under these two methods.

Index Terms—multi-agent learning; deep reinforcement learn-
ing; recurrent neural network

I. INTRODUCTION

Multi-agent systems have received much attention in the
past decade [1]–[4]. In such systems, agents share a common
environment, where they act independently or in cooperation
with each other to achieve a combined goal. We focus on
the problem where multiple agents achieve a single task in
cooperation with each other. In such problems, the agents must
have the ability to handle unknown and uncertain scenarios and
take the success of the whole team into account.

A multi-agent pursuit-evasion game complexity depends on
many variables like the type of environment, the observation
of the agents, their actions, cooperation strategy, and the
reward structure. Being complex and dynamic, pursuit-evasion
problems are challenging to solve [5]. Such complexities have
been addressed by stochastic modeling of agents motion in
[6], [7]. There has been growing interest in modeling the
game, in which the evader is intelligent and has certain sensing
capabilities [8]. This paper focuses on the problem of partial
observation of agents where structured message passing is used
for cooperation.

(a) Game snapshot

P1

E1

E2

T

P2

Evaders

Pursuers

Target

Obstacles

(b) Scene description

E1 
observation

at time t

E2 
observation 

at time t

P1 
observation

at time t

P2 
observation

at time t

st
node

E1 
message

at t

E2 
message

at t

st
node

E1 next 
action

E2 next 
action

st
node

st
node

P2 
message

at t

P1 
message

at t

P2 next
action

P1 next
action

Evaders running MAPEL Pursuers running MAPEL

(c) Proposed method
Fig. 1: Top-left image shows the rendering of our multi-agent pursuer-
evader game. Top-right image shows the labelled description of the
game environment. Bottom image shows the proposed cooperation
method.

We present a zero-sum game based on pursuit and evasion
between two teams of equal number agents. Since either the
pursuer or the evader wins the game, therefore, the game
can be represented as a zero-sum game. The multi-agent
pursuit-evasion problem is shown in Figure 1. We assume
partial observability of the environment to ensure that the
solution is usable in many real-world applications that closely
correspond to the task in hand. However, learning becomes
more difficult under partial observation along with complex
interactions between agents and the environment. Each agent
perceives the environment locally and even though the effect
of other agents’ actions on the environment is visible but the
agents, themselves, are not. Reinforcement learning (RL) has
been used to solve multi-agent pursuit-evasion in [1], [9]–
[11]. Recent works like [12]–[15] use deep reinforcement
learning for different multi-agent problems where centralized
policy learning is employed. All these works deal with full
observation and are not suitable for our problem. We propose
MAPEL, a class of deep reinforcement learning based methods



that uses spatio-temporal graphs for structured cooperation
between agents under partial observation.

To solve our multi-agent pursuit-evasion game, we present
MAPEL which uses spatio-temporal graphs to structure the co-
operation between agents in a team. We propose using abstract
messages called situation reports which are shared among
agents for cooperation. We present two different methods for
situation report update which are based on dense and sparse
communication. MAPEL can handle pursuers and evaders
which move at the same speed throughout the game, which
means that neither pursuers nor evaders have an advantage over
each other. We show that MAPEL cooperation methods lead
to a high degree of cooperation between agents. We also show
how the two cooperation methods perform when the number
of agents in the team is increased.

The remainder of this paper is organized as follows. Section
2 mentions the existing works related to this paper. Section 3
describes the problem and its formulation as a multi-agent
reinforcement learning (MARL) problem. Section 4 presents
MAPEL and other proposed baselines. Section 5 explains
the experimental setup followed by the results and their
explanation in section 6. Section 7 concludes this paper.

II. RELATED WORK

Reinforcement learning has been successfully used to play
games like Atari [16] and Go [17]. In [18], the authors suggest
an approach based on hierarchical RL for the same, while
enabling the players to learn through tasks with less com-
plexity. Multi-agent reinforcement learning (MARL) consists
of a set of learning agents that share a common environment
[19]. Learning in such a framework is fundamentally difficult
because of the interaction arising between the agents and the
environment and amongst themselves. Conventional decen-
tralized learning techniques like Q learning for each agent
[20] assume the other agents to be a part of the environment.
Such methods don’t work in multi-agent settings because the
theoretical convergence guarantee no longer holds and makes
the learning unstable due to the fact that changes in the policy
of any agent will affect the policies of the other agents, as
well [21].

