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Abstract

This paper is devoted to the simulation of the three-phase flow model [20], in order to ac-
count for immiscible components. The whole model is first recalled, and the main properties
of the closed set are given, with particular focus on the Riemann problem associated with the
convective subset that contains non-conservative terms, and also on the relaxation process.
The model is hyperbolic, far from resonance occurrence, and a physically relevant entropy
inequality holds for smooth solutions of the whole system. Owing to the uniqueness of jump
conditions, specific solutions of the one-dimensional Riemann problem can be built, and
these are useful (and mandatory) for the verification procedure. The fractional step method
proposed herein complies with the continuous entropy inequality, and implicit schemes that
are considered to account for relaxation terms take their roots on the true relaxation pro-
cess. Once verification tests have been achieved, focus is given on the simulation of the
experimental setup [8, 9], in order to simulate a cloud of droplets that is hit by an incoming
gas shock-wave. Finally, the study of a three-phase flow setup involving thermal effects is
presented, it is based on the KROTOS experiment [25] which focuses on vapour explosion
simulation.

Keywords: Three-phase flows, vapour explosion, hyperbolic systems, finite volumes,
relaxation time scales

1. Introduction

In fluid dynamics, a multiphase flow is a simultaneous flow of two or more components in
the same media, or the flow of one single component but with different chemical properties or
thermodynamic states. It has a wide range of applications in the modern industry that cover
different flow configurations, for instance: gas-liquid-solid mixtures, non miscible liquid-
liquid mixtures, change of state liquid-gas mixtures, etc.

In the nuclear industry, many configurations of multiphase flows arise, either in the
normal operation (for instance in the steam generator : liquid water - water vapor flow) or
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the accidental operation (for instance: Loss of Coolant Accident [37] or Reactivity Initiated
Accident [34]). Vapor Explosion [5] arises as one of the multiphase flows that could take
place in an accidental scenario. It could happen in the case of a meltdown of the reactor
core, if the corium (i.e. mixture of molten nuclear fuel, fission products, control rods, reactor
vessel structure materials, etc.) would get in touch with liquid water. The contact between
these two fluids is generally characterized by an intense and rapid heat transfer that leads
to a strong evaporation of the liquid water. During the expansion of water vapor, pressure
shock waves could be formed, which might damage the surrounding structures. Thus, the
modeling and the numerical simulation of Vapor Explosion is a completely relevant and
highly challenging task to undertake.

Many efforts have been devoted to the modeling and simulation of Vapor Explosion. This
requires at least a three-phase flow model to account for the corium phase, the liquid water
phase, and the water vapor phase; it should be noted that the latter three are not miscible.
Some models consider more than three fields, this could be useful for instance to take into
account the different gaseous phases or fission products (see for instance [31]). However,
existing multiphase models generally suffer from typical mathematical short-comings, one
of which is the loss of hyperbolicity, and also the non-uniqueness of jump conditions.

For the sake of a correct representation of shock and rarefaction waves, compressible mul-
tiphase flow models with hyperbolicity criterion and unique jump conditions are required.
The hyperbolicity provides an assurance of the well-posedness of the initial-value problem,
while the uniqueness of jump conditions is mandatory, for non conservative first-order sys-
tems, otherwise computed shock patterns totally depend on the chosen scheme, which of
course does not make sense (see [4, 24, 17]).

In the two-phase flow framework, Baer and Nunziato [3] proposed a rather appealing
model that allows to describe the strong shock and rarefaction waves, and also the com-
pressible effects, while preserving the hyperbolicity condition. This model has been studied
in [13] and extended by A.K. Kapila et al. [29] and S. Gavrilyuk and R. Saurel [15] among
others. Another category of models exists in the two-phase flow literature [12, 28], it con-
sists of considering one pressure field for the two fluids, or in other words with instantaneous
pressure equilibrium between all phases, but this approach does not ensure the preservation
of the mathematical properties we mentioned above, namely the hyperbolicity and the ex-
istence and uniqueness of jump conditions.

In [20] an extension of Baer-Nunziato model to the three-phase flow framework for non
miscible components was suggested. The main difficulty that arises is the description of what
happens at the interface between the three phases. In fact, in the two-phase mixture there is
only one interface velocity and one interface pressure that need to be defined, whereas in the
three-phase mixture more closure laws need to be introduced at the statistical interface. The
paper [20] addresses the main modeling choices that allow to guarantee a relevant entropy
inequality, and also the uniqueness of jump conditions. Other recent works have allowed to
get more results considering the same class of two or three-phase flow models [32, 23, 19, 22].

In the present work, we consider the same class of three-phase flow models as in [20],
and we especially take a deeper look at the source terms that account for the relaxation
processes between the three phases. The present paper is organized as follows. In Section 2,
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we present the set of equations of the three phase flow model, as well as the different closure
laws and the mathematical properties of the closed model. In this section, we also discuss
the properties of the relaxation processes: velocity, pressure, temperature and mass transfer.
These four distinct relaxation effects indeed have a significant impact on the dynamics of the
three-phase mixture. In Section 3, we focus on the discrete framework, the global resolution
strategy actually consists of the fractional step method [21]. We give the details of the
numerical scheme that was considered to take the convective subset into account, since
the latter includes non conservative terms. We also present the numerical schemes for the
relaxation effects. In Section 4, we present the different numerical results that consist of:

• Verification of the convective subset: pure convection test cases, which involve a Rie-
mann problem;

• Verification of each relaxation subset;

• Validation of the dynamic effects on a shock tube apparatus [8, 9];

• Preliminary validation of the whole model (with dynamic and thermal effects) on a
vapour explosion test case, based on the KROTOS experiment [25].

Seven appendices devoted to technical details complete the whole.

2. Governing equations and main properties of the three-dimensional three-
phase flow model

2.1. Governing equations

We consider the following system of partial differential equations for the modeling of a
three-phase flow with two non miscible components (water, liquid metal), assuming that
water may be present under two distinct states: liquid or vapor phase. For k = 1, .., 3 and
t > 0: 

∂αk
∂t

+ Vi(W).∇αk = Sαk (W)
∂mk
∂t

+∇.(mkUk) = Smk (W)
∂mkUk

∂t
+∇.(mkUk ⊗Uk + αkpkId) +

∑3
l=1,l 6=k Πkl(W)∇αl = SUk (W)

∂αkEk
∂t

+∇.(αkEkUk + αkpkUk)−
∑3

l=1,l 6=k Πkl(W)∂αl
∂t

= SEk (W)

(1)

The quantities αk ∈ [0, 1], ρk, mk = αkρk, Uk, pk, ek(pk, ρk) and Ek represent respectively
the statistical fraction, the mean density, the partial mass, the mean velocity, the mean
pressure, the mean internal energy and the mean total energy of phase k, k = 1, 2, 3, where:

Ek =
1

2
ρkUk.Uk + ρkek(pk, ρk) (2)

Since the liquid water, water vapor and liquid metal are not miscible, we have the
following constraint on statistical fractions:

α1 + α2 + α3 = 1 (3)
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The state variable W ∈ R17 denotes the following vector:

W = (α2, α3,m1,m2,m3,m1U1,m2U2,m3U3, α1E1, α2E2, α3E3)t (4)

Some additional thermodynamic variables need to be defined. We set:

c2
k(pk, ρk) =

(
pk
ρ2
k

− ∂ek(pk, ρk)

∂ρk

)(
∂ek(pk, ρk)

∂pk

)−1

(5)

sk(pk, ρk), the specific entropy of phase k, is defined such that:

c2
k

∂sk(pk, ρk)

∂pk
+
∂sk(pk, ρk)

∂ρk
= 0 (6)

The temperature is given by:

1

Tk
=
∂sk
∂pk

(
∂ek
∂pk

)−1

(7)

And µk denotes the Gibbs potential:

µk = ek +
pk
ρk
− Tksk (8)

The first and second equations of (1) give the evolution of statistical fractions and partial
masses, while the third and fourth equation stand for the momentum balance and energy
balance equations.

In this work, the interface velocity is defined by:

Vi(W) = U1 (9)

Thus, following [20], the interface pressures are given by:{
Π12(W) = Π21(W) = Π23(W) = p2

Π13(W) = Π31(W) = Π32(W) = p3
(10)

Remark 1:
The choice made in (9) is not unique. In fact, an other possibility consists of considering

Vi(W) as a convex combination of velocities Uk, k = 1, 2, 3:

Vi(W) =

∑3
k=1mkUk∑3
k=1mk

This leads to a different set of interface pressures Πkl(W) which is uniquely defined, and in
agreement with the entropy inequality (see paragraph 2.2.1 and Appendix G of [20]). �
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Source terms should be such that:

3∑
k=1

Sαk (W) =
3∑

k=1

Smk (W) =
3∑

k=1

SEk (W) = 0 ;
3∑

k=1

SUk (W) = 0

since they only take into account the internal transfers between phases.

Closure laws to account for the different relaxation effects involved in (1) are given by:

• Pressure relaxation:

Sαk (W) =
3∑

l=1,l 6=k

KP
kl(W )(pk − pl) (11)

where: KP
kl(W) = αkαl

τPkl(W)Π0
, τPkl(W) = τPlk(W) is symmetric positive, and represents the

pressure-relaxation time scale between phases k and l (see [14]), and Π0 is a positive
reference pressure.

• Mass transfer:

Smk (W) =
3∑

l=1,l 6=k

Γkl(W) =
3∑

l=1,l 6=k

Km
kl (W)

(
µl
Tl
− µk
Tk

)
(12)

where: Km
kl (W) = 1

τmkl (W)Γ0

mkml
mk+ml

. The symmetric positive function τmkl (W) represents

the characteristic mass transfer time scale between phases k and l, and Γ0 is a positive
constant (with dimension µ/T ).

• Momentum interfacial transfer term:

SUk (W) =
3∑

l=1,l 6=k

Dkl(W) +
3∑

l=1,l 6=k

ŨklΓkl(W) (13)

where Dkl represents the drag effect between phases k and l:

Dkl(W) = ekl(W)(Ul −Uk) (14)

The terms ekl are chosen under the form:

ekl(W) =
mkml

τUkl(W)M0

(15)

where τUkl(W) is symmetric positive, and accounts for the velocity-relaxation time
scale. M0 = m1 +m2 +m3 is the total mass.

5



The velocity Ũkl is chosen under the symmetric form:

Ũkl(W) =
Uk + Ul

2
(16)

• Energy balance source term:

SEk (W) =
3∑

l=1,l 6=k

Vkl(W).Dkl(W) +
3∑

l=1,l 6=k

ψkl(W) +
3∑

l=1,l 6=k

H̃klΓkl(W) (17)

where:

Vkl =
1

2
(Uk + Ul) (18)

and H̃kl is given by:

H̃kl(W) =
Uk.Ul

2
(19)

The term ψkl accounts for the heat transfer between phases k and l, it is defined by:

ψkl(W) = KT
kl(W)(Tl − Tk) (20)

with:

KT
kl(W) =

1

τTkl(W)

mkmlCV,kCV,l
mkCV,k +mlCV,l

(21)

Here again τTkl(W) is symmetric positive and accounts for the heat transfer character-
istic time between phases k and l, and CV,k denotes the volumetric heat capacity of
phase k.

2.2. Main properties of the three-phase flow model

2.2.1. Entropy

We define η(W), the mixture entropy, and Fη(W), the mixture entropy flux, such that:{
η(W) = −

∑3
k=1mkLog(sk)

Fη(W) = −
∑3

k=1 mkLog(sk)Uk
(22)

We have the following property:

Property 1:
Considering closure laws (9-21), the following entropy inequality holds for smooth solu-

tions of system (1):
∂η(W)

∂t
+∇.Fη(W) ≤ 0 (23)
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Proof:
For regular solutions of the system (1), the governing equation of η(W) reads:

∂η(W)

∂t
+∇.Fη(W) =−

3∑
k=1

1

Tk

(
pkS

α
k (W) +

∑
l 6=k

Πkl(W)Sαl (W)

)

−
3∑

k=1

1

Tk

3∑
l=1,l 6=k

((Vkl(W)−Uk).Dkl(W) + ψkl(W))

+
3∑

k=1

µk
Tk

3∑
l=1,l 6=k

Γkl(W)

(24)

Now, on the basis of the interface pressure definitions (10) and the closure laws presented
in (11-21) a straightforward calculus provides:

3∑
k=1

1

Tk

(
pkS

α
k (W) +

∑
l 6=k

Πkl(W)Sαl (W)

)
=

1

T1

3∑
k=1

pkS
α
k (W)

=
1

T1

3∑
k,l=1,k 6=l

αkαl
τPklΠ0

(pk − pl)2

(25)

3∑
k=1

[
1

Tk

∑
l 6=k

(Vkl(W)−Uk).Dkl(W)

]
=

1

2

3∑
k=1

[
1

Tk

∑
l 6=k

ekl(W)(Ul −Uk)
2

]
(26)

3∑
k=1

1

Tk

∑
l 6=k

ψkl(W) =
∑

1≤l<k≤3

KT
kl(W)

TkTl
(Tk − Tl)2 (27)

3∑
k=1

µk
Tk

3∑
l=1,l 6=k

Γkl(W) =
3∑

k=1

µk
Tk

3∑
l=1,l 6=k

Km
kl (W)

(
µl
Tl
− µk
Tk

)

=−
∑

1≤l<k≤3

Km
kl (W)

(
µl
Tl
− µk
Tk

)2
(28)

It obviously follows that the regular solutions of system (1) comply with the inequality
(23). �

We also note that the right-hand side of (24) vanishes as soon as pressure, velocity,
temperature and Gibbs potential equilibria are reached.
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2.2.2. Hyperbolicity and structure of fields

We focus here on the convective subset -left hand side- of (1). Let n be a unit vector,
and τ1,τ2 such that (n, τ1, τ2) defines an orthonormal basis of the 3D space. Considering the
invariance of equations (1) under frame rotation, and neglecting transverse derivatives of all
components, the associated one-dimensional problem in the n direction writes:

∂tαk + (U1.n)∂xnαk = 0
∂tmk + ∂xn(mk(Uk.n)) = 0

∂t(mk(Uk.n)) + ∂xn(mk(Uk.n)2 + αkpk) +
∑3

l=1,l 6=k Πkl(W)∂xnαl = 0

∂t(αkEk) + ∂xn(αk(Ek + pk)(Uk.n))−
∑3

l=1,l 6=k Πkl(W)∂tαl = 0

∂t(mk(Uk.τ1)) + ∂xn(mk(Uk.n)(Uk.τ1)) = 0
∂t(mk(Uk.τ2)) + ∂xn(mk(Uk.n)(Uk.τ2)) = 0

(29)

Property 2:
2.1 The system (29) admits the following real eigenvalues:

λ1,2,3,4,5(W) = U1.n ; λ6,7,8(W) = U2.n ; λ9,10,11(W) = U3.n
λ12,13(W) = U1.n± c1 ; λ14,15(W) = U2.n± c2 ; λ16,17(W) = U3.n± c3

(30)

Associated right eigenvectors span the whole space R17 if:

(U1 −Uk).n 6= ±ck (31)

2.2 Fields λk for k ∈ 1, .., 11 are Linearly Degenerated ; other fields are Genuinely Non
Linear.

Proof:
For smooth solutions the system (29) can be written as:

∂tZ + A(Z)∂xnZ = 0 (32)

The computation of eigenvalues of the matrix A is rather easy when choosing the variable:

Z = (α2, α3, s1, s2, s3,U1.n,U1.τ1,U1.τ2,

U2.n,U2.τ1,U2.τ2,

U3.n,U3.τ1,U3.τ2, p1, p2, p3)t
(33)

(See more detailed calculations in the one-dimensional framework in [20] Appendix A).

