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Abstract

In this paper we deal with the determination of the strain gradient elasticity co-
efficients of composite material in the framework of the homogenization methods.
Particularly we aim to eliminate the persistence of the strain gradient effects when
the method based on quadratic boundary conditions is considered. Such type of
boundary conditions is often used to determine the macroscopic strain gradient
elastic coefficients but leads to contradictory results, particularly when a RVE is
made up of a homogeneous material. The resulting macroscopic equivalent material
exhibits strain gradient effects while it should be expected of Cauchy type. The
present contribution is to provides new relationship to correct the approach based
on the quadratic boundary condition. To this purpose, we start from the asymp-
totic homogenization approach, we establish a connection with the method based on
quadratic boundary conditions and we highlight the correction required to eliminate
the persistence of the strain gradient effects. An application to a composite with
fibers is provided to illustrate the method.

Key words: Strain Gradient Elasticity, Homogenization, Quadratic Boundary
Conditions, Asymptotic Expansion, Composite Material.

Email addresses: vincent.monchiet@u-pem.fr (Vincent Monchiet),
nicolas.auffray@u-pem.fr (Nicolas Auffray), vincent.monchiet@u-pem.fr
(Julien Yvonnet).

Preprint submitted to Elsevier Science 31 December 2019



1 Introduction

The derivation of strain gradient elasticity theory in the framework of homog-
enization approaches has been the subject of intense research during the last
years but, in fact, has begun earlier with the works of Diener et al. [21, 22, 20].
Starting from the variational principles of Hashin-Shtrikmann [32, 33], Ded-
erichs and Zeller [19] and Kroener and Koch [36] derived new bounds for the
elastic coefficients when a random medium is subjected to non homogeneous
mean fields. As a consequence the homogenized elastic coefficients depend
on the wave vector of the mean field and, due to the emergence of internal
lengths, the macroscopic behavior turns out to be non-local. The link with
strain-gradient elasticity has been established later by [25] who assumed a
polynomial representation for the mean field. By doing so, the overall behav-
ior shows dependence on the gradient(s) of the macroscopic strain and, based
on the usual energy principle, the authors derive the elastic coefficients of
the Toupin [45] and Mindlin [37] strain-gradient model. However, such an ap-
proach only provides bounds for the higher-order elastic coefficients and not
their exact values, and is restricted to some particular microstructures (exam-
ples can be found in [23, 24]).
Strain gradient elasticity models have also been derived using asymptotic se-
ries expansion methods. Periodic homogenization approaches have been intro-
duced and developed by Auriault and Sanchez-Palencia [5], Bensoussan et al.
[10], Sanchez-Palencia [42], Suquet [44]... They are based on the introduction
of a small parameter, the scale factor, and the determination of the solution
by means of polynomial expansion series in power of this small parameter. By
accounting for the second-order term of the series, Bakhvalov and Panasenko
[8], Gambin and Kroener [29], Boutin [14], Triantafyllidis and Bardenhagen
[47] found that the local solution exhibits a dependence with the macroscopic
strain gradient (and also higher-order derivatives of the macroscopic strain
gradient when accounting for higher-order local solutions). The connection
with the Toupin and Mindlin strain gradient elasticity model has been re-
ally established by Smyshlyaev and Cherednichenko [43], Peerlings and Fleck
[38], Tran et al. [46]. The strain gradient elasticity coefficients are computed
by solving unit cell problems with Periodic Boundary Conditions (PBC). The
first problem provides the fundamental solution and, by only keeping this term
in the series expansion, the macroscopic description of the material remains
of Cauchy type. Higher-order cell problems introduce the microstructural ef-
fects, i.e. the macroscopic description depends on an internal length scale
that is characteristic of the microstructure and of the dependence of the elas-
tic relationship with higher order derivatives of the macroscopic strain. The
numerical implementation of the higher-order cell problems and the determi-
nation of strain-gradient elasticity coefficients have been already addressed in
[38] using the Finite Element Method (FEM) or in [46] considering iterative
schemes based on Fast Fourier Transform (FFT). It has been observed that
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when the scaling of elastic coefficients of the constituents have the appropri-
ate order with respect to the scale factor, the effective material may exhibit
strong strain gradient effects. This effect has been evidenced in the case of
elastic composites reinforced by highly rigid slender inclusions by Pideri and
