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We give a blow-up behavior for the solutions of an elliptic equation under some conditions. We also derive a compactness criterion for this elliptic equation with Hölderian condition.

INTRODUCTION AND MAIN RESULTS

Let us consider the following operator:

L ǫ := ∆ + ǫ • ǫ(x) < (x -x 0 )|∇u i >
We consider the following equation:

(P ǫ ) -∆u -ǫ • ǫ(x) < x -x 0 |∇u > = (1 + |x -x 0 | 2β )V e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here, we assume that:

We denote by C(1) and C(1/2) the unit circle and the circle of radius 1/2 respectively. Ω = A(0, 1/2, 1) is an annulus of center 0 and radii 1/2, 1, x 0 ∈ C(1/2) and, 0 < ǫ → 0, β ∈ [0, 1/2), u ∈ W 1,1 0 (Ω), e u ∈ L 1 (Ω), 0 ≤ V ≤ b.

We assume that:

Ω is an annulus of exterior circle the unit circle and interior circle the circle of radius 1/2. ǫ(x) ≡ 1 in a neighborhood of the unit circle C(1) and ǫ(x) ≡ -1 in a neighborhood of the circle of radius 1/2. Important Remark: To give an example of a blow-up sequence of the previous type on the boundary. We use the counter-exemple of Brezis and Merle, this counterexample works if we replace the unit ball centered at y 0 = (1, 0) by the annulus centered at y 0 = (1, 0). After se use an inversion to have the blow-up point on the interior circle of the annulus. (with the term ǫ • ǫ(x) < x -x 0 |∇u i > in the equation).

Here we present the result of Brezis-Merle in the regular case.

When ǫ = 0 the previous equation was studied by many authors with or without the boundary condition, also for Riemann surfaces see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF][START_REF] Chang | Scalar curvature equation on 2and 3-spheres[END_REF][START_REF] De Figueiredo | A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations[END_REF][START_REF] Ding | The differential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF][START_REF] Gilbarg | Elliptic Partial Differential Equations of Second order[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Nagasaki | Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF] where one can find some existence and compactness results. Also we have a nice formulation in the sens of the distributions of this Problem in [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF].

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem, Theorem A (Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) If (u i ) i and (V i ) i are two sequences of functions relative to the problem (P 0 ) with ǫ = 0 and,

0 < a ≤ V i ≤ b < +∞ then it holds, sup K u i ≤ c,
with c depending on a, b, K and Ω.

We can find in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] an interior estimate if we assume a = 0 but we need an assumption on the integral of e u i , namely:

Theorem B(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to the problem (P 0 ) with,

0 ≤ V i ≤ b < +∞ and Ω e u i dy ≤ C, then it holds; sup K u i ≤ c,
with c depending on b, C, K and Ω.

The condition Ω e u i dy ≤ C is a necessary condition in the Problem (P ǫ ) as showed by the following counterexample for ǫ = 0:

Theorem C (Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).There are two sequences (u i ) i and (V i ) i of the problem (P 0 ) with;

0 ≤ V i ≤ b < +∞, Ω e u i dy ≤ C, such that, sup Ω u i → +∞.
To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) obtained by an approximation argument and they used Fatou's lemma and applied the maximum principle in W 1,1 0 (Ω) which arises from Kato's inequality. Also this weak form of the maximum principle is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian potential. We refer to [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] for a topic about the weak form of the maximum principle.

Note that for the problem (P 0 ), by using the Pohozaev identity, we can prove that Ω e u i is uniformly bounded when 0 < a ≤ V i ≤ b < +∞ and ||∇V i || L ∞ ≤ A and Ω starshaped, when a = 0 and ∇ log V i is uniformly bounded, we can bound uniformly Ω V i e u i . In [START_REF] Ma | Convergence for a Liouville equation[END_REF] Ma-Wei have proved that those results stay true for all open sets not necessarily starshaped in the case a > 0.

In [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] Chen-Li have proved that if a = 0 and Ω e u i is uniformly bounded and ∇ log V i is uniformly bounded then (u i ) i is bounded near the boundary and we have directly the compactness result for the problem (P 0 ). Ma-Wei in [START_REF] Ma | Convergence for a Liouville equation[END_REF] extend this result in the case where a > 0.

