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Abstract. We present a rank metric code-based encryption scheme with
key and ciphertext sizes comparable to that of isogeny-based cryptogra-
phy for an equivalent security level. The system also benefits from effi-
cient encryption and decryption algorithms, which rely on linear algebra
operations over finite fields of moderate sizes. The security only relies on
rank metric decoding problems, and does not require to hide the struc-
ture of a code. Based on the current knowledge, those problems cannot be
efficiently solved by a quantum computer. Finally, the proposed scheme
admits a failure probability that can be precisely controlled and made
as low as possible.

Keywords: Post-quantum cryptography, encryption scheme, Gabidulin codes,
rank-metric decoding problems

1 Introduction

With the growing probability of the existence of a near-future quantum com-
puter, it has become important to propose alternatives to existing public-key
encryption schemes and key exchange protocols based on number theory. The
recent NIST Post-Quantum Cryptography Standardization process motivates
proposals in this sense. Along with lattice-based cryptography, code-based cryp-
tography is the most represented among proposals for encryption schemes or
key-encapsulation mechanisms (KEMs). Code-based submissions generically rely
on the hardness of decoding problems, either in the Hamming metric or in the
rank metric. Hamming metric decoding problems enjoy a long-standing study
and few practical improvements for more than fifty years, which ascertain their
security. On the opposite, rank metric decoding problems have been studied for
less than twenty years [8], and their solving complexity is not yet fully stabilized
(see the recent results of [6]). Nevertheless, they benefit from much shorter keys
and seem very attractive for practical implementation, culminating in submis-
sions for the NIST standardization process [1, 2]. So as to further reduce the
key sizes, designers often use specific structures as quasi-cyclicity (equivalent
of Module-LWE for lattices) which could be suspected to introduce additional
weaknesses [20].

http://arxiv.org/abs/1911.13119v1


In this paper we aim at designing a new one-way encryption scheme featuring
very compact keys, based on rank metric decoding problems. The long-standing
idea finds origins in [12] which was an extended idea of a proposal in Hamming
metric [4]. The original rank metric encryption scheme was broken in [15], and a
recent repair was proposed in [30]. However it implies to choose a specific code
and a syndrome coming from a structured vector of moderate rank, which we
want to avoid here.

Inspired from [12], we design a simple one-way encryption scheme with the
following strengths.

– The security of the scheme only relies on decoding problems in rank metric
(such as MinRank and Gab-SD) and does not require to hide the structure
of a code. These decoding problems have been — and are still being —
scrutinized in active research fields.

– Especially as a KEM, our proposal enables very small parameters for a given
security target. Key sizes are competitive with isogeny-based proposals such
as SIKE [5].

– Even if the decryption algorithm is probabilistic, it is easy to control the
failure probability and to make it as small as possible without increasing to
much the parameters.

A remaining weakness would be that underlying problems have been less
investigated than others. However, our goal here is also to emulate research in
this field to be able to ascertain the security of the scheme.

In a first section we introduce necessary notation and definitions. Then we
describe the encryption scheme and we propose sets of parameters for security
levels 1, 3, 5 of the NIST competition. Keys and ciphertext sizes are not larger
than few hundreds of bytes. In the next section, we prove the consistency of the
encryption scheme and we analyze its security by showing to which problems
the security can be reduced, and by giving the complexity of algorithms solving
these problems.

2 Preliminaries

2.1 Notation and definitions

Throughout the paper, we set q = 2n for some integer n ≥ 1, and we let Fq

denote the finite field with q elements. The field Fq can also be viewed as a
vector space of dimension n over F2. The map θ : Fq → Fq, x 7→ x2, is F2-
linear and is called the Frobenius automorphism. Its inverse is the (n − 1)-fold
composition θn−1 = θ ◦ · · ·◦θ. For convenience, we sometimes write x[i] := θi(x),
for i ∈ [0, n− 1] := {0, . . . , n− 1}.

Let β = (β1, . . . , βn) ∈ F
n
q be a basis of Fq over F2. We define the extension

map

Extβ : F
n
q → F

n×n
2

a = (a1, . . . , an) 7→ A = (α⊤
1 , . . . ,α

⊤
n )



where, for all 1 ≤ j ≤ n, the vector αj ∈ F
n
2 consists of coordinates of aj ∈ Fq in

the basis β, i.e. aj =
∑n

i=1 βiAi,j . In particular, for every A ∈ F
n×n
2 , we have

Extβ(βA) = A.
The rank of a ∈ F

n
q , denoted rk(a), is defined as the rank over F2 of its

extension matrix A = Extβ(a). Notice that rk(a) does not depend on the choice
of the basis β. We also define the row space of a ∈ F

n
q with respect to β as

RowSpβ(a) := {xExtβ(a),x ∈ F
n
2} ⊆ F

n
2 .