Seppecher [40, 39] and Boutin and Soubestre [16]. More recently, it has been
demonstrated that the effective elastic energy of lattice materials having soft
modes of deformation can be of generalized type [3]. Some general results
have been obtained in [2, 1] combining asymptotic analysis and Γ-convergence
method. However even if a method to determine the higher-order parameters
was proposed in this last reference it fails when the first order elasticity is not
degenerated.
Another attractive method for the computation of strain-gradient elasticity
coefficients is based on the use of the Quadratic Boundary Conditions (QBC)
on the Representative Volume Element (RVE). It generalizes the classic ap-
proach based on Uniform Strain Boundary Conditions (USBC) by applying a
displacement that has a quadratic dependence with the position vector. The
enforcing term is the macroscopic gradient of strain (or equivalent the macro-
scopic double gradient of displacement). The method is generally attributed
to Besdo et al. [11, 12] but has been really introduced in the context of ho-
mogenization by Gologanu et al. [30] who derived the strain-gradient version
of the Gurson model [31]. As already mentioned in [26], the results are how-
ever somewhat surprising in that the dominant effect of strain-gradient effects
is not influenced by the void volume fraction or void spacing and the strain
gradient effects persist even when the void volume fraction tends to zero. In-
deed, the strain gradient effects are due to the presence of a microstructure at
a lower scale and when the volume fraction tends to zero, the solid becomes
homogeneous and no microstructural effects should be observed. Later, the
method of Gologanu et al. [30] has been applied in the context of elasticity
by Zybell et al. [49] with the same result: when radii of the inclusions tend to
zero, the resulting microstructural effects still persist instead of vanishing as
they should. The method has been later used in the case of elasticity and non
linear constituents [27, 28, 17, 18, 34, 35] but in each case, the persistence of
the strain gradient is retrieved for a homogeneous material at the local scale.
This has been again reported in [48] who suggested that the method surely
over evaluates the macroscopic energy density and probably exaggerates the
strain gradient effects. It is important to notice that such observation does not
concern the periodic homogenization based on asymptotic series expansion. In-
deed, when the medium is homogeneous at the local scale, the source term in
the second order cell problem, which depends only on the fluctuation, vanishes
and the macroscopic behavior remains Cauchy elastic. Note that another ap-
proach based on QBC has been used by Bigoni and Drugan [13], Bacca et al.
[6, 7]. However their method is quite different in the sense that it is based on
a small perturbation of the elastic properties and by approximating its effects
on the macroscopic behavior by a strain gradient term. The approach is more
related to the statistical method developed in [25].
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The paper is organized as follows. To evidence the issue with the QBC based
method, we start from the periodic homogenization with the asymptotic series
expansion and we establish the connection between the two methods. To this
end, we give a brief overview of the homogenization method based on asymp-
totic series expansion in section 3. The first two unit cell problems, that lead to
the reference solution and the first corrector, are detailed. In section 4, using
an appropriate change of variables, a bridge between the two homogenization
procedures is established. In section 5, we discuss the results and we provide
a new method to determine correctly the strain gradient elastic coefficients in
the QBC based approach. Finally, in section 6, we propose an illustration for
a composite with fibers. FEM computations with QBC are compared to FFT
simulations for the problem with PBC.

2 Notations

PBC: Periodic Boundary Conditions.
QBC: Quadratic Boundary Conditions.
USBC: Uniform Strain Boundary Conditions.
RVE: Representative Volume Element.
FFT: Fast Fourier Transform.

Tensorial notations:

Vectors, second order and third order tensors are denoted by bold letters, usu-
ally lower case for microscopic quantities u, and upper case for the associated
macroscopic ones U . Fourth- and higher-order tensors are denoted by black-
board letters such as C.
⊙n stands for the generalized dot product between two tensors of order ≥ n
over n indices. For example, considering the second order tensors A and B
we have A ⊙2 B = AijBij and for third order tensors S and T we have
S ⊙3 T = SijkTijk. The gradient operator with respect to the variable α is
denoted by ∇α and the divergence operator with respect to α by divα. By
extension εα is the symmetric gradient operator defined as:

εα(v) =
1

2
(∇αv +∇T

αv) (1)

The averaging of a tensorial quantity T over a spatial domain V is denoted
by:

< T >V=
1

|V |

∫

V
TdV (2)

where (Ai)T represents the transpose of Ai obtained by the permutation of
the two first and the i+ 2 last indices: (A0)Tijpq = A0

pqij and (A1)Tijpqr = A1
pqrij.
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3 Brief review of the periodic homogenization approach

Asymptotic methods in periodic homogenization, initially introduced by Sanchez-
Palencia [41], Bensoussan et al. [10], have been later considered by Bakhvalov
and Panasenko [8], Gambin and Kroener [29], Boutin [14] to evaluate the de-
viation from the standard elastic description. The rigorous convergence of the
method in the classical situation has been demonstrated by Allaire in [4]. In
this section, only the main and necessary results are recalled, all the details
can be found in the above cited papers. Consider the composite structure oc-
cupying an open set Ω of Rd whose characteristic length is L. As a periodic
composite material, the (macro) domain Ω is supposed to be paved with unit
cells. The domain of the elementary cell is denoted by ω and h indicates the
characteristic length of this underlying microstructure (see Fig. 1).

             Equivalent 
strain gradient medium(a)

(b)

(c)

Ω

ω

∂ω

h

L

Fig. 1. (a) Heterogeneous structure, (b) unit cell, (c) Equivalent homogeneous strain
gradient medium

The main feature of the asymptotic expansion method consist in the introduc-
tion of two space variables x = X/L and y = X/h where L and h are two
characteristic lengths of the macro and the microstructure. The separation
ratio between the two scales of the problem is measured by the scale factor
ϵ = h/L. The elastostatic problem can be formulated as follows:

⎧

⎪

⎨

⎪

⎩

div(σ(x,y)) = f (x,y)

σ(x,y) = C(y) : ε(x,y)
(3)

with some boundary conditions on ∂Ω. In this formulation it is worth noting
that the elasticity tensor is a periodic function of y with period h, meaning
that the elastic properties are considered as macroscopically homogeneous (no
global dependence on x) but varying at the scale of the microstructure. The
principle of the asymptotic method consists to search the solution in term of
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power series in ϵ:

u(x,y) =
∞
∑

n=0

ϵnun(x,y) (4)

in which each term un(x,y) is periodic with respect to y with period h. It
involves the following series expansions for the strain and stress fields:

ε(x,y)= ϵ−1εy(u
0(x,y)) +

∞
∑

n=0

ϵn[εx(u
n(x,y)) + εy(u

n+1(x,y))] (5)

σ(x,y)=
∞
∑

n=0

ϵnσn(x,y) (6)

It has been demonstrated that the displacement u0(x,y) is independent of y
and only depends on x. It can be interpreted as a macroscopic displacement
U(x). The higher-order terms un≥1(x,y), which are the fluctuations due to the
local heterogeneity, are determined by solving elementary cell problems over
ω. For instance, the displacement u1(x,y) is solution of the set of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divy(σ
0(x,y)) = 0

σ0(x,y) = C(y) : ε0(x,y)

ε0(x,y) = εy(u
1(x,y)) +E(x)

εy(u
1(x,y)) =

1

2
(∇yu

1(x,y) +∇T
yu

1(x,y))

(7)

with the following periodic boundary conditions over the unit cell ω

u1 y-periodic, σ0.n y-antiperiodic (8)

The solution at first order linearly depends on the applied macroscopic strain
E(x) = 1

2
(∇xU(x) +∇T

xU(x)). The localization rule is defined in the form:

ε0(x,y) = A
0(y)⊙2 E(x) (9)

Higher-order terms of the series expansion account for the microstructural
effects which are expected when the scale factor ϵ is not small enough. By
neglecting all higher-order terms of the series, the macroscopic description is
of Cauchy type.
Consider the first higher-order term of the series given by the displacement
u2. It is determined by solving the following unit cell problem:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divy(σ1(x,y)) + divx(σ0(x,y)− < σ0(x,y) >ω) = 0

σ1(x,y) = C(y) : ε1(x,y)

ε1(x,y) = εy(u2(x,y)) + εx(u1(x,y))

εy(u2(x,y)) = 1

2
(∇yu

2(x,y) +∇T
y u

2(x,y))

εx(u1(x,y)) = 1

2
(∇xu

1(x,y) +∇T
xu

1(x,y))

