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Visualization of Blockchain Data:
A Systematic Review

Natkamon Tovanich, Nicolas Heulot, Jean-Daniel Fekete, and Petra Isenberg

Abstract—We present a systematic review of visual analytics tools used for the analysis of blockchains-related data. The blockchain
concept has recently received considerable attention and spurred applications in a variety of domains. We systematically and
quantitatively assessed 76 analytics tools that have been proposed in research as well as online by professionals and blockchain
enthusiasts. Our classification of these tools distinguishes (1) target blockchains, (2) blockchain data, (3) target audiences, (4) task
domains, and (5) visualization types. Furthermore, we look at which aspects of blockchain data have already been explored and point out
areas that deserve more investigation in the future.

Index Terms—Blockchain, Bitcoin, Ethereum, Information Visualization, Visual Analytics, State-of-the-Art Survey.
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1 INTRODUCTION

B LOCKCHAIN technology has become popular in the last
10 years after the Bitcoin cryptocurrency was introduced

by Satoshi Nakamoto [33]. Since then, the blockchain concept
has been used to develop decentralized systems to store
and maintain the integrity of time-stamped transaction data
across peer-to-peer networks. Bitcoin [33] and Ethereum [48]
are popular examples of blockchain use for digital currencies,
smart contracts, and decentralized applications. As the
technology has revolutionized transactions and exchanges, it
found applications in various industries, including energy
production, mobility, and logistics [13].

Despite its active use, blockchain is a new technology and
its use in practice is still evolving and poorly understood.
Broadly, a blockchain is a decentralized system governed
by autonomous mechanisms that ensures the data stored
among peers is correct and that prevents possible fraudulent
activities. Blockchain data is stored and maintained among
peers in the network by the consensus of the network
majority. As a result, activities on the blockchain are driven
by the interaction of its users, in contrast to centralized
controlled systems where users are regulated by a central
server. In order to adopt blockchain technology in a wider set
of domains, we will need to explore and analyze transaction
data to better understand emergent user behavior and
mechanisms in blockchain systems. As such, visualization
and visual analytics (referred to as “VA”) tools can support
human analysts in deriving first hypotheses and models of
blockchain use.

We contribute a systematic overview of past solutions
proposed in the VA community, but also take a close look
at how blockchain visualizations are used by practitioners
and researchers in economics, computer science, and even
public audiences. For our survey, we collected visualizations
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from both online websites and academic articles and refer
to those articles and websites as “sources” throughout the
article. We systematically assessed the motivations and
characteristics of each source and defined a classification
scheme to group visualizations based on five aspects: target
blockchains, blockchain data, task domains, target users,
and visualization types. Finally, we provide a summary of
blockchain visualizations that have been proposed as well as
perspectives on aspects that are rarely explored and would
benefit from further exploration.

2 BACKGROUND ON BLOCKCHAIN TECHNOLOGY

The blockchain concept was introduced in the early 1990s as
a theoretical system to store a time-stamped digital document
that cannot be modified [5] [19]. The articles proposed data
structures and algorithms to store non-modifiable data and
maintain trust in decentralized systems without central
control. In 2008, a person or group of people under the
pseudonym Satoshi Nakamoto published the seminal article:
“Bitcoin: A Peer-to-Peer Electronic Cash System” [33] that
proposed a way to prevent double-spending of digital
currency transactions without requiring a trusted third-party
[43]. Since then, the blockchain has been implemented in
many different domains, including cryptocurrency, smart
contracts, and intellectual property management [42].

Among the existing blockchains in the public domain, Bit-
coin and Ethereum are the most well-known public blockchain
platforms. Both of them use different instantiations of the
blockchain concept. Bitcoin has currently the most widely
used cryptocurrency blockchain with the highest total market
capitalization (∼$140 billion), as of November, 2019 [11].
Bitcoin blockchain data alone contains over 470 million
transactions (over 250 GB of raw data) and is constantly
growing [O10]. Its currency is the Bitcoin (BTC), valued
∼$7.66k with important fluctuations.

On the other hand, Ethereum focuses on the implemen-
tation of smart contracts [48]. A smart contract is a piece
of computer code that is guaranteed to run in the same
way on all peers. Ethereum has a currency unit called Ether
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which is used to pay for machines executing the code.
As of November, 2019, there are more than 590 million
transactions amounted to over 200 GB data size in the
Ethereum ledger [O21]. It has been increasingly adopted
by companies that formed the Ethereum Enterprise Alliance
(EEA) in February 2017. Among the founding members were
big companies such as, Microsoft, JP Morgan, Accenture, and
Intel [15].

2.1 How does the Bitcoin blockchain work?

Since the Bitcoin blockchain is currently the most well-known
(popular) and widely-used (active) blockchain in the public
domain, we will start by explaining the mechanism behind
the Bitcoin system as many of its concepts also similarly
apply to other types of blockchains. In this section, we
provide a simplified description for general audiences and
refer to the book “Mastering Bitcoin: Programming the Open
Blockchain” [2] for more technical detail about the Bitcoin
blockchain.

The blockchain is a public ledger that records a list of
transactions in the distributed network. For Bitcoin, most
of these transactions are of cryptocurrency value transfers,
but more complex transactions are possible (e.g., simple
smart contracts, multi-signatures, etc.). Just like regular
transactions, blockchain transactions need to be validated:
the sending and receiving addresses need to be valid,
the sending account needs to contain enough value to be
transferred (technically called, unspent transaction outputs
(UTXOs)) and senders need to have the right to spend the
value. In traditional banks, these validations are performed
by the bank itself which has to be trusted to avoid double
spending or stealing.

With blockchain technology, the ledger is public and
distributed. The validation is performed through a consensus
reached by a pool of people called miners. Anyone can decide
to become a miner; it only requires very powerful machines
and a good network connection. The validation is done by
block, so when transactions are issued, they are buffered
and pending in the mempool (i.e. transactions waiting to be
confirmed/included in a new block). Those transactions are
collected and verified by the miners. Some transactions can
be rejected, and for the valid ones, they are included in
a new block. Then, the new block is added to a chain of
blocks (the updated ledger) that cannot be changed, hence
the term blockchain. The blocks are considered valid if they
are accepted by the majority of nodes.

The validation miners perform involves running com-
putationally expensive methods to verify the validity of
the transaction parties and amounts transferred. These
methods are based on public-key cryptography. There are
also technical differences between a traditional transaction
and blockchain transactions. In the Bitcoin blockchain, the
transactions are done from addresses and not from accounts.
An address can be created at any time for free, and is
represented as a long string with cryptographic properties
to be able to validate its owner. The owner of the address
cannot be inferred from the address itself so transactions are
almost anonymous, though they can be tracked, hence they
are referred to as pseudonymous. One transaction can involve
several input addresses and send value to multiple output

addresses. All the value of input addresses is sent to the
output addresses, so the input addresses end-up empty at
the end of the transaction, except that the transaction can
send change back to the owner, on any of his or her addresses.
If the amount transferred is less than the total amount held
by the input addresses, the change is left as a transaction fee
for the miner who will validate the block.

Because the blockchain is a decentralized system, a
concensus protocol is needed to decide which transaction is
valid and should be added to the ledger. Many blockchain-
based systems, including Bitcoin and Ethereum, adopt Proof-of-
Work (PoW) protocols. Miners are in charge of maintaining the
blockchain ledger and propose a new block to the network.
Since this operation is expensive, they need a reward. The
miner who successfully proposed a new block can reclaim
a coinbase transaction: it includes newly generated value and
transaction fees from every transaction in a block. Yet, the
validation is performed as a competition: multiple miners
perform the computations to validate the block which is, in
short, trying to find a number that gives a hash with a specific
form. The first miner who solves the puzzle can propose a
new block to the network and claim the reward if the majority
of miners agree to include it in their ledgers. Therefore,
miners get their reward but not regularly in proportion
to their computational power. The difficulty of mining is
decided by the total computation power in the blockchain
network (so-called hash rate) which often adapts to reach the
desired rate of adding a new block every 10 minutes. The
mining process ensures that the data in the Bitcoin blockchain
is consistent and prevents attacks from malicious users.

Like in Bitcoin, other blockchains share the general idea
of a growing, verifiable but immutable list of records stored
in blocks that are linked to one another. Cryptographic
measures are used to encode links between blocks. In contrast
to the bitcoin blockchain, however, other blockchains may
implement a different protocol to store transactions and
regulate the consensus in their decentralized networks.
Examples of alternative consensus protocols are Proof-of-stake
(PoS), Practical Byzantine Fault Tolerance (PBFT), Ripple and
Tendermint. We refer readers to Zheng et al.’s survey [50] that
describes different blockchain protocols in greater detail.

2.2 Elements of blockchain data
Here, we generalize blockchain data elements and illustrate
those data elements by giving concrete examples in Bitcoin.
We will refer to these generalized types of blockchain data in
our classification scheme.