Joint action learning or centralized policy learning is one
way to do multi-agent reinforcement learning. [14] present
a deep policy inference Q-network that targets multi-agent
systems composed of controllable agents. A centralized policy
for the controllable agent is learned from its raw observations.
[22] presents joint and independent policy learning methods.
In an independent policy learning method, the joint learned
policy is transferred to individual agents in an iterative manner.
[23] discusses why centralized policy learning fails in case of
multi-agent setting and presents methods to learn policy for
heterogeneous agents as well as homogeneous agents. Sunehag
et al. [24] discuss the problem of "lazy agents" which is when
some agents remain inactive when a centralized policy learning
is used. They present a value-decomposition network which
enables better reward sharing between agents to solve the
problem of inactive agents.

Decentralized learning requires effective cooperation be-
tween different agents. [25] suggest learning with opponent-
learning awareness method in which each agent anticipates
other agent’s policy. This method only works for complete
observation. [26] discusses the problem of experience replay
in multi-agent deep reinforcement learning (MA-DRL). They
state that transitions stored in experience replay memory
(ERM) can become outdated because agents update their poli-
cies in parallel. They apply leniency to MA-DRL by mapping
agents state-action pairs to decaying temperature values that
control the amount of leniency applied towards negative policy
updates that are sampled from the ERM. They also state
that this help in better cooperation among agents. [13] use
actor-critic to learn policies for complex cooperation. [27]
uses centralized critic to estimate the Q-value, decentralized
actors are used to optimize agents’ policies, and counterfactual
baselines are used to solve multi-agent credit assignment
problem. [28] presents co-evolution methods to learn better
coordination between agents. [29] present a method to solve
cooperation between agents that can act selfishly.

Some multi-agent problems can be explicitly described as
graphs. [30] presents cooperative reinforcement learning for
multiple agents in StarCraft game. [31] uses graph representa-
tion with reinforcement learning for coordination and cooper-
ation in multi-agent patrol task. Efficient state representation
based on the distance between agents and different game
entities is used to reduce the observation state complexity.
[32] presents a flag coordination game where graph structure
is explicitly present and is utilized to model multi-agent
coordination. Some problems where there are no explicit
graph structures present, game states can be decomposed
into some weak time-varying structures. Such structures can
be learned using factor graph representation and graphical
learning methods. [33] discusses use cases where cooperation
is explicitly required. A genetic algorithm variation is used
to solve the adaptive team of agents (ATA) problem. Their
method can adapt an agent to a new role based on the overall
structure of the environment. [34] presents joint policy learning
method for coordinated reinforcement learning through struc-
tured communication between agents. [35] presents a way to
decompose a global Q-function into local Q-function based on
the task decomposition between agents expressed using factor
graphs. [36] divide agents into cliques based on specific tasks.
[37] uses factor graphs to learn implicit structures present
in multi-agent settings. Factor graphs reduce the action and
observation space and learning agents’ policy becomes easier.

In the literature, RL has been used earlier for the classic
pursuer-evader game [38]. In [39], a learning technique for
multi-player pursuit-evasion games is presented for discrete
state and action spaces. The proposed algorithm is only ap-
plicable for multi-player pursuit-evasion games with superior
pursuers (in terms of speed). The article [40] is another work
suggesting a technique using learning in differential multi-
player pursuit-evasion games that have superior evaders. In
[41] hierarchical decomposition is used to solve games having
two pursuers and one evader.



III. PROBLEM DEFINITION

We model the multi-agent pursuer-evader problem as a grid
world of dimension M × N in which obstacles are placed
randomly (uniform distribution N (0, σ)). In this grid, there
are P pursuers, E evaders, and a single target T . At any time
t, a pursuer p ∈ P has the global knowledge about all pursuer
locations and the current target location in the environment.
An evader e ∈ E is assumed to know the locations of all
other evaders and the target. We assume each agent can sense
a rectangular region of length l and width w. However, the
agents cannot sense on the other side of the obstacle. That is,
a pursuer can detect an evader if they are in line-of-sight and
within the sensed region. The speed of all the pursuers and
the evaders is given by v and remains constant throughout the
game. The target, T remains stationary throughout the game.

