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Abstract

The problem of image segmentation is often considered in the framework of graphs. In this context, two main
paradigms exist: in the first, the vertices of a non-directed graph represent the pixels (leading e.g. to the water-
shed, the random walker or the graph cut approaches); in the second, the vertices of a directed graph represent the
connected regions, leading to the so-called morphological trees (e.g. the component-trees or the trees of shapes). Vari-
ous approaches have been proposed for carrying out segmentation from images modeled by such morphological trees,
by computing cuts of these trees or by selecting relevant nodes from descriptive attributes. In this article, we propose
a new way of carrying out segmentation from morphological trees. Our approach is dedicated to take advantage of the
morphological tree of an image, enriched by multiple attributes in each node, by using maximally stable extremal re-
gions and random walker paradigms for defining an optimal cut leading to a final segmentation. Experiments, carried
out on multimodal medical images emphasize the potential relevance of this approach.

Keywords: Segmentation, tree of shapes, component-tree, mathematical morphology, region-based attributes,
PET/CT, multimodality

1. Introduction

Segmentation is one of the most crucial issues in image
analysis. As a mid-level image processing task, consisting
of partitioning the image support into several parts pre-
senting —spectrally and/or semantically— homogeneous
properties, segmentation constitutes a mandatory prereq-
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uisite to most high-level image analysis or computer vi-
sion procedures. The difficulty of segmentation lies in
many factors, e.g., the ill-posed definition of “homoge-
neousness” in images, the variability of images for a same
observed scene, or the rapid evolution of image acquisi-
tion devices, that continuously induces new methodologi-
cal challenges.

In this context, a wide range of approaches derived
from various domains (statistics, signal processing, ma-
chine learning, optimization. . . ) have been involved in the
development of image segmentation methods and tools.
Within this large population, an important family is com-
posed by the approaches developed in the framework of
graph theory.

Basically, an image composed of pixels can be mod-
eled as a graph, where each pixel is a vertex of the graph,

Preprint submitted to Elsevier November 2, 2020



whereas the spatial neighbouring between two pixels cor-
responds to an edge in the graph. In other words, the spa-
tial support of the image is modeled by a non-directed
graph G = (V, E) with pixels/vertices in V and adja-
cency/edges in E. The spectral information carried by the
image is then modeled as a valuation function v : V → V
such that v(x) ∈ V represents the value of the pixel/vertex
x, sometimes enriched by a second valuation function
d = E → V such that d((x, y)) represents the derivative
between the values of two adjacent pixels/vertices x and
y.

Relying on this framework, image segmentation could
then benefit from the usual methodologies on graphs,
for instance, region-growing (Adams and Bischof, 1994;
Sethian, 1999), optimal path finding (Udupa and Sama-
rasekera, 1996; Heijmans et al., 2005), minimal span-
ning tree computation (Cousty et al., 2009; Najman et al.,
2013). Beyond these approaches more or less directly in-
herited from the usual algorithmics on graphs, more so-
phisticated methodologies were progressively proposed
and enriched. The most popular is certainly the water-
shed (Vincent and Soille, 1991), that led to many variants
(Vachier and Meyer, 2005; Machairas et al., 2015). One
can also cite more recent contributions proposed, e.g.,
by Boykov et al. (2001) (graph-cut), Felzenszwalb and
Huttenlocher (2004), Grady (2006) (random walker), or
Couprie et al. (2011) (power watershed). Many of these
graph-based approaches were defined or further reformu-
lated in the framework of mathematical morphology, see
e.g. (Najman and Cousty, 2014) for a comprehensive sur-
vey.

In the meantime, a second family of graph-based meth-
ods was developed, also mainly in the framework of math-
ematical morphology where it contributed to the develop-
ment of the so called connected operators (Salembier and
Serra, 1995). Whereas the above family relies on a point-
wise paradigm (1 pixel = 1 vertex), with non-directed
graphs modeling the image, this second family relies on a
region-based paradigm (1 connected component = 1 ver-
tex), with directed graphs modeling hierarchies of parti-
tions of the images.