We also check that: ∂λk(Z)
∂Z

.rk(Z) = 0 for k ∈ 1, .., 11, and ∂λk(Z)
∂Z

.rk(Z) 6= 0 otherwise. �

2.2.3. Additional properties in the one-dimensional framework

We consider a pure one-dimensional problem, thus system (29) can be written as:
∂tαk + u1∂xαk = 0
∂tmk + ∂xn(mkuk) = 0

∂t(mkuk) + ∂x(mku
2
k + αkpk) +

∑3
l=1,l 6=k Πkl(w)∂xαl = 0

∂t(αkEk) + ∂xn(αk(Ek + pk)uk)−
∑3

l=1,l 6=k Πkl(w)∂tαl = 0

(34)
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where the 1D state variable is denoted w ∈ R11:

w = (α2, α3,m1,m2,m3,m1u1,m2u2,m3u3, α1E1, α2E2, α3E3)t (35)

Property 3:

• The convective system (34) admits eleven real eigenvalues which read:

λ1,2,3(w) = u1 ; λ4(w) = u2 ; λ5(w) = u3

λ6,7(w) = u1 ± c1 ; λ8,9(w) = u2 ± c2 ; λ10,11(w) = u3 ± c3
(36)

The field associated with λk(w) for k ∈ {1, .., 5} is Linearly Degenerated, while fields
associated with λ6−11(w) are Genuinely Non Linear.

• Regarding the 1D Riemann problem associated with (34), the LD field λ1,2,3(w) admits
the following eight Riemann invariants:

I1
1,2,3(w) = m2(u2 − u1) ; I2

1,2,3(w) = m3(u3 − u1)
I3

1,2,3(w) = s2 ; I4
1,2,3(w) = s3 ; I5

1,2,3(w) = u1

I6
1,2,3(w) =

∑3
k=1 αkpk +m2(u2 − u1)2 +m3(u3 − u1)2

I7
1,2,3(w) = e2 + p2

ρ2
+ 1

2
(u2 − u1)2 ; I8

1,2,3(w) = e3 + p3
ρ3

+ 1
2
(u3 − u1)2

(37)

• We note ∆(φ) = φr − φl. For each isolated GNL wave, the following exact jump
conditions hold for phase index k = 1, 2, 3, through any discontinuity separating states
l, r and moving with speed σ:

∆(αk) = 0
∆(ρk(uk − σ)) = 0
∆(ρkuk(uk − σ) + pk) = 0
∆(Ek(uk − σ) + pkuk) = 0

(38)

Proof:
The proof of these properties is classical and left to the reader. �

The latter Riemann invariants and jump conditions are particularly important because
they will enable us to build exact solutions of the 1D Riemann problem for the system
(34), and verify the convergence of algorithms (see paragraph 4.1). We mention that these
properties are the exact counterpart of the two-phase Baer-Nunziato model [3].
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2.2.4. Admissibility of thermodynamic quantities

In this subsection, we study the admissibility of thermodynamic variables in the one-
dimensional framework. We consider smooth solutions of the system (34), and we make the
following assumptions:

Assumption 1:
For k = 1, 2, 3 we assume admissible initial and boundary conditions, i.e.:

∀x ∈ Ω :


0 ≤ αk(x, 0)
0 ≤ mk(x, 0)
0 ≤ sk(x, 0)

and ∀t ∈ [0, T ] :


0 ≤ αk(xΓ, t)
0 ≤ mk(xΓ, t)
0 ≤ sk(xΓ, t)

(39)

where Γ denotes the boundary of the domain Ω, and T is the simulation final time.

Assumption 2:
We also assume that functions ak (defined in (??)), uk and ∂uk

∂x
remain in L∞(Ω× [0, T ]).

We have then the following result:

Property 4:
The regular solutions of the system (34) are consistent with the physical requirements:

∀(x, t) ∈ (Ω× [0, T ]) :


0 ≤ αk(x, t)
0 ≤ mk(x, t)
0 ≤ sk(x, t)

(40)

Proof:
It is classical, and based on building the evolution equations of the αk, mk and sk as

smooth solutions of the system (34) (See [20] for some more details).�

We can prove that a similar admissibility result holds for pressure variables pk, when we
consider the specific case of Stiffened Gas equations of state (EOS). In that case, for each
phase k = 1, 2, 3:

pk + γkΠk = (γk − 1)ρkek (41)

where γk > 1 and Πk > 0 are thermodynamic constants of phase k. We denote also:

Pk = αk(pk + Πk)/(γk − 1) (42)

For regular solutions of the system (34), the evolution equations of Pk read:
∂tP1 + ∂x(u1P1) + (γ1 − 1)P1∂xu1 = 0
∂tP2 + ∂x(u2P2) + (γ2 − 1)P2(∂xu2 + (u2 − u1)∂xLog(α2)) = 0
∂tP3 + ∂x(u3P3) + (γ3 − 1)P3(∂xu3 + (u3 − u1)∂xLog(α3)) = 0

(43)
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Based on the same type of arguments as those invoked in the proof of Property 4,
we conclude that ∀(x, t) ∈ (Ω × [0, T ]) : 0 ≤ Pk(x, t), provided that, in addition, (uk −
u1)∂xLog(αk)) remains bounded.

Of course, the latter results can easily be extended to the 3D framework.

2.2.5. Velocity relaxation

In this subsection, we focus on the relaxation mechanisms embedded in our PDE sys-
tem. More particularly, we study what happens in a continuous framework, considering an
homogeneous flow such that the spatial derivatives are null. Thus, only time derivatives and
source terms are taken into account. The studied system is:

∂tαk = Sαk (W)
∂tmk = Smk (W)
∂t(mkUk) = SUk (W)

∂t(αkEk)−
∑3

l=1,l 6=k Πkl(W)∂αl
∂t

= SEk (W)

(44)

The system (44) is itself split into four subsystems, in order to study separately the
different relaxation effects. In this paragraph, we study the velocity relaxation effects, the
corresponding PDE system is obtained from (44) by considering only the velocity-related
source terms. The velocity relaxation system then writes:

∂tαk = 0

∂tmk = 0

∂t(mkUk) =
3∑

l=1,l 6=k

Dkl(W)

∂t(αkEk) =
3∑

l=1,l 6=k

Vkl(W).Dkl(W)

(45a)

(45b)

(45c)

(45d)

We have the following noteworthy property:

Property 5:
The velocity relaxation step is consistent with the admissibility of the internal energy,

i.e. this step keeps the internal energy ek in the admissible range.

Proof:
Starting with: αkEk = mkek + 1

2
mkU

2
k, using the closures (14)-(18) and combining (45c)

- (45d) we obtain:

mk∂tek =
1

2

3∑
l=1,l 6=k

ekl(W)(Ul −Uk)
2 ≥ 0 (46)

This means that the internal energy is non-decreasing, regardless of the chosen EOS.�
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Thus, the integration method we adopt consists, first, of obtaining the velocity variation
over time, and then using the result to update the energy. The velocity variation over time
is obtained by studying the velocity differences, as shown in what follows.

Let (n, τ1, τ2) be an orthonormal basis of the 3D space. If we set Xn
12 = U1.n −U2.n,

Xn
13 = U1.n−U3.n, and Xn = (Xn

12, X
n
13)t, the momentum equation of (45) could be written

as:
∂tX

n = −A(W)Xn (47)

where:

A(W) =

(
a11 a12

a21 a22

)


a11 = e12( 1
m1

+ 1
m2

) + e23
m2

a12 = e13
m1
− e23

m2

a21 = e12
m1
− e23

m3

a22 = e13( 1
m1

+ 1
m3

) + e23
m3

(48a)

(48b)

We obtain formally then:

Xn(t) = Xn(t0)exp

(
−
∫ t

t0

A(s)ds

)
(49)

A similar result stands for Xτ1 and Xτ2 , when considering the normal velocities in the
directions τ1 and τ2, with the same matrix A(W). This comes from the structure of (45c),
which remains unchanged regardless of the projection direction.

This velocity variation mechanism (49) is identical to what happens in the barotropic
framework, which has been studied in a previous work [7]. Equation (49) gives then the
evolution of velocity differences, the total kinetic energy conservation allows, formally also,
to retrieve the variation over time of velocities Uk.

Details are given in the numerical scheme subsection 3.3.1.

2.2.6. Pressure relaxation

In this paragraph, we focus on the pressure relaxation effects. The concerned PDE
system, extracted from (44), writes:

∂tαk = Sαk (W)

∂tmk = 0

∂t(mkUk) = 0

∂t(αkEk)−
3∑

l=1,l 6=k

Πkl(W)∂tαl = 0

(50a)

(50b)

(50c)

(50d)
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In order to understand the underlying relaxation mechanism, we study, in this sub-step,
the evolution of the pressure differences. To do so, we define the following notations:

• The coefficients: Ak =
ρkc

2
k

αk
and b1 = 1

ρ1

(
∂e1
∂p1

)−1

;

• The pressure differences: y12 = p1 − p2, y13 = p1 − p3, y23 = −y32 = y13 − y12 and
Y = (y12, y13)t.

We have the following result:

Property 6:
The evolution of the pressure differences writes:

∂tY = − 1

Π0

B(W)Y (51)

where the matrix B(W) =

(
b11 b12

b21 b22

)
is given by:

b11 =
(
A1 + A2 − b1

α1
y12

)
α1α2

τ12
+
(
A2 − b1

α1
y32

)
α2α3

τ23

b12 =
(
A1 − b1

α1
y13

)
α1α3

τ13
−
(
A2 − b1

α1
y32

)
α2α3

τ23

b21 =
(
A1 − b1

α1
y12

)
α1α2

τ12
−
(
A3 − b1

α1
y23

)
α2α3

τ23

b22 =
(
A1 + A3 − b1

α1
y13

)
α1α3

τ13
+
(
A3 − b1

α1
y23

)
α2α3

τ23

(52)

Proof:
On the one hand, equation (50b) yields:

∂tρk = − ρk
αk
∂tαk = − ρk

αk
Sαk (W)

On the other hand, combining (50c) and (50d) gives:

mk∂tek =
3∑

l=1,l 6=k

Πkl(W)∂tαl =
3∑

l=1,l 6=k

Πkl(W)Sαl (W)

Knowing that ∂tek = ∂ek
∂pk
∂tpk + ∂ek

∂ρk
∂tρk, we can write:

∂ek
∂pk

∂tpk +
∂ek
∂ρk

∂tρk =
1

mk

3∑
l=1,l 6=k

Πkl(W)Sαl (W)

By using the evolution equation of ρk above we get:

∂tpk =

(
∂ek
∂pk

)−1
[

1

mk

3∑
l=1,l 6=k

Πkl(W)Sαl (W) +
ρk
αk

∂ek
∂ρk

Sαk (W)

]
13



By expliciting the interface pressures Πkl(W), given in (10), we obtain:
∂tp1 = −A1S

α
1 (W) + b1

α1

∑3
k=1 pkS

α
k (W)

∂tp2 = −A2S
α
2 (W)

∂tp3 = −A3S
α
3 (W)

Finally, a straightforward, though cumbersome, calculation gives (51) and (52), using
the closure of Sαk (W) given in (11).�

Remark 2:
The matrix B(W) defined in (51)-(52) depends in particular of the pressure differences

themselves. Actually, as shown in (52), each coefficient of B(W) contains a first degree
polynomial wrt Y. Thus, a threshold effect may arise, as detailed in Appendix 2 while
focusing on two-phase flows. We emphasize that this effect does not exist in the barotropic
framework.

Turning to the three-phase flow model (1), a necessary condition to be verified for initial
conditions is that the trace of B(W) should be strictly positive (whatever B(W) admits
real or complex eigenvalues). Otherwise the return to the pressure equilibrium cannot be
guaranteed.