A game starts with randomly sized obstacles placed on the
grid at random locations as shown in Figure 1 (for a 2-pursuers
vs 2-evaders game). The target is spawned at a random location
near the middle of the grid (M/2, N/2) and it is of length
ts. The pursuers and the evaders are randomly spawned on
the opposite sides of the grid. The pursuers and the evaders
can move to any of the adjacent cells of the grid only if
the cell is either empty or occupied by any of the agents.
An agent reaches the target when its location is same as the
target’s location. Also, a pursuer captures an evader only if
their locations are the same. Once an evader is captured by
a pursuer, it cannot move anywhere else but the pursuer can
move to an adjacent cell after catching the evader.

There are three conditions for a game to complete.
1) An evader reaches the target, in which case the evaders

win the game.
2) A pursuer reaches the target before an evader, in which

case the pursuers win the game.
3) All the evaders are captured by the pursuers, in which

case the pursuers win the game.
Based on the three different winning criteria we have the

following reward structure:
1) When the evaders win by capturing the target, a reward

of we = 0.5 is awarded to them and a penalty of wp =
−0.5 is given to the pursuers.

2) When the pursuers win by reaching the target before
the evaders, a reward of wp = 0.5 is awarded to, and a
penalty of we = −0.5 is given to the evaders.

3) When the pursuers win by capturing all the evaders, a
reward of wp = 1 is awarded to the pursuers and a
penalty of we = −1 is given to the pursuers.

Rewards are equally divided among all the agents of a team.
This makes it sure that agents in a team do not compete with
each other.

IV. METHODS

In this section we first present a naive method in which
an agent greedily moves towards the target, followed by the
second method which is a multi-agent formulation of deep Q-
learning and then we introduce the proposed method MAPEL
with two different cooperation strategies.

A. Naive Method

A naive agent tries to move towards the target, T . Each
agent has a partial view of the environment and knows the
location of the other agents of its team. It also knows the
location of the target. A naive agent moves towards the
target in a straight line. If the next location on the line of
sight towards the target is obstructed, it randomly chooses
an adjacent location that is closest to the line. If a pursuer
observes an evader in its observation space, it computes the
shortest path to the evader and chooses its next location along
that path. Similarly, if a pursuer/evader observes the target
in its observation space, it computes the shortest path to the
target and chooses its next location along that path. Also, if a
pursuer observes the target and an evader or multiple evaders
in its field of view, it computes the shortest paths to all of
them and chooses its next location along the path that has the
smallest length.

B. Multi-agent Q-learning

An N -agent stochastic game E is formalized by the tu-
ple E = (S,A1, . . . ,AN ,R1, . . . ,RN , T , γ), where S de-
notes the state space, and Ai is the action space of agent
jε{1, . . . , N}. The reward function for agent j is defined
as Ri : S × A1 × · · · × AN → R, determining the
immediate reward. The transition probability is given by
T : S × A1 × . . .AN → Pr(S). Pr(S) is the collection
of probability distributions over the state space S. The goal
of agents is to find a policy π which maximizes the expected
return Gt, which is the discounted sum of rewards given by
Gt =

∑N
i=1

∑T
τ=t γ

τ−tRiτ , where T is the time-step when
an episode ends, t denotes the current time-step, γε[0, 1)
represents the reward discount factor, and Riτ is the reward
received at time-step τ by agent Ai.

The agents choose actions according to their policies. For
agent i, the corresponding policy is defined as πi : S →
Pr(Ai), where Pr(Ai) is the collection of probability dis-
tributions over agent i’s action space Ai. The joint policy of
all the agents is given by π : π1×, · · ·×πN . The joint actions
of all the agents is given by a : A1×, . . . ,×AN . The value
function of agent i given state s under the joint policy π is
written as the expected cumulative discounted future reward:

viπ(s) = vi(s;π) =

∞∑
t=0

γtEπ,p
[
rit|s0 = s, π

]
(1)

The Q-function can then be defined within the framework
of N -agent game based on the Bellman equation given the
value function in equation (1) such that the Q-function Qiπ :
S × A1×, . . . ,AN → R of agent i under the joint policy π
can be formulated as

Qiπ = Ri(s, a) + γEs′−p
[
viπ(s

′)
]
, (2)

where s′ is the state at the next time step. The value function
viπ can be expressed in terms of the Q-function in equation
(2) as



LSTM

FC

FC Softmax

LSTM

FC

FC Softmax

LSTM

FC

FC Softmax

1 0RSR

1 0 0P2PSR

OR

Situation report

0 0RSR

0 0 0P2PSR

OR

Situation report 0 0RSR

1 0 0P2PSR

OR

Situation report

LSTM

FC

FC Softmax1 0RSR

1 0 0P2PSR

OR

Situation report

P1 
observation

P2 
observation

P3 
observation

P4 
observation

Predicted actions

FC FC FC FC

Concatenate
situation 

report and
observation
embeddings

Observations

CNN
Observation CNN features

Stack

Observed
environment Location Others’s

location
Target’s
location

Evader(s)
observed

Featurized input of pursuer 1 Input to CNN

Fig. 2: Generalized architecture of MAPEL.

viπ = Ea π
[
Qjπ(s, a)]. (3)

The Q-function for N -agent game in equation (2) extends
the formulation for a single-agent game by considering the
joint action taken by all agents a, and by taking the expectation
over the joint action in equation (3).

