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In three-dimensional time-periodic advection of a passive scalar, there are three non-zero Lya-
punov exponents; because of incompressibility, the sum of those exponents is zero. Using direct
numerical simulation of the advection-diffusion equation, we show that when one is positive and the
two others are negative, spatial structures of the scalar field in the form of filaments are generated by
the flow. When reversing the flow in time, we change the sign of all Lyapunov exponents, and obtain
sheets. While dimensional analysis suggests that diffusion by thinner structures is larger, so that the
sheets, associated to the most negative Lyapunov exponent, should dissipate more rapidly the scalar
energy, we find numerically that the scalar energy decay is the same for both types of structures. We
prove this result using a symmetry argument on the advection-diffusion operator. This evidences
that the decay of the variance of a scalar field is not linked to the sign of the intermediate exponent.

I. INTRODUCTION

Mixing plays an important role in many industrial processes and natural phenomena; more importantly, the decay
rate of the variance of a passive scalar field, advected by turbulent or laminar flows, through the combined effects of
mechanical stirring and molecular diffusion [1], has received considerable interest in the last decades. It is governed
by the advection-diffusion equation,

∂c

∂t
+ v · ∇c = D∇2c , (1)

where v(x, t) is the velocity field, c(x, t) is the concentration field of the species to be mixed, and D is the molecular
diffusion. The velocity field is spatially smooth and satisfies the incompressiblity condition ∇ · v = 0, and we denote
c0(x) = c(x, 0) the initial condition for the scalar. The Péclet number is defined as Pe = UL/D, where U and L are
the characteristic velocity and length scale. In closed flows (or flows with periodic boundary conditions), the spatial
mean concentration is constant in time, so that for any time t, 〈c(x, t)〉 = 〈c0(x)〉, where 〈·〉 denotes the spatial mean;
because equation 1 is linear, we furthermore assume without loss of generality that 〈c0(x)〉 = 0, and consider c(x, t)
as the deviation from the mean. In the case of chaotic advection, or for turbulent flows in the Batchelor regime, R.
Pierrehumbert showed the existence of strange eigenmodes ĉ(x, t), such that after a transient time the concentration
field is such that [2, 3]

c(x, t) = ĉ(x, t) exp−λ̂t , (2)

see also Giona et al. [4, 5], or Haller and Yuan [6]. The strange eigenmodes ĉ(x, t) may be periodic in time or
stationary, so that concentration spectra are periodic in time (or identically the same) after normalization by the

exponential decay. The rate of decay λ̂ is the eigenvalue of the linear equation 1.
Note that in the case of a flow with non-slip walls, the decay is not exponential but rather algebraic [7–11].

In order to predict λ̂, two theories have been proposed: (i) the Global Transport theory (GTT) estimates the decay
rate in a domain of size L as the slowest mode of equation 1, which is 〈c〉 = cos(kDx) exp(−Dk2Dt), with kD = 2π/L

so that λ̂ = Dk2D; (ii) the Local Lagrangian Stretching (LLS) [12–15] is based on Kraichnan theory [16]: the rate
of decay is related to the statistics of the stretching factors of a line element; because those statistics do not involve
diffusion, this theory is only valid in the limit of very large Péclet numbers. Haynes and Vanneste [17] have unified
the problem by explaining that the two solutions are correct under certain conditions: when the spatial scalar scale is
much larger than that of the velocity field (for instance with turbulent flows), the Global Transport gives the correct
solution, while when the scales are comparable in size, the local theory gives a reasonable answer. K. Ngan and
J. Vanneste [18] have studied both cases numerically, in a 3D implementation of the sine-flow [2, 3]. They chose
velocity-fields of scale either small compared to the size of the domain, or of comparable size, and checked the theory.
In advection by chaotic streamlines of a 3D stationary flow [19–22], there are 3 Lyapunov exponents, one of which