Since the trance of B reads:

tr(B(W)) = b11 + b22 =
1

τP12Π0

(
α2ρ1c

2
1 + α1ρ2c

2
2 − α2b1y12

)
+

1

τP13Π0

(
α3ρ1c

2
1 + α1ρ3c

2
3 − α3b1y13

)
+

1

τP23Π0

(
α2ρ3c

2
3 + α3ρ2c

2
2

)
We may set:

|y| = max(|y12|, |y13|)
Hence, a sufficient condition on |y| to ensure a positive trace will be:

|y| <

[
1

b1

(
α2

τP12

+
α3

τP13

)−1
(∑

k<l

1

τPkl
(αkρlc

2
l + αlρkc

2
k)

)]
(t = 0) (53)

Eventually, when assuming vanishing phase k = 3, this allows to retrieve the result of
Appendix 2 for two-phase flows.

Moreover, as emphasized in [7], stable oscillations wrt time may occur in three-phase
flow models, owing to the structure of B(W).�

From a practical point of view, Property 6 allows to retrieve the pressure differences,
yet this is not sufficient to fully compute the pressure relaxation step. For this purpose,
we need to define the evolution equations through the pressure relaxation step for more
variables:

14



Property 7:
In the pressure relaxation step (50), we have:

• The specific entropies evolution is governed by:
∂ts1 = a1

m1

∑3
k=1 pkS

α
k (W)

∂ts2 = 0
∂ts3 = 0

(54)

and specific entropies sk remain in the admissible range.

• We set Π = α1α2α3, δkl = αkαl, we have:
∂tΠ = (a(α2 − α1) + b(α3 − α2) + c(α1 − α3)) Π
∂tδ12 = (a(α2 − α1) + (b− c)α3) δ12

∂tδ13 = (c(α1 − α3) + (a− b)α2) δ13

∂tδ23 = (b(α3 − α2) + (c− a)α1) δ23

(55)

where: a = p1−p2
τP12Π0

b = p2−p3
τP23Π0

c = p3−p1
τP13Π0

.

Sketch of proof:
We have: sk = sk(pk, ρk), this gives: ∂tsk = ∂sk

∂pk
∂tpk + ∂sk

∂ρk
∂tρk. We use then the evolution

equations of pk and ρk to obtain the result (54).
Assuming that the initial data is admissible, it is obvious that s2 and s3 are in the

admissible range. For s1, we use (11) and get:

∂ts1 =
a1

m1

∑
1≤l<k≤3

αkαl
τPklΠ0

(pk − pl)2 ≥ 0

s1 is then, as well, admissible. Eventually, (55) is obtained from (50a), through direct
computations. �

Therefore, numerical schemes is built in order to preserve the previous properties, more
details are given in the numerical scheme subsection 3.3.2.

2.2.7. Temperature relaxation

In this paragraph, we examine the heat transfer subsystem. Similarly to paragraphs
2.2.5 and 2.2.6, we consider only the time derivatives and the heat transfer source terms.
The studied system writes:

∂tαk = 0
∂tmk = 0
∂t(mkUk) = 0

∂t(αkEk) =
∑3

l=1,l 6=kK
T
kl(W)(Tl − Tk)

(56)
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Taking into account the invariance of the partial masses and the partial kinetic energies,
the energy balance of (56) can be rewritten as:

mk∂tek =
3∑

l=1,l 6=k

KT
kl(W)(Tl − Tk) (57)

For the Stiffened Gas EOS we know that:

Tk =
1

CV,k

(
ek −

Πk

ρk

)
(58)

where Πk is the constant such that: pk + γkΠk = (γk − 1)ekρk. This means that:

∂tek = CV,k∂tTk (59)

since ∂tρk = 0.

Therefore, (57) becomes:

∂tTk =
3∑

l=1,l 6=k

KT
kl(W)

mkCV,k
(Tl − Tk) (60)

We apply the same process that we used in paragraph 2.2.5 (Velocity relaxation); by
considering the temperature differences T1 − T2 and T1 − T3 we have:

∂t

(
T1 − T2

T1 − T3

)
= −A(W)

(
T1 − T2

T1 − T3

)
(61)

where the matrix A(W) is defined by:

A(W) =

(
KT

12

m1CV,1
+

KT
12

m2CV,2
+

KT
23

m2CV,2

KT
13

m1CV,1
− KT

23

m2CV,2
KT

12

m1CV,1
− KT

23

m3CV,3

KT
13

m1CV,1
+

KT
13

m3CV,3
+

KT
23

m3CV,3

)
(62)

We can then formally write:(
T1 − T2

T1 − T3

)
(t) = exp

(
−
∫ t

t0

A(s)ds

)(
T1 − T2

T1 − T3

)
(t0) (63)

It should be noted that the determinant and the trace of the matrix A are positive:{
det(A) > 0
tr(A) > 0

A direct calculation proves it. This means that matrix A eigenvalues are either real positive,
or complex with positive real part, which ensures that temperature differences decrease
over time, their decrease is monotonous when eigenvalues are real, and oscillating when
eigenvalues are complex.
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2.2.8. Mass transfer

In this paragraph, we focus on the mass transfer, or Gibbs potential relaxation. In
practice, we study what happens in the continuous framework when the space derivatives
are null, and only the mass transfer source terms are at stake. The concerned PDE subsystem
writes as follows: 

∂tαk = 0

∂tmk =
∑3

l=1,l 6=k Γkl(W)

∂t(mkUk) =
∑3

l=1,l 6=k ŨklΓkl(W)

∂t(αkEk) =
∑3

l=1,l 6=k H̃klΓkl(W)

(64)

In the sequel of this work, only the mass transfer between phases 2 and 3 will be con-
sidered. This is driven by the fact that our objective is the simulation of vapour explosion,
where a liquid metal gets in contact with liquid water, a part of which is eventually evapo-
rated. The phase 1 in our study represents the liquid metal, while phases 2 and 3 represent
respectively the liquid water and water vapour. Therefore, the mass transfer can happen
only between phases 2 and 3. In other words:

Γ12 = Γ13 = 0

In practice, this means that phase k = 1 state variables don’t move within this step, the
effective PDE system to solve is the following:

∂tαk = 0 (k = 1, 2, 3)

∂tm2 = Γ23(W)

∂t(m2U2) = Ũ23Γ23(W)

∂t(α2E2) = H̃23Γ23(W)

∂t(m2 +m3) = 0

∂t(m2U2 +m3U3) = 0

∂t(α2E2 + α3E3) = 0

(65a)

(65b)

(65c)

(65d)

(65e)

(65f)

(65g)

It is important to notice here that the mass transfer term Γ23(W) could be expressed
only in function of the densities and internal energies:

Γ23(W) = Γ23(ρ2, e2, ρ3, e3) (66)

Moreover, considering the closures of Ũ23 and H̃23 given in (16) and (19), we can easily
prove that:

∂t(m2e2) = ∂t(m3e3) = 0 (67)

The result (67) means that we can express Γ23 as a function of only one variable m2,
since: 

ρ2 = m2

α2(t=0)

e2 = (m2e2)(t=0)
m2

ρ3 = (m2+m3)(t=0)−m2

α3(t=0)

e3 = (m3e3)(t=0)
(m2+m3)(t=0)−m2

(68)
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Therefore:

Γ23(ρ2, e2, ρ3, e3) =
m2(M −m2)

τm23M
Γ̃23(m2) (69)

where M = m2 +m3 is constant, and noting:

Γ̃23(m2) =
1

Γ0

(
µ2

T2

− µ3

T3

)
(m2) (70)

This approach is the one introduced in [11, 26].

As shown in subsection 2.2.1, an entropy inequality exists for the global PDE system
(1). It is notable that a similar entropy result holds for each one of the studied subsystems,
namely:

• the convective subsystem (29);

• the velocity relaxation subsystem (45);

• the pressure relaxation subsystem (50).

• the temperature relaxation subsystem (56).

• the mass transfer subsystem (65).

Moreover, each one of the subsystems ((45), (50), (56) and (65)) guarantees the con-
servation of the mass, the total momentum and the total energy. This conservation is a
substantial point of the relaxation processes, and will be used to build the approximation
algorithms detailed in the next section.

3. Numerical method

We consider a classical Finite Volumes formulation, where the computational domain
is meshed using unstructured 3D cells denoted Ωi, the volume of which is denoted ωi. Sij
stands for the surface of the interface between cells Ωi and Ωj, nij is the normal vector
pointing from Ωi towards Ωj. We define ∆tn the time step such that: tn+1 = tn + ∆tn.

3.1. Fractional step method

In the spirit of [21], the time scheme is the following:

• Step 1: Evolution step

For a given initial condition Wn
i we compute an approximate solution of W at time

tn+1, namely Wn+1,−
i , by solving the homogeneous part of the system (1):

∂αk
∂t

+ Vi(W).∇αk = 0
∂mk
∂t

+∇.(mkUk) = 0
∂mkUk

∂t
+∇.(mkUk ⊗Uk + αkpkId) +

∑3
l=1,l 6=k Πkl(W)∇αl = 0

∂αkEk
∂t

+∇.(αkEkUk + αkpkUk) + Vi(W).
∑3

l=1,l 6=k Πkl(W)∇αl = 0

(71)
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• Step 2: Relaxation step

Taking Wn+1,−
i as initial data, we compute Wn+1

i an approximate solution of the
subsystem (44).

3.2. Computing the evolution step

The scheme we consider in order to compute the evolution step is the Rusanov scheme
[35]. Thus, at each interface i, j separating cells Ωi and Ωj we define the numerical normal
fluxes: 

Fαkn (W,nij) = 0
Fmkn (W,nij) = mkUk.nij
FUkn (W,nij) = Uk.nijmkUk + αkpknij
FEkn (W,nij) = αk(Ek + pk)Uk.nij

(72)

and:
2Gαkn (Wi,Wj,nij) = −rij((αk)j − (αk)i)
2Gmkn (Wi,Wj,nij) = Fmkn (Wi,nij) + Fmkn (Wj,nij)− rij((mk)j − (mk)i)
2GUkn (Wi,Wj,nij) = FUkn (Wi,nij) + FUkn (Wj,nij)− rij((mkUk)j − (mkUk)i)
2GEkn (Wi,Wj,nij) = FEkn (Wi,nij) + FEkn (Wj,nij)− rij((αkEk)j − (αkEk)i)

(73)

where rij is defined by:

rij = maxk=1,2,3 ((|Uk.nij|+ ck)i, (|Uk.nij|+ ck)j) (74)

Hence, using the standard notation φij = (φi + φj)/2 whatever φ is, the solution of the
evolution step is obtained in each cell Ωi by the following update:
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ωi
(
(αk)

n+1,−
i − (αk)

n
i

)
+∆tn

 ∑
j∈V (i)

Gαkn (Wi,Wj,nij)Sij


+∆tn(U1)ni .

 ∑
j∈V (i)

(αk)
n
ijnijSij

 = 0

ωi
(
(mk)

n+1,−
i − (mk)

n
i

)
+ ∆tn

(∑
j∈V (i) Gmkn (Wi,Wj,nij)Sij

)
= 0

ωi
(
(mkUk)

n+1,−
i − (mkUk)

n
i

)
+∆tn

 ∑
j∈V (i)

GUkn (Wi,Wj,nij)Sij


+∆tn

3∑
l=1,l 6=k

Πkl(W)ni

 ∑
j∈V (i)

(αl)
n
ijnijSij

 = 0

ωi
(
(αkEk)

n+1,−
i − (αkEk)

n
i

)
+∆tn

 ∑
j∈V (i)

GEkn (Wi,Wj,nij)Sij


+∆tn(U1)ni .

3∑
l=1,l 6=k

Πkl(W)ni

 ∑
j∈V (i)

(αl)
n
ijnijSij

 = 0

(75)

and we have the expected result:

Property 7:
The evolution step guarantees positive values of partial masses and statistical fractions

if the time step complies with the constraint:

∆tn

 ∑
j∈V (i)

rijSij

 ≤ 2ωi (76)

Proof: It is classical and omitted. �

3.3. Computing the relaxation step

In this step, we compute approximate solutions of the relaxation step (44), which is
itself split into four sub-steps: the velocity relaxation step, the pressure relaxation step, the
temperature relaxation step and the mass transfer step. It is important to note that these
relaxation effects are interconnected, mainly via the energy balance and the mass transfer.
However, the numerical method we adopt consists in treating them separately, in the order
given above.

In what follows, we give the concrete details of the algorithms used for each relaxation
sub-step.
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3.3.1. Velocity relaxation: approximate solutions of (45)

Two algorithms were considered. The difference between them lays in the approximation
of the equation (47). The first algorithm uses an exact approximation of a linearised form
of (47), while the second considers an implicit Euler approximation. The other algorithm
steps are identical.