In practice, these methods aim at defining hierarchies
of regions of the images, generally organized as trees
(i.e., rooted, connected, acyclic graphs) where each ver-
tex (also called “node”) is a connected subset of the graph
G = (V, E) whereas the edges model the inclusion be-

tween connected subsets/nodes within the tree. Various
kinds of such structures, often called morphological trees,
were developed, including non-exhaustively: the (gray-
level) component-tree (Salembier et al., 1998) and its
multivalued (Kurtz et al., 2014) and incremental variants
(Xu et al., 2016); the (gray-level) tree of shapes (Monasse
and Guichard, 2000) and its multivalued variant (Carlinet
and Géraud, 2015); the binary partition tree (Salembier
and Garrido, 2000) and variants such as the α-tree (Soille,
2008) or the multifeature tree (Randrianasoa et al., 2018);
the hyperconnection tree (Perret et al., 2012); or the hi-
erarchical watershed (Perret et al., 2018). It is worth
mentioning that some non-tree morphological hierarchies
were also proposed, generally defined as directed acyclic
graphs (e.g., component-graphs (Passat and Naegel, 2014;
Passat et al., 2019), braids (Kiran and Serra, 2015; To-
chon et al., 2019)) or as multigraph-like structures (e.g.,
component-hypertrees (Passat and Naegel, 2011; Morim-
itsu et al., 2020), asymmetric hierarchies (Perret et al.,
2015)), leading to a more complex but richer modeling
of spectral and/or spatial information.

Important efforts were geared towards handling such
hierarchical structures, both for their construction (Car-
linet and Géraud, 2014), and their actual manipulation
with segmentation purposes, often leading to (quasi-
)linear time costs, and opening the way to interac-
tive applications (Westenberg et al., 2007; Passat et al.,
2011). In particular, two main paradigms were devel-
oped, the first for defining relevant nodes within such hi-
erarchies, via attribute-based filtering (Breen and Jones,
1996; Jones, 1999), the second for defining optimal cuts
of the trees, corresponding to partitions of the underlying
image (Guigues et al., 2006; Serra, 2011). These strate-
gies led to many methods and tools dedicated to the seg-
mentation of different kinds of images, in many contexts
(e.g., medical imaging, remote sensing, document analy-
sis, computer vision).

In this article, we describe a simple, yet efficient way
of carrying out segmentation from morphological trees.
In particular, the novelties of the proposed paradigm are
the following. On the one hand, we aim at taking ad-
vantage of many images of a same scene, by computing
vectorial attributes. On the other hand, we propose to
carry out node selection within these trees with the ran-
dom walker approach, coupled with maximally stable ex-
tremal regions (MSER) (Matas et al., 2004), relying on
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the graph-structure of the tree, whereas random walker
usually acts on the graph modeling the image.

In Section 2, we recall basic notions on morphologi-
cal hierarchies and random walkers, in order to make the
article mostly self-included. In Section 3, we describe
the proposed method for image segmentation from a mor-
phological hierarchy, emphasizing the tree modeling of
the image, the MSER analysis of the nodes and the final
tree cut computation by random walker. In Section 4, we
exemplify the use of this segmentation approach in the
case of medical imaging, namely for multimodal Positron
Emission Tomography / X-ray Computed Tomography
(PET / CT). Section 5 provides concluding remarks on
the main perspectives offered by this approach.

2. Basic Notions

From now on, an image is considered as a non-directed
graph G = (V, E) where the vertices x ∈ V correspond
to the pixels, whereas the edges (x, y) ∈ E correspond to
the adjacency links between some pixels/vertices x and
y. We also consider that the images are grey-level ones,
i.e. that the valuation on the pixels/vertices is defined by
v : V → Z.

2.1. Morphological hierarchies: Component-tree and
tree of shapes

In the sequel we consider two of the most usual mor-
phological hierarchies, namely the component-tree and
the tree of shapes, which are illustrated in Figure 1.