C. Multi-Agent Pursuer-Evader Learning (MAPEL)
In the Q-learning method presented in the previous section,

the joint policy π is dependent only on the current observation
of all the agents combined. It is impossible for an agent to
know anything about the observation of the other agents in that
setting. Also, the size of the combined observation and action
spaces increases exponentially with the number of agents. For
a large number of agents, this could be problematic.

In this section, we present a spatio-temporal (st) architecture
called MAPEL which allows agents to learn their individual
policies by sharing their observations with each other by
cooperating via situation reports. We represent a team of
agents as an st-graph G = (N , EM , ET ), where N denotes
the total number of agents, EM is the total number of edges
between the agents i.e. the edges used to pass situation reports,
and ET is the number of edges connecting agents at time
T . Figure 3 shows an example st-graph capturing agent-agent
interactions during a game. In the unrolled st-graph, two agents
at a given time step t are connected with an undirected spatio-
temporal edge e = (ai, aj)εEM , and two nodes at adjacent
time steps are connected with an undirected temporal edge iff
(ai, aj)εET .

We parameterize the nodes N and edges ET using RNNs in
our st-graph. The edges EM are used by nodes to pass situation
reports to each other. The situation reports are used by agents
to compute their actions at time t. The network architecture
of MAPEL is illustrated in figure 2, each agent is represented
by an RNN, the agents compute their observational features
using a CNN and pass their own observations to other agents
via situation reports. Each agent uses the situation reports
received by other agents along with its current observation to
compute its next action. RNN maintains history information
about an agent. The situation report coupled with RNN is used
to handle partial observability. Situation report provides an
abstract and clear representation of the observation. This helps
in reducing the hidden state representation noise which arises
due to other agents changing their strategies. For example, if
a pursuer observes the target or an evader, it can inform other
pursuers about its observation via situation report. This could
help the other pursuers in changing their decision to not go
in the direction of this particular pursuer and search in other
areas for the target or other evaders.

In real-world applications, we can have hundreds of agents
and interaction among all of them may not be possible
due to some physical constraints or simply because of high
computational complexity. In most of the cases, it is not nec-
essary to have dense communication between all the agents.
Sparse communication structures can be used to learn effective
cooperation. We present two situation report update methods
that use the structures present in the game.



Message edge

Temporal edge

εM

εT

𝓖 = (N,εM,εT)

a1

a2

a3

Agent 1

Agent 3

Agent 2

e = εM

e = εT

Agents’ state 
over time

Message between 
agents

Unroll

(a) Spatio-temporal representation

a1 a2

a3a4

m1->2

m2->1

m3->2m2->3

m1->3m3->1

m3->4

m4->3

m4->1 m1->4

m4->2
m2->4

(b) P2PSR

a1 a2

a3a4

m1->2

m2->1

m2->3 m3->2

m4->3

m3->4

m4->1 m1->4

(c) RSR
Fig. 3: Spatio-temporal representation used for cooperation between
agents. Top image shows cooperation between three agents using
spatio-temporal graph unrolled in time. Bottom-left image shows
peer-to-peer situation report method between four agents and bottom-
right image shows ring situation report method between four agents.

Peer-to-Peer Situation Report (P2PSR): In Peer-to-Peer
Situation Report method, all the agents can share situation
report with each other. This is the case of dense communi-
cation. This means that in our st-graph representation for N
nodes, we have EM = N (N − 1)/2 edges. Figure 3 shows
the st-graph representation of P2PSR. This type of cooperation
is required when an agent wants to know what other agents
are observing so that it does not explore their regions. The
objective of the agents then becomes to minimize the search
time and exploration area to complete the task.