(10)

where the periodic boundary conditions (8) are still considered for the dis-
placement u2 and the stress σ1. The loading parameters are the solution of
the unit cell problem at previous order: the displacement u1 and the stress σ0.
Since these fields linearly depend on the applied macroscopic strain, when we
apply the differential operator ”divx()” and ”εx()”, these terms linearly depend
on the macroscopic gradient of strain ∇xE. As a consequence, the displace-
ment field u2 linearly depends on the macroscopic gradient of strain ∇xE.
The localization rule for the first corrector can be read in the form:

ε1 = A
1(y)⊙3 ∇xE(x) (11)

An energy based upscaling approach can be employed to determine the Mindlin
strain gradient elasticity tensor following Tran et al. [46]. For instance, if only
the two first terms are kept in the series expansion for the strain, the latter
reads ε = ε0 + ϵε1 in which ε0 and ε1 linearly depend on the macroscopic
strain and gradient of strain respectively (see Eq. (9) and Eq. (11)). As a
consequence the macroscopic elastic energy W computed with the first two
terms of the series reads:

W =
1

2
< σ : ε >ω

=
1

2
E ⊙2 C

0,0 ⊙2 E + ϵE ⊙2 C
0,1 ⊙3 ∇xE +

1

2
ϵ2∇xE ⊙3 C

1,1 ⊙3 ∇xE

(12)

in which the tensors Ci,j are defined by:

C
i,j =< (Ai(y))T ⊙2 C(y)⊙2 A

j(y) >ω (13)

In the expression of the macroscopic elastic energy W , the macroscopic gradi-
ent of strain ∇xE can be replaced by L∇χE where χ = xL is the true macro-
scopic space variable (x being the dimensionless macroscopic space variable).
Therefore, the macroscopic energy density becomes:
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W =
1

2
E ⊙2 C

0,0 ⊙2 E + hE ⊙2 C
0,1 ⊙3 ∇χE

+
1

2
h2∇χE ⊙3 C

1,1 ⊙3 ∇χE

(14)

which depends on the size h which defines the period of the microstructure.
It must be pointed out that the present method is based on a truncated de-
scription that is certainly questionable. By keeping only the first two terms of
the series, we just approximate the solution, and this approximation is quite
uncontrolled. The reader could refer to the discussion in [15].

4 Reformulation of cell problems with linear and quadratic bound-

ary condition

4.1 First order problem

Consider the first order problem, defining the displacement u1 (see equations
(7) with (8)). Let us apply the following change of variable:

u1 = uL −E(x).y, σ0 = σL (15)

With this definition, the displacement contains (i) the periodic part uL due
to the local heterogeneities (the latter vanishes for a homogeneous material
at the local scale) and (ii) a linear displacement E(x).y. With this change of
variable, the first local problem becomes:

⎧

⎪

⎨

⎪

⎩

divy(σ
L) = 0

σL = C(y) : εy(u
L)

(16)

The usual homogenization problem with the uniform strain boundary condi-
tion is retrieved if we replace the periodic condition for u1 by the condition
u1 = 0 on the boundary ∂ω. This leads to:

uL = E.y (17)

that is also called linear condition in the sense that uL linearly depends on
the space variable y. The solution of the problem can be read:

εL = A
L(y)⊙2 E (18)

where AL(y) is the fourth order localisation tensor.
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4.2 Second order problem

We aim to provide the same analogy for the second order problem. Let us start
from the set of Eqs. (10). Let us recall that the stress field σ0 is divergence-free
with respect to the coordinate y (see Eq. (7) ). As a consequence, this stress
satisfies:

∂σ0
ij

∂xj

=
∂

∂yj

[

∂σ0
ij

∂xk

yk

]

(19)

Let us introduce the stress σQ defined by:

σQ = σ1 +
∂σ0

∂xk

yk (20)

Owing to Eq. (19) and the first equation in (10), we deduce that:

divy(σ
Q) = divx(< σL >V ) (21)

Note that the term on the right-end of the equality in Eq. (21) is constant at
the local scale and can be interpreted as a constant body force.
Now, replacing in Eq. (20) the expressions of σ0 (cf. second equation in (7))
and σ1 (cf. second equation in (10)), we obtain:

σQ = C(y) : (εy(u
2) + εx(u

1)) +
∂

∂xk

[

C(y) : (εy(u
1) +E(x))

]

yk (22)

Let us now use in the above equation the following property:

∂εy(u1)