A transaction is the most granular level of blockchain
data. It records a transfer of value between addresses. In
Bitcoin and other cryptocurrencies, a transaction record
contains pseudonymous input and output address(es) with
the value to transfer or received associated with each address.

Transaction records are stored in a data structure called
a block. Blocks hold and group a certain number of trans-
actions. Multiple blocks are connected in a linked list called
a ledger. Nodes are electronic devices that maintain and
distribute a copy of the ledger in the blockchain network so
that the data remains synchronized. Miners are special nodes
in the peer-to-peer network that participate in verifying
transactions and adding new blocks to the ledger, with the
possibility to receive a reward.
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An entity represents a real blockchain user or organiza-
tion behind a transaction. When input and output addresses
are pseudonymous, entities cannot be directly inferred from
the blockchain. In addition, an address is meant to be used
only once as a conventional practice in the cryptocurrency
blockchain community for privacy and security purposes.

Yet, we can trace the activities of addresses on the
blockchain without knowing the real-world identity of
entities behind transactions. Research has shown that sim-
ple heuristics can be used to group pseudonymous input
addresses into entities [1] [A13] [A15] [A16]. By simply group-
ing addresses, entities remain pseudonymous. Yet, external
data sources exist that provide a list of addresses that belong
to well-known entities such as WalletExplorer.com [22],
Bitcoin Forum [32], and Blockchain.info [O10].

2.3 Types of blockchain
Blockchains can be categorized into three types: pub-
lic blockchains, consortium blockchains, and private
blockchains [10] [50].

• Public blockchains are open blockchains in which any
participant can read, write, and submit transactions
to the ledger. Any participant can join the consensus
process to determine whether to add blocks and trans-
actions to the ledger. Public blockchains are suitable for
applications that are open for everyone and need fully
decentralized systems. Bitcoin is a well-known example
of a public blockchain.

• Consortium blockchains are semi-private blockchains
that restrict the consensus process to the selected group
of participants that are trusted by the system. This re-
duces the time to verify transactions and blocks but also
makes the systems partially centralized to selected nodes.
Permission to operate a node on a consortium blockchain
is granted by the overseeing group of organizations.

• Private blockchains are fully controlled by an organi-
zation that determines the consensus of the blockchain
ledger. The private blockchain owner has an authority
to allow or restrict the read permission to participants.
Private blockchains are centralized systems, similar to
database systems, and usually suitable for applications
which require high trust and privacy.

Some of the criteria described at the beginning of Sect. 2
differ for consortium and private blockchains, where, for
example, consensus is determined by selected nodes that can
be trusted, and therefore past records could theoretically be
tampered with. In the remainder of the article, we focus
on public blockchains as our systematic review did not
uncover analyses or tools dedicated to private or consor-
tium blockchains. In this article, we also do not consider
solutions like sidechains that allow interoperability between
blockchains or that speed up transaction validation (e.g.,
Lightning Network) because they introduce specificities that
we consider out of the general scope of our survey.

3 RELATED WORK

A large number of research disciplines are interested in the
blockchain, including algorithms, software formal verifica-
tion, database systems, computer security, system architec-
ture, data security, and economics. Here, we summarize

prior work on the state-of-the-art in blockchain research that
we reviewed to inform our own classification scheme of
blockchain VA tools.

Reviews on blockchain technology: Most of the existing
literature reviews on blockchain research focus on a technical
perspective. For example, Zheng et al. [50] presented a com-
prehensive review of the current advancement of blockchain
technology. The authors describe common blockchain charac-
teristics: decentralization, persistency, anonymity, and auditabil-
ity; and then compare the differences among consensus
algorithms. The article also lists real-world applications
that can benefit from blockchain architectures. Bonneau
et al. [8] provide an analysis of algorithms and protocols
used specifically in Bitcoin and cryptocurrencies. The article
highlights stability and security limitations in the current
cryptocurrency blockchains and proposes future challenges.
Yli-Huumo et al. [49] collected 48 research articles on
blockchain technology which the authors summarized into
7 categories based on technical challenges and limitations.
One of the technical challenges discussed in the article is
usability from a user’s perspective. The authors emphasized the
necessity of analytical tools to improve the ability of users to
analyze and detect patterns in the blockchain network. None
of these past reviews refer to visualization, which is the focus
of our review.
Reviews on blockchain analytics: Balaskas and Fran-
queira [3] examined analytic tools for the Bitcoin blockchain
that are available on the internet and proposed a taxonomy
based on analysis themes: analysis of entity relationships,
metadata, money flows, user behavior, transaction fee, and market /
wallets. The found tools are mainly able to track and monitor
cryptocurrency values, and therefore are useful for detecting
fraudulent transactions. Another article by Bartoletti et al. [4]
surveyed Bitcoin and cryptocurrency analysis tools found in
academic articles and websites. The tools in their survey were
classified based on analysis goals: anonymity, market analytics,
cyber-crime, metadata and transaction fees. For each analysis
goal, the authors further specified the kind of blockchain-
related data used in the tools, such as transaction graphs,
address tags, IP addresses, mining pools, exchange rates, and lists of
DDoS attacks; and listed all sources that they retrieved. Based
on the survey, the authors developed a general framework
for blockchain analytics and showed use cases of analyzing
transaction fees and Bitcoin metadata. Both articles collected
tools dedicated only to the Bitcoin blockchain and classified
them based on analytics tasks rather than visualization of
blockchain data; which is the goal of our present work.
Reviews on blockchain visualization: We found only
one literature review on blockchain visualization. Sundara
et al. [41] reviewed 8 Bitcoin tools available on the internet
and provided a short description on visual representations
and implementations. Most tools in their survey performed
real-time monitoring for Bitcoin transactions. Nonetheless,
the authors neither performed an exhaustive search nor
proposed a method to classify the tools they found. In our
previous work, we collected 46 online Bitcoin visualization
tools using a systematic review approach and classified them
based on analysis tasks and visual representations [46]. In this
article, we extend our data collection to include other kinds of
blockchains (e.g., Ethereum) from research articles and online
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sources, and provide a more complete classification scheme
that additionally considers blockchain data visualized, target
audiences, and task domains.

4 DATA COLLECTION

We identified visualization tools for blockchain data from
both academic articles and online sources. In this section, we
describe the data collection procedure and the criteria we
used to include literature related to blockchain visualization.

4.1 Identifying search idioms

The first step in our analysis was to determine the right search
terms for identifying the most relevant articles. We chose four
starting search terms: “blockchain”, “bitcoin”, “cryptocurrency”,
and “ethereum”; as we expected them to result in good
coverage of blockchain-related articles. To narrow down
the literature to tools related to visualization techniques
for blockchains, we used the character sequence “visual” to
cover keywords such as “visualization”, “visual analytics”,

“visualizing”, etc. In addition, we used the character sequences
“data analy” and “graph” to return articles that did not
specifically use any “visual”-related key terms. We decided to
be relatively broad in our search terms in order to optimize
for recall rather than precision of the search result.

4.2 Searching academic articles

We selected 6 scientific databases to retrieve articles: (1)
IEEE Xplore, (2) ACM Digital Library, (3) ScienceDirect, (4)
DBLP, (5) Springer Link, and (6) Google Scholar. We used
search engines available in those databases and applied the
above search idioms to retrieve relevant articles. The initial
search was performed in April 2019, but we included newly
published relevant articles that appeared later up to the time
of submission.

After these individual searches, we combined resulting
articles from these six databases and removed duplicates.
We next screened the returned results by reading the title
of returned articles one by one and selected articles that
seemed to potentially include blockchain visualizations
beyond simple charts. If the title did not clearly describe
the relevance of an article, we additionally read the abstract
before deciding on inclusion in our survey. Inclusion criteria
were: (a) the article is related to VA on any blockchain, and
(b) the article includes a data analysis on any blockchain
technology and uses visualization to communicate results.

4.3 Searching online web-based visualization

To collect blockchain visualization tools that are available
on the internet, we typed every search idioms from the
combination of (“blockchain” OR “bitcoin” OR “cryptocur-
rency” OR “ethereum”) AND (“analysis” OR “analytics” OR
“visualization” OR “visual analytics” OR “graph” OR “chart”)
on Google Search and retrieved the first 100 results. We
followed the link to each web page one by one, looked at
it, and checked whether the web page contained blockchain
visualizations. In the case of web pages that contained links
to other visualization tools, we followed each link in the
web page and added the link to our list. To be selected, the

web page had to contain interactive graphics showing raw or
aggregated data that is stored on a blockchain. We excluded
web pages that showed only market data on cryptocurrency
exchanges (e.g., the current $ value of a Bitcoin).

4.4 Data collection result
Using our systematic review approach, we collected the
following number of sources:

Literature Survey Sources

Visualization Articles Analysis Articles Online Total
14 17 45 76

Most of the tools we found came from online sources
(59%) while visualization articles represented only 19% of
all sources. The remaining 22% of sources are data analysis
articles that provide empirical analyses of the blockchain
networks and communicate the findings using static images.
We decided to include data analysis articles to understand
possible questions that researchers are interested in and
common visualization types they used to convey their results.