Component-tree. Popularized by Salembier et al. (1998),
the component-tree models the valued graph (V, E, v) by
storing all the connected components induced by all the
subgraphs (Vλ, Eλ) defined by either (1) Vλ = {x ∈ V |
v(x) ≥ λ} or (2) Vλ = {x ∈ V | v(x) ≤ λ}, and
Eλ = {(x, y) ∈ E | x, y ∈ Vλ}. In case (1) (resp. (2))
the component-tree is also called the max-tree (resp. min-
tree). The set of all these connected components (also
called nodes) is denoted Θ? (where ? is either ≥ or ≤).
It is organized with respect to the inclusion relation ⊆ on
sets. More precisely, the component-tree τ? of (V, E, v)
is defined as the Hasse diagram of the partially ordered
set (Θ?,⊆). It is indeed a tree, i.e., a rooted, connected,
acyclic, directed graph, with a root equal to V .

Tree of shapes. Popularized by Monasse and Guichard
(2000), the tree of shapes can be seen as a self-dual ver-
sion of the component-tree. More precisely, the set of
nodes Θ of the tree of shapes of (V, E, v) is defined as the
union Θ = H(Θ≤) ∪ H(Θ≥) of the nodes of the min- and
max-trees, pre-processed by a hole-filling procedure H.
(For instance, the node {D,H} ∈ Θ≥ of the max-tree of
Figure 1(1.e), obtained from V2 in Figure 1(1.c), leads to
the node H({D,H}) = {D,G,H, I} ∈ Θ). Such as for the
component-tree, these nodes are organized with respect to
the inclusion relation. In other words, the tree of shapes φ
of (V, E, v) is defined as the Hasse diagram of the partially
ordered set (Θ,⊆). It is, of course, also a tree, with a root
equal to V .

2.2. A graph-based segmentation paradigm: The random
walker

The random walker, introduced by Grady (2006) is a
marker-based segmentation approach, dedicated to pro-
cess an image modeled as a valued graph (V, E, v). Given
subsets of non-overlapping vertices VF and VB of V , the
purpose is to determine for each remaining vertex x ∈
V \ (VF ∪ VB), if x is closer from VF or VB in (V, E).

This notion of closeness is related to the trajectory of
a walker starting from x and trying to reach VF or VB by
randomly progressing over the edges of E with a proba-
bility determined by a valuation d : E → R+. In prac-
tice, the probability of the walker to pass through an edge
(x, y) ∈ E (i.e., to go from x to y) is inversely proportional
to d, which is itself defined as a gradient-like measure be-
tween v(x) and v(y). In other words, the more (resp. less)
similar the values of x and y, the higher (resp. lower) the
probability that the walker goes from x to y.

This edge-valued graph can be expressed as a positive
semidefinite combinatorial Laplacian matrix. By analogy
with the computation of potentials in electrical circuits, it
is possible to determine the probability to reach VF be-
fore VB for each vertex x ∈ V by solving a combinatorial
Dirichlet problem. In particular this can be done by solv-
ing a linear equation system of size proportional to the
size of the graph, but highly sparse due to the low combi-
natorics of the adjacency relation on vertices. The result
of this process provides a fuzzy segmentation of the ver-
tices, that can be turned into a crisp segmentation by a 0.5
thresholding.
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Figure 1: (a) A grey-level image defined on a set of values [0, 3] ⊂ Z. Line (1): In white, the sets V1 (b), V2 (c) and V3 (d) in the case of the
max-tree (the set V0, equal to the whole image support is not depicted); the connected components of these binary images form the set of nodes Θ≥.
Line (2): In white, the sets V2 (b), V1 (c) and V0 (d) in the case of the min-tree (the set V3, equal to the whole image support is not depicted); the
connected components of these binary images form the set of nodes Θ≤. (e.1) The Hasse diagram of (Θ≥,⊆), namely the max-tree of the image (a).
(e.2) The Hasse diagram of (Θ≤,⊆), namely the min-tree of the image (a). (f) The Hasse diagram of (Θ,⊆), namely the tree of shapes of the image
(a).

3. Method

We now describe our segmentation method. It is com-
posed of three successive steps: (1) modeling of the im-
age/graph as a tree, and computation of multiple attributes
for each node; (2) filtering of the tree, for discarding non-
relevant node based on MSER analysis; and (3) random
walker segmentation of the remaining tree for determin-
ing the probability of each node to be preserved or re-
moved in the segmented image.