∂xk

yk = εy

(

∂u1

∂xk

yk

)

− εx(u
1) (23)

It leads to:

σQ = C(y) :

[

εy

(

u2 +
∂u1

∂xk

yj

)

+∇xE(x).y

]

(24)

We also introduce the displacement uQ defined by:

uQ = u2 +
∂u1

∂xk

yk +
1

2
∇2

xU : (y ⊗ y) (25)

where ∇2
xU is the double gradient of macroscopic displacement. The compo-

nents of ∇2
xU are related to that of the macroscopic gradient of strain ∇xE

by:

Eij,k =
1

2
(Ui,jk + Uj,ik) ⇔ Ui,jk = Eik,j + Eij,k −Ejk,i (26)

where Eij,k are the components of the macroscopic gradient of strain ∇xE
and Ui,jk are the components of the double gradient of the macroscopic dis-
placement, ∇2

xU . The components Ui,jk are invariant by any permutation of
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the indices j and k, while Eij,k is invariant by any permutation of the indices
i and j. Both tensors depend on 18 independent coefficients in R3, and 6 in
R2.
Owing to Eq. (25), Eq. (24) can be written as:

σQ = C(y) : εy(u
Q) (27)

Following the previous section we now aim to identify the relation between
the second order problem coming from the asymptotic homogenization and
the problem with the quadratic boundary condition (QBC). To this end, we
replace the periodic boundary conditions for the displacements u1 and u2 by
the conditions u1 = 0 and u2 = 0 on ∂ω. Therefore, we observe that the
displacement uQ satisfies:

uQ =
1

2
∇2

xU : (y ⊗ y) ∀y ∈ ∂ω (28)

To sum up, the second-order problem can be summarized as:

divy(σ
Q) = divx(< σL >V ) ∀y ∈ ω (29)

σQ = C(y) : εy(u
Q) ∀y ∈ ω (30)

uQ =
1

2
∇2

xU : (y ⊗ y) ∀y ∈ ∂ω (31)

with σL computed from the first-order problem (with the linear boundary
condition).
This problem is almost equivalent to the one used by many authors to evaluate
the strain gradient elastic properties [27, 17, 18, 34, 35] but differs by the
presence of the body force term divx(< σL >V ) in the equilibrium equation
(21).
The localization rule associated with the problem corresponding to the QBC
is:

εQ = A
Q(y)⊙3 ∇xE (32)

5 Discussion

Let us first give the relation that exists between the strain field εy(uQ) com-
puted with the QBC and the first corrector ε1. For the sake of simplicity, εL

will stand for εy(uL) and εQ for εy(uQ). The first corrective term for the strain
is ε1 that reads (owing to Eq. (5)):

ε1 = εy(u
2) + εx(u

1) (33)
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Owing to Eq. (25), the displacement u2 can be read:

u2 = uQ −
∂u1

∂xk

yk −
1

2
∇2

xU : (y ⊗ y) (34)

Replacing in Eq. (33) the displacements u1 and u2 by Eq. (15) and Eq. (34)
respectively, we deduce after some elementary manipulations:

ε1 = εQ −
∂εL

∂xk

yk (35)

By multiplying the above expression by the elastic tensor C(y), we obtain a
similar expression for the stress field:

σ1 = σQ −
∂σL

∂xk

yk (36)

In the previous relations, the solution of the problem with QBC provides the
strain εQ and the stress σQ while ε1 and σ1 are the first correctors to the strain
and the stress obtained by the asymptotic expansion method. As obvious from
formula, the correctors are obtained by eliminating from εQ and σQ an elastic
part represented by the tensors (∂εL)/(∂xk)yk and (∂σL)/(∂xk)yk in order to
keep only the gradient effects. Hence, the solution of the unit cell problem
with the QBC cannot be interpreted as the first corrector.
Further, as previously discussed, the first corrector vanishes as soon as the
material is homogeneous at the local scale preventing spurious persistence of
strain-gradient effects at the macroscopic scale. However, neither εQ nor σQ

are null for a homogeneous material. To understand what is at work, consider
the case of a homogeneous material in the unit cell. In such a case, tensor C(y)
is constant, its spatial dependence with respect to y drops down in the notation
and can be just denoted C. The solution at zeroth-order, corresponding to
linear boundary condition (17), is εL = E and the stress σL = C : E. The
solution with applied macroscopic gradient of strain at first-order must satisfy
the QBC (28) and can then be taken into the form:

uQ =
1

2
∇2

xU : (y ⊗ y), ∀y ∈ ω (37)

everywhere in the unit cell. The associated strain and stress fields are εQ =
∇xE.y and σQ = C : ∇xE.y, respectively. It is observed that the stress is
linear with the coordinate y. Getting back to the linear momentum equation
(21), it can directly be verified that the former stress is statically admissible
as soon as a constant body force term divx(σ′) with σL = C : E is considered.
This particular case illustrates the importance of the body force term in the
equilibrium equation (21), without it the first-order cell problem would not
have εQ = ∇xE.y as trivial solution. Now, injecting the solutions εL = E and
εQ = ∇xE.y in Eq. (35), leads to the vanishing of ε1 and σ1. The physical
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requirement that first correctors are null for local homogeneous materials is
hence satisfied.
Note that without the body force“divx(σQ)”, the equilibrium equation reduces
to:

CijklEkl,j = 0 (38)

which suggests that all the components of the macroscopic strain-gradient
cannot be chosen arbitrarily.
Introducing the localization rules (18) and (32) in the expression (35) leads
to:

ε1 = [AQ(y)− A
L(y)⊗ y]⊙3 ∇xE (39)

which also gives the equality:

A
1(y) = A

Q(y)− A
L(y)⊗ y (40)

As a consequence, the components of strain-gradient elastic tensors can be
determined from Eq. (13), in which the localization tensor A0(y) is replaced
by AL(y) and A1(y) is replaced by AQ(y)− AL(y)⊗ y.

6 Application to a composite with fibers

As an illustration purpose, we consider a composite with fibers. The fibers
are aligned in the x3 direction and are periodically distributed in the (x1, x2)
plane. By R we denote the radius of the fiber and by h the distance between
two neighboring fibers (the period). The strain-gradient elastic properties are
determined by considering the two kind of boundary conditions, periodic and
quadratic. When the periodic boundary conditions are used, the solution is
computed with the FFT method provided in [46]. The solution with quadratic
boundary conditions is computed with the Finite Element Method (FEM).
The elastic coefficients of the matrix are denoted by E1, ν1 and those of the
inclusions are denoted E2 and ν2. The following values are considered for the
numerical applications:

E1 = 1GPa, E2 = 100GPa, ν1 = ν2 = 0.3 (41)

6.1 Basic results with periodic boundary conditions

The solution for a composite with fibers has been provided in Tran et al. [46].
In this work, the computations have been performed for one irreducible unit
cell. More recently, in Barboura and Li [9], the authors claim that the strain
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gradient elastic coefficients depend on the choice of the unit cell. Particularly,
they depend on the number of irreducible cells considered for their evaluation.
In other words, if the calculations are performed on a unit cell containing 1, 4,
9, 16... irreducible cells and with periodic boundary conditions, they lead to
different values for the strain gradient elastic coefficients. Our results show that
the strain gradient elastic response is independent of the number of periods
used for the computation of the strain gradient elastic coefficients.
In order to avoid any confusion, the unit cell is still denoted ω, its dimension
along each space direction is still denoted by h. The unit cell can contain
multiple periods, i.e. multiple irreducible unit cells denoted ω0 and having the
dimension h0. In Fig. 2, we show three unit cells containing 1, 4, 9 irreducible
cells.

1× 1 2× 2 3× 3

1

Fig. 2. Unit cells for the considered numerical computations.

Considering first the case of classic homogenization, the macroscopic elastic
coefficients are determined by computing the solution of the first order cell
problem given by Eq. (7). These coefficients remains unchanged if we consider
one or multiple periods for ω. It can be easy proved. Note first that the rapid
variable y is obtained by dividing the true space variable χ by the dimension
of the unit cell h. As a consequence, for a 2D problem with a squared unit cell,
the non dimensional variable vary from −0.5 to 0.5 along each space direction,
and this whatever the number of periods considered in the unit cell (ω can
contain 1,4,9... irreducible cells). Consider an irreducible cell which paves the
unit cell ω and let us denote by Y0 the position of its center. We introduce the
following coordinate change variable y = N(y − Y0) where N is the number
of unit cells considered along each space direction. With this definition, the
variable y vary from −0.5 to 0.5 in the irreducible cell. The two space variables
y and y are illustrated in Fig. (3).
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0.5
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y y
Y0

Fig. 3. Definition of the two coordinates y and y. y lies in the unit cell ω, and y

lies in an irreducible unit cell ω0.