Throughout this article, we include references to our
sources using the following naming scheme: visualization
articles ([V#]), data analysis articles ([A#]), and online sources
([O#]). Full references to these sources are available in Table 1.

5 CLASSIFICATION SCHEME AND METHODOLOGY

In defining our classification scheme, we considered many
visualization-related categories such as data, task, types of
visualizations, or end-users. After several rounds of open
coding with an evolving code-set, we converged on five main
aspects for delineating blockchain visualization sources: (1)
target blockchains, (2) blockchain data, (3) target audiences,
(4) task domains, and (5) visualization types. Fig. 1 gives
an overview of our classification scheme. In this section, we
present the classification scheme we applied to each source
as well as summary statistics that show how many sources
included visualizations within the given category. As a result,
the total counts and percentages we report do not necessarily
correspond to 76 / 100%—the number of total sources we
collected—as sources may have included multiple types of
visualizations in the classification scheme.

5.1 Target Blockchains
Blockchain visualization sources in our survey were targeted
at the following blockchains:

Number of sources for different target blockchains

Bitcoin Ethereum Others
60 19 10

With 79%, data from the Bitcoin blockchain was the most
common to be visually represented. This is not surprising as
the Bitcoin blockchain is the oldest running cryptocurrency
blockchain and still widely used nowadays. The Ethereum
blockchain was the second-most common visually repre-
sented blockchain (25%). Only 13% of our sources were
dedicated to other kinds of blockchains—all cryptocurrency
blockchains—such as those of Namecoin [34], Litecoin [28],
Dogecoin [44], and Dash [12].
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Classification Scheme of Visualization on Blockchain Data

Target Blockchains Blockchain Data Target Audiences Task Domains

Bitcoin
Ethereum
Others

Blockchain components
Entities
Nodes
Mining
Network activities
External data

Novices
Intermediates
Experts

Transaction detail analysis
Transaction network analysis
Cybercrime detection
Cryptocurrency exchange
analysis
Peer-to-peer (P2P) network
activity analysis
Casual/entertaining information
communication

Charts
Time series
Tree and graph visualizations
Multi-dimensional
visualizations
Map-based visualizations
Casual visualizations

Visualization Types

Fig. 1. The diagram shows the classification scheme of visualizations on blockchain data we developed after several rounds of assessing and
characterizing sources we collected.

We did not find visualization tools on consortium and
private blockchains, such as Hyperledger [45] and Dragon-
chain [14], likely because those kinds of blockchains are
developed inside private organizations and data is not
publicly available to analyze and visualize. However, many
of the visualization techniques we surveyed can apply with
modification to private and consortium blockchains as the
underlying technological concepts are often similar.

5.2 Blockchain Data
We categorized seven different types of blockchain data that
were represented:

Number of sources with different blockchain data

Blockchain
Components Entities Nodes Mining Network

Activities
External

Data
56 16 11 15 27 18

The most common category of data visualized was
blockchain components (74%). Blockchain components are
fundamental data types stored in public ledgers, including
transactions, addresses, and blocks. Entities data require pre-
computation to identify blockchain users from anonymous
addresses and was used in 21% of all sources.

Nodes play an important role in the blockchain network.
However, node information was only presented in 14% of our
sources. Nodes ensure consensus through mining, to verify
transactions and store them in the public ledger. Statistics of
mining activity was presented in 20% of our sources. The
data can be directly calculated from the blockchain such as,
for Bitcoin, the average miner’s speed to solve the proof-of-
work problem (hash rate), mining difficulties over time, and
the amount of reward to the successful miners.

Network activities information were the second most
common data source (36%)—usually displayed using ag-
gregated statistics describing the whole network. Network
activity data usually included time-based data on the number
of unique addresses used, the total number of transactions
recorded in a given time period, the number of transactions
waiting to be confirmed (mempool), and the number of
unspent transaction outputs (UTXOs).

External data appeared in 24% of all sources to convey
meaningful contexts such as cryptocurrency exchange rates,

online news, socio-economic data (e.g., percentage of internet
users, gross domestic product (GDP) per capita, or the
human development index (HDI)), social media information,
or Google Trends data. The most common external data
source was data on cryptocurrency exchanges, in particular,
to describe conversion rates of a cryptocurrency value to a
government-backed currency, such as the exchange rate of
Bitcoin to US Dollar.

5.3 Target Audience’s Levels of Analysis

We categorized three types of target audiences for blockchain
visualization tools and visualizations communicated in data
analysis articles based on levels of analysis that audiences
demand to the tool:

Number of sources for different target audiences

Novices Intermediates Experts
16 30 30

The majority of existing blockchain visualizations were
targeted at users required for analyses at intermediate or
expert levels. Sources for intermediate users (39%) aimed
for active blockchain users such as miners, cryptocurrency
traders, or enthusiasts who may be interested in monitoring
blockchain activities or look at individual transactions or
blocks. Among those sources, only two visualization articles
targeted this audience.

Sources for blockchain experts (39%), such as economists
or fraud investigators, targeted users who may perform
in-depth analyses of activities on the blockchain. Sources
for experts commonly allowed the flexible investigation of
data at multiple levels of scale (from individual transactions
to network activities) and using multiple (potentially pre-
computed) dimensions of data. All data analysis articles
(17 sources) presented analyses of blockchain networks
using specific calculated measures, such as the growth of
blockchain adoption, the degree of connectivity between
entities, or the centrality of entities in the transaction network.
On the other hand, most visualization articles (12 out of
14 sources) proposed interactive systems that allow data
analysis experts to engage in exploratory analysis; while the
other two targeted intermediate users. We found only one
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online source for expert users that allowed to track Bitcoin
value movement.

Of the sources we found 21% targeted novice audiences—
all were online sources aimed at casually informing curious
visitors about the Bitcoin blockchain.

5.4 Task Domains

We categorized our blockchain visualization tools and data
analysis articles into six focus task domains: (1) transac-
tion detail analysis, (2) transaction network analysis, (3)
cybercrime detection, (4) cryptocurrency exchange analysis,
(5) peer-to-peer (P2P) network activity analysis, and (6)
casual/entertaining information communication. These task
domains are not mutually exclusive but helped us to detect
goals for the development, analysis, and exposure of existing
tools.

Number of sources with different task domains

Detail Network Cybercrime Exchanges P2P Casual
24 24 12 10 27 12

P2P network analysis (36%) was the most common task
domain we found in blockchain visualization tools, followed
by transaction detail analysis (32%), and transaction network
analysis (32%). We observed that cybercrime detection
(16%) is a task domain focused on investigating fraudulent
activities and cyberattack events in the blockchain, but still
largely missed in the existing sources. Moreover, we found
visualizations for cryptocurrency exchange analysis (16%),
and for casual/entertaining information communication
(13%).

Transaction Detail Analysis: Transaction detail analysis
tools often expose basic statistics on the level of individual
transactions, of blocks, and sometimes related to individ-
ual blockchain users (entities) such as individual people,
exchange platforms, dark marketplaces, gambling services
or companies.

Since the most common application context for
blockchains currently is cryptocurrencies, it is not surprising
that all 24 sources in this task domain had to do with the com-
munication of basic information on financial transactions—17
online sources and 7 visualization articles.
Transaction Network Analysis: A blockchain transaction
network is a bipartite graph connecting addresses through
transactions. Half of the sources in this task domain were
from data analysis articles (12 out of 24 sources). These
articles analyzed transaction networks and described the
structures and dynamics of blockchain transaction networks.
These articles included visualizations that represented mea-
sures calculated from the transaction network, such as
the number of addresses (node), and the distribution of
transactions received (in-degree) and sent (out-degree) over
time.

Moreover, there were 7 visualization articles and 5 online
sources focused on visualizing large blockchain transaction
networks. These also allowed for interactive exploration
of transaction networks based on specific events or group
of entities. These tools generally did not report statistical
network measures but focused on representing the variety
or temporal dynamics of address connections.

Cybercrime Detection: Cybercrime is a serious threat to
the use of blockchains. This task domain is particularly
common for the cryptocurrency community because of
the historic frequency of fraudulent activities (e.g., money
laundering and illegal trading) as well as cyberattacks (e.g.,
denial-of-service and Sybil attacks) on most cryptocurrency
blockchains.

We found a total of 12 sources that discussed work
related to fraudulent activities in the network—4 analysis
articles focused on specific fraudulent events, such as laundry
services, online drug market places, denial-of-service attacks,
and anonymity of users. Besides these, there were 7 visu-
alization articles that proposed fraud detection tools while
only 1 online source allowed experts to investigate criminal
activities in blockchains. All of the existing cybercrime
detection tools were designed to investigate cybercrime
and fraudulent activities after they occur. Therefore, we
still lack tools to monitor and automatically detect potential
cybercrime activities in real-time.