In what follows we present the details of each algorithm:

Algorithm 3.3.1.1

In each cell Ωi, starting with Wn+1,−
i , we compute W∗

i by following the sequence:

a) Initialize the velocity differences: Xn with (Xn
12, X

n
13)n+1,−

i where:

Xn
1k = (U1 −Uk).n

Initialize also the velocity relaxation matrix defined in (48): A(Wn+1,−
i );

b) Compute the exact solution (Xn)∗i of the linear ODE:

∂tX
n = −A(Wn+1,−

i )Xn (77)

at time t = tn + ∆tn, using the initial condition defined in a);

c) Compute (Xτ1)∗i = (Xτ1
12, X

τ1
13)∗i and (Xτ2)∗i = (Xτ2

12, X
τ2
13)∗i by solving the same EDO

(77), using the initial conditions (Xτ1
12, X

τ1
13)n+1,−

i and (Xτ2
12, X

τ2
13)n+1,−

i respectively;

d) Compute (U1)∗i by the total momentum conservation:

(U1)∗i =

∑3
k=1(mkUk)

n+1,−
i + (m2)n+1,−

i (X12)∗i + (m3)n+1,−
i (X13)∗i

(m1 +m2 +m3)n+1,−
i

(78)

where:
(Xkl)

∗
i = (Xn

kl)
∗
in + (Xτ1

kl )
∗
i τ1 + (Xτ2

kl )
∗
i τ2

e) Update (U2)∗i and (U3)∗i :

(U2)∗i = (U1)∗i − (X12)∗i ; (U2)∗i = (U1)∗i − (X13)∗i (79)

f) Finally, update the energies by the discrete counterpart of (45d):

(αkEk)
∗
i = (αkEk)

n+1,−
i + ∆tn

3∑
l=1,l 6=k

ekl(W
n+1,−
i )

2

(
((Ul)

∗
i )

2 − ((Uk)
∗
i )

2
)

(80)

Algorithm 3.3.1.2

In each cell Ωi, starting with Wn+1,−
i , we compute W∗

i by following the sequence:
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a) Initialize the velocity differences: Xn with (Xn
12, X

n
13)n+1,−

i , and the velocity relaxation
matrix defined in (48): A(Wn+1,−

i );

b) Compute (Xn)∗i such that:

(Id + ∆tnA(Wn+1,−
i ))(Xn)∗i = (Xn)n+1,−

i (81)

(81) is nothing but the implicit Euler discretization of (77);

c) Compute (Xτ1)∗i and (Xτ2)∗i by solving the same equation (81), using the initial con-
ditions (Xτ1

12, X
τ1
13)n+1,−

i and (Xτ2
12, X

τ2
13)n+1,−

i respectively;

d) Compute (U1)∗i by the total momentum conservation (78) (step (d) of Algorithm
3.3.1.1 );

e) Update (U2)∗i and (U3)∗i following (79) (step (e) of Algorithm 3.3.1.1 );

f) Finally, update the energies by (80) (step (f) of Algorithm 3.3.1.1 ).

Remark 3:
This numerical scheme is consistent with the mass conservation, the total momentum

conservation and the total energy conservation.�

Remark 4:
Obviously, when considering instantaneous velocity relaxation, (77)/ (81)-(78)-(79)-(80)

degenerates into:

(Uk)
∗
i =

∑3
l=1(mlUl)

n+1,−
i∑3

l=1(ml)
n+1,−
i

(82)

�

3.3.2. Pressure relaxation: approximate solutions of (50)

Here we present two different algorithms that were implemented, in order to compute
approximate solutions of (50). The basic unknown is (α1, α2, p1, p2, p3).

Algorithm 3.3.2.1

In each cell Ωi, starting with W∗
i we compute Wn+1

i by following the sequence:

a) Initialize the pressure differences Y∗i = Y(W∗
i ) and the pressure relaxation matrix

defined in (52): B(W∗
i );

b) Compute Yn+1
i , the exact solution of the ODE:

∂tY = − 1

Π0

B(W∗
i )Y (83)

at time t = tn + ∆tn, using the initial condition Y∗i .
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c) Update the partial entropies with respect to (54), i.e. (s2)n+1
i and (s3)n+1

i by:{
(s2)n+1

i = (s2)∗i
(s3)n+1

i = (s3)∗i
(84)

and (s1)n+1
i as approximate solution at time t = tn + ∆tn of the ODE:

∂ts1 =

[
(a1)∗i
(m1)∗i

∑
1≤l<k≤3

(
αkαl
τPklΠ0

)∗
i

(
(pk − pl)n+1

i

)2

]
(85)

using Euler scheme.

d) Compute the pressure (p1)n+1
i solution of g(x) = 1, where:

g(x) =
(m1)∗i

ρ1(x, (s1)n+1
i )

+
(m2)∗i

ρ2(x− (y12)n+1
i , (s2)n+1

i )
+

(m3)∗i
ρ3(x− (y13)n+1

i , (s3)n+1
i )

(86)

The equation g(x) = 1 is nothing but the saturation condition of the statistical frac-
tions (3);

e) Update the pressures of phases, for k = 2, 3 compute:

(pk)
n+1
i = (p1)n+1

i − (y1k)
n+1
i (87)

f) Update the statistical fractions, for k = 1, 2, 3 compute:

(αk)
n+1
i =

(mk)
∗
i

ρk((pk)
n+1
i , (sk)

n+1
i )

(88)

g) Finally, update the total energies by combining (50a) and (50d):

(αkEk)
n+1
i = (αkEk)

∗
i + ∆tn

3∑
l=1,l 6=k

(Πkl(W))n+1
i (Sαl (W))n+1

i (89)

where (Πkl(W))n+1
i and (Sαl (W))n+1

i are expressed, owing to (10) and (11), in terms
of (pk)

n+1
i and (αk)

n+1
i .

We note that:∑
k

(
(mkek)

n+1 − (mkek)
∗) = ∆tn(p2 + p3)n+1((Sα1 )n+1 + (Sα2 )n+1 + (Sα3 )n+1)

= 0

The well-posedness of this algorithm relies on the following property:
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Property 8:
The equation g(x) = 1 is well-posed and admits a unique solution in the admissible range.

Proof:
Let Dk be the definition domain of the density ρk(pk, sk) wrt its first parameter pk. Thus,

if we denote Dg the definition domain of the function g we have:

Dg = {x / x ∈ D1 and x− (y12)n+1
i ∈ D2 and x− (y13)n+1

i ∈ D3}

For any type of EOS, and for any x ∈ Dg we have:

g′(x) = −
3∑

k=1

mk

ρ2
k

(
∂ρk
∂pk

)
sk

We assume that the EOS complies with the following constraints:

• Positive derivative wrt the pressure:(
∂ρk
∂pk

)
sk

> 0

• Asymptotic limit:
lim

pk→+∞
ρk(pk, sk) = +∞

• Null density:
∃p0

k ∈ Dk/ρk(p0
k, sk) = 0

Thus we have on the one hand:

∀x ∈ Dg : g′(x) < 0

On the other hand:
lim

x→+∞
g(x) = 0

And:
lim
x→x+0

g(x) = +∞

where x0 = max{p0
1, p

0
2 + (y12)n+1

i , p0
3 + (y13)n+1

i }.
This allows to conclude that the equation g(x) = 1 admits a unique solution in Dg. �

Algorithm 3.3.2.2

Again, in each cell Ωi, starting with W∗
i we compute Wn+1

i by following the sequence:
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a) Initialize the pressure differences Y∗i = Y(W∗
i ) and the pressure relaxation matrix

defined in (52): B(W∗
i );

b) Compute Yn+1
i , the exact solution of the ODE:

∂tY = − 1

Π0

B(W∗
i )Y (90)

at time t = tn + ∆tn, using the initial condition Y∗i .

c) Compute the volume fraction variables Π and δkl with respect to (55), i.e. Πn+1
i and

(δkl)
n+1
i as the exact solutions at time t = tn + ∆tn of the ODEs:

∂tΠ = [a((α2)∗i − (α1)∗i ) + b((α3)∗i − (α2)∗i ) + c((α1)∗i − (α3)∗i )] Π
∂tδ12 = [a((α2)∗i − (α1)∗i ) + (b− c)(α3)∗i ] δ12

∂tδ13 = [c((α1)∗i − (α3)∗i ) + (a− b)(α2)∗i ] δ13

∂tδ23 = [b((α3)∗i − (α2)∗i ) + (c− a)(α1)∗i ] δ23

(91)

where: a =
(y12)n+1

i

τP12Π0
b =

(y13)n+1
i −(y12)n+1

i

τP23Π0
c =

−(y13)n+1
i

τP13Π0

d) Update the volume fractions (αk)
n+1
i and the densities (ρk)

n+1
i :

(αk)
n+1
i =

Πn+1
i

(δjl)
n+1
i

j, l 6= k (92)

(ρk)
n+1
i =

(mk)
∗
i

(αk)
n+1
i

(93)

e) Compute the pressure (p1)n+1
i solution of h(x) = 0 where:

h(x) =(m1)∗i e1(x, (ρ1)n+1
i ) + (m2)∗i e2(x− (y12)n+1

i , (ρ2)n+1
i )

+ (m3)∗i e3(x− (y13)n+1
i , (ρ3)n+1

i )−
3∑

k=1

(mk)
∗
i (ek)

∗
i

(94)

The equation h(x) = 0 is nothing but the conservation of the total internal energy
during the pressure relaxation sub-step;

f) Update the pressures of phases, for k = 2, 3 compute:

(pk)
n+1
i = (p1)n+1

i − (y1k)
n+1
i (95)

g) Finally, update the total energies by combining (50a) and (50d):

(αkEk)
n+1
i = (αkEk)

∗
i + ∆tn

3∑
l=1,l 6=k

(Πkl(W))n+1
i (Sαl (W))n+1

i (96)

where (Πkl(W))n+1
i and (Sαl (W))n+1

i are expressed, owing to (10) and (11), in terms
of (pk)

n+1
i and (αk)

n+1
i .
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Remark 5:
Algorithms 3.3.2.1 and 3.3.2.2. are consistent with the mass conservation, the total mo-

mentum conservation and the total energy conservation. Additionally, alternative pressure
relaxation algorithms could be built when replacing ODEs (83) and (90) by their first order
implicit Euler counterparts, similarly to velocity relaxation algorithms (where (81) is the
implicit Euler counterpart of ODE (77)).�

Remark 6:
In the asymptotic situation where the user would assume infinite drag effects between

phases, thus neglecting relative velocities (U1 = U2 = U3 = U where U is defined in (82)),
we may consider the limit case where p1 = p2 = p3 = P where P is given in appendix A1.�

3.3.3. Temperature relaxation: approximate solutions of (56)

Taking into account the continuous framework study presented in paragraph 2.2.7, we
consider the following algorithm to compute approximate solutions of (56). In each cell Ωi,
starting from a state W∗

i , and for a given time step ∆tn, we follow the sequence:

• Compute (T1 − T2)n+1
i and (T1 − T3)n+1

i , the exact solutions of the ODE:

∂t

(
T1 − T2

T1 − T3

)
= −A(W∗)

(
T1 − T2

T1 − T3

)
(97)

at time tn + ∆tn;

• Compute (T1)n+1
i , by solving the total energy conservation equation:

(T1)n+1
i =

1∑3
k=1(mk)∗iCV,k

(
3∑

k=1

(mk)
∗
iCV,k(Tk)

∗
i +

3∑
k=2

(mk)
∗
iCV,k(T1 − Tk)n+1

i

)
(98)

and deduct (T2)n+1
i and (T3)n+1

i by: (Tk)
n+1
i = (T1)n+1

i − (T1 − Tk)n+1
i , k = 2, 3 ;

• Update the total energies by:

(αkEk)
n+1
i =

(
1

2
mkUk.Uk

)∗
i

+ (mkek)
n+1
i (99)

where : (mkek)
n+1
i = (mk)

∗
i ek((ρk)

∗
i , (Tk)

n+1
i ) as the masses and the densities are con-

stant in the temperature relaxation step.
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3.3.4. Mass transfer: approximate solutions of (65)

For computing approximate solutions of (65), the numerical scheme that we consider is
the one which was presented in [11, 26]. In each cell Ωi, starting from a state W∗

i , and for
a given time step ∆tn, we compute Wn+1

i by following the sequence:

• Compute (m2)n+1
i , solution of:

(m2)n+1
i = (m2)∗i +

∆tn
(Mτm23)∗

(m2)n+1
i (M − (m2)n+1

i )Γ̃23((m2)n+1
i ) (100)

where: M = (m2)∗i + (m3)∗i

• Compute (m3)n+1
i :

(m3)n+1
i = M − (m2)n+1

i (101)

• Compute (U2)n+1
i and (U3)n+1

i by solving the linear system wrt (U2,U3)n+1
i :{

(m2U2)n+1
i = (m2U2)∗i + (Ũ23)n+1

i
∆tn

(Mτm23)∗
(m2)n+1

i (M − (m2)n+1
i )Γ̃23((m2)n+1

i )

(m3U3)n+1
i = (m2U2)∗i + (m3U3)∗i − (m2U2)n+1

i

(102)

• Update the total energies:{
(α2E2)n+1

i = (α2E2)∗i + (H̃23)n+1
i

∆tn
(Mτm23)∗

(m2)n+1
i (M − (m2)n+1

i )Γ̃23((m2)n+1
i )

(α3E3)n+1
i = (α2E2)∗i + (α3E3)∗i − (α2E2)n+1

i

(103)

Remark 7:

• For more details about the resolution of equation (100) we refer the reader to the
previous works [11, 26] ;

• By construction, this scheme ensures the conservation of the total mass, the total
momentum and the total energy.�

4. Numerical results

This section is dedicated to the presentation of the different numerical test cases that
were conducted using the three-phase flow model presented in Section 2 and the numerical
schemes and algorithms given in Section 3.

In the first subsection, we present a verification test case where we examine the com-
putation of the evolution step, this consists in studying the convergence rates in terms of
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the mesh size on a Riemann problem. In the second subsection, we focus on the relaxation
step and we present a series of verification test cases which correspond to each relaxation
subsystem. Then, in section 4.3 we consider a two-phase shock-tube test case, which studies
the impact of a planar shock wave on a cloud of deformable droplets. Finally, in subsection
4.4 a more complete test case representative of a vapour explosion scenario is presented.

4.1. Verification of the evolution step

This subsection is devoted to the verification of the convective subset of (1) using the
numerical scheme (75). We consider a Riemann problem where two waves are at stake: the
contact discontinuity associated with the eigenvalue λ1,2,3(w) = u1 and a right-going shock
wave of phase 1.