Ring Situation Report (RSR): In Ring Situation Report
method, agents are randomly chosen to form a ring. Each agent
can only pass messages to its adjacent agents. The st-graph
representation for this type of cooperation is given by Figure
3. For N nodes, we have EM = N edges for N > 2. This
type of cooperation can be used to cordon off an area and
search inside it. This does not require all the agents to know
about the other agents’ observations. An agent only needs to
know what its adjacent agents are observing. This decreases
the number of messages required to cooperate.

V. EXPERIMENTAL SETUP

We perform our experiments on the multi-agent pursuer-
evader environment presented in section III. We begin with
explaining the environment representation, agent observation
featurization, and representation of messages under differ-
ent situation report methods. All the experiments have been
conducted on a workstation with 1.2 GHz CPU, 256 GB
RAM, NVIDIA V100 GPU and running Ubuntu 18.04. We
use PyTorch [42] for network implementation.

E1 T

E2

Evaders

Target

(a) Evader1 observation

E1
Target T

E2

Evaders

(b) Evader2 observation

P1

TTarget

P2

Pursuers

(c) Pursuer1 observation

P2

P1

TTarget

Pursuers

(d) Pursuer2 observation
Fig. 4: Partial observation of individual agents in 2-pursuers vs 2-
evaders game. Each agent can see everything in its observation space
and knows about the target and other team members’ locations. An
agent cannot see the observation of its team members.

A. Environment

The environment is a grid world composed of multiple grids
of size 32 × 32. Figure 4 shows partial observation of agent
in a 2 vs 2 game. The white regions are the empty regions
where evaders and pursuers can move. An agent considers all
grid cells outside its observation space to be empty. Evaders
are blue, pursuers are green, and the target is red. Figure 4
(a) shows the observation space of evader 1, it can see all
the grid cells in its observation space, it knows the locations
of other evaders and the target. Similarly figure 4 (b) shows
the observation space of evader 2. Figure 4 (c) shows the
observation space of pursuer 1, it can see all the grid cells in
its observation space, it knows the locations of other pursuers
and the target. Similarly, the observation space of pursuer 2 is
represented in figure 4 (d).

B. Agent Observation

For Q-learning, we need to represent an agent’s observation
as meaningful features. In our experiments, we found that
raw RGB frames provide good observational for 2 vs 2
games but fail to generalize for more number of agents. We
represent each type of entity in our environment as separate
channels. We have five channels in our feature space, each
of size 32 × 32. In the bottom left portion of figure 2, we
show the featurization of observation of one of the pursuers
in a 4 vs 4 game. The first channel shows the observation
space of the agent, the second channel shows the position
of the agent itself, the third channel shows the position of
other agents, the fourth one shows the location of the target,
and the fifth channel shows the location of the opponent(s)
observed. This feature representation accurately incorporates
all the information observed by an agent.



0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Av

er
ag

e 
re

wa
rd

s
Multi-agent DQN
MAPEL-P2PSR

(a) 2 vs. 2, against naive pursuers

0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Av
er

ag
e 

re
wa

rd
s

Multi-agent DQN
MAPEL-P2PSR

(b) 3 vs. 3, against naive pursuers

0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Av
er

ag
e 

re
wa

rd
s

Multi-agent DQN
MAPEL-P2PSR
MAPEL-RSR

(c) 5 vs. 5, against naive pursuers

0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Av
er

ag
e 

re
wa

rd
s

Multi-agent DQN
MAPEL-P2PSR

(d) 2 vs. 2, against naive evaders

0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Av
er

ag
e 

re
wa

rd
s

Multi-agent DQN
MAPEL-P2PSR

(e) 3 vs. 3, against naive evaders

0 50 100 150 200 250 300 350 400
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Av
er

ag
e 

re
wa

rd
s

Multi-agent DQN
MAPEL-P2PSR
MAPEL-RSR

(f) 5 vs. 5, against naive evaders
Fig. 5: Learning curve comparison of different methods in different scenarios.

C. Message Representation

In P2PSR, an agent ai receives a situation report mt
i in form

of a vector of size N −1 at time t. The N −1 elements of the
vector represent the messages from other agents, if the value of
an element in the vector is 1, then it means the corresponding
agent has seen the target or opponent(s) in its observation
space. An element with value 0 means that the observation
space is empty. In RSR, an agent ai receives a situation report
message mt

i in form of a vector with size 2 from two of its
adjacent agents at time t.

