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This work is devoted to the experimental study of kinetics of phase separation of a magnetic colloid dt

under AC rotating magnetic fields. To this purpose, we use citrate-coated maghemite nanoparticles [ Diffusive Boundary Layer Theory: J~D,, Pe'” (¢, — ¢")L

(medium size 8 nm) dispersed in distilled water and slightly destabilized addition of salts screening H Particle Volume Conservation: ¢,,=¢q — ¢;1,V,

: T we find V(£
electrostatic repulsion between nanoparticles and leading to primary aggregates. In the presence of an (number of agregates per uth\B/qume Nq constant with time) ¢ > a(t)
VA

AC unidirectional sinusoidal magnetic field (5-10 kA/m), the primary isotropic aggregates are attracted  Agregate Volume: V, = e

to each other and for.m Iong.nee.dl.e-shape aggrega.tes of a typical length ?f 0.1-0.5 mm du.rlng a timescale 0 Minimum of free energy of aggregate: V, ~d3 g
related to a translational diffusivity of nanoparticles and the suspension supersaturation. Once they P indr, B
reach a maximal length related to homogeneity of the chemical potential across the suspension, some

aggregates coalesce with each other in order to decrease the surface energy, but the coalescence is R eS u I tS
strongly slowed down by repulsive magnetic dipolar interactions, such that in practice the phase
separation is not accomplished during a few hours. However, when a rotating sinusoidal magnetic field of
the same amplitude is applied, the needle-like aggregates (appearing a few minutes after switching on the

field) grow very quickly due to their collisions with free nanoparticles as they synchronously rotate with

the field. We focus on fundamental understanding of this phenomenon tuned by Mason and Péclet
numbers, as well as by magnetic nanoparticle concentration and suspension supersaturation. From the
practical point of view, the obtained results open new perspectives for controlling the field-induced
aggregation which may be applied in co-operative magnetophoresis, immuno-agglutination assays and
magnetically assisted thrombolysis.

Sequence of shots showing kinetics of aggregation of nanoparticles with different rotating field frequencies
5 Hz 10 Hz 20 Hz

Analysis of the size distribution at a given time, Time t = Is, Time t = |50 s,

Methods

The system used for the experimental study consists of two nested Helmholtz coil pairs powered by a
suitable alternating current to generate a rotating magnetic field and a microfluidic circuit within which
the formation of rotating needle-like aggregates under rotating magnetic fields are observed.
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Experimental dependencies of
the aggregate mean length
(obtained from the size

Suspension of nanoparticles T ST | distribution) on the elapsed

time.

(@) 4 raw experimental curves
(dashed) and smoothed
(continuous) for a
frequency f = 5Hz,

(b) Length averaged over 4
measurements for each
field frequency. The error
bars are presented for f =
5Hz and f = 20Hz. For (a)
and (b) the amplitude of
the field is B, = | ImT

Aggregate length (mm)

Experimental comparison of aggregate length normalized by maximum length as
a function of time for two field frequencies. The model parameters: The
supersaturation Ay = @y — ¢@'= 0.16% -0.07% = 0.09% or 9.10~*. The value
¢@'= 0.07% of the aggregation threshold comes from the phase diagram for the
amplitude of the field By= | ImT; volume fraction of particles in the aggregate
@;= 30%; average diameter of nanoparticles dp = 20nm; the maximum diameter
of the aggregates d,= 5 Ym, the maximum length of the aggregate is directly
measured at the stage of the experimental curves L (t).

Normalized aggregate length
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S Conclusions

(JFrom the experiment:

At f=5 Hz: Aggregates longer than for any of f > 5 Hz and a faster aggregation rate

Explanation: Largest aggregates size at low frequency for the hydrodynamic forces exerted on the
aggregates are smaller as their rotation speed is low.

Extremely fast aggregates creation (I min) (length 50-80 uym) rotating with the field
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