is zero (two points extremely close on the same streamline never separate exponentially). Furthermore, if the flow is
incompressible, the sum of those exponents is zero: hence, if the stationary flow has chaotic streamlines, it has two
non-zero Lyapunov exponents, of equal moduli and opposite signs, similarly as for 2D, time-periodic chaotic flows.
When the flow is both 3D and time-periodic [18, 23], there can be another non-zero Lyapunov exponent, the sum of all
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three being zero because of incompressibility. Therefore, there are two possibilities: either two Lyapunov exponents
are positive, the third one being negative, and larger in amplitude, or only one exponent is positive, the two others
being negative. When a flow is reversed in time, the Lyapunov exponents change sign, and so does the intermediate
Lyapunov exponent. In turbulence, there are also three non zero Lyapunov exponents. While the intermediate
exponent could have any sign [14], it has always been found to be positive [24–26]: this implies two directions of
expansion, corresponding to the two positive exponents, and a “strongly contracting” direction, associated to the
negative Lyapunov exponent. In particular, A. Pumir showed that when the concentration gradient G = ∇c aligns
with the most contracting direction (corresponding to the negative exponent), the gradients grow, and the scalar
energy 〈c2〉 decreases [25]. This can be explained as follows: the equation of concentration gradients is obtained by
taking the gradient of equation 1,

dGi

dt
= D ∂2

jGi −Gj∂ivj , (3)

where d/dt = ∂/∂t+ vj∂j stands for the material derivative; it is clear that the concentration gradients grow because
of negative velocity gradients (contractions). Concomitantly, the decay of scalar energy obeys the following equation
(for a closed flow or with periodic boundary conditions):

d 〈c2〉

dt
= −2D

∫

Ω

(∇c)2 d3x ; (4)

therefore increase of scalar gradients implies decrease of scalar energy, as observed by Pumir [25].
Following Balkovsky and Fouxon [14], the rate of decay should depend on the sign of the intermediate Lyapunov

exponent. However, the LLS theory predicts that, in the limit of large Péclet numbers, a flow and its inverse (by
reversing time) lead to the same decay rate of scalar energy. In their numerical study, Ngan and Vanneste [18] found
the rate of decay for their flow and its inverse to be identical (therefore independent on the sign of the intermediate
eigenvalue). However, in their case, mixing was performed using a 3D Poincaré map (purely advecting stage) followed
by a purely diffusive stage; therefore they do not solve equation 1, but rather use a simpler scheme.

We propose here to answer the question of the importance of the sign of the intermediate Lyapunov exponent, using
a 3D time-periodic flow-field that exhibits chaotic advection, by solving numerically equation 1. The result is then
proved in the general case.

II. LAGRANGIAN PROPERTIES

A. Flow-fields

In order to obtain three non-zero Lyapunov exponents, the flow-field has to be time-dependent. We chose a periodic
flow-field of period T , composed of three different stationary flows acting during a lapse of time T/3; the “basic brick”,
whose velocity-field is sketched in figure 1, is that of a stationary 3-D (forced) Stokes flow in a cube with slipping

boundaries: it is the sum of a steady main vortex, ~U1, and of two counter-rotating steady plane vortices (~U2):

vx = −U1 sinπx cosπz (5)

vy = −2U2 sinπy cos 2πz (6)

vz = U1 cosπx sinπz + U2 cosπy sin 2πz , (7)

where the constants U1 and U2 satisfy the normalization condition (constant dissipation) U2
1 + 5U2

2 /2 = 1 [27].
in constrast to flows in complex geometries where hybrid numerical approaches are necessary [28–30], here the cu-
bic geometry, associated with the analytical expression of the flow-field, allows direct numerical simulation of the
advection-diffusion equation at high Péclet number [27]. In the following we will consider the case U1 = 0.25, flow
for which both chaos is global and mixing is the most efficient [27]. In order to make the flow time-periodic, the
basic brick is turned twice, every T/3 where T is the period, as shown in figure 1. This pattern of duration T is then
repeated thereafter. Flow B is obtained by reversing flow A in time, i.e. vB(x, t) = −vA(x,−t).

B. Lyapunov exponents

As expected for 3D time-periodic flows, the two situations depicted before for the Lyapunov exponents are en-
countered, see figure 2: Flow A has two positive Lyapunov exponents, the third one being negative and larger in
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FIG. 1: Flow-field A: the basic brick is turned three times so as to obtain three non-zero Lyapunov exponents. Each configuration
lasts a lapse of time T/3. The flow is made periodic in time by repeating those three steps. Flow B is obtained by reversing
flow A in time, i.e vB(x, t) = −vA(x,−t).
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FIG. 2: Lyapunov exponents for flow A (—), and flow B (- - -), with T = 3. In both cases, the sum of the Lyapunov exponents
is zero. For flow A, one has two positive Lyapunov exponents, and a negative one; the situation is reversed for flow B, where
the Lyapunov exponents have same amplitude and opposite signs.