In order to initialize the Riemann problem, we start with a given left state wL, then
we use the Riemann invariants introduced in (37) to build the intermediate state wint such
that: I i1,2,3(wL) = I i1,2,3(wint) for i = 1, .., 8. After that, we consider the phase 1 right-going
shock wave such that ρR1 /ρ

int
1 = 1/2, and use the exact connections through shock waves to

determine the state wR. The following table gives the adopted numerical values:

Left state wL Intermediate state wint Right state wR

α1 3/10 3/5 3/5
α2 7/20 1/5 1/5
α3 7/20 1/5 1/5

ρ1 1/4 1/10 5/100
ρ2 0.14675324 0.14368748 0.14368748
ρ3 0.16666666 0.14535470 0.14535470

p1 1.00× 104 1.0597086× 104 3.8534858× 103

p2 1.13× 104 1.0901632× 104 1.0901632× 104

p3 1.20× 104 9.6407273× 103 9.6407273× 103

u1 300.0 300.0 40.315571
u2 350.0 389.36692 389.36692
u3 400.0 560.65856 560.65856

We emphasize that for this test case, all three phase EOS are chosen to be Ideal Gas
EOS with the following thermodynamic parameters:

Phase 1 Phase 2 Phase 3
γk 1.4 1.7 1.6

Calculations are run with 6 different mesh sizes h: 1/5000, 1/10000, 1/25000, 1/50000,
1/100000 and 1/200000. The computational domain is the unit cell [0, 1] and the Riemann
problem is initialized in x = 0.5.

Figure 1 gives the error in L1 norm measured on the system’s principal variables. We
note that for coarse meshes, the u1 curve shows a high convergence rate close to h1, which
is the asymptotic rate for shock waves. As the mesh is refined, the convergence rate tends
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Figure 1: L1 of the error for ρk, pk, αk and uk wrt the mesh size h

towards h1/2. That is the rate corresponding to the contact discontinuity associated with
the coupling wave λ = u1. For the other variables, the h1/2 rate is obtained more quickly.

In order to get a better understanding of the structure of fields involved in this test case,
figure 2 gives the spacial representation of state variables at the final time of the simulation
T = 0.8ms, while focusing on the 1/50000 mesh results.

We can observe the two jumps related to:

• The contact discontinuity located around xcontact = 0.74. In fact, considering the
initial data, the coupling wave speed is:

σcontact = uL1 = 300.0 m/s (104)

Knowing that the Riemann problem was initialized at xRiemann = 0.5, the observed
jump’s position xcontact is in agreement with the theoretically expected result: xcontact =

29



0 0.2 0.4 0.6 0.8 1.0
Position

0

0,05

0,1

0,15

0,2

0,25

D
en

si
ty

Phase 1
Phase 2
Phase 3

Phase Densities

0 0.2 0.4 0.6 0.8 1.0

Position

0

5000

10000

15000

P
re

s
s
u
re

Phase 1

Phase 2

Phase 3

Phase Pressures

0 0.2 0.4 0.6 0.8 1.0

Position

0

0,1

0,2

0,3

0,4

0,5

0,6

V
o

lu
m

e
 f

ra
c
ti

o
n

Phase 1

Phase 2

Phase 3

Phase Volume Franctions

0 0.2 0.4 0.6 0.8 1.0
Position

0

100

200

300

400

500

600

V
el

o
ci

ty
 

Phase 1
Phase 2
Phase 3

Phase velocities

Figure 2: Spatial representation of variables at the final simulation time T = 0.8 ms

xRiemann + Tσcontact;

• The phase 1 shock wave observed around xshock = 0.95. Actually, the initial data
give a right-going shock the speed of which is:

σshock =
(ρ1u1)R − (ρ1u1)int

ρR1 − ρint1

= 559.68442 m/s (105)

We check that all variables of phases 2 and 3 do not jump at this position, which is in
agreement with shock relations. Of course, the statistical fraction α1 does not jump,
as expected.

4.2. Verification of the relaxation schemes

4.2.1. Velocity relaxation verification test cases

This paragraph provides the results of two verification test cases of the velocity relaxation
sub-step. It consists in verifying the algorithms introduced in the subsection (3.3.1), to find
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approximate solutions of (45). Appendix A3 gives the details of the analytical solution in
each case.

• Test case A3.1 (see figure 3)

The analytical solution in this case is in the discrete approximation space of Algorithm
3.3.1.1. In fact, by choosing the coefficients ekl (introduced in (14)) constants, the
approximation (77) becomes an exact counterpart of (129), which means that Algo-
rithm 3.3.1.1 in this case computes the exact analytical solution. The error is at its
least when the mesh is coarse, here its value is around 10−16 (round-off error). Then,
the error starts to increase progressively as the mesh is refined. This is due to the
cumulation of the rounding errors throughout the different algorithm steps.

Turning then to Algorithm 3.3.1.2, an expected convergence at the rate h1 is observed.
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Figure 3: Test case A3.1 convergence rates for the algorithms 3.3.1.1 (left) and 3.3.1.2 (right)

• Test case A3.2 (see figure 4)

In this case, the coefficients ekl are chosen to be time-dependent. This means that none
of the two algorithms computes the exact solution, both compute approximations, thus
the error is decreasing as the mesh is refined. Once more, the convergence rate tends
towards the expected h1 rate.

4.2.2. Pressure relaxation verification test case

We turn in this paragraph to the verification of the schemes introduced in (3.3.2), to
obtain approximate solutions of the pressure relaxation sub-system (50). In appendix A4
we present the analytical solution that was considered, and in figure 5 we give the obtained
numerical results with both algorithms (3.3.2.1) and (3.3.2.2).

We note that the Algorithm 3.3.2.2 shows a convergent behaviour, starting by a constant
error level for coarse meshes, then it arrives at a point where the mesh gets sufficiently refined
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Figure 4: Test case A3.2 convergence rates for the algorithms 3.3.1.1 (left) and 3.3.1.2 (right)
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Figure 5: Convergence rates for the pressure relaxation algorithms 3.3.2.1 (left) and 3.3.2.2 (right). The
error is measured at time t = 1.0 s

(mesh size dt ≈ 10−4) and thus the convergence could be observed. This computational result
was obtained with τ̃0 = 102 (τ̃0 is defined in (140)), which corresponds to:

dt

τ̃0/(γK1)
≈ 1 (106)

(See the property A4.1 of Appendix A4 for the definition of K1).
Other numerical simulations were run with different τ̃0, γ and K1 values, we noticed that

(106) hold for all of them, this means that the convergence start to be observable when the
mesh size dt becomes small enough compared to the pressure relaxation characteristic time
included in τ̃0

γK1
.
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4.2.3. Temperature relaxation verification test case

In this paragraph, we implement a test case that aims at the verification of the scheme
introduced in subsection 3.3.3 to compute approximate solutions of (56). Appendix A7
provides the considered analytical solution, as well as the initial dataset that was used in
the computations. Figure 6 shows that the variables converge at the expected h1 rate.
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Figure 6: Heat transfer verification test case: convergence rates on the temperature variables Tk

4.2.4. Mass transfer verification test case

The mass transfer scheme was studied previously in [11, 26]. For more details about the
analytical solution considered in this verification test case, we refer the reader to [11] and
its Appendix A. This test’s EOS framework is the Stiffened Gas EOS:{

pk + γkΠk = (γk − 1)ρkek

sk = CVk log
[(
ek − Πk

ρk

)
ρ1−γk
k

]
+ q′k

(107)

In order to be able to build the analytical solution, one possibility is that phases 2 and
3, that are really concerned by the mass transfer, must comply with:

γ2CV2 = γ3CV3 (108)

Table 1 gives the numerical data that was used in the test case. We mention that the
test’s final time is Tfinal = 1.0 s, and the mass transfer relaxation time scale is fixed to:

τm23 = 5.0× 10+3
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Phase k = 1 Phase k = 2 Phase k = 3
uk 0.00 0.00 0.00
pk 7.0× 105 7.0× 105 4.0× 105

ρk 998.1 5.0 20.0
αk 0.3 0.5 0.2
γk 27.07 10.0 10.0
Πk 8.06 107 0.00 0.00
CV,k 10.58 700.0 700.0
q′k 0.00 −1836.1 −1836.1

Table 1: Mass transfer verification test case: initialisation and EOS dataset

We check also that EOS of phases 2 and 3 satisfy (108).
Turning to the results, figure 7 gives the error in function of the mesh size. We check

that the expected h1 convergence rate is retrieved.
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Figure 7: Mass transfer verification test case: convergence rates of the variables m2 and m3

4.3. First validation test case

In this subsection we focus on the shock-tube experiment presented in [8, 9]. It consists
in the analysis of the effects of a planar air shock wave on a cloud of water droplets. A high-
pressure chamber filled with air generates the planar shock wave, which moves rightwards
into the air at atmospheric pressure. The cloud of droplets is placed in the low-pressure
chamber and undergoes the impact of the incident shock wave.

In order to get a correct understanding of the shock wave / droplets interaction, several
pressure sensors have been placed in the low-pressure chamber. This allows to record the

34



pressure histories in different tube positions, and therefore highlight the undergoing physical
mechanisms. Figure 8 gives the geometrical details of the shock-tube apparatus, as well as
the droplets and the pressure sensors’ positions.
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Figure 8: Shock-tube apparatus (bed hight 400mm)

In [8, 9], many experimental settings have been presented: a single-phase shock-tube
without droplets, and three different two-phase gas-liquid mixtures where different cloud
sizes were considered. It should be noted that the thermal effects don’t play the primary
role in this experiment, instead it is the dynamics (including velocity and pressure effects)
that have the most important influence. Therefore, temperature relaxation and mass transfer
will be neglected in the numerical simulations of this experimental setup.

In fact, when put together, the convective subsystem, the velocity and the pressure
relaxation effects allow to get an adequate simulation of the experiment’s dynamics. In
addition to that, an interfacial area equation was included in order to take into account
the atomization effect. The details of the interfactial area equation can be found in [7].
In the continuity of the latter work, we adopt the same initialization of the numerical test
cases (namely for the pressures, the velocities and the statistical fractions). The difference
meanwhile concerns the EOS: while [7] focuses on the barotropic framework, in the present
work we adopt a non-barotropic EOS. Appendix A5 presents the different EOS as well as
the test case initialization datasets.

In the sequel, we discuss the comparison between the experimental and the obtained
numerical results:

• Single-phase flow configuration:

This is a reference test case where we consider a single-phase shock tube configuration.
No particle lid is included (α1 is set to 10−10 in all the computational domain) and the
mean pressure is denoted:

Pmix =
3∑

k=1

αkPk (109)
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One-phase Experimental Euler model (exact solution) Euler model (numerical simulation)
flow results Barotropic With energy Barotropic With energy

P ∗ (bar) ≈ 2.4 2.78 2.46 2.78 2.46
P ∗∗ (bar) ≈ 5.0 6.85 5.42 6.85 5.42

Celerity σ (m/s) ≈ 466 497 497

Table 2: Single-phase flow experimental, analytical and numerical results

Figure 9 gives the pressure history recorded in station 4. We denote P ∗ the pressure
level just behind the right-going shock wave observed around t = 3.7 ms, and P ∗∗ the
pressure level after the reflection of this shock wave on the right wall boundary of the
tube.

In Table 2 we give the comparison between the different experimental, analytical and
numerical results, including the barotropic case that was presented in [7]. We note,
on the one hand, that the numerical results on a sufficiently refined mesh (50000 cells
per meter here) are in agreement with the analytical solutions, both for the barotropic
and the full Euler model (full here means the model with energy equations), which
is expected and mandatory. On the other hand, we note that the full Euler model
enables to obtain a better approximation of the experimental results. This has been
already mentioned in [7], in figure 9 we give the corresponding numerical result when
using the model with energy.
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Figure 9: Shock wave in a single-phase medium: experimental data (blue) and numerical results with the
energy equations (red)

The shock wave celerity is also an interesting aspect to observe. In Table 2 we note
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that the experimental and the numerical (or exact) values display a 6% difference.
Nonetheless, it is not sufficient to explain the gap shown in figure 9, where the nu-
merical reflected wave returns back more quickly than the experimental wave, more
than what could correspond to the latter 6% celerity discrepancy. This delay of the
experimental reflected wave could be partially justified by the friction on the tube’s
sidewall and end-wall, which is not taken into account in our model. It could also
be the consequence of a geometric difference, between the numerical computational
domain (figure 18) and the real tube used in the experimental setup [8, 9].

Another notable conclusion of this single-phase comparison is the fact that the full
Euler model provides results that are already slightly different from the experimental
observations. Hence, we may expect some greater discrepancies when we run two-phase
or three-phase simulations.

• Gas-liquid two-phase flow configuration:

This test corresponds to the interaction of a shock wave with a lid of liquid deformable
droplets. The initialization is identical to the gas-solid case, but we take into account
the interfacial area equation A as presented in [7].

Figure 10 gives the numerical results as well as the experimental data. We note that,
at the beginning, the numerical simulations show a similar pattern to the gas-solid
case, with an incident shock wave of 2.4 bar amplitude on station 2, and a smaller
amplitude on station 3. But the major difference comes from the sudden decrease
that follows the arrival of the incident shock, which is clearly visible on station 3.
This is the characteristic signature of the droplets atomization [16] under the effect
of the in-coming shock wave: each droplet breaks into smaller droplets until reaching
a certain diameter, where the particle cloud reaches an equilibrium with the incident
shock wave. Afterwards, the pressure starts to build up and a compression is observed
once more.