Similarly, the column space of a ∈ F
n
q is ColSpβ(a) := {sum

n
i=1xiai | x ∈ F

n
2} ⊆

Fq.
We let Gr(t,Fn

2 ) denote the set of subspaces of Fn
2 of dimension t, which con-

tains
[ n

t

]

2
:= (2n−1)(2n−1−1)···(2n−t+1−1)

(2t−1)(2t−1−1)···(21−1) elements. Each subspace V ∈ Gr(t,Fn
2 )

can be represented by the unique reduced row echelon form (RREF) of any ma-
trix V ∈ F

n×n
2 whose row space generates V . We know from [21, 27] that this

representation can be computed efficiently (in time Õ(nt(n− t))). Recall that a
matrix is in reduced row echelon form if the following holds:

– the index of the pivot (i.e. the first non-zero coefficient) of row i is strictly
larger than the index of the pivot of row i− 1;

– all pivots are ones;

– each pivot is the only non-zero entry in its column.

We finally define Pt,n := {P ∈ F
n×n
2 | rk(P ) = t,P is in RREF}.

2.2 Rank metric codes

In this paper, we embed F
n
q with the rank metric: for a ∈ F

n
q , the weight of a

is defined as ‖a‖ := rk(a). We consider Fq-linear codes, i.e. Fq-linear subspaces
C ⊆ F

n
q . Notice that the field extension degree n is also the length of the code

C. The dimension of a code C is k = dimFq
(C), and its minimum (rank) distance

is d = minc∈C\{0} ‖c‖. A generator matrix (resp. a parity-check matrix) for C is

a matrix G ∈ F
k×n
q (resp. H ∈ F

(n−k)×n
q ) such that C = {aG,a ∈ F

k
q} (resp.

Hc⊤ = 0 for every c ∈ C).

Let us define β[i] := (β
[i]
1 , . . . , β

[i]
n ) ∈ F

n
q . Its Moore matrix is defined as

Mooren(β) :=







β[0]

...

β[n−1]






∈ F

n×n
q

and it is invertible over Fq. Hence (β[0], . . . ,β[n−1]) is a basis of Fn
q .

Definition 1 (Gabidulin code [10, 13]). Let g = (g1, . . . , gn) ∈ F
n
q be an

ordered basis of Fq/F2. The Gabidulin code of dimension k with evaluation vector
g is the subspace Gabk(g) ⊆ F

n
q generated by the k first rows of Mooren(g).



Algorithm 1: KeyGen(1λ)

Input:

Output: a pair of public/private keys (kpub,kpriv)
1 Pick kpriv ←$ {x ∈ F

n
q , ‖x‖ = w}

2 Compute kpub ∈ F
n−k
q such that kpub

⊤ = Hkpriv
⊤

3 Output (kpub,kpriv) ∈ F
n−k
q × F

n
q

Gabidulin codes are optimal codes with respect to the rank metric [10] and
they can be efficiently decoded [13] up to ⌊n−k

2 ⌋ errors. By definition, the sub-
matrix consisting in the k first rows of Mooren(g) is a generator matrix for
Gabk(g). It is also clear that Gabk(g) ⊆ Gabk+1(g) for every 1 ≤ k ≤ n, and
we have Gabn(g) = F

n
q . Hence, one can propose the following definition.

Definition 2 (g-degree). Let x ∈ F
n
q and X = Extg(x). The g-degree of x,

denoted degg(x), is the unique integer ℓ ∈ [0, n− 1] such that x ∈ Gabℓ+1(g) \
Gabℓ(g). Similarly, one defines the g-degree of X as degg(X) = degg(x).

In other words, a vector x ∈ F
n
q of g-degree ℓ can be written

x = λℓg
[ℓ] +

ℓ−1∑

j=0

λjg
[j]

for some non-zero λℓ ∈ Fq \ {0} and some ℓ-tuple (λℓ−1, . . . , λ0) ∈ F
ℓ
q.