When ǫ = 0 and if we assume V more regular we can have another type of estimates called sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF] that, if (u i ) i , (V i ) i are two sequences of functions solutions of the Problem (P 0 ) without assumption on the boundary and 0 < a ≤ V i ≤ b < +∞ then it holds:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
We can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF] an explicit value of C a b = a b . In his proof, Shafrir has used the blow-up function, the Stokes formula and an isoperimetric inequality see [START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Now, if we suppose (V i ) i uniformly Lipschitzian with A its Lipschitz constant then C(a/b) = 1 and c = c(a, b, A, K, Ω) see Brezis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also have in [START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF], an extension of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary. One can see in [START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses when the solutions blow-up. Here the notion of isolated blow-up point is used. Also one can see in [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

Here we give the behavior of the blow-up points on the boundary and a proof of a compactness result with Lipschitz condition. Note that our problem is an extension of the Brezis-Merle Problem.

The Brezis-Merle Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) is:

Problem. Suppose that V i → V in C 0 ( Ω) with 0 ≤ V i . Also, we consider a sequence of solutions (u i ) of (P 0 ) relative to (V i ) such that, Ω e u i dx ≤ C, is it possible to have: ||u i || L ∞ ≤ C = C(b, C, V, Ω)?
Here we give blow-up analysis on the boundary when V (similar to the prescribed curvature when ǫ = 0) are nonegative and bounded, and on the other hand, if we add the assumption that these functions (similar to the prescribed cruvature) are uniformly Lipschitzian, we have a compactness of the solutions of the problem (P ǫ ) for ǫ small enough. (In particular we can take a sequence of ǫ i tending to 0):

For the behavior of the blow-up points on the boundary, the following condition is sufficient,

0 ≤ V i ≤ b,
The condition V i → V in C 0 ( Ω) is not necessary. But for the compactness of the solutions we add the following condition:

||∇V i || L ∞ ≤ A i → 0.
Our main results are:

Theorem 1.1. Assume that max Ω u i → +∞, where (u i ) are solutions of the probleme (P ǫ i ) with:

0 ≤ ǫ i → 0, 0 ≤ V i ≤ b,
and

Ω e u i dx ≤ C,
then, after passing to a subsequence, there is a function u, there is a number N ∈ N and N points x 1 , . . . , x N ∈ ∂Ω, such that: x 1 , . . . , x N ∈ ∂Ω and,

∂ ν u i → ∂ ν u + N j=1
α j δ x j , α 1 ≥ 4π and α j ≥ 4π, in the sense of measures on ∂Ω.

u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }), Theorem 1.2.
Assume that (u i ) are solutions of (P ǫ i ) relative to (V i ) with the following conditions:

0 ≤ ǫ i → 0, 0 ≤ V i ≤ b, ||∇V i || L ∞ ≤ A i → 0 and Ω e u i ≤ C.

Then we have:

||u i || L ∞ ≤ c(b, β, ((ǫ i )), ((A i )), C, x 0 , Ω),
To prove Theorem 1.2, we argue by contradiction and use Theorem 1.1.

PROOF OF THE THEOREMS

Proof of theorem 1.1:

First remark that:

-∆u i = ǫ i (x 1 ∂ 1 u i + x 2 ∂ 2 u i ) + (1 + |x -x 0 | 2β )V i e u i ∈ L 1 (Ω) in Ω ⊂ R 2 , u i = 0 in ∂Ω.
and,

u i ∈ W 1,1 0 (Ω).
By the corollary 1 of Brezis-Merle see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] we have e u i ∈ L k (Ω) for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] imply that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
Also remark that, we have for two positive constants C q = C(q, Ω) and C 1 = C 1 (Ω) (see [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF]) :

||∇u i || L q ≤ C q ||∆u i || L 1 ≤ (C ′ q + ǫC 1 ||∇u i || L 1 ), ∀ i and 1 < q < 2.
Thus, if ǫ > 0 is small enough and by the Holder inequality, we have the following estimate:

||∇u i || L q ≤ C ′′ q , ∀ i and 1 < q < 2.
Step 1: interior estimate First remark that, if we consider the following equation:

-∆w i = ǫ i (x 1 ∂ 1 u i + x 2 ∂ 2 u i ) ∈ L q , 1 < q < 2 in Ω ⊂ R 2 , w i = 0 in ∂Ω.
If we consider v i the Newtonnian potential of

ǫ i (x 1 ∂ 1 u i + x 2 ∂ 2 u i ),
we have with uniform bound:

v i ∈ C 0 ( Ω), and, ∆(w i -v i ) = 0.
By the maximum principle w i -v i ∈ C 0 ( Ω) and thus w i ∈ C 0 ( Ω), with uniform bound.