On station 2, the fragmentation signature can hardly be observed, and the compression
following the incident shock occurs quickly: rapidly a pressure plateau is observed from
t ≈ 2.8 ms to t ≈ 6 ms. The end of the plateau is marked by a pressure decrease due
the arrival from the left wall boundary of the reflected rarefaction wave.

As expected from the single-phase comparison, the numerical pressure levels are greater
than the measured experimental results. Nevertheless, it seems to be remarkable that
the qualitative pressure behaviour is rather good, as it takes into account the major
dynamical phenomena that occur in this fragmentation experiment. The pressure
levels also are closer to the experimentally measured values than those arising from
the barotropic model computation (as observed in [7]).
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Figure 10: Shock wave through gas-liquid two-phase medium - Mean pressure in stations 2 & 3 - Comparison
of experimental and numerical results

In order to get a more complete view on this fragmentation test case, we provide here
some additional numerical results, though the comparison with experimental data is
not available. Figure 11 gives the evolution of the relative velocity wrt time in stations
2 and 3. We can notice that the relative velocity jumps and it reaches a maximum
value right at the arrival of the incident shock wave, which in turn activates the
fragmentation process. After that, it decreases rather quickly. In both stations, the
relative velocity decrease could be put in match with the pressure build-up after the
incident shock wave. Both the pressure and the relative velocity reflect the nature of
the fragmentation.

It is worth to be noted that the phase 1 momentum behaviour is consistent with the
evolution of α1 and A, as shown in figure 12. This allows to understand that the
particle cloud, in addition to the fragmentation, tends to move rightwards under the
effect of the incident right-going shock wave. This movement is not uniform, the left
side of the cloud (located initially around x = 3.0) undergoes a more significant shifting
than the right side (initially at x = 3.4).

Finally, figure 13 gives the comparison between the numerical results obtained on
different meshes. We notice that the gap between the results gets smaller and smaller
as the mesh is refined. Therefore, the discussed 1/50000 mesh size results above are
reasonably representative of the model solution.

4.4. Second validation test case: the KROTOS experimental setup

The KROTOS experimental program was conducted in order to study some aspects of
fuel coolant interactions (FCI), by performing research tests on specific phenomena involved
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Figure 12: Phase 1 statistical fraction and interfactial area at three distinct instants

in a FCI scenario. Vapour explosion is one of the aspects that the KROTOS experiment ex-
amined, by considering several fuel-coolant mixtures where different types of nuclear reactor
prototypic materials were involved (zirconium dioxide, aluminium oxide, uranium dioxide,
tin, etc.), the liquid water served as a standard coolant. Various conditions have been tested,
including fuel masses between 1 kg and 10 kg at temperatures around 3000 K, while the
liquid water was taken either at the saturation temperature, or with low subcooling (≈ 10 K
less than the saturation temperature). For more details about these tests, we refer the reader
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Figure 13: Stations 2 and 3 pressure histories for different meshes

to [25] where detailed descriptions and results are given.

The particular configuration that we focus on is the KROTOS-44 test, where alumina
melt was poured into water with low subcooling, melt droplets are formed and progress
slowly inside the water volume. An external pressure pulse was used to trigger the explosion
before the first droplet hits the bottom of the water pool, at the triggering instant we
consider that all the melt droplets are located inside the water volume. This configuration
was identified as a numerical benchmark to test and compare different FCI codes, including
MC3D [31] which is commonly used in France for vapour explosion simulations. [33] gives
the details of the imposed geometry and the melt-coolant distribution, at the explosion’s
initiation instant. Based on this KROTOS-44 experiment, we have adopted the setup given
in figure 14 for our numerical simulation.

In the considered setup of figure 14, the phases distribution in the low pressure chamber
is identical to what is given in [33]: the chamber is filled of liquid water at 363 K which is
present as a pure phase between x = 2.00 and x = 2.15, then there is a 70 cm thick mixed
zone called the interaction zone, where the three phases (melt droplets, liquid water and its
vapour) are present, after which there is the plug composed of liquid and vapour water, and
finally for x > 3.23 a pure gaseous volume covering the whole. The low pressure chamber was
equipped with pressure stations at different positions, in order to record pressure histories
over time and allow the examination of the pressure’s evolution.

The dataset that was used to initialize the numerical simulation is:
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High pressure Low pressure chamber
chamber Pure liquid Interaction zone Plug Cover gas

α1 = 0.026
α2 = 1− 2× 10−6 α2 = 1− 2× 10−6 α2 = 0.884 α2 = 0.835− 10−6 α3 = 1− 2× 10−6

α1 = α3 = 10−6 α1 = α3 = 10−6 α3 = 0.09 α3 = 0.165 α1 = α2 = 10−6

Tk = 1000.0 K Tk = 363.0 T1 = 2500.0 K α1 = 10−6 T3 = 700.00 K
pk = 150× 105 Pa T2 = 363.00 K Tk = 363.00 K T1 = T2 = 363.00 K

uk = 0 T3 = 1000.0 K
uk = 0 and pk = 1.0× 105 Pa

Table 3: Shock tube initialization dataset

In terms of EOS, we consider the General Stiffened Gas framework:
sk = CV,klog

[(
ek −Qk − Πk

ρk

)
1

ρ
γk−1

k

]
+ q′k

pk + γkΠk = (γk − 1)ρk(ek −Qk)
CV,kTk = ek −Qk − Πk

ρk

(110)

The adopted numerical values are given in table 4, where phases 1, 2 and 3 represent
respectively the melt droplets, the liquid water and the vapour water. The initial droplet
diameter is set to 15 mm, as stated in [33]. We mention that in this test case the diameter
remains constant, as we did not take the fragmentation into account; the interfactial area A
equation (see [7] for more details) was not included in the realized numerical simulations.

Phase k γk Πk Qk CV,k q′k

1 (GSG) 22.83859097 188447923.6 -13316.20000 12.87294826 0.00
2 (SG) 6.636214111 334850824.3 0.00 165.9732071 10000.00000
3 (PG) 1.083834328 0.00 0.00 6626.564746 -86464.79253

Table 4: EOS parameters: phase 1 (corium), phase 2 (liquid water) and phase 3 (water vapour)
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In order to treat the relaxations effects, we have chosen instantaneous relaxation algo-
rithms for both the pressure and the velocity, that is:{

τPkl = 0
τUkl = 0

(111)

while for mass transfer, we have considered the value given in [30], and an equivalent value
for heat exchange: {

τm23 = 5.0× 10−5

τTkl = τT0 = 10−5 (112)

We mention also that we set for all numerical tests CFL = 1/2.

Turning to numerical results, a first aspect to examine is the mesh refinement. In fact,
for a final simulation time of less than 2 ms, several meshes were tested. Figure 15 provides
the comparison between the different meshes results in term of velocity, at the same time
t = 0.7 ms. From figure 15 we can tell that the discrepancies between the results are reduced
as mesh is refined. Thus, in the sequel we will focus on the finest mesh (375000 cells) to
examine the pressure and velocity results.

0 1.0 2.0 3.0 3.75
Tube length (m)

-20

-10

0

10

20

V
el

o
ci

ty
 (

m
/s

)

3750 cells
37500 cells
93750 cells
187500 cells
375000 cells

Velocity on different meshes at t = 0.7 ms
Krotos experiment setup

Figure 15: Velocity at t = 0.7 ms on various meshes

In figure 16, pressure histories in stations S1, .., S4 are given. It presents the mean
pressure Pmix (defined previously in (109)) wrt time at each station. For station S1, we notice
that the behaviour of the pressure signal at the early time instants, namely t ≈ 0.05 ms, is

42



similar to what happens in the one-phase flow framework: a sudden pressure jump, followed
by a plateau.

Turning to stations S2, S3 and S4 located inside the interaction zone, we remark that as
the computation starts, the pressure increases in a uniform way over the three stations, which
is translated by the fact that the three pressure curves are superimposed for t ∈ [0, 0.25]
(respectively for S3 and S4 for t ∈ [0, 0.5]). This is the signature of the occurring evaporation
inside the interaction zone (see the flow in a box analysis given in Chapter 3 of [6]), which
is a direct consequence of the initial thermodynamic setup of this zone. In fact, giving the
temperature and Gibbs potential differences at the initial instant, mass transfer acts and
creates more and more vapour, which drives the pressure to increase. At t ≈ 0.25 ms,
station S2 observes the arrival of the shock wave, while S3 and S4 continue the evaporation
process.

Focusing on the pressure jumps created by the shock wave, from figure 16 we can notice
that the jump created in station S1 is δP ≈ 9 MPa, while in stations S3 and S4 it reaches
the values δP ≈ 14 MPa and δP ≈ 15 MPa respectively. This shows that the pressure
jump induced by the shock wave increases as this wave travels inside the interaction zone.

In terms of total pressure Pmix, at t ≈ 0.5 ms, when the shock wave reaches station
S3, the total pressure reaches Pmix ≈ 17 MPa, which is higher than the triggering initial
pressure 15 MPa. This behaviour is retrieved in station S4 as well, with even a higher total
pressure value Pmix ≈ 18 MPa. We recall that in subsection 4.3 we have seen pressure
jumps resulting from the dynamic effects (velocity and pressure relaxations) but without
exceeding the triggering high pressure. Here, what is involved -in addition to dynamics-
is thermal effects, namely thermal exchange and the resulting evaporation, and the result
is higher pressure jumps that are increased, rather than attenuated, when the shock wave
travels inside the interaction zone.

In figure 17, we provide complementary results of this test case, by presenting the pressure
and velocity at five distinct time instants. The progress of the right-going shock wave can
be observed, at t = 1.0 ms the front of this wave is located around x = 2.90 m, which means
that at this time the shock wave has completely crossed the interaction zone. Pressure’s
values can be also checked, we notice that for t = 0.55 ms and t = 0.70 ms the reached
pressure values are higher than 15 MPa, which confirms the observed result in stations S3

and S4. In this figure, we can also see the progress of the left-going rarefaction wave, which
-shortly before t = 1.0 ms reaches the left tube’s boundary where it gets reflected.

Finally, it is relevant to draw a comparison between the numerical and experimental re-
sults concerning the KROTOS-44 setup. As provided in [25], the measured pressure upper
bound around stations S3 and S4 locations is of the order of 50 MPa to 60 MPa, while
our model’s result is smaller and of the order of 18 MPa, this was expected as the break-
up phenomenon was not taken into account. Nevertheless, we mention that the numerical
benchmark given in [33] shows an important dispersion between the different vapour explo-
sion codes, pressure values vary from 10 MPa to more than 100 MPa. In turn, the code
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Figure 16: Pressure histories in stations Sk, k = 1, .., 4
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Figure 17: Pressure (left) and velocity (right) at 5 time instants

MC3D [31] gives an estimation of the order of 20 MPa [33].

5. Conclusion

This paper is the continuation of research efforts concerning the modeling and the sim-
ulation of vapour explosion (VE ). A previous study of a barotropic three-phase flow model
was presented in [7]. In the present paper, we have discussed a three-phase flow model
including the energy balance. The model properties were highlighted, with special focus on
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the hyperbolicity, the entropy inequality and the jump conditions. A fractional step method
was considered, we have shown that on the continuous level it allows to remain consistent
with the entropy equation, and in the discrete framework it enables to get satisfactory re-
sults on fine enough meshes. The comparison with the results of the experimental setup
presented in [8, 9] is satisfactory, which means that the model is fairly able to account for
the mechanical effects that take place in such gas-droplet flow configurations. The study
of a VE test case, on the basis of the KROTOS-44 experiment [25], is also given. The
combination of dynamic effects and thermal exchanges is highlighted, and qualitatively fair
enough results are retrieved.

Nevertheless, there are still some points that require more work in order to progress
towards a better three-phase flow VE oriented model:

• The interfacial area equation needs to be taken into account, to translate the droplets
break-up and eventually allow a better estimation of the pressure’s evolution;

• It would be worth pursuing the investigation of accuracy of the non-instantaneous
relaxation algorithms (for pressure and velocity). This would allow to consider a
wider range of time scales;

• There is a need for more accurate and robust Riemann solvers (see for instance [1, 2,
10, 36] in that direction).
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[29] A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of
deflagration to detonation transition : srtucture of the velocity relaxation zone, Physics of Fluids, vol.

46



9(12), pp. 3885-3897, 1997.
[30] H. Lochon, F. Daude, P. Galon and J.M. Hérard, Comparison of two-fluid models on steam-

water transients ESAIM: Mathematical Modelling and Numerical Analysis, vol. 50(6), pp. 1631-1657,
2016.

[31] R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modelling fuel-coolant
interaction. Part II: steam explosion, Nuclear Engineering and Design, vol. 280, pp. 528-541, 2014.

[32] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component
models, Continuum Mechanics and Thermodynamics, vol. 28, pp. 1157-1189, 2016.

[33] Nuclear Energy Agency Committee on the Safety of Nuclear Installations, OECD
research programme on fuel-coolant interaction steam explosion resolution for nuclear applica-
tions - SERENA, Organisation for Economic Co-operation and Development, https://www.oecd-
nea.org/nsd/docs/2007/csni-r2007-11.pdf, 2007.

[34] Nuclear Energy Agency Committee on the Safety of Nuclear Installations,
Reactivity Initiated Accident (RIA) Fuel Codes Benchmark Phase-II, https://www.oecd-
nea.org/nsd/docs/2016/csni-r2016-6-vol1.pdf.

[35] E. Rusanov, Calculation of interaction of non steady shock waves with obstacles, Journal of Compu-
tational Mathematics and Physics, vol. 1, pp. 267-279, 1961.

[36] K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I: barotropic EOS, ESAIM:
M2AN, DOI: https://doi.org/10.1051/m2an/2019034, vol. 53, pp. 1763-1795, 2019.

[37] U.S. NRC Glossary, Loss of coolant accident (LOCA), https://www.nrc.gov/reading-rm/basic-
ref/glossary/loss-of-coolant-accident-loca.html.