Finally, the dual code Gabk(g)
⊥ = {a ∈ F

n
q | ∀c ∈ Gabk(g),

∑n
i=1 aici = 0}

is also a Gabidulin code Gabn−k(h) for some basis h ∈ F
n
q that can be efficiently

computed from g. In other words, there exists a parity-check matrix for Gabk(g)
consisting in the (n−k) first rows of a Moore matrix associated to some h ∈ F

n
q ,

see e.g. [13].

3 The encryption scheme

System parameters. Integers 1 ≤ w, k, ℓ, t ≤ n are public parameters and speci-
fied according to the desired security level (see Section 4). We set q = 2n, and
we also make public a basis g of Fq/F2. We let H denote a fixed parity-check
matrix of Gabk(g).

Key generation. Alice picks uniformly at random a vector kpriv ∈ F
n
q of rank

w. As explained in Algorithm 1, the public key is the syndrome of kpriv with
respect to the parity-check matrix H of Gabk(g), and the private key is kpriv.

Encryption. The set of plaintexts is Pt,n, as defined in Section 2.1. Encryption
is presented in Algorithm 2. Notice that in steps 3-4, the computation of p′

should be understood as a the generation of a uniform random vector such that
RowSpg(p

′) is the rowspan of P .



Algorithm 2: Encrypt(kpub,P )

Input: public key kpub ∈ F
n−k
q , plaintext P ∈ Pt,n

Output: ciphertext u ∈ F
n−k
q

1 Compute any y ∈ F
n
q such that Hy⊤ = kpub

⊤

2 Pick T ←$ {M ∈ F
n×n
2 ,degg(M) = ℓ}

3 Pick S ←$ {M ∈ F
n×n
2 , rk(M) = n}

4 Compute p′ = gSP ∈ F
n
q

5 Output u ∈ F
n−k
q such that u⊤ = H(yT + p′)⊤

Algorithm 3: Decrypt(kpriv,u)

Input: private key kpriv ∈ F
n
q , ciphertext u ∈ F

n−k
q

Output: plaintext P̂ ∈ Pt,n, or failure
1 Compute a solution x ∈ F

n
q to the linear system Hx⊤ = u⊤.

2 Compute z = Vkpriv
(x) ∈ F

n
q .

3 Decode z as a corrupted Gabk+ℓ+w(g)-codeword. If success, one gets an error
vector a ∈ F

n
q of rank ≤ t.

4 If rk(a) < t, output failure.

5 Otherwise, output P̂ = RREF(Extg(a)).

Decryption. We present in Algorithm 3 a decryption algorithm which may fail
with negligible probability. The failure rate is devoted to be cryptographically
small, and is bounded in Section 5.2. We also make use of an F2-linear map
Vkpriv

: Fn
q → F

n
q such that Vkpriv

(kpriv) = 0. This map can be efficiently com-
puted from the knowledge of the private key kpriv. Mathematical properties of
this map are given in Section 5.1

In Algorithm 3, one needs to decode Gabidulin codes up to half their min-
imum distance, i.e. to decode errors of rank less than ⌊n−dimGab

2 ⌋. Many such
algorithms can be found in the literature since the seminal work of Gabidulin [13].
Some of them are based on solving a so-called key equation, such as [14,24–26,29]
and others use interpolation, for instance [19]. Fastest ones run in O(n2) opera-
tions over Fq.

4 Parameters

In Table 1, we propose three sets of parameters for RAMESSES as a KEM,
according to the desired level of security. Table 2 proposes a set of parameters
for RAMESSES as a PKE. There are generic transformations from PKEs to
KEMs, widely used in the NIST competition. Note that the decryption failure
can be finely tuned as is explained in Section 5.2. One can notice that the post-
quantum security is much larger than half the classical one, which is unusual
in code-based systems. Indeed the best current attacks against RAMESSES do
not use enumeration techniques, which would benefit from the use of Grover



n k w ℓ t
classical post-quantum public key/ciphertext private key

security (bits) security (bits) size (bytes) size (bytes)

64 32 19 3 5 141 (≥ 128) 126 256 152

80 40 23 3 7 202 (≥ 192) 158 400 230

96 48 27 3 9 265 (≥ 256) 190 576 324

Table 1. Sets of parameters for RAMESSES as a KEM, with different levels of security.
The security is estimated according to the current state of the art of algebraic attacks;
the linear algebra constant is set to ω = log2(7) ≃ 2.807. Decryption failure rates are
respectively bounded by 2−40, 2−50 and 2−60.

n k w ℓ t
classical post-quantum public key/ciphertext private key

security (bits) security (bits) size (bytes) size (bytes)

164 116 27 3 9 ≥ 256 ≥ 256 984 554

Table 2. A set of parameters for RAMESSES as a PKE, with decryption failure rate
≤ 2−128. The security is estimated according to the current state of the art of algebraic
attacks; the linear algebra constant is set to ω = log2(7) ≃ 2.807.

algorithm, but Groebner bases algebraic techniques for which there is no known
efficient quantum algorithmic speedup, as explained in Section 5.4.