Also we have by the elliptic estimates that w i ∈ W 2,1+ǫ ⊂ L ∞ , and we can write the equation of the Problem as:

-∆(u i -w i ) = Ṽi e u i -w i in Ω ⊂ R 2 , u i -w i = 0 in ∂Ω.
with,

0 ≤ Ṽi = V i e w i ≤ b, Ω e u i -w i ≤ C.
We apply the Brezis-Merle theorem to u i -w i to have:

u i -w i ∈ L ∞ loc (Ω),
and, thus:

u i ∈ L ∞ loc (Ω).

Step2: boundary estimate

The boundary contains two coonected components. Set ∂ ν u i the inner derivative of u i . We consider one of the two components and without loss of generality, by the maximum principle one can assume that ∂ ν u i ≥ 0.

We have:

∂Ω ∂ ν u i dσ ≤ C.
We have the existence of a nonnegative Radon measure µ such that,

∂Ω ∂ ν u i ϕdσ → µ(ϕ), ∀ ϕ ∈ C 0 (∂Ω).
We take an x 0 ∈ ∂Ω such that, µ(x 0 ) < 4π. Set B(x 0 , ǫ) ∩ ∂Ω := I ǫ .

We choose a function η ǫ such that,

           η ǫ ≡ 1, on I ǫ , 0 < ǫ < δ/2, η ǫ ≡ 0, outside I 2ǫ , 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I 2ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
We take a ηǫ such that,

-∆η ǫ = 0 in Ω ⊂ R 2 , ηǫ = η ǫ in ∂Ω.
Remark: We use the following steps in the construction of ηǫ :

We take a cutoff function η 0 in B(0, 2) or B(x 0 , 2):

1-We set η ǫ (x) = η 0 (|x -x 0 |/ǫ) in the case of the unit disk it is sufficient.
2-Or, in the general case: we use a chart (f, Ω = f (B r (0))) with f (0) = x 0 and we take µ ǫ (x) = η 0 (f (|x|/ǫ)) to have connected sets I ǫ and we take η ǫ (y

) = µ ǫ (f -1 (y)). Because f, f -1 are Lipschitz, |f (x) -x 0 | ≤ k 2 |x| ≤ 1 for |x| ≤ 1/k 2 and |f (x) -x 0 | ≥ k 1 |x| ≥ 2 for |x| ≥ 2/k 1 > 1/k 2 , the support of η is in I (2/k 1 )ǫ .            η ǫ ≡ 1, on f (I (1/k 2 )ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside f (I (2/k 1 )ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I (2/k 1 )ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
3-Also, we can take: µ ǫ (x) = η 0 (|x|/ǫ) and η ǫ (y) = µ ǫ (f -1 (y)), we extend it by 0 outside f (B 1 (0)). We have

f (B 1 (0)) = D 1 (x 0 ), f (B ǫ (0)) = D ǫ (x 0 ) and f (B + ǫ ) = D + ǫ (x 0 ) with f and f -1 smooth diffeo- morphism.            η ǫ ≡ 1, on a the connected set J ǫ = f (I ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside J ′ ǫ = f (I 2ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (J ′ ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
And,

H 1 (J ′ ǫ ) ≤ C 1 H 1 (I 2ǫ ) = C 1 4ǫ, because f is Lipschitz.
Here H 1 is the Hausdorff measure.

We solve the Dirichlet Problem:

∆η ǫ = ∆η ǫ in Ω ⊂ R 2 , ηǫ = 0 in ∂Ω.
and finaly we set ηǫ = -η ǫ + η ǫ . Also, by the maximum principle and the elliptic estimates we have :

||∇η ǫ || L ∞ ≤ C(||η ǫ || L ∞ + ||∇η ǫ || L ∞ + ||∆η ǫ || L ∞ ) ≤ C 1 ǫ 2 ,
with C 1 depends on Ω.