Appendix A1 - Instantaneous pressure relaxation

Here in this appendix, we consider the case of a pressure relaxation system where the
pressures differences pk − pl are neglected. In this case, we get at once:

p1 = p2 = p3 = P
∂tmk = 0

∂t(mkUk) = 0

∂t(αkEk) + P∂tαk = 0

(113a)

(113b)

(113c)

(113d)

The energy balance (113d) can be rewritten as:

∂t(mkek) + P∂tαk = 0

In order to compute a discrete approximate solution, we apply an implicit Euler scheme:

(mkek)− (mkek)
∗

∆t
+ Pαk − α

∗
k

∆t
=

1

∆t
[(mkek)− (mkek)

∗ + P(αk − α∗k)] = 0 (114)

where the ∗ exponent indicates the given initial data.

For further development, we consider a Stiffened Gas EOS:

(γk − 1)mkek = αkpk + αkγkΠk (115)
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This gives:

(αkP + αkγkΠk)− (αkpk + αkγkΠk)
∗ + (γk − 1)P(αk − α∗k) = 0 (116)

By denoting P∗k = (αkpk + αkγkΠk)
∗, we express the statistical fractions in function of

the pressure:

αk =
P∗k + (γk − 1)α∗kP

γk(P + Πk)
(117)

Now, to obtain the pressure P , we solve the saturation condition:

3∑
k=1

αk = 1 (118)

Thus, we consider the function:

h(P) =
3∑

k=1

P∗k + (γk − 1)α∗kP
γk(P + Πk)

(119)

which definition domain is D =]− x0,+∞[, where x0 = Πk0 = mink=1,2,3(Πk). We have the
following key property:

Property:
The equation h(P) = 1 admits a unique solution in the domain D.

Proof:
For any x ∈ D we have:

h′(x) = −
3∑

k=1

α∗k(p
∗
k + Πk)

γk(x+ Πk)2
< 0

Moreover, we have:

lim
x→+∞

h(x) =
3∑

k=1

α∗k(γk − 1)

γk
= 1−

3∑
k=1

α∗k
γk

< 1

and:

lim
x→−x0+

h(x) = lim
x→−x0+

[
3∑

k=1,k 6=k0

P∗k + (γk − 1)α∗k(−Πk0)

γk(−Πk0 + Πk)
+
P∗k0 + (γk0 − 1)α∗k0x

γk0(x+ Πk0)

]

A straightforward computation gives:

P∗k0 + (γk0 − 1)α∗k0(−Πk0) = α∗k0(p
∗
k0

+ Πk0) > 0
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This allows to obtain the limit:

lim
x→−x0+

h(x) = +∞

and therefore the desired result. �

Remark:

• The statistical fractions defined by (117) are in the admissible range [0, 1]. In fact,
(117) ensures that αk ≥ 0, moreover, P satisfies (118), hence 0 ≤ αk ≤ 1.

• This instantaneous pressure relaxation algorithm can be defined for a N-phase flow
where N > 3. The fractions αk and the pressure P are defined in the same way in the
Stiffened Gas EOS case.�

Appendix A2 - Threshold effect

In the two-phase framework, we consider the counterpart of (50), which represents the
pressure relaxation sub-step: 

∂tα2 =
α1α2

τP12(W)Π0

(p2 − p1)

∂t(m1e1) + p2∂tα1 = 0

∂t(m2e2) + p2∂tα2 = 0

(120a)

(120b)

(120c)

with: ∂tmk = 0 and ∂t(mkUk) = 0 for k = 1, 2.
We denote:

Ak =
ρkc

2
k

αk
; b1 =

(
ρ1
∂e1

∂p1

)−1

> 0 ; τP12(W) > 0

Using the same method of the paragraph 2.2.6, we prove that the pressure difference
y12 = p1 − p2 satisfies the equation:

∂ty12 + (A1 + A2)
α1α2

τP12Π0

y12 − b1
α2

τP12Π0

y2
12 = 0

In order to simplify the analysis of the equation, we denote:

a(t) = (A1 + A2)
α1α2

τP12Π0

; b(t) = b1
α2

τP12Π0

We have then:
∂ty12 = −a(t)y12 + b(t)y2

12 (121)
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We denote:

µ(t) =

∫ t

0

a(s) ds ≥ 0 ; x12 = eµ(t)y12

We notice that the differential equation verified by x12 is:

∂tx12 = b(t)e−µ(t)x2
12

By solving this equation, we have the general solution of (121):

y12(t) =
y0

12e
−µ(t)

1− y0
12

∫ t
0
b(s)e−µ(s) ds

(122)

The behaviour of y12(t) therefore depends on the initial condition y0
12 = y12(0):

• If y0
12 < 0:

The solution y12(t) is defined on R+, and we can check that it is decreasing, which
ensures the relaxation behaviour.

• If y0
12 > 0 and y0

12 < y∗12 where y∗12 is such that: 1 = y∗12

∫∞
0
b(s)e−µ(s) ds:

y12(t) is defined on R+, and we can prove in the case a(t) = a0 and b(t) = b0 that the
relaxation behaviour is ensured: limt→∞ y12(t) = 0.

• If y0
12 > y∗12:

In this case there exists a certain t0 ∈ R∗+ such that:

1− y0
12

∫ t0

0

b(s)e−µ(s) ds = 0

The function y12 is then not well defined on R+ and the relaxation can’t be ensured.

Appendix A3 - Two particular analytical solutions of the velocity relaxation
system

In the velocity relaxation sub-step, we recall that the concerned PDE system is (45). In
the pure 1D framework it can be rewritten as:

∂tαk = 0
∂tmk = 0

∂t(mkuk) =
∑3

l=1,l 6=k ekl(w)(ul − uk)
∂t(αkEk) =

∑3
l=1,l 6=k

ekl(w)
2

(u2
l − u2

k)
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The three momentum equations are equivalent to:
m1∂tu1 = e12(w)(u2 − u1) + e13(w)(u3 − u1)
m2∂tu2 = e12(w)(u1 − u2) + e23(w)(u3 − u2)
∂t(m1u1 +m2u2 +m3u3) = 0

(123)

where the phase 3 equation has been replaced by the total momentum conservation equation.
If we denote Q0 = m1u1(t = 0) +m2u2(t = 0) +m3u3(t = 0) the total momentum in the

velocity relaxation sub-step, we can integrate the phase 3 equation and write:

u3(t) =
1

m3

(Q0 −m1u1(t)−m2u2(t)) (124)

We use (124) to replace u3(t) in (123), this gives: ∂tu1 +
(
e12(w)
m1

+ e13(w)
m1

+ e13(w)
m3

)
u1 −

(
e12(w)
m1
− m2e13(w)

m1m3

)
u2 = e13(w)

m1m3
Q0

∂tu2 +
(
e12(w)
m2

+ e23(w)
m2

+ e23(w)
m3

)
u2 −

(
e12(w)
m2
− m1e23(w)

m2m3

)
u1 = e23(w)

m2m3
Q0

(125)

We assume that the coefficients ekl comply with:

m1e23(w) = m2e13(w) = m3e12(w) (126)

This allows to decouple u1 and u2 equations, which become: ∂tu1 +
(
e12(w)
m1

+ e13(w)
m1

+ e13(w)
m3

)
u1 = e13(w)

m1m3
Q0

∂tu2 +
(
e12(w)
m2

+ e23(w)
m2

+ e23(w)
m3

)
u2 = e23(w)

m2m3
Q0

(127)

Many choices are then possible to fully explicit the analytical solution, depending on the
choice of ekl, as far as the constraint (126) is respected.

Here we consider two different configurations:

• Test case A3.1: constant ekl

We take e12 = 1 (or any other constant), and we compute e13 and e23 with respect to
(126). We denote: {

A1 = e12(w)
m1

+ e13(w)
m1

+ e13(w)
m3

Q1 = e13(w)
m1m3

Q0

A2 = e12(w)
m2

+ e23(w)
m2

+ e23(w)
m3

Q2 = e23(w)
m2m3

Q0

(128)

A1, A2, Q1 and Q2 are time-independent constants, we can then integrate (127) as: u1(t) = Q1

A1
+
(
u1(t = 0)− Q1

A1

)
exp(−A1t)

u2(t) = Q2

A2
+
(
u2(t = 0)− Q2

A2

)
exp(−A2t)

(129)
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Phase k = 1 Phase k = 2 Phase k = 3
uk 10.00 150.0 200.0
pk 7.105 7.105 4.105

ρk 10.00 1.00 1.50
αk 0.30 0.50 0.20
γk 27.07 3.00 2.00
Πk 8.06 107 0.00 0.00

Table 5: Velocity relaxation initialisation dataset

where Q1

A1
= Q2

A2
.

The velocity u3 is given by (124), and the energies are obtained by direct integration
of the energy balance of (123).

The initial dataset that was considered for this case is given in Table 5. The time
relaxation scales are chosen such that:

e12 = 1.00 ; e13 =
m3

m2

e12 ; e23 =
m3

m1

e12 (130)

• Test case A3.2: time-dependent ekl

In this case we choose the coefficients ekl such that:

m1e23(w) = m2e13(w) = m3e12(w) = t+ 1 (131)

This gives: {
∂tu1 + α(t+ 1)u1 = β(t+ 1)
∂tu2 + α(t+ 1)u2 = β(t+ 1)

(132)

where α and β are time-independent constants:{
α = 1

m1m2
+ 1

m1m3
+ 1

m2m3

β = Q0

m1m2m3

(133)

This gives: {
u1(t) = β

α
+
(
u1(t = 0)− β

α

)
exp(−α(t2/2 + t))

u2(t) = β
α

+
(
u2(t = 0)− β

α

)
exp(−α(t2/2 + t))

(134)

The velocity u3 and the energies are obtained similarly to the first case.

Practically, for this case, the initial dataset is identical to the test case A3.1 (see Table
5).
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Appendix A4 - A particular analytical solution of the pressure relaxation system

We recall that the considered PDE system in the pressure relaxation sub-step is (50):
∂tαk = Sαk (W)
∂tmk = 0
∂t(mkUk) = 0

∂t(αkEk)−
∑3

l=1,l 6=k Πkl(W)∂tαl = 0

This system is equivalent to:

∂tα2 =
3∑

l=1,l 6=2

α2αl
τP2l (W)Π0

(p2 − pl)

∂tα3 =
3∑

l=1,l 6=3

α3αl
τP3l (W)Π0

(p3 − pl)

∂t(m1e1)− p2∂tα2 − p3∂tα3 = 0

∂t(m2e2) + p2∂tα2 = 0

∂t(m3e3) + p3∂tα3 = 0

(135a)

(135b)

(135c)

(135d)

(135e)

where the partial masses and momentums are constants: ∂tmk = 0, ∂t(mkUk) = 0. Thus,
the variables are: (α2, α3, α1p1, α2p2, α3p3).

In order to build analytical solution for the system (135), we consider the case of the
Ideal Gas EOS:

mkek =
αkpk
γk − 1

(136)

Property A4.1:
Under the assumption (136), we have the following result:

p2α
γ2
2 = K2

p3α
γ3
3 = K3

α1p1 = K1 −
γ1 − 1

γ2 − 1
α2p2 −

γ1 − 1

γ3 − 1
α3p3

(137a)

(137b)

(137c)

where K1, K2 and K3 are positive integration constants:
K2 = (p2α

γ2
2 )(t = 0)

K3 = (p3α
γ3
3 )(t = 0)

K1 = (γ1 − 1)
(∑3

k=1
αkpk
γk−1

)
(t = 0)
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We have also:

Π0∂tα2 =− K1

τP12

α2 +
γ1 − γ2

γ2 − 1

K2

τP12

α2−γ2
2 +

K2

τP12

α1−γ2
2

+

(
1

τP23

− 1

τP12

)
K2α

1−γ2
2 α3 +

(
γ1 − 1

γ3 − 1

1

τP12

− 1

τP23

)
K3α2α

1−γ3
3

Π0∂tα3 =− K1

τP13

α3 +
γ1 − γ3

γ3 − 1

K3

τP13

α2−γ3
3 +

K3

τP13

α1−γ3
3

+

(
1

τP23

− 1

τP13

)
K3α

1−γ3
3 α2 +

(
γ1 − 1

γ2 − 1

1

τP13

− 1

τP23

)
K2α3α

1−γ2
2

(138)

Proof:
(137a) and (137b) are nothing but the conservation of the specific entropies of phases 2

and 3. In fact, we have seen in (54) that:

∂ts2 = ∂ts3 = 0

This means that:
∂t(p2ρ

−γ2
2 ) = ∂t(p3ρ

−γ3
3 ) = 0

Knowing that mk = αkρk and ∂tmk = 0 in the pressure relaxation step, we conclude that
(137a) and (137b) hold.

(137c) is simply obtained by writing the conservation of the total energy:

∂t(m1e1 +m2e2 +m3e3) = 0

Therefore, we use the latter results (137) to develop (135a) and (135b), this allows to
obtain (138) through direct calculations. �

In order to explicitly develop the analytical solution, we add more assumptions:

• The three phases have an identical EOS:

γ1 = γ2 = γ3 := γ > 1 (139)

• The pressure relaxation time scales are all equal to the same constant value:

∀k, l : τkl(W) := τP0

and we denote:
τ̃0 = τP0 Π0 (140)

Under these assumptions, we have :

54



Property A4.2:
The solution of (135) with assumptions (139) and (140) reads:

α2(t) =

[
(α0

2)γexp

(
−γK1

τ̃0

t

)
+ A2

(
1− exp

(
−γK1

τ̃0

t

))]1/γ

α3(t) =

[
(α0

3)γexp

(
−γK1

τ̃0

t

)
+ A3

(
1− exp

(
−γK1

τ̃0

t

))]1/γ

(α2p2)(t) = K2(α2(t))1−γ

(α3p3)(t) = K3(α3(t))1−γ

(α1p1)(t) = K1 −K2(α2(t))1−γ −K3(α3(t))1−γ

(141a)

(141b)

(141c)

(141d)

(141e)

where Ak = Kk
K1

, α0
2 and α0

3 are the initial values.