3.1. Tree modeling and vectorial node valuation

The initial image, defined as a valued graph (V, E, v) is
first modeled as a tree structure, namely a component-tree
τ or a tree of shapes φ. The choice of the tree depends on
the kind of image, and more precisely on the correlation
between the regions of interest and their spectral prop-
erties. Indeed, if these regions are either of maximal or
minimal grey-level value, we may model the image by a
component-tree (a max-tree if they have maximal values,
or a min-tree if they have minimal values). However, if the
regions are of extremal values (i.e. possibly both minimal
or maximal values), we may consider a tree of shapes, that
builds upon the isocoutours within the image, in a more
symmetric way than component-trees.

The built morphological hierarchy, noted ψ (that can
be either τ or φ), is composed of nodes that represent
connected regions within the image/graph. The goal of
the segmentation process consists of determining which
of these regions (and by side effect, which of the ver-
tices/pixels) have to be preserved or removed in the re-
sulting image.

To guide this decision, each node is enriched with at-
tributes that characterize the corresponding region from
various points of view (e.g., geometrically, morpholog-
ically, spatially, spectrally). This strategy was initially
introduced by Breen and Jones (1996) for the so-called
attribute opening. By considering a single attribute, it is
possible to define a scalar mapping from the nodes of ψ
to R, opening the way to simple, threshold-based node
selection. This strategy was considered, in particular by
Jones (1999) for attribute-based filtering of trees.

It is however possible to define no longer one, but many
attributes, for each node, leading to —more informative—
vectorial attributes (Urbach et al., 2005), at the cost of
a more complex handling of the induced attribute space.
This is the strategy we consider here, where we com-
pute, at each node N of the tree, a vector A(N) =

[a1, a2, ..., an] ∈ Rn of n scalar attributes.
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3.2. MSER tree filtering
Before actually carrying out node segmentation within

the morphological hierarchy, we first aim at extracting
from this tree a reduced data structure, composed of a
subset of nodes that present relevant properties in terms
of stability with respect to the chosen attributes. In other
words, we aim at removing “noisy” nodes, in order to
make the further segmentation more robust, from a more
compact tree, thus improving both computational cost and
accuracy.

To this end, our approach builds upon the notion of
Maximally Stable Extremal Regions (MSER) democra-
tized by Matas et al. (2004). Basically, MSER analysis
determines the nodes that exhibit a sufficient stability with
respect to a given attribute, based on a finite difference
analysis along the branches of the tree, from the more dis-
tal nodes up to the root.

In their seminal work, Matas et al. (2004) considered
in particular the volume-based stability, by assuming that
a node Ni is stable if the estimator svol(Ni) = |Ni+∆ \

Ni−∆|/|Ni| reaches a local minimum at i, where ∆ ∈ N rep-
resents the gap between the node and those on the branch
of the tree, considered for comparison purpose. In our im-
plementation, we consider the formulation of MSER such
as stated by Xu et al. (2014). Additionally, we extend the
general metric as follows:

sh(Ni) =

∆−1∑
j=−∆

|A(Ni+1− j)[h] − A(Ni− j)[h]| (1)

(If the h-th attribute is incremental, such as for the volume
attribute, then we can normalize the result by A(Ni)[h].)

Using this formula, it is possible to carry out MSER
analysis for all the n attributes of the A(N) vector for each
node N of the tree.

For determining if a node is stable for a given attribute,
we compute its MSER score for all the paths induced by
the branches of its subtree. The node is then considered
as stable for the attribute if it is considered as stable for at
least one path, following a variant of “max” policy.

Finally, in order to fuse the results regarding the dif-
ferent attributes in a regularized way, a majority vote is
performed, for discriminating the nodes that are mostly
stable with respect to the different attributes from those
that are marginally stable. The least stable nodes, charac-
terized by a minority of local minima over the n MSER

analyses, are pruned from the tree. This process leads to
a tree with a lower number of nodes, presenting a greater
relevance with respect to the attributes.

3.3. Random walker tree cut computation

The last step then consists of (i) labeling some nodes of
the tree, and (ii) propagating these labels onto the initially
non-labeled nodes, in order to finally obtain a completely
labeled tree, inducing a labeled image corresponding to
the final segmentation.