As we said in the beguening, see also [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Ding | The differential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF], 20], we have:

||∇u i || L q ≤ C q , ∀ i and 1 < q < 2.
We deduce from the last estimate that, (u i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function u ≥ 0 and Ω e u < +∞ (by Fatou lemma). Also, V i weakly converge to a nonnegative function V in L ∞ . The function u is in W 1,q 0 (Ω) solution of :

-∆u = (1 + |x -x 0 | 2β )V e u ∈ L 1 (Ω) in Ω ⊂ R 2 , u = 0 in ∂Ω.
According to the corollary 1 of Brezis-Merle result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e ku ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have,

u ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
We denote by f • g the inner product of any two vectors f and g of R 2 .

We can write,

-∆((u i -u)η ǫ ) = (1 + |x -x 0 | 2β )(V i e u i -V e u )η ǫ -2∇(u i -u) • ∇η ǫ + ǫ i (∇u i • (x -x 0 ))η ǫ . (1)
We use the interior esimate of Brezis-Merle, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between ηǫ and u, we obtain,

Ω (1 + |x -x 0 | 2β )V e u ηǫ dx = ∂Ω ∂ ν uη ǫ ≤ Cǫ = O(ǫ) (2) 
We have,

-∆u i -ǫ i ∇u i • (x -x 0 ) = (1 + |x -x 0 | 2β )V i e u i in Ω ⊂ R 2 , u = 0 in ∂Ω.
We use the Green formula between u i and ηǫ to have:

Ω (1 + |x -x 0 | 2β )V i e u i ηǫ dx = ∂Ω ∂ ν u i η ǫ dσ -ǫ i Ω (∇u i • (x -x 0 ))η ǫ = = ∂Ω ∂ ν u i η ǫ dσ + o(1) → µ(η ǫ ) ≤ µ(J ′ ǫ ) ≤ 4π -ǫ 0 , ǫ 0 > 0 (3) 
From ( 2) and (3) we have for all ǫ > 0 there is i 0 such that, for i ≥ i 0 ,

Ω |(1 + |x -x 0 | 2β )(V i e u i -V e u )η ǫ |dx ≤ 4π -ǫ 0 + Cǫ (4) 
Step 2.1: Estimate of integral of the second term of the right hand side of (1).

Let Σ ǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ 3 } and Ω ǫ 3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ 3 }, ǫ > 0.
Then, for ǫ small enough, Σ ǫ is an hypersurface.

The measure of Ω -Ω ǫ 3 is k 2 ǫ 3 ≤ meas(Ω -Ω ǫ 3 ) = µ L (Ω -Ω ǫ 3 ) ≤ k 1 ǫ 3 .
Remark: for the unit ball B(0, 1), our new manifold is B(0, 1 -ǫ 3 ).

(Proof of this fact; let's consider d(x, ∂Ω) = d(x, z 0 ), z 0 ∈ ∂Ω, this imply that (d(x, z 0 )) 2 ≤ (d(x, z)) 2 for all z ∈ ∂Ω which it is equivalent to (z -z 0 ) • (2x -z -z 0 ) ≤ 0 for all z ∈ ∂Ω, let's consider a chart around z 0 and γ(t) a curve in ∂Ω, we have;

(γ(t) -γ(t 0 ) • (2x -γ(t) -γ(t 0 )) ≤ 0, we have γ ′ (t 0 ) • (x -γ(t 0 )) = 0, this imply that x = z 0 -sν 0 where ν 0 is the outward normal of ∂Ω at z 0 ))
With this fact, we can say that S = {x, d(x, ∂Ω)

≤ ǫ} = {x = z 0 -sν z 0 , z 0 ∈ ∂Ω, -ǫ ≤ s ≤ ǫ}. It is sufficient to work on ∂Ω. Let's consider a charts (z, D = B(z, 4ǫ z ), γ z ) with z ∈ ∂Ω such that ∪ z B(z, ǫ z )
is cover of ∂Ω . One can extract a finite cover (B(z k , ǫ k )), k = 1, ..., m, by the area formula the measure of S ∩ B(z k , ǫ k ) is less than a kǫ (an ǫ-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point of the boundary).