D. Training

We train multi-agent DQN for learning evaders against naive
pursuers and multi-agent DQN for learning pursuers against
naive evaders. We train both MAPEL cooperation methods
against naive agents. All our models are trained for 400
epochs, 500 episodes per epoch. We use Adam [43] optimizer
to train all our models. Learning rate is varied over epochs, it
starts with 0.001 and decays at every 200 epochs by one-tenth.
To ensure exploration, ε-greedy starts at 1.0 and ends at 0.1.
A discount factor of 0.99 is used. While training multi-agent
DQN models, a history length of 5 observations is used. We
use a batch size of 64 in all our experiments. We vary the
number of agents per team from 2 to 5 for all our models.
Following are the model variations that we train,

1) MA-DQN pursuers against naive evaders.
2) MA-DQN evaders against naive pursuers.
3) MAPEL-P2PSR pursuers against naive evaders.
4) MAPEL-P2PSR evaders against naive pursuers.
5) MAPEL-RSR pursuers against naive evaders.
6) MAPEL-RSR evaders against naive pursuers.

E. Evaluation

We evaluate our MA-DQN, MAPEL-P2PSR, and MAPEL-
RSR evaders against naive pursuers and vice-versa. 100,000
episodes are used for all the evaluations. Average reward is
reported for both evaders and pursuers. In the case of pursuers
running different methods, we also report the total number of
times pursuers were able to capture all the evaders. We call
these results as "complete wins".

VI. RESULTS

Figure 5 compares different models’ learning curve under
the different number of agents for both evaders and pursuers.
For the number of agents N = 1, 2, 3, both MAPEL coopera-
tion methods, i.e., P2PSR and RSPRP have the same message
length. In such cases, there is no fundamental difference
between these methods. Therefore, we only train both methods
when team sizes are more than 3. Figure 5 (a) shows the
learning curve for evaders with MA-DQN and MAPEL-P2PSR
when the number of agents is 2 for both evaders and pursuers.
Similarly figure 5 (b) is for a 3 vs. 3 scenario for evaders
against naive pursuers. Figure 5 (d) and (e) are for pursuers
with MA-DQN and MAPEL-P2PSR against naive evaders
when the numbers of agents are 2 and 3 respectively. Figure
5 (c) and (f) show all three methods for evaders and pursuers
against their naive opponents when the number of agents is 5.

In all the scenarios, pursuers are able to score better rewards
than evaders. We believe that the pursuers are able to learn
about the strategy where capturing all the evaders maximizes
their rewards. From figure 5 (c) and (f), it is evident that
MAPEL-P2PSR for pursuers learns about capturing all evaders
quickly as compared to MAPEL-RSR. After 350 epochs
both the methods converge to same average rewards which



Naive MA-DQN MAPEL-P2PSR MAPEL-RSR
Scenario Average Complete Average Complete Average Complete Average Complete

reward wins reward wins reward wins reward wins

2 vs. 2 0.159 9.77% -0.274 3.13% 0.431 14.62% NA NA
3 vs. 3 0.161 10.23% -0.235 3.17% 0.396 15.79% NA NA
4 vs. 4 0.162 10.07% -0.217 2.92% 0.479 16.71% 0.456 15.92%
5 vs. 5 0.165 10.13% -0.213 2.72% 0.483 16.23% 0.468 15.92%

TABLE I: Evaluation result of different methods for pursuers against naive evaders in different scenarios.

Scenario Naive MA-DQN MAPEL-P2PSR MAPEL-RSR

2 vs. 2 0.134 -0.279 0.419 NA
3 vs. 3 0.153 -0.247 0.429 NA
4 vs. 4 0.157 -0.225 0.423 0.416
5 vs. 5 0.161 -0.217 0.417 0.419

TABLE II: Evaluation result of different methods for evaders against naive pursuers in different scenarios.

shows that MAPEL-RSR has similar learning capabilities as
MAPEL-P2PSR. We believe this is due to the fact that in
the case of MAPEL-P2PSR, all pursuers know about all other
pursuers’ observations explicitly which helps them in knowing
about "capture all evaders" strategy early. In the case of
MAPEL-RSR, more epochs are required to learn about this
strategy.