Cryptocurrency Exchanges Analysis: Cryptocurrency ex-
changes are an important target domain particularly to
cryptocurrency blockchains such as Bitcoin. Tools in this
target domain present exchange market statistics together
with financial data related to different cryptocurrencies, such
as the exchange rate between a cryptocurrency value to
the US Dollar. In contrast to the transaction detail analysis
task domain, tools that targeted cryptocurrency exchanges
focused on external data (mostly currency conversion rates
and trading volume) rather than looking at fine-grained
information on any specific transactions or their aggregation.

In this review, we did not systematically collect all
tools that focused on market-related data without also
including some data stored on a blockchain. Instead, we
included 10 sources that visualize cryptocurrency exchange
statistics together with blockchain data—9 online sources
and 1 visualization article. A comprehensive review of
online cryptocurrency exchange sources can be found in
our previous work [46].

P2P Network Activity Analysis: Several sources targeted
peer-to-peer (P2P) network activity analysis. This target
domain concerns the presentation of aggregated statistics
that gives an overview of activities in the P2P network,
such as mining, transaction rates, transaction volume, mem-
pool statistics, sometimes coupled with inferred geographic
locations. We found a total of 22 interactive visualization
tools—21 online sources and 1 visualization article—for
analyzing P2P network activities. On the other hand, 5 anal-
ysis articles presented longitudinal analyses of blockchain
network characteristics. In contrast to transaction network
analysis domain, P2P network analysis focuses the entire
P2P blockchain network, i.e. what is its state and how well
does it work as a whole system.

Casual/Entertaining Information Communication: In addi-
tion to the more serious analysis target domains outlined
above, we also found 12 sources exclusively from the web
that were built to attract the attention of novice audiences
to blockchain technologies and engage them through casual
information visualization.
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TABLE 1
Classification table of blockchain data visualization sources

Target Blockchain Data Audience Task Domain Visualization Type
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Visualization Articles
[V1] Tendrils of Crime x x x x x x
[V2] BlockChainVis x x x x x x
[V3] Bogner x x x x x x x
[V4] Chawathe x x x x x
[V5] BitConeView x x x x x x
[V6] Bitcoin Entity Explorer x x x x x x
[V7] BitConduite x x x x x x x x
[V8] Blockchain Explorer x x x x x x x x
[V9] McGinn et al. 2016 x x x x x x x
[V10] Norvill et al. x x x x x
[V11] BiVA x x x x x x
[V12] Schretlen et al. x x x x x
[V13] BitVis x x x x x x x x
[V14] BitExTract x x x x x x x x x x

Total 12 2 0 13 5 0 1 1 1 0 2 12 7 7 7 0 1 0 2 7 10 3 0 0
Data Analysis Articles
[A1] Alqassem et al. x x x x x x x
[A2] Aw et al. x x x x x x x
[A3] Badev and Chen x x x x x x x x
[A4] de Balthasar et al. x x x x x x x
[A5] Bartoletti and Pompianu x x x x x x
[A6] Bistarelli et al. x x x x x
[A7] Chang and Svetinovic x x x x x x
[A8] Chen et al. x x x x x x
[A9] Di Battista et al. x x x x x x
[A10] Lischke and Fabian x x x x x x x x x x x x x
[A11] Maesa et al. x x x x x x
[A12] McGin et al. 2018 x x x x x x x
[A13] Meiklejohn et al. x x x x x x x x
[A14] Norbutas x x x x x x x
[A15] Parino et al. x x x x x x x x x
[A16] Reid and Harrigan x x x x x x x x
[A17] Ron and Shamir x x x x x x

Total 14 1 2 11 8 2 0 4 4 0 0 17 0 12 4 1 5 0 12 13 10 0 2 0
Online Sources
[O1] EthStats.io x x x x x x x x
[O2] Alethio x x x x x x
[O3] BitBonkers x x x x x
[O4] Bitcoin Globe x x x x x
[O5] BitcoinWisdom x x x x x x x x x
[O6] Etherchain x x x x x x x x x x
[O7] chainFlyer x x x x x x
[O8] BitForce5 x x x x x
[O9] BitInfoCharts x x x x x x x x x x x
[O10] Blockchain.info x x x x x x x x x x x x x x
[O11] Blockchair x x x x x x x x x x x
[O12] BlockSeer x x x x x
[O13] BTC.com x x x x x x x x x x x x x
[O14] Bitcoinity x x x x x x x x x
[O15] Coin Dance x x x x x x x x x
[O16] CoinDesk x x x x x x x x x
[O17] DailyBlockchain x x x x x
[O18] DashRadar x x x x x x x x x x x
[O19] The Bitcoin Big Bang x x x x x
[O20] ethernodes.org x x x x x x x x x
[O21] Etherscan x x x x x x x x x x x x x
[O22] EtherView x x x x x
[O23] Ethviewer x x x x x x
[O24] Ethplorer x x x x x x x
[O25] Plantoids x x x x x
[O26] Gastracker.io x x x x x x x x x
[O27] Interaqt x x x x x
[O28] Federal Bitcoin x x x x x
[O29] Johoe’s Mempool x x x x x x
[O30] Symphony of Blockchains x x x x x
[O31] OXT x x x x x x x x x x
[O32] Bitcoin Visuals x x x x x x x x x
[O33] BitListen x x x x x
[O34] BitcoinCity x x x x x
[O35] EthStats.net x x x x x x x x
[O36] Blockchain 3D Explorer x x x x x
[O37] Statoshi.info x x x x x x
[O38] On Brink x x x x x
[O39] TradeBlock x x x x x x x x x x x x
[O40] TX Highway x x x x x
[O41] Bitcoin Monitor x x x x x
[O42] Bitcoinrain x x x x x x
[O43] Bitcoin VR x x x x x
[O44] Wizbit x x x x x x
[O45] BitNodes x x x x x x

Total 34 16 8 32 3 9 14 22 13 16 28 1 17 5 1 9 21 12 17 20 9 2 8 12
Grand Total 60 19 10 56 16 11 15 27 18 16 30 30 24 24 12 10 27 12 31 40 29 5 10 12
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5.5 Visualization Types
We analyzed visual encodings in blockchain visualization
tools and found six common visualization types:

Number of sources with different visualization types

Charts Time Series Graphs MD Vis Maps Casual
31 40 29 5 10 12

Time series (53%) were the main visualization type
for blockchain data, followed by basic charts (41%), and
tree and graph visualizations (38%). This is not surpris-
ing because blockchain components contain time-stamped
information and addresses are connected via transactions
forming transaction networks. Other visualization types
often showed blockchain data in a specific context. For
example, map-based visualizations (13%) displayed global
blockchain node distributions. We found casual information
visualizations (16%) only in casual/entertaining sources.
Multi-dimensional visualizations (7%) were used to encode
blockchain component data that contain multiple attributes.

Charts: Charts showed predominantly two or three (never
four) data dimensions using basic representation types
such as bar charts, pie charts, histograms, scatterplots, and
heatmaps. We counted basic charts with a time dimension
as “time series” but found 31 sources that included basic
charts without a time dimension—17 online sources, 12 data
analysis articles, and 2 visualization articles.
Time Series: Time series were the most common visual-
ization type because timestamps are an essential attribute
in blockchain data. We found 40 sources that had at least
one time series element—20 online sources, 13 data analysis
articles, and 7 visualization articles. Most commonly time
series showed the activity of a blockchain address or entity
summarized across different time granularities. Time series
were often presented as line plots and bar graphs with a
temporal x-axis. We also found other visualization techniques
for time-oriented data including tile maps [30], a heat map
with calendar divisions to encode activity statistics with one
or two temporal dimensions.
Tree and Graph Visualizations: Tree and graph visualiza-
tions were a common choice to represent money flows and
transaction networks in the sources we surveyed. These
representations typically showed the connection of transac-
tions from input addresses to output addresses. We found
29 sources with trees or graphs—10 visualization articles, 10
data analysis articles, and 9 online sources. Node-link diagrams
were the most common technique to show the connectivity of
blockchain components. A few sources used different graph
visualization techniques, such as an adjacency matrix, a Circos
diagram [27], or customized visualizations.
Multi-dimensional Visualizations: We refer to multi-
dimensional visualizations as visualizations designed for
showing data of higher dimensions than basic charts, includ-
ing small-multiple glyphs, self-organizing maps, a classification
tree, a 3D scatterplot, spider charts, and a parallel corrdinates plot.
We found only 5 sources in our survey that included multi-
dimensional visualizations—3 visualization articles and 2
online sources.
Map-based Visualizations: Map-based visualization was
a common technique to display geographical information
associated with the blockchain. We found 10 different

Fig. 2. BitInfoChart [O9] shows the historical Bitcoin balance of an
address in both Bitcoin currency and exchange rate to the US Dollar.

sources—8 online sources and 2 data analysis articles. All
of these sources in our survey visualized thematic maps,
showing statistical information about a blockchain related
to geographic area. We found 3 point maps, 2 density
maps, 4 choropleth maps, and 2 virtual globes in 3D. For
example, Lischke and Fabian [A10] included 2 map-based
visualizations: an area map and a choropleth map.
Casual Visualizations: We grouped a set of non-standard,
custom-made graphical representations of blockchain data as
casual information visualizations [36]. All casual visualizations
came exclusively from 12 online sources. These sources did
not use common charts or plots as described above. Instead,
they depicted basic blockchain components in unique ways
to attract attention. Visualizations used included 3D ani-
mated balls, 3D toy models of buildings and roads, or a
flying balloon in a 360-degree view. We even found one data
physicalization project for blockchain data: [O25], [O38].