We write,

Ω |∇(u i -u) • ∇η ǫ |dx = Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx + Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
(5)

Step 2.1.1:

Estimate of Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
First, we know from the elliptic estimates that

||∇η ǫ || L ∞ ≤ C 1 /ǫ 2 , C 1 depends on Ω
We know that (|∇u i |) i is bounded in L q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to h ∈ L q . But, we know that we have locally the uniform convergence to |∇u| (by the Brezis-Merle's theorem), then, h = |∇u| a.e. Let q ′ be the conjugate of q.

We have, ∀f ∈ L q ′ (Ω)

Ω |∇u i |f dx → Ω |∇u|f dx
If we take f = 1 Ω-Ω ǫ 3 , we have:

for ǫ > 0 ∃ i 1 = i 1 (ǫ) ∈ N, i ≥ i 1 , Ω-Ω ǫ 3 |∇u i | ≤ Ω-Ω ǫ 3 |∇u| + ǫ 3 . Then, for i ≥ i 1 (ǫ), Ω-Ω ǫ 3 |∇u i | ≤ meas(Ω -Ω ǫ 3 )||∇u|| L ∞ + ǫ 3 = ǫ 3 (k 1 ||∇u|| L ∞ + 1) = O(ǫ 3 ).
Thus, we obtain,

Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 1) = O(ǫ) (6) 
The constant C 1 does not depend on ǫ but on Ω.

Step 2.1.2: Estimate of

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
We know that, Ω ǫ ⊂⊂ Ω, and ( because of Brezis-Merle's interior estimates)

u i → u in C 1 (Ω ǫ 3 ). We have, ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ≤ ǫ 3 , for i ≥ i 3 .
We write,

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ||∇η ǫ || L ∞ = C 1 ǫ = O(ǫ) for i ≥ i 3 , For ǫ > 0, we have for i ∈ N, i ≥ i ′ , Ω |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 2) = O(ǫ) (7) 
From ( 4) and (7), we have, for ǫ > 0, there is

i ′′ such that, i ≥ i ′′ , Ω |∆[(u i -u)η ǫ ]|dx ≤ 4π -ǫ 0 + ǫ2C 1 (2k 1 ||∇u|| L ∞ + 2 + C) = 4π -ǫ 0 + O(ǫ) (8) 
We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

-∆[(u i -u)η ǫ ] = g i,ǫ in Ω ⊂ R 2 , (u i -u)η ǫ = 0 in ∂Ω. with ||g i,ǫ || L 1 (Ω) ≤ 4π -ǫ 0 /2.
We can use Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] to conclude that there are q ≥ q > 1 such that:

Vǫ(x 0 )
e q|u i -u| dx ≤ Ω e q|u i -u|ηǫ dx ≤ C(ǫ, Ω).

where, V ǫ (x 0 ) is a neighborhood of x 0 in Ω. Here we have used that in a neighborhood of x 0 by the elliptic estimates, 1 -Cǫ ≤ ηǫ ≤ 1.

Thus, for each x 0 ∈ ∂Ω -{x 1 , . . . , xm } there is ǫ 0 > 0, q 0 > 1 such that:

B(x 0 ,ǫ 0 ) e q 0 u i dx ≤ C, ∀ i.
By the elliptic estimate see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second order[END_REF] we have:

||u i || C 1,θ [B(x 0 ,ǫ)] ≤ c 3 ∀ i.

Proof of theorem 1.2:

We have:

u i ∈ W 2,k ∩ C 1,ǫ ( Ω), Thus, ∂ j u i ∈ W 1,k ∩ C 0 ( Ω),
and,

∂ j u i • ∂ k u i ∈ W 1,p ∩ C 0 ( Ω),
Thus, we can use integration by parts. The Pohozaev identity gives locally around each blow-up : a) When x is in the neighborhood of the unit circle, the Pohozaev identity gives

∂Ω (∂ ν u i ) 2 dx ≤ c 0 (b, A, C, Ω). (9) 
Thus we can use the weak convergence in L 2 (∂Ω) to have a subsequence ∂ ν u i , such that:

∂Ω ∂ ν u i ϕdx → ∂Ω ∂ ν uϕdx, ∀ ϕ ∈ L 2 (∂Ω),
Thus, α j = 0, j = 1, . . . , N and (u i ) is uniformly bounded.