Claimed security. The claimed security is computed according to known attacks
reported in Section 5.4.

Public key size. The public key consists in a vector kpub ∈ F
n−k
q . Thus, its size

is (n− k)n bits, or (n−k)n
8 bytes.

Private key size. For the private key kpriv ∈ F
n
q , Alice actually needs to store

only the map Vkpriv
. From Section 5.1, this map is a monic polynomial over Fq

of degree w. Hence only w coefficients over Fq actually need to be stored, the
size of the private key is thus wn bits, or wn

8 bytes.

Ciphertext size. The ciphertext is a vector u ∈ F
n−k
q , hence its size is (n− k)n

bits, i.e. (n−k)n
8 bytes.

5 Analysis

5.1 Mathematical background

Gabidulin codes can be interpreted in the context of skew polynomial rings.
Recall that θ represents the Frobenius automorphism x 7→ x2. The skew poly-
nomial ring Fq[X ; θ], originally studied by Øre [22, 23], is the ring of univariate



polynomials defined by the non-commutative multiplicative rule

X · a = θ(a) ·X, a ∈ Fq .

In our context, skew polynomials are also called linearized polynomials. One can
define the evaluation of a skew polynomial P =

∑d
i=0 aiX

i ∈ Fq[X ; θ] at x ∈ Fq

as follows:

P (x) :=

d∑

i=0

aiθ
i(x) =

d∑

i=0

aix
2i .

The evaluation vector of P at x ∈ F
n
q is defined as

P (x) := (P (x1), . . . , P (xn)) ∈ F
n
q .

Thus, the rows of Mooren(g) can be seen as the evaluation vectors over g, of the
sequence of degree-ordered skew monomials 1, X, . . . , Xn−1. As a consequence,
one can view Gabidulin codes as analogues of Reed-Solomon codes for skew
polynomial rings:

Gabk(g) = {P (g) | P ∈ Fq[X ; θ], degP < k} .

For x ∈ F
n
q , the polynomial P (X) ∈ Fq[X ; θ] of minimum degree such that

P (g) = x is the g-interpolating polynomial of x and is denoted Lx(X). By
definition deg(Lx) = degg(x).

Finally, given e ∈ F
n
q , the set of polynomials P ∈ Fq[X ; θ] satisfying P (e) = 0

is a left-ideal Ie of Fq[X ; θ]. Since skew polynomial rings are principal ideal
domains, we can define the minimum vanishing polynomial Ve(X) ∈ Fq[X ; θ] of e
as the unique monic skew polynomial which generates Ie. Notice that deg(Ve) =
rk(e) ≥ n− degg(e).

The following lemma will be helpful for the analysis of the scheme consistency.

Lemma 1. Let P (X) ∈ Fq[X ; θ] and a ∈ F
n
q . Then we have RowSpg(P (a)) ⊆

RowSpg(a). Moreover, if RowSpg(P (a)) 6= RowSpg(a), then there exists a non-
zero x =

∑n
i=1 λiai ∈ ColSp(a) such that P (x) = 0.

Proof. Let B ∈ F
n×n
2 satisfy RowSpg(a) = {x ∈ F

n
2 ,xB = 0}. In particular, one

can see that aB = 0. Hence, by F2-linearity P (a)B = P (aB) = 0. Thus, every
y ∈ RowSpg(P (a)) satisfies yB = 0, leading to RowSpg(P (a)) ⊆ RowSpg(a).