6 DETAILED ANALYSIS PER TASK DOMAIN

Since task domains are an important distinguishing factor
in our classification scheme, we describe patterns of sources
for each task domain in greater detail. We highlight some
representative examples and discuss blockchain data and
visualization types that are commonly used in those sources.

6.1 Transaction Detail Analysis
The main goal of transaction detail analysis is to analyze
transaction patterns for individual blockchain components
(i.e. transactions, addresses, and blocks) or derived entities in
blockchain networks. We distinguish three types of transac-
tion detail analyses based on the blockchain data visualized:
(1) visualization of financial transactions, (2) visualization of
blocks, and (3) visualization of multiple entities.

Visualization of financial transactions: Visualizations
of this category allow intermediate users to search and
explore the details of cryptocurrency value transactions,
addresses, and blocks, for example for the Bitcoin ([O7],
[O9], [O10], [O11]), Ethereum ([O1], [O9], [O10], [O11], [O21],
[O24], [O26]), Litecoin ([O9], [O11]), and Dash ([O9], [O18])
blockchains.

Most tools in this task domain focus on representing
financial transaction activities in a specific address or entity
such as the total received, sent, or the balance amount
over time in the form of time series. BitInfoCharts [O9] is a
representative example in this category that uses line plot time
series to show the balance amount of individual addresses
for several cryptocurrencies, including a conversion rate to
US Dollar (Fig. 2). Other time series visualizations have also
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Fig. 3. Schretlen et al. [V12] proposed a tile map encoding which the
authors later applied to the distribution of Bitcoin amount exchanged
over time. The x-axis represents the time of transactions and the y-axis
represents the log10 Bitcoin amount. The frequency of transactions in
each value is encoded as the color scale. It is designed to help detect
outlier activities or interesting patterns for further investigation. (Image
from a public presentation, used with permission of Uncharted Software
Inc.)

Fig. 4. Ethviewer [O23] visualizes the Ethereum blockchain in real-
time. Each circle represents a transaction in the mempool waiting to be
collected in the block. The color encodes different types of transactions
and the size encodes the value associated with the transaction. When
the transactions are included in the block, the screen shows the animated
circles moving to the box. The color of the box header changes from red
to green as the block is confirmed. At the top of the webpage, two pie
charts show information about gas associated with transactions.

been used. Blockchain Explorer [V8], for example, visualizes
weekly or monthly transaction volumes as a tile map [30].

In contrast to most sources in this task domain that
show aggregated statistics on transactions and addresses,
Schretlen et al. [V12] proposed an interactive visualization
for exploratory analysis of transaction data stored in the
Bitcoin blockchain. It used a large scale tile map (Fig. 3) to
display the distribution of Bitcoin transaction values.

Visualization of blocks: We found 3 sources that visual-
ized the content of blocks: [V4], [V14], [O31]. Chawathe [V4]
applied a self-organizing map to create a low-dimensional
representation of transactions in a block. The self-organizing
map is visualized as a hexagonal grid of wind rose plots to
show the main characteristics of transaction groups in a block.
Another tool, Ethviewer [O23], shows the real-time transac-
tion pool in Ethereum. The tool shows a chain of linked

Fig. 5. OXT Landscapes [O31] provides an interactive 3D scatterplot
to explore attributes of all blocks in the Bitcoin blockchain. Each dot
represents a block in the Bitcoin blockchain in 3-dimensional space. Each
dimension encodes an attribute describing the block, including block
size, number of transactions, number of addresses in the block, or total
transaction fee.

blocks as a node-link diagram (Fig. 4). OXT Landscapes [O31]
is the only source that uses 3D visualization to represent
attributes of blocks as a 3D scatterplot (Fig. 5).

Visualization of multiple entities: We found 2 sources
that presented financial information of entities allowing
experts to explore single or a group of entities and drill
down to see transaction behavior: [V7], [V14]. Attributes that
characterize entities were usually represented using multi-
attribute visualizations.

BitConduite [V7] is a visual analytics tool for exploring
entities in Bitcoin using multiple views (Fig. 6). It allows
analysts to filter groups of entities visually from a classification
tree. The tool also clusters groups of entities that have
similar activity patterns, and encodes them as radar charts
to represent quantitative attributes of entities, such as the
number of transactions, time active, and the average number
of input addresses per transaction. BitExTract [V14] is another
visual analytics tool that also falls in the category of entity
visualizations, focusing on the analysis of activities among
Bitcoin exchanges, including transactional volume, market
share, and connectivity between exchanges. (Fig. 7 A, B, C).

6.2 Transaction Network Analysis
Transaction network analysis sources showed generally
three kinds of information: (1) transaction networks, (2) the
network of entities, and (3) value flows tracing the transfer
of cryptocurrency values through transactions over time.
These sources were always represented as tree and network
visualizations. In particular, node-link diagrams were most often
used to show the connectivity among blockchain components.
A common technique to arrange nodes was the force-directed
graph layout.

A transaction network is a directed bipartite graph
connecting addresses via a transaction. There are two kinds of
nodes: one type for addresses and one for transactions. Two
kinds of directed edges exist in such a graph. Input edges
connecting input address(es) to a transaction and output
edges connecting a transaction to output address(es).

We found real-time transaction networks in three online
visualization tools: [O8], [O17], [O18]. For example, Daily-
Blockchain [O17] shows a live Bitcoin transaction network
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Fig. 6. BitConduite [V7] is a tool to analyze entity groups for the Bitcoin
blockchain. (A) The filter view provides a time series and multiple
histograms to filter Bitcoin entities. (B) The tree view is a classification
tree used to show the result of applied filters. (C) After that, entities are
clustered into groups. Averages of each metric visualized as star glyphs.
(D) Entities in a selected group are presented as glyphs encoding their
attributes. (E) Data analysis experts can select an entity and explore its
activity timeline.

where the nodes evolve over time. Users can zoom into and
hover over nodes to see additional information. However, the
transaction network is growing over time which decreases
the performance of the graph rendering. Bitforce5 [O8], in
contrast, only shows a limited number of the most recent
transactions. Therefore the performance remains the same
over time.

Several visualization articles proposed tools to explore
transaction networks based on specific events: [V2], [V6],
[V9], [O36]. The BlockchainVis [V2] tool displays a fully
connected transaction network of a transaction or an address
entered by the user (Fig. 8). McGinn et al. [V9] proposed a
system to display a transaction network on a large screen on
which users can pan, zoom, and hover over to get a better
overview or more detail. Blockchain 3D Explorer [O36] is the
only tool in this domain that visualizes a transaction network
as a 3D graph. It also supports virtual reality systems for
Google Cardboard to explore the blockchain network in
an immersive way. Instead of showing a static transaction
network as a node-link diagram, Bitcoin Entity Explorer [V6]

Fig. 7. BitExTract [V14] is a multiple-view visual analytics tool to compare
the transaction activities and relationships of Bitcoin exchange entities.
(A) The comparison view is an interactive parallel coordinates plot to
compare financial activities of Bitcoin exchanges ordered by user-defined
ranks (rows in each bar) over months (axes). (B) The exchanges list
view displays transactional volumes of Bitcoin exchanges over months
as a time series bar chart. (C) The massive sequence view uses a heat
map-like representation to show the transaction surplus of exchanges
through their entire history of those entities. (D) The connection view is
a node-link diagram encoding the volume of transactional exchanges.
Each node is sorted and colored based on the continent of origin of the
exchange. The edge thickness shows the intensity of activities between
two exchange nodes. The view becomes an ego-network graph when
analysts drag the exchange node of their interest into the center of the
network.

Fig. 8. BlockchainVis [V2] allows for creating transaction networks and
analyzing the connectivity of transaction exchanges in Bitcoin. The tool
provides a filter panel that allows analysts to filter out unimportant nodes
from the graph based on block height, transaction value, and address
balance.

is an exception in that it presents a transaction activity
timeline of a chosen entity with a timeline-based squarified
graph layout connecting input and output addresses over
time (Fig. 9).