b) In the case when x is in the neighborhood of x 0 or y 0 ∈ C(1/2), and the circle of radius 1/2, we use again the Pohozaev identity, by multplying by < x -x 0 |∇u i >. Here we use ∇V i → 0 (becasue we do not multiply by < x|∇u i > but by < x -x 0 |∇u i >) and the radius ǫ of the neighborhood, ǫ → 0 in the Pohozaev identity. Indeed, we have,

-∆u i -ǫ • ǫ(x) < x -x 0 |∇u i >= (1 + |x -x 0 | 2β )V i e u i (10) 
Let Ω 1 ǫ be a neighborhood of C(1) or C(1/2); first, we have ǫ(x) ≡ 1 in a neighborhood of C(1), we multiply by < x -x 0 |∇u i > the previous equation and we integrate by parts, we obtain around the blow-up y 0 , and, also, we consider blow-up from C(1/2), in the neighborhood of C(1/2), ǫ(x) ≡ -1, we multiply the equation of u i , (10), by < x -x 0 |∇u i > and we integrate by parts, Thus,

-∆u i (< x -x 0 |∇u i >) -ǫ • ǫ(x)(< x -x 0 |∇u i >) 2 = (1 + |x -x 0 | 2β )V i (x) < x -x 0 |∇(e u i ) >
We have:

Ω 1 ǫ ∆u i (< x -x 0 |∇u i >) = ∂ + Ω 1 ǫ < x -x 0 |∇u i >< ν|∇u i > - < x -x 0 |ν > 2 |∇u i | 2 + + ∂Ω 1 2 < x -x 0 |ν > (∂ ν u i ) 2 dσ,
and,

-(1 + |x -x 0 | 2β )V i (x) < x -x 0 |∇(e u i ) >= 2(1 + β) (1 + |x -x 0 | 2β )V i (x)e u i + + (1 + |x -x 0 | 2β ) < x -x 0 |∇V i > e u i - ∂Ω 1 ǫ (1 + |x -x 0 | 2β )V i (x) < x -x 0 |ν > e u i .
We have: 

(∂ ν u i ) 2 ≤ C
Now, we consider blow-up from C(1/2), in the neighborhood of C(1/2), ǫ(x) ≡ -1, we multiply the equation of u i , (10), by < x -x 0 |∇u i > and we integrate by parts, we obtain (here ν = -2x on C(1/2)): We tend i → +∞ and then ǫ → 0, ∇V i → 0, to obtain:

2(1 + β) Ω 1 ǫ (1 + |x -x 0 | 2β )V i e u i + C(1/2)∩Bǫ(y 0 ) -(-||x|| 2 + < x 0 |x >)(∂ ν u i ) 2 dσ+ + C(1/2)∩Bǫ(y 0 ) -2(-||x|| 2 + < x 0 |x >)(1 + |x -x 0 | 2β )V i + Ω 1 ǫ (< x -x 0 |∇u i >) 2 dx = = Ω 1 ǫ < x -x 0 |∇V i > (1 + |x -x 0 | 2β )e u i + O(ǫ).
lim ǫ→0 lim i→+∞ Ω 1 ǫ (1 + |x -x 0 | 2β )V i e u i =
0, however:

Ω 1 ǫ (1 + |x -x 0 | 2β )V i e u i dx = ∂Ω 1 ǫ ∂ ν u i dσ + O(ǫ) + o(1) → α 1 > 0,
it is a contradiction.

C( 1 )∩Bǫ(y 0 ) 1 2 (||x|| 2 - 1 ǫ(

 1221 < x 0 |x >)(∂ ν u i ) 2 dσ + C(1)∩Bǫ(y 0 ) (||x|| 2 -< x 0 |x >)(1 + |x -x 0 | 2β )V i + + Ω < x -x 0 |∇u i >) 2 dx = O(ǫ) + O(1), but, ||x 0 || = 1/2 and ||x|| = 1, thus ||x|| 2 -< x 0 |x >≥ 1/2,and thus:C(1)

  The previous left hand side is non-negative because ||x 0 || = 1/2 and ||x|| = 1/2 and | < x0 |x > | ≤ ||x 0 || × ||x|| = ||x|| 2 .