amplitude, whereas flow B has only one positive exponent, the two others being negative. Moreover, since flow B is
the time-reversed of flow A, the Lyapunov exponents of flow B are exactly the opposite of those obtained with flow
A. We name the Lyapunov exponents of flow A after λ3 > λ2 and −λ1, with all λi > 0 (i = 1, 2, 3); therefore flow B
has Lyapunov exponents λ1, −λ2 and −λ3 (figure 2). The period T is chosen to maximize λ2 compared to λ3: λ2/λ3

is maximum for T = 3.

III. MIXING

Equation 1 is solved for flow A and B using direct numerical simulation with a spectral method (see details in [27]).
Because Flow A is associated with two positive Lyapunov exponents, stretching occurs in two dimensions and one
should expect planar scalar structures, whereas flow B, with only one positive Lyapunov exponent, should lead to
unidirectionally stretched structures. This is exactly what is observed in figure 3 (see also the two movies joined as
supplemental material [31, 32]).
Scalar energy spectra are classical quantities in mixing [2, 33–36]. As in the case of a stationary flow-field, after

a transient phase, the normalized energy spectra become stationary and independent on the initial condition, in
agreement with equation 2. The non dimensional spectrum Eθ(k), and the scalar dissipation k2Eθ(k) are shown in
figure 4: it is observed that there is more scalar energy at small scales (large k) for flow A (associated with the most
negative Lyapunov exponent), and that the maximum of dissipation occurs at a larger wavenumber (hence a smaller
lengthscale) for flow A compared to flow B. This is in agreement with the physics contained in equation 3, where
larger scalar gradients are produced when strongly negative velocity gradients are encountered, associated to small
length scales. All this suggests that flow B mixes more: with a strongly negative Lyapunov exponent, the scalar
structures are very thin, so that molecular diffusion is more efficient.
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Flow A Flow B

FIG. 3: Iso-scalar structures, at the same time in the exponential decay phase and from the same view point, for the same
range of scalar values, with T = 3. For flow A, with two positive Lyapunov exponents, planar scalar structures are clearly
visible; for flow B, with only one positive Lyapunov exponent, the structures are unidirectionally stretched. In both cases, the
Péclet number is Pe = 105.
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FIG. 4: left: non dimensional spectra Eθ(k) (log-log scale); right: scalar dissipation k2Eθ(k) (lin-lin scale). —: flow A (one
single strongly negative exponent); - - -: flow B (two negative exponents). the maximum of dissipation corresponds to a higher
wavenumber (therefore to a smaller length scale) for flow A. In both cases, the Péclet number is Pe = 105.

In order to check this, we quantify mixing using the standard mean deviation

c̃(t) =
√
〈c2〉 , (8)

which decay is related to equation 4. Figure 5 shows the typical behavior of c̃ as a function of time for a Péclet number
Pe = 105. After a transient stage (that depends mostly on the initial shape of the blob to be mixed), the decay is
exponential, with a slope independent on the initial condition. Surprisingly, the decay rate is exactly the same for
flows A and B!
This can be explained as follows: Equation 1 can be rewritten:

∂c

∂t
= Lc , (9)

where L is a linear operator defined as

Lc = −v · ∇c+D∇2c . (10)
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FIG. 5: Decay of the standard mean deviation of c, c̃ =
√

〈c2〉, as a function of time (Pe = 105). —: flow A; - - -: flow B.
After a transient stage the decay becomes exponential, with an identical decay rate for the two flows.

As proved in the appendix, changing v into −v turns L into its adjoint L⋆. Because flow B is such that vB(x, t) =
−vA(x,−t), then the two operators acting on flow A and B are adjoint. More particularly in our flow composed of

three successive stationary flows, let v
T/3
i (i ∈ {1, 2, 3}) be the velocity-field associated with the ith stage of flow A,

and Li the associated linear operator. We denote by L
T/3
i the global action of Li on c for the duration T/3. Then

LT = L
T/3
3 ◦ L

T/3
2 ◦ L

T/3
1 is the global operator for one period of flow A. Thus the global operator acting on flow B is