By applying in the first order cell problem given by Eq. (7) the following
change of variables:

u1(x,y) =
1

N
u1(x,y) (42)

ε0(x,y) = ε0(x,y) (43)

σ0(x,y) = σ0(x,y) (44)

y′ = N(y − Y0) (45)

we obtain:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divy(σ
0(x,y)) = 0

σ0(x,y) = C(y) : ε0(x,y)

ε0(x,y) = εy(u
1(x,y)) +E(x)

εy(u
1(x,y)) =

1

2
(∇yu

1(x,y) +∇T
yu

1(x,y))

(46)

The equations of the problem then remain unchanged. This confirms that
the strain and the stress computed with one or multiple unit cells remain
unchanged. As for example, we show in Fig. 4 the distribution of the stress
component σ0

11, due to the macroscopic strain E11 = 1, along a horizontal line
which passes through the centers of the inclusions (see the dashed line in Fig.
2) in the case of 1, 4 and 9 irreducible cells. It is observed that the solution
remains the same for each case. The solution for multiple periods is obtained
by the repetition of the solution obtained with one irreducible cells.
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Fig. 4. Distribution of the stress component σ0
11, due to the macroscopic strain

E11 = 1, along a horizontal line which passes through the centers of the inclusions.

As consequence, the classic homogenized elastic coefficients (components of
C0,0) also remain unchanged if we make the computations with one or multiple
periods.
Now, if we consider the higher order problem given by Eq. (10) in which we
apply the change of variable (42)-(45) for the displacement u1, the stress σ0

and the position vector y, we obtain:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N divy(σ1(x,y)) + divx(σ0(x,y)− < σ0(x,y) >ω) = 0

σ1(x,y) = C(y) : ε1(x,y)

ε1(x,y) = Nεy(u2(x,y)) + 1

N
εx(u1(x,y))

εy(u2(x,y)) = 1

2
(∇yu

2(x,y) +∇T
y u

2(x,y))

εx(u1(x,y)) = 1

2
(∇xu

1(x,y) +∇T
xu

1(x,y))

(47)

It is observed that the problem remains unchanged for 1 unit cell or multiple
unit cells if we apply the following change of variables for u2, ε1 and σ1:

u2(x,y) =
1

N2
u1(x,y) (48)

ε1(x,y) =
1

N
ε1(x,y) (49)

σ1(x,y) =
1

N
σ1(x,y) (50)

As a consequence, the strain ε1 and the stress σ1 are the same for multiple
periods but their amplitudes are divided by a factor N . This is confirmed
in Fig. 5. The distribution of the stress component σ1

11 due to a prescribed
macroscopic gradient of strain E11,1 = 1 is given for 1, 4 and 9 irreducible
cells. It is observed that the amplitude of the stress is divided by a factor 2 in
the case of a unit cell with 4 irreducible cells and by a factor 3 for 9 irreducible
cells.

15



-0.5 0 0.5
y1

-0.04

-0.02

0

0.02

0.04

st
re

ss
 c

om
po

ne
nt

 
111

-0.5 0 0.5
y1

-0.04

-0.02

0

0.02

0.04

-0.5 0 0.5
y1

-0.04

-0.02

0

0.02

0.04

Fig. 5. Distribution of the stress component σ1
11, due to the macroscopic strain

E11,1 = 1, along a horizontal line which passes through the centers of the inclusions.

Since the strain ε1 and the stress σ1 are divided by a factor N in the case
of a unit cell containing N × N irreducible cells, the corresponding energy is
divided by a factor N2. As a consequence the sixth order elastic tensor C1,1 is
divided by a factor N2. However, let us recall that the relation between the
hyperstress and the macroscopic gradient of strain involves the term h2C1,1

in which h = Nh0, h0 being the dimension of the irreducible unit cell. As a
consequence, the quantity h2C1,1 = h2

0N
2C1,1 is independent of the number of

periods and can be determined by considering only one irreducible cell. For
instance, we provide in Fig. 6 the value of C1,1

111111 as function of the number of
periods. It is observed that the component C1,1

111111 decreases with the number
of periods while the quantity N2C1,1

111111 is independent.