Assume now that RowSpg(P (a)) 6= RowSpg(a). It implies that
dimColSp(P (a)) < dimColSp(a). Let (aij )1≤j≤k ⊂ Fq be an ordered basis
of ColSp(a) ⊆ Fq over F2. Then there must exists a non-zero (λj) ∈ F

k
2 such

that
∑k

j=1 λjP (aij ) = 0, otherwise we would have dimColSp(P (a)) = k. If we
set x =

∑

j λjaij ∈ Fq \ {0}, then we get P (x) = 0 by F2-linearity. ⊓⊔

5.2 Consistency

In this section we characterize the output of algorithm Decrypt described in
Section 3. As input, Decrypt receives a vector kpriv ∈ F

n
q of rank w and a vector

u ∈ F
n−k
q such that u = H(yT + p′)⊤, where



– vector y ∈ F
n
q satisfies Hy⊤ = Hkpriv

⊤,

– matrix T ∈ F
n×n
2 has g-degree ℓ,

– vector p′ = gSP ∈ F
n
q has rank t := ⌊n−k−ℓ−w

2 ⌋.

First, notice that y = kpriv + c for some c ∈ Gabk(g). In the first step of
Algorithm 3, a vector x ∈ F

n
q solution to Hx⊤ = u⊤ is computed. One can see

that the set S of such solutions is

S = {yT + p′ + c′ | c′ ∈ Gabk(g)} ⊆ F
n
q .

Therefore, in step 2 of Algorithm 3, we have

z = Vkpriv
(x) = Vkpriv

((c + kpriv)T + p′ + c′)

= Vkpriv
(c′ + cT ) + Vkpriv

(kpriv)
︸ ︷︷ ︸

0

T + Vkpriv
(p′) .

We notably used the F2-linearity of Vkpriv
. Also recall that, for any a ∈ F

n
q ,

La(X) denotes the g-interpolating polynomial of a. Then we get:

z = (Vkpriv
· (Lc′ + LcT ))(g) + Vkpriv

(p′) .

Moreover, LcT = Lc · LgT yields deg(LcT ) ≤ k − 1 + ℓ since degg(T ) = ℓ.
Therefore, the polynomial Vkpriv

· (Lc′ + LcT ) has degree at most deg(Vkpriv
) +

max{deg(Lc′), deg(LcT )} ≤ w + k − 1 + ℓ.

We also know that rk(Vkpriv
(p′)) ≤ rk(p′) = rk(P ) = t = ⌊n−k−ℓ−w

2 ⌋. Hence,
in third step of Algorithm 3, any decoding algorithm for Gabk+w+ℓ(g) that de-
codes errors of rank at most t will retrieve Vkpriv

(p′) from z. Finally, Algorithm 3

outputs a matrix P̂ ∈ Pt,n such that RowSp(P̂ ) = RowSpg(Vkpriv
(p′)).

As a consequence, decryption fails whenever RowSpg(Vkpriv
(p′)) 6=

RowSp(P ), where P is the original plaintext. First notice that RowSp(P ) =
RowSpg(p

′). Then, Lemma 1 shows that if decryption fails, then there exists a
non-zero x ∈ ColSp(p′) such that Vkpriv

(x) = 0. Let us now recall that the set
of zeroes of Vkpriv

is exactly ColSp(kpriv). Hence we get the following result.

Lemma 2. Let P ∈ Pt,n. If, on input (kpriv,Encrypt(kpub,P )) where
(kpub,kpriv) ← KeyGen, algorithm Decrypt does not output P , then matrix S

has been chosen at step 4, such that ColSp(kpriv) ∩ ColSp(SP )) 6= {0}.

One can now estimate the probability of failure of Decrypt.

Lemma 3. Let (kpub,kpriv)← KeyGen be any pair of keys generated by KeyGen,
on public parameters n,w, t. Then, for every P ∈ Pt,n,

PS,T ,y

(

P̂ 6= P

∣
∣
∣
∣
∣

u← Encrypt(kpub,P )

P̂ ← Decrypt(kpriv,u)

)

≤ 2−(n−t−w) .



Proof. Using Lemma 2, we have

PS,T ,y

(

P̂ 6= P

∣
∣
∣
∣
∣

u← Encrypt(kpub,P )

P̂ ← Decrypt(kpriv,u)

)

= PS

(
ColSp(kpriv) ∩ ColSp(SP ) 6= {0}

)
.

It is easy to check that the probability that a t-dimensional random subspace
of F

n
2 intersects non-trivially a fixed subspace of dimension w is bounded by

(2t−1)(2w−1)
2n−1 ≤ 2t+w−n. This concludes the proof. ⊓⊔

5.3 Security proof

Let us first introduce two problems to which the security of RAMESSES can
be reduced. Problem 1 is an ad hoc problem. The search version of Problem 2
corresponds to decoding errors of rank w in a Gabidulin code; this problem is
believed hard for w between n−k

2 and n− k, and a improvement in solving this
problem would be significant in coding theory.