(L
T/3
1 )⋆ ◦ (L

T/3
2 )⋆ ◦ (L

T/3
3 )⋆ = (LT )⋆. The operators are adjoint, and two adjoint operators have conjugate eigenvalues,

with same real part. Because decay is associated with the real part of the eigenvalue, the decay rate is asymptotically
identical for both flows.
A similar reasoning had been used by Favier & Proctor [37], who considered the growth rate of the dynamo in

steady (reversible) flows: they showed that, due to the adjointness of the induction operator, the growth rate of the
dynamo was identical for two different types of boundary conditions (magnetic field whether tangent or normal to the
boundaries); the corresponding magnetic eigenmodes, had, like in our case, a completely different topology (see also
references [38, 39]). Ngan and Vanneste also proved this property for their flow, considering the ajointness of each
phase (reversible Poincaré map, followed by a purely diffusing stage). The proof is even more general here, since it
can be applied to any time-periodic flow (real or modeled) where advection and diffusion act simultaneously.

IV. CONCLUSION

Using a counterexample based on a flow exhibiting chaotic advection, we have shown that the decay of scalar energy
is independent on the sign of the intermediate Lyapunov exponent, and next proved it mathematically.

This result is however physically counterintuitive: since flow A creates larger scalar gradients, one could expect it
to dissipate more than flow B. Let us come back to equation 3, governing the production of scalar gradients; it can
be rewritten:

1

|G|

d|G|

dt︸ ︷︷ ︸
(0)

= D
Gi

G2
∂2
jGi

︸ ︷︷ ︸
(a)

−
GiGj

G2
∂ivj

︸ ︷︷ ︸
(b)

. (11)

Because the non dimensional concentration spectra are unchanged after a transient stage, the Batchelor scale of
the flow, corresponding to the maximum of dissipation, is constant in time. Therefore, the maximum concentration
gradient |G| only varies by dilution of scalar, i.e. (0) ∼ 1/c̃ dc̃/dt ∼ −0, 046. The order of magnitude of term (b),
describing creation of gradients, is (b) ∼ |λ|, where λ is the most negative Lyapunov exponent (most negative velocity
gradients). Hence (b) ∼ 0.4 for flow A, and 0.3 for flow B: in both cases, |(0)| ≪ (b), so that the net creation of
scalar gradients is negligible: although there is no forcing here (hence scalar energy decays and the situation is not
stationary a priori), the state is quasi stationary. This implies that (b) ∼ −(a): in this case of good mixing, the scalar
gradients are dissipated at the same rate as they are created by the flow [40]. Using the orders of magnitude of both
terms, we obtain k2 ∼ |λ|/D, where λ is the most negative Lyapunov exponent, so as to have the most positive term
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(b) possible. Indeed here, the maximum in figure 4 corresponds to a wavenumber k =
√

|λ|/(2D) with D = 10−5

(k = 141 for flow A with |λ| ≈ 0.4, and k = 122 for flow B with |λ| ≈ 0.3): this would not hold if the term (0) were
not negligible. Actually, the exponential decay of variance is not physically controlled by regions of large stretching,
but rather by a few small fluid blobs that remain unstretched for long times [11, 17, 18]. Note finally that Probability
Density Functions of c̃/〈c̃〉 (not shown here) are identical for both flows, in agreement with the idea that the rate of
decay is identical (see [41]).
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Appendix A: Adjoint operator of L

Using the definition of L, one has:
∫

c2L c1d
3v =

∫ (
c2∇ · (−vc1) +Dc2∇

2c1
)
d3v . (A1)

� The diffusion term writes:
∫

∇ · (Dc2∇c1)d
3v −

∫
(D∇c2 · ∇c1)d

3v (A2)

The term with the divergence disappears when dealing with non permeable walls, or when periodic boundary
conditions are considered; the other term is symmetric in c1 and c2, so that their role can be exchanged.

� The advecting term writes:
∫

∇ · (−vc1c2)d
3v +

∫
vc1 · ∇c2d

3v . (A3)

Here again the divergence term disappears with boundary conditions, and the advecting term writes
∫

c1∇ · (vc2)d
3v . (A4)

Finally:
∫

c2L c1d
3v =

∫
c1∇ · (vc2 +D∇c2)d

3v , (A5)

and

L
∗ c = ∇ · (vc+D∇c) . (A6)

By comparing equations 10 and A6, one finds that the adjoint L∗ is obtained from L by changing v into −v.
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