Step (i) can be carried out in various ways. The chosen
policy is application-dependent, and not discussed here.
An example of voxel-based node labeling is given in Sec-
tion 4.1.1.

The crucial part of the process is indeed Step (ii), illus-
trated in Figure 2. At this stage, we consider that we have
k ≥ 2 distinct labels: one background label B and k − 1
foreground label(s) Fi (1 ≤ i ≤ k − 1).

In order to carry out label propagation, we first take
advantage of the structure of the tree, that guarantees the
uniqueness of the path between two nodes. In particular,
we apply the following rules:

1. If a node N has a foreground label Fi, then all the
nodes within the subtree rooted at N have the same
label Fi.

2. If a node N has the background label B and none of
the nodes between N and the root of the tree has a
foreground label Fi, then all the nodes on this path
are labeled as B.

Once these two rules have been applied, the remaining
unlabeled regions of the tree correspond to sets of linear
paths bounded on their proximal side by nodes B and on
their distal side by nodes Fi.

We consider a random walker paradigm for each of
these linear paths, composed of p nodes, connected pair-
wise by p − 1 edges. The purpose is then to label the
p − 2 internal nodes, i.e., to determine the unique frontier
between the region labeled B and the one labeled Fi. To
this end, the random walker is applied on the path, with
the two extremal nodes as seeds, and with a valuation d
defined on each edge (Ni,N j) as follows:

d((Ni,N j)) = 1 − dM(β.A(Ni), β.A(N j)) (2)
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Figure 2: Successive steps of the random walker segmentation of the tree. From left to right: seed definition; label propagation within the proximal
and distal parts; random walker segmentation in the non-labeled branches; final labeling by merging of the random walker results. See Section 2.2.

where β ∈ [0, 1]n with
∑n

h=1 β[h] = 1 is a vector weight-
ing the different attributes of the nodes; β.A(N?) =

[β[h].N?[h]]n
h=1; and dM is the Mahalanobis distance, used

in order to normalize the results despite potentially het-
erogeneous attributes.

Since a node can belong to many paths, it may happen
that it is labeled in different ways by the random walkers.
The disambiguation is carried out by considering that a la-
bel Fi has a higher priority than the label B, and that rules
(1), (2) stated above still apply. When k > 2, a last am-
biguous case may occur if one node with its parent node
unanimously labeled B is assigned different Fi labels in
different paths. In that case, the disambiguation is made
by considering the label Fi that received the highest prob-
ability.

4. Application Example: PET / CT Image Segmenta-
tion

We now illustrate the behaviour of our method in the
emerging field of tumor segmentation from PET / CT
imaging. This is a complex task, due to tumor proper-
ties and imaging limitations. A tumor is often irregular
in terms of shape and size, and variable in terms of posi-
tion and cellular composition. Positron Emission Tomog-
raphy (PET), coupled with X-ray Computed Tomography
(CT), is widely used for tumor detection and analysis. In-
deed, PET provides high spectral resolution, whereas CT

provides high spatial resolution, allowing to obtain reli-
able information from both morphological and functional
points of view.

Tumor segmentation from PET / CT images is a recent
research area. A survey of the first methods considered
to tackle that issue may be found in (Foster et al., 2014).
Many of those actually used in clinical routine rely on
thresholding of the PET images, either with fixed or adap-
tive values (Nestle et al., 2007; Yu et al., 2009), tuned with
respect to settings on physical phantoms.

Our purpose is here to illustrate the potential relevance
of our approach (in particular with respect to the choice
of tree and attributes), but not to quantitatively compare
it to other related methods. Such experiments deserve a
dedicated study, and constitute a perspective work (see
Section 5).

4.1. Instanciation of the method

PET / CT is considered here for tumor analysis in the
context of radiotherapy. In such case, both tumor active
viable areas (visible in PET) and the whole tumor, includ-
ing necrotic parts (visible in CT) have to be considered.
Multimodality is exploited by taking advantage of the spa-
tial correspondence between PET and CT. The tree com-
puted from the PET image is used as tree of reference
for the segmentation process. The tree computed from
the CT image is used to bring additional information via
attributes computed from its nodes. Beforehand, PET is
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rescaled to the higher CT resolution in order to actually
reach a voxel-to-voxel correspondence.