Problem 1 (Syndrome correlation for Gabidulin codes (CorGab)).

Let H ∈ F
(n−k)×n
q be a fixed parity-check matrix of Gabk(g), and 1 ≤ ℓ ≤ n−1.

– Input: access to distributions

1. D1: (Hx⊤,HT⊤x⊤), where x←$ F
n
q and T ←$Mℓ,

2. D2: (Hx⊤, r⊤), where x←$ F
n
q and r ←$ F

n−k
q .

– Goal: distinguish between D1 and D2.

Problem 2 (Syndrome decoding for Gabidulin codes, Gab-SD).

Let H ∈ F
(n−k)×n
q be a fixed parity-check matrix of Gabk(g), and n−k

2 < w <
n− k.

– Input: access to distributions

1. D1: Hx⊤, where x←$ Sw,

2. D2: r
⊤, where r ←$ F

n−k
q .

– Goal: distinguish between D1 and D2.

We now shortly show the indistinguishability under chosen plaintext attacks
(IND-CPA) of RAMESSES with the following sequence of games.

Game 0. The real scheme with plaintext P .

Game 1. We modify Game 0 as follows. In the key generation, the vector
kpriv is now picked uniformly at random in F

n
q , without any rank constraint.

Game 2. We modify Game 1 as follows. In the encryption algorithm,
H(yT + gSP(1))

⊤ is replaced by r + H(gSP(1))
⊤, where r is generated

uniformly at random in F
n−k
q .

Game 3. We modify Game 2 as follows. The plaintext P(1) is replaced by
the plaintext P(2).



Game 4. This game is identical to Game 1, except that the plaintext is
P(1) is replaced by the plaintext P(2).

Game 5. The real scheme with plaintext P(2).

One can then prove that the advantage AdvDist

A for an adversary A to distin-
guishing the encryption of P(1) and P(2) satisfies:

AdvDist

A ≤ 2(AdvGab-SD

A +AdvCorGab

A ) .

Roughly speaking, one actually mimics the security proof given in [3]. The
2AdvGab-SD

A term comes from transitions between games 0 and 1, and games
4 and 5, whereas transitions between games 1 and 2, and games 3 and 4 yield
the 2AdvCorGab

A term. Games 2 and 3 are information-theoretically indistin-
guishable since r is random.

5.4 Existing attacks

In the following, we denote by λ the desired security parameter, i.e., any attack
against the cryptosystem must cost at least 2λ operations over F2.

Exhaustive search attacks. In order to avoid attacks by exhaustive search, one
has the following constraints on the parameters.

1. |Pt,n| =
[ n

t

]

2
≥ 2λ, satisfied when t(n− t) ≥ λ.

2. |{kpriv}| ≥
[ n

w

]

2
≥ 2λ, satisfied when w(n − w) ≥ λ.

3. |Mℓ| ≥ 2λ, satisfied when (ℓ + 1)n ≥ λ.

Attack by decoding beyond the unique decoding radius of Gabidulin codes. Let
e′ ∈ F

n
q be any solution of He′⊤ = kpub

⊤ of rank ≤ w. From the consistency
analysis one can see that e′ can be used as an alternate private key in the
Decrypt algorithm. The computation of such a vector e′ actually corresponds to
the search version of Gab-SD problem.

This problem is easy for w ≤ ⌊n−k
2 ⌋ (it corresponds to half-minimum-distance

decoding) and for w ≥ n − k (equivalent to interpolation for linearized polyno-
mials). For our concern, we have ⌊n−k

2 ⌋ < w < n − k, and we believe that the
search version of Gab-SD is hard in this range of parameters.

A solution consists in enumerating vector spaces of dimension slightly higher
than w, checking whether they guessed correctly a large part of the solution
space, and in such case, interpolating the solution. Roughly speaking, the number
of valid choices for the subspace is large, but the complexity of finding one
remains exponential in the code length. Precisely, in our settings (m = n, and
n− k even) the number of vector spaces to test before finding one solution is on
average

NClass−Gab-SD ≈ 0.3 · 2δ(n+k−2δ) ,

where δ := w−⌊n−k
2 ⌋ > 0. This quantity is used as a bound for the complexity of

solving Gab-SD. By using a straightforward Grover algorithm, we obtain that
the number of iterations to be completed on a quantum computer is roughly

NQuant−Gab-SD ≈ 0.55 · 2
δ
2
(n+k−2δ) .