Table I compares the average rewards and complete wins
of different methods for pursuers against naive evaders in four
scenarios, i.e., 2 vs. 2, 3 vs. 3, 4 vs. 4, and 5 vs. 5. It can be
seen that the naive method performs better than MA-DQN in
all the scenarios. On rendering a few episodes, we find that
MA-DQN pursuers are not able to find the shortest paths as
compared to the naive method. For some of the successful
episodes, we find that pursuers are able to beat the opponents
when some of the team members are closer to the target as
compared to the evaders. In 4 vs 4 and 5 vs 5 scenarios, we can
see that MAPEL-P2PSR is ahead of MAPEL-RSR by 0.023
and 0.025 units of average reward respectively. This is in line
with our earlier hypothesis that MAPEL-P2PSR is better at
learning about "capture all evaders" strategy because of dense
communication. This is evident from the "complete wins" in
column 7 and 9. The difference in the average reward is still
less when compared to difference in "complete wins" between
the two methods.

Table II compares the average rewards and complete wins
of different methods for evaders against naive pursuers in
four scenarios, i.e., 2 vs. 2, 3 vs. 3, 4 vs. 4, and 5 vs. 5.
Similar to the case of evaders, the naive method performs
better than MA-DQN in all the scenarios. We also observe
that the rewards from MAPEL-P2PSR and MAPEL-RSR for
evader are smaller than the pursuers. The reason for this is
that pursuers can learn about "capture all evaders" strategy
to get more reward whereas pursuers don’t have any such
strategy to maximize their rewards further. The reason MAPEL
methods perform better than naive and MA-DQN methods is
that evaders can avoid the regions where pursuers have been
observed by some members of the team.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a variation of multi-agent
pursuit-evasion game with partial observability. We also
present MAPEL for multi-agent cooperative reinforcement
learning to solve the game. We compare proposed MAPEL
with two benchmarks; the naive method which is a greedy
solution and a multi-agent DQN formulation. We perform
experiments with varying number of agents to show the
generalizability of the MAPEL cooperation methods. We em-
pirically show that MAPEL cooperation methods are better
at learning cooperation strategy by reporting the results of
"capture all evaders" in the case of pursuers.

In the future, our goal would be to test the transfer-ability of
MAPEL methods to games with more number of agents. We
would also like to experiment under different game conditions
like opponents with different speeds, non-equal team sizes,
moving target, etc. We would also like to find effective ways
of analyzing and comparing proposed cooperation methods.

REFERENCES

[1] J. Y. Kuo, H.-F. Yu, K. F.-R. Liu, and F.-W. Lee, “Multiagent cooperative
learning strategies for pursuit-evasion games,” Mathematical Problesm
in Engineering, 2015.

[2] H. He, J. Boyd-Graber, K. Kwok, and H. D. III, “Opponent modeling in
deep reinforcement learning,” in Proceedings of The 33rd International
Conference on Machine Learning, 2016, vol. 48, pp. 1804–1813.

[3] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Proceedings of the 11th International Conference
on International Conference on Machine Learning, 1994, pp. 157–163.

[4] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R.
Hadsell, “Learning to navigate in complex environments,” CoRR, vol.
abs/1611.03673, 2016.

[5] A. Antoniades, H. J. Kim, and S. Sastry, “Pursuit-evasion strategies for
teams of multiple agents with incomplete information,” pp. 756–761,
2003.

[6] J. P. Hespanha, G. J. Pappas, and M. Prandini, “Greedy control for
hybrid pursuit-evasion games,” 2001.

[7] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry & Applications, vol. 09, pp. 471–493, 1999.

[8] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Proba-
bilistic pursuit-evasion games: theory, implementation, and experimental
evaluation,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 5, pp. 662–669, 2002.



[9] L. E. Parker, “Distributed algorithms for multi-robot observation of
multiple moving targets,” Autonomous Robots, vol. 12, no. 3, pp. 231–
255, May 2002.

[10] C. H. Yong and R. Miikkulainen, “Coevolution of role-based cooperation
in multiagent systems,” IEEE Trans. on Auton. Ment. Dev., vol. 1, no.
3, pp. 170–186, Oct. 2009.

[11] A. T. Bilgin and E. Kadioglu-Urtis, “An approach to multi-agent
pursuit evasion games using reinforcement learning,” in International
Conference on Advanced Robotics, 2015, pp. 164–169.

[12] Q. Zhang, D. Zhao, and F. L. Lewis, “Model-free reinforcement learning
for fully cooperative multi-agent graphical games,” in 2018 International
Joint Conference on Neural Networks, 2018, pp. 1–6.

[13] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Neural Information Processing Systems, 2017.