A network of entities shows the connectivity between
entities in the blockchain network: [V14], [A15], [O19]. Nodes
represent entities and edges represent connectivity through
transactions. For example in Bitcoin, an edge represents the
total amount of exchanged values between two entities and
is absent if no value was exchanged.

The Bitcoin Big Bang [O19] is an online visualization
presenting a network of entities as a node-link diagram con-
necting well-known wallets and highlighting the transaction
volume between them. The color of nodes represents the type
of nodes, such as payment processors, dark marketplaces,
and gambling services. It adds a temporal dimension to the
node-link diagram by arranging the node distance from
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Fig. 9. The Bitcoin Blockchain Entity Explorer [V6] shows a transaction
activity timeline of addresses that likely belong to the same entity. The
timeline shows an entity’s list of sending and receiving addresses that
are involved in transactions and highlights the sending and receiving
activities with glyphs that encode transfer amount and direction. This
figure shows the activity of a Bitcoin miner who combines 20 mining
transactions and sends the combined value to two output addresses.
Green addresses on the left likely all belong to the same miner.

Fig. 10. Parino et al. [A15] present the movement of Bitcoin value among
countries in 2013 as a Circos diagram. The flow of transaction exchanges
is a ribbon in which the size is proportional to the amount transferred
between the two countries. The external circle shows the total sending
and receiving money for each country. (CC BY 4.0)

the center based on the time of their first appearance.
Users can select a node to highlight the transaction flow
on that node. BitExTract [V14] has a connection view that
shows the relationship of exchange entities using a circular
network layout to investigate the interaction of entities in the
blockchain network (Fig. 7 D). Parino et al. [A15] describe
a flow network of Bitcoin transactions aggregated at the
country-level. The authors use a Circos diagram [27], also
known as dependency wheel, to visualize the total transaction
exchanged between major countries (Fig. 10).

A value flow presents traces of cryptocurrency value
given a particular transaction or address of interest. We most

Fig. 11. Blockchain.info [O10] visualizes the flow of Bitcoin money as a
tree graph. The size of the nodes is proportional to the total value sent or
received from an input or output address.

Fig. 12. BitConeView [V5] is a graphical tool to analyze the pattern
of Bitcoin value flows over time by means of transactions. Each block
contains spending transactions in the upper bar and unspent transaction
output (UTXOs) in the lower bar. The width of each bar indicates the
amount of a transaction. (© 2015, IEEE)

commonly saw it represented as a tree diagram connecting the
flow of values in chronological order. In this layout, a node
represents a transaction or address and an edge represents
the amount of value exchanged. We found 6 sources that
visualized value flows: [V1], [V5], [V13], [A17], [O10], [O12].
For example, Blockchain.info [O10] provides a tree diagram
in which users can click through tree levels to follow value
flow from connected input and output addresses (Fig. 11).
Instead of presenting the value flow as a tree structure,
BitConeView [V5] provides a unique diagram showing the
value flow of a seed transaction as it appears in blocks from
top to bottom (Fig. 12).

All of the examples above present static graphs that do
not consider the timestamp of transactions. We found a
unique value flow graph in BitInfoCharts [O9] that visu-
alizes the flow of transactions over the entire history of a
cryptocurrency blockchain (Fig. 13) as a kind of node-link
diagram arranged using a linear layout. The same kind of
graph also appeared in McGinn et al. [A12] as an adjacency
matrix representation.

https://creativecommons.org/licenses/by/4.0/
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Fig. 13. The Bitcoin visualization in BitInfoCharts [O9] shows the trans-
action exchanges network between blocks for the entire Bitcoin network.
The graph uses a linear graph layout to display the evolution of block
height on the x-axis. The edges encode the total value of transaction
outputs in a block that has been spent in the next blocks. Additional
line and bar charts are added to show descriptive information on the
blockchain including price, hash rate, and the number of transactions.

6.3 Cybercrime Detection

The cybercrime detection task domain includes tools that are
able to detect suspicious transactions and entities or inves-
tigate cyber-attack events. Sources in this task domain also
include shared characteristics with sources in the transaction
detail analysis and transaction network analysis domains, but
additionally, have very specific user tasks and subsequently
focused features for cybercrime detection. Current blockchain
visualization tools for cybercrime detection focus on two
questions: (1) value flow analysis to see how cryptocurrency
value is propagated and (2) transaction network analysis
to see how the blockchain network reacted in light of
cybercrime events.

One way to detect fraudulent financial activities in cryp-
tocurrency blockchains is to analyze value flows. Exemplary
tools dedicated to in-depth value flow analysis: [V1], [V5],
[V13], [O12]. BlockSeer [O12] is an online money flow
analytical tool that allows blockchain experts to construct
a deep transaction flow graph to trace money laundering
and stolen Bitcoins. Di Battista et al. [V5] and Ahmed
et al. [V1] proposed transaction graph construction tools
dedicated to analyzing the mix of Bitcoin stolen money in
the transaction flow (i.e. taint analysis). To analyze the degree
of money mixing from the original transaction, Di Battista
et al. [V5] introduced a purity measurement, the degree that
a seed transaction is mixed with other transactions. Ahmed
et al. [V1] use a First-In-First-Out (FIFO) algorithm to track
the diffusion of tainted transactions in both forward (i.e.
starting from a stolen coin to the following transactions) or
backward (i.e. tracing the previous transactions until the
origin of a tainted coin is found) directions. The authors
developed an interactive visualization tool to display taint
propagation as a node-link tree visualization.

We also found visualization sources for transaction
network analysis on specific events or group of entities:
[V2], [V9], [V11], [V13], [A4], [A6], [A12], [A14], [A16]. For
example, BitVis [V13] uses multiple graph visualizations with
a filtering panel to display transaction networks for detecting
abnormal and suspicious Bitcoin entities. Two articles from
McGinn et al. [V9], [A12] show how their tool can be used to
visualize a transaction network during cybercrime attacks,
including denial-of-service attacks where an attacker tries
to fill up a block with spam transactions (Fig. 14). The

Fig. 14. McGinn et al. [V9] displayed transaction networks during
transaction rate attack incidents in the Bitcoin network at block heights
364133 (left) and 364618 (right). (CC BY 4.0)

Fig. 15. Blockchain.info [O10] provides a candlestick chart displaying the
historical price of cryptocurrency exchanges.

BlockChainVis tool [V2] is another transaction network
tool that allows to filter specific parts of the transaction
network during an event of interest (Fig. 8). It has been
used to analyze the WannaCry ransomware incident on May
12th, 2017 [A6]. Other data analysis articles performed ad-
hoc analyses of transaction networks during attacks on the
Bitcoin network, including money laundry services [A4],
online drug marketplaces [A14], and the network of Bitcoin
thefts [A16].

6.4 Cryptocurrency Exchange Analysis
Cryptocurrency exchanges convert cryptocurrency values
into real-world currencies, such as US Dollars. As such, much
of the data related to these exchanges is not stored on the
blockchain itself. Our analysis of cryptocurrency exchange
data is limited to those sources that relate any externally
captured data to data stored on the blockchain. Our sources
in this task domain either (1) cover the conversion of cryp-
tocurrency value to US Dollar for blockchain components
such as individual addresses or blocks (see Sect. 6.1) or
(2) provide an additional view that relates information on
blockchain components to market statistics, such as historical
price, trading volume, and market capitalization. A market
statistics view informs intermediate and expert users about
blockchain value in the external environment, for example,
as converted to US Dollar or Euro. Market statistics can help
to understand how the mechanisms inside the blockchain
network are affected by the cryptocurrency economy at large.

As already described in the “transaction detail analy-
sis” task domain section (Sect. 6.1), a first type of source
visualizes conversion rates for cryptocurrency values: [O6],
[O9], [O10], [O21]. The second type of sources visualizes

https://creativecommons.org/licenses/by/4.0/
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Fig. 16. The Crypto-Economics Explorer in CoinDesk [O16] provides a
comparison view of multiple market measures for different blockchains.

Fig. 17. Blockchain.info [O10] provides time series charts to show
aggregated statistics of the Bitcoin network. This example shows the
hash rate of Bitcoin over time. The number of nodes in each clustered
location is encoded as the bubble size.

market statistics: [O10], [O16], [O21]. These sources mostly
used time series to display the historical exchange rate and
market volume for different time scales (i.e. hours, days,
weeks, months) in addition to more detailed information on
individual transactions, addresses or blocks. For example,
Blockchain.info [O10] provides a market view for various
cryptocurrencies (Fig. 15). CoinDesk [O16] is a unique online
tool in this category that shows summarized measures of the
size and investment opportunities of several cryptocurren-
cies. It presents a spider chart to compare multiple measures
related to price, exchanges, social media, developers, and the
overall network size (Fig. 16).