Attack via a reduction to a quadratic system over F2. Given a vector e ∈ F
n
q

with rk(e) = w, any solution y ∈ F
n
q to Hy⊤ = He⊤ can be written as y = c+e

for some c ∈ Gabk+ℓ(g). Therefore, y satisfies

Ve(y) = (Ve · U)(g) , (1)

where U(X) =
∑k+ℓ−1

i=0 uiX
i ∈ Fq[X, θ]. Hence, an attack would consist in

searching for Ve and U in the previous equation, for some fixed y solution to
Hy⊤ = kpub

⊤.
Equation (1) can be turned into a quadratic system over F2 (see Appendix A

for details). Using results of Bardet et al. [7], the solving complexity would be

in O(20.561n2

), which remains much larger than the complexity of the previous
attack.3

Attack via a reduction to a MinRank instance. The recovery of a representative
p′ = gSP ∈ F

n
q of the plaintext P , given only a ciphertext u and kpriv, can be

modeled as follows. First, one computes (i) any solution x ∈ F
n
q of Hx⊤ = u⊤,

and (ii) any solution y ∈ F
n
q to Hy⊤ = kpub

⊤. Due to the form of the ciphertext,
this leads us to

x− yT − c = p′ , (2)

where c ∈ Gabk+ℓ(g) and T ∈ F
n×n
2 are unknown to the attacker. Notice that

T lies in a F2-vector space of dimension (ℓ + 1)n, since gT ∈ Gabℓ+1(g). Two
kinds of attacks can then be mounted to solve (2).

First, Equation (2) can be written x = (c+ yT ) + p′, which means that the
problem can be rephrased as decoding an error p′ of rank t in the underlying
code

D := Gabk+ℓ(g) + span
F2

(
{yT | T ∈Mℓ}

)
.

Notice thatD ⊆ F
n
q is an F2-linear code of F2-dimension at most (k+2ℓ+1)n. One

can then write yT = Ly(gT ), which yields D = Gabk+ℓ(g)+Ly(Gabℓ+1(g)). A
straightforward decoding approach would lead to an attack in time roughly 2kr.
One could also try to decode in the smallest Fq-linear code containing D, and
use the additional structure provided by the Fq-linearity. This structure has been
widely employed in the recent improvements, see [6]. However, it is unlikely that
the Fq-dimension of span

Fq
(D) = Gabk+ℓ(g) + span

Fq
(Ly(Gabℓ+1(g))) is small,

since the F2-endomorphism of Fq[X, θ] defined by P 7→ LyP is not Fq-linear.
Second, one can see Equation (2) as an instance of MinRank, a problem

formally introduced by Courtois in [9] after the cryptanalysis of HFE [17].

Problem 3 (MinRank search problem). Let K be a field.

– Input: M0,M1, . . . ,MK ∈ K
N×n and an integer t.

3 However, notice that the system to be solved in [7] is assumed random, and such
that no specialization of variables can be made. This is unlikely the case for our
system, but it requires a finer analysis — which is not the scope of this paper — to
understand whether improvements can be made in order to solve the system.



– Goal: Find (x1, . . . , xK) ∈ K
K such that rkK(M0 −

∑K
i=1 xiMi) ≤ t.

Let us denote by {T1, . . . ,Tn(ℓ+1)} ⊆ F
n×n
2 an F2-basis of Gabℓ+1(g), the small-

est vector space containingMℓ. Similarly, Extg(c) can be written in some basis
{C1, . . . ,Cn(k+ℓ)} ⊆ F

n×n
2 of the F2-vector space of dimension n(k + ℓ) repre-

senting Gabk+ℓ(g). Applying Extg to Equation (2), we get:

X −

n(ℓ+1)
∑

i=1

tiY Ti −

n(k+ℓ)
∑

i=1

ciCi = P ′,

where (X,Y ,P ′) = (Extg(x),Extg(y),Extg(p
′)). Since rk(P ′) = t, one gets

an instance of the MinRank problem, with one “base matrix” X ∈ F
n×n
2 and

K := n(k + 2ℓ+ 1) “summand matrices” {Y T1, . . . ,Y Tn(ℓ+1),C1, . . . ,Cn(k+ℓ)}.
There exist several approaches to solve the MinRank problem. In [16],