0 2 4 6 8 10 12 14 16

number of irreducible cells

0

0.005

0.01

0.015

C
111111

1,1

N
2

C
111111

1,1

Fig. 6. Variations of C1,1
111111 and N2C1,1

111111 with the number of periods N .
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6.2 Comparison between PBC and QBC

When the QBC is used, the results for the homogenized elastic properties de-
pend on the number of periods. The FEM-based approach uses the correction
with the body force “divx(σL)”. The effective strain-gradient elasticity proper-
ties are computed with the modified average rule (13). The results are provided
only for the component 111111 of the sixth-order strain-gradient elasticity ten-
sor and are given in Fig. 7. The variations of the strain gradient elastic com-
ponent are given as function of the radius of the fiber. The result is compared
with that obtained with the periodic boundary condition (and computed with
the FFT). It can be observed in Fig. 7 that for R = 0 the component of the
strain-gradient elastic coefficient is null, this result clearly shows that the new
method eliminates the persistence of spurious strain-gradient effects. It can
also be observed that the FEM solution depends on the number of irreducible
unit cells in the RVE and, by increasing their number, that the QBC-based
solutions converge to FFT-based one. One explanation is that, considering the
Saint-Venant principle, the solution at distance from the boundary of the RVE
is independent of the choice of the kind of boundary conditions. For a RVE
constituted of a large number of irreducible cells, the periodicity is almost
recovered for the cells in the bulk. Since there is a high number of strain gra-
dient elastic coefficients, we only present the results for one component. Other
coefficients have been computed with the same conclusion: (i) no persistence
when the inclusion radius return to zero with QBC and PBC, (ii) the solution
with QBC tends to the solution with PBC when we increase the number of ir-
reducible cells. If we deal with periodic composites, the method based on PBC
is more accurate. Indeed, the homogenized elastic coefficients are determined
by the computations over one irreducible cell while, with the QBC, it requires
the computation on multiple periods and the number of irreducible cells must
be increased in order to obtain the convergence. Obviously, this allows higher
computational requirements. However, the scope of the present paper is to de-
velop a new method based on QBC to deal with non-periodic microstructures.
No examples have been provided in the present paper but applications to the
case of non-periodic microstructures have to be considered in a future work.
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Fig. 7. Variation of the strain-gradient elastic coefficient C1,1
111111 as function of the

ratio R/L. Comparison between the solution with PBC (FFT) and QBC (FEM).

For comparison purpose, we also provide the strain-gradient elastic coefficient
computed by the FEM on an irreducible unit cell with the older definition for
the elastic energy. The results are provided in Fig. 8 by accounting for the
constant body force “divx(σL)” and in Fig. 9 without the body force. First,
in both cases (with or without the body force), the persistence of the strain-
gradient elasticity is observed when the radius of the fibre is R = 0. It must
be also noted that, comparatively to the results provided on Fig. 7, the strain-
gradient coefficients computed with the older method largely overestimate
the strain-gradient effects. Additionally, the presence of the body force in the
equilibrium equation has a significant influence on the value of the strain-
gradient elasticity coefficients.
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C
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Fig. 8. Variation of the strain-gradient elastic coefficient C1,1
111111 as function of the

ratio R/L. Computation including the body force in the equilibrium equation
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Fig. 9. Variation of the strain-gradient elastic coefficient C1,1
111111 as function of the

ratio R/L. Evaluation without considering the body force term.

7 Conclusion

In this paper, we have provided a unified approach to the determination of
the strain-gradient elasticity properties. Two methods have been investigated.
The first is based on asymptotic series expansion within the framework of pe-
riodic homogenization, the second consider the quadratic condition (QBC) on
the boundary of the representative volume element (RVE). A bridge between
the two methods has been established and a modification of the QBC-based
method has been provided in order to be consistent with the periodic ho-
mogenization. The main significant result of the paper is that the new method
based on QBC allows to eliminate the persistence of the strain-gradient effects:
for a homogeneous material at the local scale the macroscopic description re-
mains of Cauchy type, so that all the components of the strain-gradient elastic
tensor must be equal to zero. Strain-gradient effects only appears when the
material is heterogeneous at the local scale. This results has been confirmed
by the numerical implementation of the two methods in the particular case of
a composite material with fibers.
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