4.1.1. Seed selections
The segmentation process requires the definition of

seeds. It is convenient for the user to define these seeds
directly in the image (voxel selection), whereas they will
have to be embedded in the tree (node selection) for car-
rying out the random walker segmentation.

The voxel seed selection is carried out by defining
two kinds of markers in the image: foreground (F), for
tumors, and background (B) for non-tumor areas. In
the PET image, tumors exhibit high intensity values,
due to high biomarker uptake. Thus, a simple double-
thresholding process can be considered by setting:

F =
{
x | PET (x) > TF ·max

y
{PET (y)}

}
(3)

B =
{
x | PET (x) < TB ·max

y
{PET (y)}

}
(4)

where PET (x) is the value of the voxel x in the PET im-
age, and TB,TF ∈ [0, 1], with TB < TF , ensuring that
F ∩ B = ∅.

This voxel-based seed definition then has to be trans-
lated into a node-based seed definition. Since a voxel gen-
erally belongs to many nodes (forming a same branch of
the tree), the correspondence between a voxel seed and a
node seed is not one-to-one. In order to tackle this issue,
the following policy is applied. Let x ∈ F be a foreground
seed voxel. Let {Ni(x)}ki=0 (k ≥ 0) be the set of all the
nodes containing x, such that for all 0 ≤ i < j ≤ k, we
have N j(x) ⊂ Ni(x). (Note that Nk(x) is then the small-
est node containing x, whereas N0(x) is the largest one,
namely the root of the tree.) We define

NF(x) = arg max
⊆
{Ni(x) | Ni(x) ∩ B = ∅} (5)

In other words, we choose as foreground seed node NF(x)
associated to the voxel x the largest node that contains x
without containing any background seed voxels. It may
happen that the set {Ni(x) | Ni(x) ∩ B = ∅} be empty. In
such case, the seed voxel does not induce the definition of
a seed node. Following the same notations, we define for
each background seed voxel x the background seed node
NB(x) by substituting min to max and B to F in Equa-
tion (5).

Δ = 1 Δ = 10 Δ = 20 Δ = 30Input

Figure 3: Filtering of the tree of shapes φ(PET,–) for various values of
∆, visualized via the reconstructed image. For ∆ = 1, 10 and 20, the
ratio of discarded nodes is 98.32%, 99.17%, and 99.53%, respectively.

𝜏(PET,CT) 𝜙(PET, −) 𝜙(PET, CT)

Figure 4: Dice scores (box plot) of the segmentation results for the vari-
ous kinds of trees (see Section 4.2).

4.1.2. Attributes
For the proposed experiments, four attributes are con-

sidered, with respect to the properties of the sought struc-
tures of interest in the PET / CT images: difference of
values between a node and its parent (C); number of vox-
els in the node (V); distance between the barycenter of the
node and that of its parent node (D); compactness (K), de-
fined as π

1
3 (6V)

2
3 /S (with S the number of voxels on the

boundary of the node).

4.2. Results and discussion

The data involved in the proposed experiments are 33
18F-FDG PET / CT images (with 8 CT injected with io-
dinated contrast agent, namely CE-CT). They were ac-
quired from several patients (12 lung cancers, 8 head and
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neck cancers, 3 breast cancers, 3 lymphomas, 2 hepatic
cancers, 3 cervix cancers, 1 colon cancer and 1 sarcoma).

Patients received an intravenous dose of FDG (3
MBq/kg). Portal phase CT was performed first in auto mA
mode with adaptive statistical iterative reconstruction, na-
tive collimation of 16 × 1.25 mm, resolution matrix of
512 × 512 × 343 with a voxel size of 0.97 × 0.97 × 2.5
mm3. PET acquisition was then performed 60 minutes
after FDG injection, covering the area from the skull to
proximal thighs. PET was reconstructed using an itera-
tive algorithm (OSEM 24 subsets, 2 iterations) and post-
processed with a Butterworth filter (cut-off frequency: 6.4
mm), obtaining a 256×256×263 matrix with a voxel size
of 2.73 × 2.73 × 3.27 mm3. For the case of 18F-FDG PET
/ CE-CT, an intravenous dose of iodinated contrast agent
(Ioversol – Optiject 350 mg I/ml) was injected 70 seconds
before CT phase.