6.5 P2P Network Activity Analysis
Blockchains are decentralized systems running with client
nodes in a peer-to-peer (P2P) network architecture. Un-
derstanding the activities within the P2P network helps
intermediate and expert users to track the current status
of a block as a result of overall activities among participants
in the network. Sources in this task domain use two kinds of
visualizations: (1) time series to show the aggregated statistics
of the P2P network, and (2) map-based visualizations to show
the geographical distribution of blockchain usage around the
world.

Most sources in this task domain present P2P network
statistics, calculated from aggregated node activities in the
blockchain network over time. All sources use time series
visualizations to represent changes of the blockchain network

Fig. 18. EthStats.net [O35] provides a real-time dashboard to monitor
Ethereum network status.

Fig. 19. BitNodes [O45] shows the geographical distribution of the number
of active Bitcoin nodes in a point map. The number of nodes in each
clustered location is encoded as the bubble size.

over time. For example, Blockchain.info [O10] provides a
long list of time series charts to display a wide range of
Bitcoin network statistics, for example, the total hash rate
(Fig. 17), average block size, total transaction fee, and mining
difficulty. A dashboard proposed by Bogner [V3] presents
time series and basic charts on Ethereum statistics and
highlights outlier data using anomaly detection techniques.
EthStats.net [O35] is a rare example that provides a real-time
dashboard for monitoring network status and active nodes
in the Ethereum blockchain (Fig. 18).

Analyzing the global distribution of a blockchain net-
work involves observing the density of blockchain nodes and
transactions around the world. Public blockchain data does
not inherently include geographic information about senders,
receivers, or blockchain nodes. However, when nodes in the
blockchain network have associated IP addresses, these can
be used to infer the geographic location of a node with a
degree of uncertainty [7], [23]. The geographic origin of a
transaction can then be inferred from the IP address of the
first node that relayed it [25], [39].

We found 9 sources that display the number of nodes
active in the blockchain P2P network ([A10], [A15], [O18],
[O20], [O21], [O35], [O45]), and transaction origins ([A10],
[O4], [O44]). All of them display geography information in
map-based visualizations—the only task domain that used this
kind of visualization type. For example, BitNodes [O45]
implemented a node crawler to gather reachable node
locations to estimate the global distribution of Bitcoin nodes
(Fig. 19). Different types of map-based visualizations we saw
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are discussed in Sect. 5.5.

6.6 Casual/Entertaining Information Communication

Sources in this task domain generally provided original and
experimental visualization of blockchain components that
are distinct from any of the ones used for the above task
domains. Our sources encoded, for example, attributes of
transactions and blocks as custom objects—often in 3D—with
animation and real-time updates.

To show the wide variety of visual encodings in this
category we briefly discuss a few examples: BitBonkers [O3]
shows live Bitcoin transactions as 3D balls falling on a
plate each time a new transaction is broadcasted to the
network. BitcoinCity [O34] represents Bitcoin transactions
as 3D toy models of buildings along the road that are
moving as new transactions are created. BitListen [O33]
presents transactions as animated bubbles floating on the
screen, producing notes that combine into improvised music.
Symphony of Blockchains [O30] includes a combination of
interactive visual representation of Bitcoin data that allows
web visitors to browse blocks as a 3D visual representation
and navigate through a flight-simulator mode, along with
background audio representing the network hash rate and
using a unique tone for each of the transactions in the block.
Bitcoin VR [O43] is an open-source project that visualizes
Bitcoin transactions as balloons flying over a 360-degree
view.

7 DISCUSSIONS AND OPEN CHALLENGES

This section reports general observations that we gathered
while compiling this survey about blockchain data visualiza-
tion. In particular, we discuss the state-of-the-art of existing
visualization practice in regards to blockchains as well as
opportunities for future research.

7.1 Blockchain Visualization: Research vs. Practice

Blockchain enthusiasts and startups have quickly established
the need to better communicate what happens in and
around blockchains. In our survey, online sources that use
visualizations outnumber by far dedicated visualization
articles that describe how to visualize blockchain data for
various types of tasks. Yet, most online sources only use and
require simple charts or time series visualizations, where
research input might not necessarily be required. Where
research can contribute the most is by offering systems for
in-depth analysis and this is, indeed, what most current
visualization articles focus on. Yet, we also see opportunities
for research to offer more fluid interaction and exploration
capabilities, in particular for those online sources that offer
simple graph visualizations and explorations across time. In
particular, we saw a need for interactive tools that allow users
to explore how their activities manifest on the blockchain
and to show what data can or could be inferred about them
through their blockchain use. This could in particular help
novices assess and adjust their transaction patterns.

7.2 Blockchain Analysis vs. Visual Analytics

In our survey, we covered visualizations published as part
of blockchain analysis articles—for which conveying the
result of the analysis and not the design of visualizations
were the focus. As such, visualizations in the analysis
articles were meant for communication of scientific results
rather than exploration. Most analysis articles focused on
transaction network analysis—indicating a current research
focus for which, according to our survey, few tools exist
that experts could make use of. As a result, most analysis
articles only showed time series plots or basic charts of
network measures. In addition, we observed that blockchain
analysis articles often did not conduct an in-depth analysis
of the entire blockchain, probably because of the large size
of the blockchain and the lack of simple ways to explore
and statistically analyze the data in its entirety. Blockchain
analysis articles often focused on a higher-level data analysis
of the blockchain network (i.e. the global blockchain network
or longitudinal study of P2P network analysis). Considering
the demand of data analysis experts and decision-makers
to better understand blockchain activities, it would be an
opportunity for the VA community to come forward with
more advanced tools that support both higher-level and
more in-depth analyses of blockchain data. The growing size
and dynamic nature of blockchains require techniques that
work on multiple levels of data aggregation and show data
updates well. Tools also need to provide complete overviews
of the network and also allow experts to interactively drill-
down and see close details of transactions or individual
actors on the network. In particular, tools that allow experts
to take on specific viewpoints such as individual entities
in the network (e.g., people, enterprises, miners), historic
events (e.g., cyber-attacks), or network-related events (e.g.,
halving days or forks) are still missing. Finally, there is a lack
of tools tailored to the specific needs of particular experts, in
particular economists and blockchain managers. Economists
want to understand the activities on the blockchains and
compare them with related economic activities in the real
world. Consortium blockchain managers need to understand
e.g., how their blockchain evolves, according to their plans
and how it compares to other blockchains.

7.3 The Dominance of Cryptocurrency Blockchains

Cryptocurrencies are the most widely used applications
of blockchains nowadays. All visualization sources we
found addressed cryptocurrency blockchains. Most sources
visualized Bitcoin data since it is well-known, adopted, and
has a high number of users. The second most frequently
visualized blockchain is Ethereum. All Ethereum-related
visualizations focus on the cryptocurrency aspect of value
exchanges among entities, not the smart contract function-
ality that makes Ethereum different from Bitcoin. We did
not find any source dedicated to other blockchain types,
including consortium and private blockchains. Even though
the concept of cryptocurrency blockchain sources should be
able to apply to other blockchains, there are some differences
in the detailed mechanism (e.g., the transaction data structure
and mining protocol) that need to be considered in the design
of visualization systems. The visualization of private and con-
sortium blockchains, or blockchains for non-cryptocurrency
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use cases such as in healthcare [26], mobility [18], supply
chain management [38], or for government services [47] are
fruitful areas for future works.

7.4 The Missing Context of Blockchain Data
The majority of visualization sources presented detail about
blockchain components and overviews of network activities
in the transaction detail analysis and P2P network analysis
task domains. What is missing in most sources is information
that provides context for monitoring and analysis of activities
in the blockchain, including the identification of entities,
geographic information, social network activity, or historic
events.

In the big cryptocurrency blockchains, users remain
anonymous by using multiple non-identifiable addresses
to send and receive cryptocurrency value. Identity is only
revealed if people or enterprises post their addresses openly
and connect them to other pieces of identification, such
as forum user names, their websites, etc. If one wants to
understand how cryptocurrencies are used in regards to what
is known about fiat currencies, information about which ad-
dresses belong to the same entities (such as individual users,
businesses receiving Bitcoin for payment, or exchanges) is
required. Heuristics exist that help to cluster addresses and
identify entities with a degree of uncertainty [37] but entity-
based visualizations are, nevertheless, rare (e.g., [V7], [V14],
[O10]).

The blockchain network involves many anonymous
participants interacting with each other through committing
and validating transactions in the P2P network. It would be
interesting to study the collective activities of participants
in the blockchain network in light of historical events,
such as from volatility of market prices, cyber-attacks (e.g.,
Mt. Gox hack, Bitcoin theft, and denial-of-service attacks),
government regulation, or changing in mining rewards.
The existing visualization sources have been used mostly
for dedicated task domain (i.e. transaction detail analysis,
transaction network analysis, or P2P network analysis)
without providing the capability to investigate historical
events in a holistic view.