[14] Z.-W. Hong, S.-Y. Su, T.-Y. Shann, Y.-H. Chang, and C.-Y. Lee, “A
deep policy inference q-network for multi-agent systems,” in Proceed-
ings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, 2018, pp. 1388–1396.

[15] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel,
“Multi-agent reinforcement learning in sequential social dilemmas,” in
Proceedings of the 16th International Conference on Autonomous Agents
and MultiAgent Systems, 2017, pp. 464–473.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354, 2017.

[18] J. Liu, S. Liu, H. Wu, and Y. Zhang, “A pursuit-evasion algorithm based
on hierarchical reinforcement learning,” in International Conference on
Measuring Technology and Mechatronics Automation, 2009, vol. 2, pp.
482–486.

[19] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, And Cybernetics-Part C: Applications and Reviews, 2008.

[20] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proceedings of the tenth international conference on
machine learning, 1993, pp. 330–337.

[21] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent rein-
forcement learners in cooperative markov games: a survey regarding
coordination problems,” The Knowledge Engineering Review, vol. 27,
no. 1, pp. 1–31, 2012.

[22] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep
decentralized multi-task multi-agent reinforcement learning under partial
observability,” 2017.

[23] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems, 2017, pp. 66–83.

[24] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M.
Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T.
Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, 2018, pp.
2085–2087.

[25] J. N. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I.
Mordatch, “Learning with opponent-learning awareness,” in Proceedings
of the 17th Conference on Autonomous Agents and MultiAgent Systems,
2018, pp. 122–130.

[26] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani, “Lenient
multi-agent deep reinforcement learning,” in Proceedings of the 17th
Conference on Autonomous Agents and MultiAgent Systems, 2018, pp.
443–451.

[27] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” 2018.

[28] C. H. Yong and R. Miikkulainen, “Cooperative coevolution of multi-
agent systems,” Tech. Rep., 2001.

[29] F. L. Pinheiro and F. P. Santos, “Local wealth redistribution promotes co-
operation in multiagent systems,” in Proceedings of the 17th Conference
on Autonomous Agents and MultiAgent Systems, 2018, pp. 786–794.

[30] K. Shao, Y. Zhu, and D. Zhao, “Cooperative reinforcement learning for
multiple units combat in starcraft,” in 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), 2017, pp. 1–6.

[31] Z. Hu and D. Zhao, “Reinforcement learning for multi-agent patrol
policy,” in 9th IEEE International Conference on Cognitive Informatics,
2010, pp. 530–535.

[32] D. K. Marzagão, N. Rivera, C. Cooper, P. McBurney, and K. Steinhöfel,
“Multi-agent flag coordination games,” in Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, 2017, pp.
1442–1450.

[33] B. D. Bryant and R. Miikkulainen, A Neuroevolutionary Approach to
Adaptive Multi-agent Teams, pp. 87–115, 2018.

[34] C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in Proceedings of the Nineteenth International Conference on
Machine Learning, 2002, pp. 227–234.

[35] Z. Zhang and D. Zhao, “Clique-based cooperative multiagent reinforce-
ment learning using factor graphs,” Journal of Automatica Sinica, vol.
1, no. 3, pp. 248–256, 2014.

[36] Z. Zhang and D. Zhao, “Cooperative multiagent reinforcement learning
using factor graphs,” in 4th International Conference on Intelligent
Control and Information Processing, 2013, pp. 797–802.

[37] C. Amato and F. A. Oliehoek, “Scalable planning and learning for
multiagent pomdps,” in Proceedings of the 29th AAAI Conference on
Artificial Intelligence, 2015, pp. 1995–2002.

[38] R. Isaacs, Differential games: a mathematical theory with applications
to warfare and pursuit, control and optimization, 1999.

[39] R. Liu et al., “A novel approach based on evolutionary game theoretic
model for multi-player pursuit evasion,” in International Conference
on Computer, Mechatronics, Control and Electronic Engineering, 2010,
vol. 1, pp. 107–110.

[40] H. Wang, Q. Yue, and J. Liu, “Research on pursuit-evasion games
with multiple heterogeneous pursuers and a high speed evader,” in 27th
Chinese Control and Decision Conference, 2015, pp. 4366–4370.

[41] A. Alexopoulos, T. Schmidt, and E. Badreddin, “Cooperative pursue in
pursuit-evasion games with unmanned aerial vehicles,” in International
Conference on Intelligent Robots and Systems, 2015, pp. 4538–4543.

[42] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in Neural Information Processing Systems Workshop, 2017.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.