Three kinds of morphological hierarchies were consid-
ered (one monomodal, two multimodal):

• τ(PET,CT): a component-tree built from the PET im-
age, and enriched with attributes from the CT image;

• φ(PET,–): a tree of shapes built from the PET image;

• φ(PET,CT): a tree of shapes built from the PET im-
age, and enriched with attributes from the CT image.

For a tree ψ(X,Y), built from image X and enriched with
attribute values from image Y , we considered the four at-
tributes V , C, D, K for image X and the attribute C for
image Y .

A majority vote MSER filtering was applied on ψ with
∆ = 1 (see Equation (1)). This value was experimentally
set by observing its impact on the filtered tree and its un-
derlying image. Figure 3 exemplifies the influence of ∆ in
the case of φ(PET,–).

Two labels are defined, leading to a binary segmenta-
tion paradigm: F for foreground (tumor), and B for back-
ground. For seed selection, the parameters TB and TF

were experimentally set to 0.15 and 0.60, respectively (see
Equations (3–4)). The weight vector β ∈ [0, 1]5 was set to
[1/h]5

i=1 (see Equation (2)).
With these settings, one can observe that the best results

were obtained for φ(PET,CT), by considering the Dice
score as quality metric for comparing the segmentation re-
sults and expert-defined ground-truths; see Figure 4. On

Figure 5: From left to right: contrast-enhanced CT, PET and fusion of
the two modalities; coronal view of the left side of the pelvic area. In
the rightmost image, coloured boundaries correspond to the segmenta-
tion obtained from τ(PET,CT) (blue), φ(PET,–) (pink) and φ(PET,CT)
(green).

the one hand, these results emphasize the relevance of us-
ing the tree of shapes instead of the component-tree, even
for modeling PET images (that should present regions
of interest only at locally maximal values). This derives
from the fact that lower contrast necrosis areas, forming
“holes” in the PET high contrast areas, are captured by
the tree of shapes whereas they are not by the component-
tree. On the other hand, these results also shed light on the
relevance of considering multimodal attributes, since the
segmentation results are better with φ(PET,CT) than with
φ(PET,–), i.e. by considering attributes from both PET
and CT instead of PET only. This is illustrated in Figure
5.

5. Conclusion

Our proposed approach constitutes an attempt of
embedding the random walker —and more generally
graph-cut approaches initially designed for non-directed
graphs— in hierarchical structures. This paradigm was
proposed here in the case where these hierarchies are in-
deed trees. However, it could be extended to the case
where such hierarchies are more complex as trees, e.g.,
directed acyclic graphs such as the component-graphs
(Grossiord et al., 2019). This will constitute the main
methodological perspective of this work.

From an applicative point of view, the next step will be
to assess the relevance of the proposed approach in the
context of PET / CT image segmentation. Indeed, in the
framework of graph-based approaches, Bagci et al. (2013)
proposed to perform random walker segmentation sepa-
rately in various modalities and then to fuse the results.
Alternatively, Ju et al. (2015) proposed to consider the

8



graph cut approach for bimodal segmentation from a co-
graph modeling the PET / CT images. In the framework
of morphological hierarchies, Grossiord et al. (2020) and
Urien et al. (2017) used a single-attribute component-tree
analysis for PET images.

Vectorial attributes obtained from the component-trees
of PET images were also involved by Grossiord et al.
(2017) for feeding a random forest classification. Com-
paring our approach with these different methods will be a
way of assessing the advantages of coupling graph-based
techniques with morphological hierarchies in the context
of multimodal medical imaging.

From a theoretical point of view, a longer time perspec-
tive will consist of investigating the potential links that
may exist between the proposed approach and the gen-
eral framework of power watersheds (Couprie et al., 2011;
Najman, 2017) that already allowed to successfully unify
various kinds of graph-based segmentation paradigms.
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