7.5 Open Blockchain Visualization Challenges
Blockchain technology produces a large transactional dataset,
rich in details, including sophisticated maintenance mech-
anisms which are interesting for analysis. The complexity
of working with blockchain data comes both from both
technical aspects and its social component related to many
social networks in general. Blockchain data is more complex
than most social networks due to its pseudonymous use of
addresses and the nature of the data is carries, usually mon-
etary value. Therefore, it is unlikely that simple views will
ever be able to convey the richness of information it carries.
Most visualization sources we surveyed focused on using

common chart types (i.e. time series and basic charts) with
basic interaction techniques (i.e. querying and zooming), that
are not sufficient for advanced analysis tasks. Here we list
several opportunities to improve existing visualizations used
and opportunities to develop new dedicated representations.

Multiple views visualization of blockchain data:
Sources from data analysis articles and online sources usually

provide many single view charts showing a particular
blockchain measure over time. Single disconnected views
make it difficult to relate multiple blockchain characteristics
to each other. BitExTract [O23] is one example that broke
the trend and proposes a dashboard with multiple chart
elements for analyzing transaction activities among Bitcoin
exchange entities. Yet, additional sophisticated interaction
techniques for visual comparison [17] would help to connect
views and generate more comprehensive insights.

New visual representations for transaction network
analysis: Existing network visualization sources present
transaction networks and value flows as static graphs at
specific points of interest (i.e. a point in time, a specific block,
or for a group of entities). However, those tools mostly do not
consider the temporal evolution of the network and, in par-
ticular, changes of blockchain connectivity over time; we saw
no dynamic network visualizations [6]. Besides, blockchain
networks have specific network properties which could
benefit from dedicated network layouts. For example, they
are directed and time-oriented. For Bitcoin, the addresses can
be clustered and so the raw graph can be simplified using
well-known heuristics [20], leading to simpler visualizations.

Uncertainty visualization: Much of the contextual infor-
mation related to Bitcoin comes with a degree of uncertainty.
For example, heuristics to cluster Bitcoin entities are not
sure to capture Bitcoin entities with 100% accuracy and IP-
addresses of nodes in the P2P network are not necessarily
reliable indicators of the geographic location of a node. In
addition, analysis tools that may label certain transaction
patterns as fraudulent or belonging to certain services (e.g.,
exchanges, mixing services, etc.) may make false predictions.
Any uncertainty in the data should be made evident in the
visualization [29] [35] and expose where viewers should be
cautious about inferring insights and making decisions on
the data.

Progressive visual analytics: Exploring Blockchain data
involves navigating over large amounts of data for comput-
ing aggregated values on selections of the transactions or
over time windows. These operations are usually simple
to compute but take a long time. Work shown in research
articles usually does computation offline to allow visual-
ization tools to remain interactive. However, doing the
operations offline means that the data exploration is limited
to pre-computed values, and all the interactive tools we
reviewed were limited in that respect. For continuously
computing derived data when the Blockchain evolves, for
e.g., maintaining the clustered Bitcoin entities up-to-date,
techniques inspired by Boukhelifa et al. [9] could be applied.
To allow more open-ended explorations on Bitcoin data,
novel tools could rely on progressive data analysis and
visualization [16], [40]. For example, Kinkeldey et al. report
that BitConduite [V7] provides dynamic queries on time
and attribute values to visualize aggregated information
about Bitcoin transactions, but each filter operations make
take a minute or so to complete depending on the amount of
loaded data. Performing these operations progressively using
methods reported by Moritz et al. [31] would drastically
reduce the interactive latency and greatly improve the
efficiency of exploring Bitcoin data, and could perhaps even
cope with the complete Bitcoin blockchain data.

Evaluation: In our survey, we found that 9 out of 14
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visualization articles evaluated the usability of their tools by
either demonstrating case studies ([V2], [V8], [V9], [V11],
[V13], [V14]) or performing user evaluation ([V5], [V7],
[V9]). The fact that the majority of Bitcoin visualizations
are published without formal task analyses or evaluation
(at least as evident for research articles), is a clear sign
that more visualization research is needed in this domain.
This could be achieved by providing easier research access
to updated blockchain data or developing easy to deploy
analysis infrastructures. Some work in this direction has been
started with e.g., BlockchainDB [21] and BlockSci [24] but
will need further development to become usable on visual
analytics infrastructures. This would allow researchers on
Bitcoin analysis tools to focus on designing analysis tools
rather than the data backend needed to extract blockchain
data, compute usage metrics, and make them accessible for
quick visual analysis.

8 CONCLUSION

Blockchain is a promising technology that will change the
way we make electronic exchanges and maintain the integrity
of data in untrusted and decentralized systems. In this work,
we systematically reviewed 76 blockchain data visualization
sources—14 visualization articles, 17 data analysis articles,
and 45 online web-based tools. We classified those sources
based on blockchain data, task domains, and visualization
types, and describe the different kinds of tools in each task
domain.

Among blockchain visualization sources in our system-
atic review, Bitcoin data is the most visualized, while the
number of Ethereum sources has been increasing in recent
years. Apart from financial applications for cryptocurrency
blockchains, we did not see sources dedicated to other
application domains, such as smart contracts, consensus,
or private blockchains.

Most of the sources communicate basic aggregated statis-
tics of blockchain elements using time series charts. Tree
and network visualizations have been used to analyze the
connected activities in the blockchain. However, blockchains
do not include information that help to cluster addresses for
pseudonymous users, which is necessary for certain types
of analysis. The entity information needs to be derived from
entity labeling datasets or computed by applying heuristics
to group related addresses.

Many online blockchain visualization tools, target the
P2P network analysis and transaction detail analysis task
domains. Those tools basically allow intermediate users to
explore the detail of blockchain components and look at the
overview of network activity over time. On the other hand,
expert users are interested in transaction network analysis
and cybercrime detection (according to the number of data
analysis articles we saw), but these types of analyses are not
common in existing visualization tools.

In summary, we provide the first survey on blockchain
visualization in a landscape that is still rapidly changing,
with new applications appearing regularly and existing
blockchains changing protocols and structures. As such, our
survey provides a first overview of the blockchain visual
analytics space and can help to further survey, observe, and
classify emerging tools. Due to the increased adoption of

blockchains in recent years, the need for more VA tools
will grow and we outline several fruitful opportunities
for research on blockchain visual analytics. Application
areas include the exploration and monitoring of activities
in the blockchain network and more advanced tools for
understanding different uses for blockchains.
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[A15] F. Parino, M. G. Beiró, and L. Gauvin, “Analysis of the
bitcoin blockchain: Socio-economic factors behind the
adoption,” EPJ Data Science, vol. 7, no. 1, p. 38, 2018. DOI:
10.1140/EPJDS/S13688-018-0170-8.

[A16] F. Reid and M. Harrigan, “An analysis of anonymity
in the bitcoin system,” in Security and Privacy in Social
Networks, Springer, 2013, pp. 197–223. DOI: 10 .1109/
PASSAT/SocialCom.2011.79.

[A17] D. Ron and A. Shamir, “Quantitative analysis of the
full bitcoin transaction graph,” in Proc. Conference on
Financial Cryptography and Data Security, Springer, 2013,
pp. 6–24. DOI: 10.1007/978-3-642-39884-1 2.

ONLINE SOURCES
[O1] Aleth.io, EthStats.io, Accessed: August, 2019. [Online].

Available: https://ethstats.io/.
[O2] ——, Alethio, Accessed: August, 2019. [Online]. Avail-

able: https://aleth.io/.
[O3] BitBonkers, BitBonkers - A Bitcoin Blockchain Transaction

Visualisation, Accessed: August, 2019. [Online]. Available:
https://bitbonkers.com/.

[O4] Bitcoin Globe, Bitcoin Globe, Accessed: August, 2019.
[Online]. Available: http://bitcoinglobe.com/.

[O5] BitcoinWisdom.com, BitcoinWisdom, Accessed: August,
2019. [Online]. Available: https://bitcoinwisdom.com/.

[O6] Bitfly gmbh, Etherchain, Accessed: August, 2019. [On-
line]. Available: https://www.etherchain.org/.

[O7] bitFlyer, chainFlyer, Accessed: August, 2019. [Online].
Available: https://chainflyer.bitflyer.jp/.

[O8] BitForce5, BitForce5, Accessed: August, 2019. [Online].
Available: http://bitforce5.com/.

[O9] BitInfoCharts, BitInfoCharts, Accessed: August, 2019.
[Online]. Available: https://bitinfocharts.com/.

[O10] Blockchain Luxembourg S.A., Blockchain Explorer, Ac-
cessed: August, 2019. [Online]. Available: https://www.
blockchain.com/explorer.

[O11] Blockchair, Blockchair, Accessed: August, 2019. [Online].
Available: https://blockchair.com/.

[O12] BlockSeer, BlockSeer, Accessed: August, 2019. [Online].
Available: https://www.blockseer.com/.

[O13] BTC.com, BTC.com, Accessed: August, 2019. [Online].
Available: https://btc.com/.
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