Goubin and Courtois gave an algorithm which finds a solution in expected time
O(K32t⌈K/n⌉). In 1999, Kipnis and Shamir [17] proposed a multivariate formula-
tion of MinRank which can be solved by computing Groebner bases. Such com-
putations can be run in time O(

(
m+d−1

d

)ω
), where 2 ≤ ω < 3 is the linear algebra

constant, m = t(n − t) +K and d is the degree of regularity of the system [18].
Faugère, Levy-dit-Vehel and Perret [11] proved that, in the Kapnis-Shamir for-
malism, any instance can be reduced to a simpler one if ∆ := K − (n− t)2 > 0.
In our case, setting w ≥ ℓ+1 ensures that ∆ ≤ 0. Moreover, the authors proved
that the degree of regularity is lower than what is expected for random systems,
and it seems to be upper bounded by t + 2 heuristically. This heuristic was
confirmed by Verbel et al. [28] for superdetermined instances, and by Bardet
et al. [6] in the context of decoding low rank errors in random codes. Finally,
the latter work also presents instances for which the solving degree decreases to
d = t. We choose to consider this conservative setting; the running time for the
computation of the associated Groebner basis is thus in

O

( (
t(n− t) + n(k + 2ℓ+ 1) + t− 1

t

)ω )

.

To sum up, the reduction to MinRank leads us to the following bounds on
the parameters:

w ≥ ℓ+ 1, ω · log
(
n(k+2ℓ+t+1)−t2+t−1

t

)
≥ λ, t(k + 2ℓ+ 1) ≥ λ .

6 Conclusion

The parameters we proposed for RAMESSES are deliberately aggressive so that
to encourage research in studying the security of the encryption scheme. The
simplicity and versatility of the scheme enables very efficient tuning for many
sets of parameters, without making them grow prohibitively. Namely, the size of
keys and ciphertexts grow linearly with the security parameter; this is usually
not the case in other code-based encryption schemes where sizes (notably the
public key size) grow quadratically with the security level, except for systems
using structural tricks to reduce the key size.
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A A quadratic system model

Without loss of generality, we here assume that g = (gq
0

, gq
1

, . . . , gq
n−1

) is a
normal basis of Fq/F2. Recall that any solution y ∈ F

n
q to Hy⊤ = He⊤ satisfies

Ve(y) = (Ve · U)(g) , (3)

where rk(e) = w, and U(X) =
∑k+ℓ−1

i=0 uiX
i ∈ Fq[X, θ]. The attack would

consist in searching for Ve and U in the previous equation, for some fixed y

solution to Hy⊤ = kpub
⊤.

Let us now write Ve(X) =
∑w

i=0 viX
i, and denote by (vr,i)1≤r≤n ∈ F

n
2 (resp.

(us,j)1≤s≤n) the decomposition of vi (resp. uj) in the basis g. Then, Equation (3)
rewrites

( w∑

i=0

n∑

r=1

vr,iB
qrCi

)

Extg(y) =

w∑

i=0

k+ℓ−1∑

j=0

n∑

r=1

n∑

s=1

vr,ius,j B
qr+qs+i

Ci+ℓ , (4)

where B = Extg(g ·g) ∈ F
n×n
2 is the matrix of the multiplication by g in Fq, and

C ∈ F
n×n
2 is the right-cyclic-shift matrix. Equation (4) thus defines a quadratic

system over F2, with n(w+k+ ℓ+1) unknowns coefficients (vr,i)r,i and (us,j)s,j ,
involved in n2 equations (the coefficients of the matrices).

Though the above system is not random (random systems are believed to be
the hardest), we report one result concerning the complexity of random Boolean
quadratic systems. In [7], Bardet et al. gave an algorithm solving such a system.
Without any specialization of variables, its running time is in O(22H(M(α))Nvar ),
where Nvar is the number of variables, α := Neq/Nvar is the ratio between equa-
tions and variables,

H(t) := −t log2(t)− (1− t) log2(1− t)

is the binary entropy function, and

M(x) := −x+
1

2
+

1

2

√

2x2 − 10x− 1 + 2(x+ 2)
√

x(x+ 2) .

In our case, Nvar =
n2

α and the parameters have been chosen such that α =
n

k+w+ℓ+1 ∈ (1.0, 1.33). It leads to H(M(α)) > 0.372, hence 2H(M(α))
α > 0.561.

In other terms, this approach leads to:

0.561n2 ≥ λ

under the assumptions that the system behaves like a random system and we do
not specialize variables.
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