Proof:
Under the assumptions (139) and (140), the system (138) becomes:

τ̃0∂tα2 = −K1α2 + K2

αγ−1
2

τ̃0∂tα3 = −K1α3 + K3

αγ−1
3

To integrate these ODEs we denote for k = 2, 3:

Ψk = αγk

The equation verified by Ψk is:

∂tΨk + γ
K1

τ̃0

Ψk = γ
K1

τ̃0

Ak

By solving this equation we obtain:

Ψk(t) = Ψk(t = 0)exp

(
−γK1

τ̃0

t

)
+ Ak

(
1− exp

(
−γK1

τ̃0

t

))
This allows to retrieve the result (141). �

In Table 6 we give the initial dataset that was used for the pressure relaxation verification
computations:

Appendix A5 - Initial data of the shock tube test cases of paragraph 4.3

In this appendix, we present the initial datasets that were considered in the shock tube
numerical simulations.

Single-phase flow configuration:
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Phase k = 1 Phase k = 2 Phase k = 3
uk 0.00 0.0 0.0
pk 1.105 5.105 1.106

ρk 100.00 200.00 300.00
αk 0.65 0.15 0.20
γk 2.00 2.00 2.00
Πk 0.00 0.00 0.00

Table 6: Pressure relaxation initialisation dataset

Left (x < 0.75)

pk = 7.105 for k = 1, 2, 3
uk = 0 for k = 1, 2, 3

α1 = α3 = 10−10

α2 = 1− α1 − α3

Right (0.75 < x)

pk = 1.105 for k = 1, 2, 3
uk = 0 for k = 1, 2, 3
α1 = α3 = 10−10

α2 = 1− α1 − α3

Gas-solid and gas-liquid two-phase flow configurations:

Left (x < 0.75)

Pk = 7.105 for k = 1, 2, 3
uk = 0 for k = 1, 2, 3

α3 = 10−10

α2 = 1− α1 − α3

α1 = 10−10

Right (0.75 < x)

Pk = 1.105 for k = 1, 2, 3
uk = 0 for k = 1, 2, 3
α3 = 10−10

α2 = 1− α1 − α3

α1 = 0.0104 if [2.97 < x < 3.37] and 10−10

if not

The EOS were chosen such that:

• Phase 1: Stiffened Gas EOS (liquid water)

p1 + γ1Π1 = (γ1 − 1)ρ1ε1

with: {
γ1 = 27.07619047
Π1 = 8.06358480 x107

• Phase 2: Perfect Gas EOS (air)

p2 = (γ2 − 1)ρ2ε2

with γ2 = 1.40 ;

• Phase 3: identical to phase 2.

56



Appendix A6 - Study of the pressure-velocity relaxation effects

In this appendix, we focus on the pressure-velocity relaxation effects embedded in the
global PDE system (1). In Section 3, different pressure-velocity relaxation algorithms were
presented, and a two-phase flow test case was given in Section 4. Here we consider a three-
phase shock-tube configuration (see figure 18), where a shock-wave carried by the phase 2
travels along the low-pressure side of the tube. It crosses two distinct domains where phases
1 and 3 are present at different proportions.

x
3.75x = 0 1.0 2.0 2.2 3.1

• •
Closed wall
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Figure 18: Scheme of the three-phase shock tube

Numerically speaking, the shock-tube was initialized as follows:

Left (x < 1.0)

Pk = 15.105 for k = 1, 2, 3
ρ1 = 998.1

ρ2 = ρ3 = 8.89
α3 = 10−10

α1 = 10−10

α2 = 1− α1 − α3

uk = 0 for k = 1, 2, 3

Right (1.0 < x)

Pk = 1.105 for k = 1, 2, 3
ρ1 = 998.1
ρ2 = ρ3 = 1.27
α3 function of x
α1 function of x
α2 = 1− α1 − α3

uk = 0 for k = 1, 2, 3

With: α1 = 0.01 for x ∈ [2.0, 2.2] and α1 = 10−10 elsewhere. For k = 3, α3 = 0.01 for
both x ∈ [2.0, 2.2] and x ∈ [3.08, 3.12], and α3 = 10−10 elsewhere. The chosen EOS are a
mix of Stiffened Gas and Perfect Gas EOS, as shown below in Table 7.

Phase k γk Πk q′k CV,k

1 22.83859097 8063584.804 2116.625872 10.58283017
2 1.655128030 37258761.46 1000.000000 1395.286166
3 1.401153242 0.00 -1836.098569 713.1396320

Table 7: EOS parameters for the three-phase pressure-velocity relaxations test case

As presented in subsection 3.3, we have many simulation possibilities considering the
different pressure and velocity relaxation algorithms, as well as the parameters that are not
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given by the mathematical modelling, notably the relaxation characteristic times. Thus, we
focus on the following three configurations:

• Configuration 1 :

We consider Algorithm 3.3.1.1 for the velocity relaxation, with:
e12(W) = 1

8
Aρ2C12|U1 − U2|

e13(W) = m3

m2
e12(W)

e23(W) = m3

m1
e12(W)

(142)

The Closure of e12 (see Chapter 1 subsection 4.2) gives an implicit definition of the
velocity relaxation time scale τU12, the chosen e13 and e23 allow to retrieve the same
relaxation time scale τU12 = τU13 = τU23 = τU while being consistent with the general
form:

ekl(W) =
1

τUkl

mkml

m1 +m2 +m3

(143)

For the pressure relaxation, we consider Algorithm 3.3.2.1 with the same relaxation
time scale for all the phases:

τPkl(W)Π0 = τ̃P0 = 10−5 (144)

• Configuration 2 :

Here we consider the same relaxations algorithms of the Configuration 1, but with the
characteristic times: {

τUConfig.2 = τUkl/10N

τPConfig.2 = τPkl/10N
(145)

Several values of N were tested in order to understand the impact of these relaxation
time scales on the relaxation procedure, the value we present in this Configuration 2
is N = 10.

• Configuration 3 :

For this configuration, we consider the instantaneous relaxation algorithms, both for
the pressure and the velocity.

In order to comment the computational results, we restrict the scope of the analysis to
the following three aspects: the mesh convergence, the comparison of Configuration 1 and
Configuration 2, and the comparison of Configuration 2 and Configuration 3.
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(i) Mesh convergence

Figure 19 gives the comparison in terms of velocity of the results on different meshes
for the three configurations. Four meshes were tested, from 1000 elements per meter
up to 100000. The conclusion that stands for the three configurations is, while the
1000 element mesh allows to get the correct order of magnitude of the velocity, it is not
fine enough to catch all the intermediate states, at it can be seen on Configuration 1
velocity U3 figure. When the mesh is refined, the intermediate states are well retrieved,
the shocks are straight, and the gap between the the meshes gets reduced with each
refinement.
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Figure 19: Velocities on different meshes for the three configurations at different time instants

A noteworthy observation lays in the fact that we have shown two distinct velocities for
Configuration 1, we can see that the profiles of U2 and U3 are quite different, and this is
not surprising since the PDE model is built on the basis of distinct velocity fields, and
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the numerical scheme behind respects this setup. For Configuration 2 though, we did
not mention in figure 19 which velocity was represented, because the three of them are
superimposed. This will be analysed with more details in the next point (comparison
between Configuration 1 and Configuration 2 ). For Configuration 3, only one velocity
profile is shown, since we used the instantaneous relaxation algorithm, which ensures
that at the end of each time step the velocities (and the pressures) are equal.

In the following comparisons, we consider the 50000 element per meter mesh. Owing
to the results presented in figure 19, this mesh gives fair approximation of the model’s
solutions.

(ii) Comparison of Configuration 1 and Configuration 2

Figure 20 presents the comparison of the pressure and the velocity profiles of Config-
uration 1 and Configuration 2 at the time instant t = 1.2 ms.

For the velocities, we can notice that Configuration 1 ’s U1 is not visible in the figure,
this is due to the fact that the values taken by U1 are significantly smaller than those
of U2 and U3, and therefore they could not be put in the same scale. Meanwhile,
Configuration 2 ’s three velocity fields are overlapped at the scale of the figure. This
means that dividing the relaxation time scales τU by 10N with N = 10 makes the
velocities relax almost instantaneously, in a way such that the differences ∆Ukl =
Uk − Ul are almost null at the end of each time step. This is a significant point, its
importance relies in the fact that it shows how these relaxation time scales drive the
relaxation process’s speed. The different intermediate values of N that were tested
(and are not shown here) confirm this relaxation behaviour: the larger N is, the smaller
∆Ukl relative velocities are at the end of each time step.

In figure 20’s pressure profile, no difference between the pressures of Configuration 1 is
visible. This suggests that this case’s setup do not allow to bring to light the pressures
differences, even if there are visible on the velocities level.

Finally, we turn the reader’s attention to the fact that the change in the relaxation
time scales did not affect only the velocity differences, it has also impacted the position
of the shock waves. Indeed, at t = 1.2 ms while the right-going shock wave is observed
around x = 2.75 for Configuration 1, it is located around x = 2.15 for Configuration
2.
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Figure 20: Comparison of Configurations 1 and 2 - Velocity (left) and pressure (right) profiles at t = 1.2 ms

(iii) Comparison of Configuration 2 and Configuration 3

In figure 21 we give the comparison of Configuration 2 and Configuration 3 results at
t = 1.6 ms. As previously indicated, for Configuration 2 there is no need to specify
which velocity or pressure field is represented, because all the three are overlapped.
For Configuration 3 this is an obvious result, considering the involved instantaneous
relaxations.
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Figure 21: Comparison of Configurations 2 and 3 - Velocity (left) and pressure (right) profiles at t = 1.6 ms

The notable point in figure 21 though is the fact that there is a persistent lag between
the results of the two configurations. In other words, this means that the general relax-
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ation procedures (employed in Configuration 1 ) do not converge to the instantaneous
relaxation algorithms used in Configuration 3, even if the relaxation time scales τP

and τU are significantly small, such is the case of Configuration 2.

Appendix A7 - An analytical solution for the heat transfer subsystem

We recall the heat transfer sub-system (56):
∂tαk = 0
∂tmk = 0
∂t(mkUk) = 0

∂t(αkEk) =
∑3

l=1,l 6=kK
T
kl(W)(Tl − Tk)

We focus particularly on the energy balances that have been written under the form (60):

∂tTk =
3∑

l=1,l 6=k

KT
kl(W)

mkCV,k
(Tl − Tk)

We expand the three equations, and replace the last one by the total conservation of the
internal energies, this gives:

∂tT1 =
KT

12(W)

m1CV,1
(T2 − T1) +

KT
13(W)

m1CV,1
(T3 − T1)

∂tT2 =
KT

12(W)

m2CV,2
(T1 − T2) +

KT
23(W)

m2CV,2
(T3 − T2)

∂t(m1CV,1T1 +m2CV,2T2 +m3CV,3T3) = 0

(146)

We define:

E0 = m1CV,1T1(t = 0) +m2CV,2T2(t = 0) +m3CV,3T3(t = 0) (147)

We can therefore write:

T3(t) =
1

m3CV,3
[E0 −m1CV,1T1(t)−m2CV,2T2(t)] (148)

We then replace in the first two equations of (146) to get: ∂tT1 +
(

KT
12

m1CV,1
+

KT
13

m1CV,1
+

KT
13

m3CV,3

)
T1 +

(
m2CV,2K

T
13−m3CV,3K

T
12

m1CV,1m3CV,3

)
T2 =

KT
12E0

m1CV,1m3CV,3

∂tT2 +
(

KT
12

m2CV,2
+

KT
23

m2CV,2
+

KT
23

m3CV,3

)
T2 +

(
m1CV,1K

T
23−m3CV,3K

T
12

m2CV,2m3CV,3

)
T1 =

KT
23E0

m2CV,2m3CV,3

(149)

Here we introduce the following assumption:

m1CV,1K
T
23 = m2CV,2K

T
13 = m3CV,3K

T
12 (150)
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Phase k = 1 Phase k = 2 Phase k = 3
uk 2.00 3.00 7.00
pk 7.103 1.104 4.103

ρk 5.20 2.70 0.30
αk 0.30 0.35 0.35
γk 27.07 1.40 2.40
Πk 8.06 107 0.00 0.00

Table 8: Heat transfer initialisation dataset

This allows to fully decouple the equations in (149), and their resolution becomes easier.
Practically, we choose a set of time-dependent coefficients KT

kl such that:

m1CV,1K
T
23 = m2CV,2K

T
13 = m3CV,3K

T
12 = t+ 1 (151)

Therefore, if we denote:{
α = 1

m1CV,1m2CV,2
+ 1

m1CV,1m3CV,3
+ 1

m2CV,2m3CV,3

β = E0

m1CV,1m2CV,2m3CV,3

(152)

The system (149) becomes:{
∂tT1 + α(t+ 1)T1 = β(t+ 1)
∂tT2 + α(t+ 1)T2 = β(t+ 1)

(153)

The solution is then given by:{
T1(t) = β

α
+
(
T 0

1 −
β
α

)
exp(−α(t2/2 + t))

T2(t) = β
α

+
(
T 0

2 −
β
α

)
exp(−α(t2/2 + t))

(154)

T3(t) is given by (148). This determines completely the analytical solution. In practice,
we considered the following initial dataset:
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