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ORDER ISOMORPHISMS OF COMPLETE ORDER-UNIT SPACES

CORMAC WALSH

Abstract. We investigate order isomorphisms, which are not assumed to be linear,

between complete order unit spaces. We show that two such spaces are order isomor-

phic if and only if they are linearly order isomorphic. We then introduce a condition
which determines whether all order isomorphisms on a complete order unit space

are automatically affine. This characterisation is in terms of the geometry of the

state space. We consider how this condition applies to several examples, including
the space of bounded self-adjoint operators on a Hilbert space. Our techniques also

allow us to show that in a unital C∗-algebra there is an order isomorphism between

the space of self-adjoint elements and the cone of positive invertible elements if and
only if the algebra is commutative.

1. Introduction

A basic problem concerning ordered vector spaces is to characterise their order iso-
morphisms. These are the bijective maps that preserve the order in both directions. In
many cases, these maps are necessarily affine, and we would like to know under which
conditions this is so.

The earliest rigidity results on order isomorphisms of ordered vector spaces were by
Alexandrov [1, 2] and Zeeman [27]. Their motivation came from Special Relativity, and so
they were interested in the Lorentz cone, although Alexandrov later broadened his result
to general finite-dimensional cones. This work was extended in [22, 20, 21, 6, 13, 24]. The
techniques used in these papers rely on the existence of extreme rays of the cone defining
the order, and work well when there are many such rays. However, many interesting
cones have few or no extreme rays, and here the techniques break down.

The approach taken in this paper is to study the dual space and the dual cone. It is
convenient to reduce the generality slightly by assuming that the vector space is ordered
by an Archimedean cone and has an order unit. The advantage of this is that under these
assumptions the dual cone has a cross section, called the state space, which is compact in
the weak* topology. By the Krein Milman theorem, therefore, the state space has extreme
points, the pure states. We call the closure of the set of pure states the pure state space.
One can represent points of the original vector space V as continuous functions on the
pure state space, satisfying certain constraints. These constraints are given by the affine
dependencies. These are the non-zero signed measures µ supported on the pure state
space such that ∫

K

g(x) dµ(x) = 0, for all g ∈ V .

Our first theorem shows that the existence of an order isomorphism between two
complete order unit spaces implies that they are linearly isomorphic. Actually, the result
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holds even when the map is only defined on certain subsets. We say that a subset X of
a partially ordered space is upper if x is in X whenever y ∈ X and y ≤ x.

Theorem 1.1. Let (V,C, u) and (V ′, C ′, u′) be two order unit spaces, each of which is
complete under its respective order unit norm. If there is an order isomorphism between
upper sets X ⊂ V and X ′ ⊂ V ′, then there is a linear order-isomorphism between V and
V ′.

The following example shows that some assumptions on the ordered vector spaces
are necessary for this result to hold. Let (Ω,Σ, µ) be a measure space, and take p ∈
(1,∞). The map f 7→ |f |p sign f is an order isomorphism between the spaces Lp(Ω,Σ, µ)
and L1(Ω,Σ, µ). Here signx denotes the sign of x. However, there is no linear order
isomorphism between these two spaces if the dimension is infinite. Note that, in this
case, neither of the spaces is an order unit space. This example is contained in [14].
In the same paper, it was shown that the conclusion of Theorem 1.1 is true for certain
Banach lattices, without assuming that there is an order unit.

Our next theorem concerns the question of when all order isomorphisms between
complete order unit spaces are affine. For some spaces this is not the case; for example,
there are many non-affine order isomorphisms from the real line with its usual order to
itself. This example generalises to the product of the real line with any ordered vector
space—take a non-affine order isomorphism on the real line and the identity on the
complement. We introduce the following condition.

Condition 1.2. Every pure state is contained in the closure of the union of the supports
of the affine dependencies.

A set X of a partially order space is said to be directed downward if, for every x and
y in X, there exists z in X such that z ≤ x and z ≤ y. Note that an order unit space is
itself directed downward, as is its closed cone and its open cone.

Theorem 1.3. Let V and V ′ be two complete order-unit spaces, containing non-empty
upper sets U and U ′ respectively. If V satisfies Condition 1.2, then every order iso-
morphism between U and U ′ is affine. Conversely, if there exists an order isomorphism
between U and U ′, every such isomorphism is affine, and U is directed downward, then
Condition 1.2 holds.

The additional assumption of downward directedness is necessary in the converse
direction because sometimes all order isomorphisms may be affine for reasons more to do
with the structure of the domain than the geometry of the space. An example of this is
the half space {(x, y, z) | x+y+z ≥ 0} in R3 with the product order. One can show that
R3 does not satisfy Condition 1.2, but yet all order isomorphisms from the half-space to
itself are affine.

Other situations where the domain affects which order isomorphisms exist have been
studied in [25] and [17].

From Theorem 1.3 we may recover a known result about the space B(H)sa of bounded
self-adjoint operators on a Hilbert space H, ordered by the cone of those that are positive
semi-definite.

Corollary 1.4. Let H be a Hilbert space of dimension at least two, and let U , U ′ ⊂
B(H)sa be upper sets. Then every order-isomorphism ϕ : U → U ′ is affine.

This result was proved in [15] when the sets are either the closed cone or whole
space, and more generally in [13]. In understanding how it follows from Theorem 1.3,
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I benefited from discussions with Floris Claassens, Bas Lemmens, Mark Roelands, and
Marten Wortel.

The situation where there are no affine dependencies at all supported on the pure state
space occurs precisely when the state space is a Bauer simplex (see [3, Theorem II.4.1]).
An equivalent condition is that the ordered vector space is of the form C(K), the space
of continuous real-valued functions on a compact Hausdorff space K. Our techniques
allow us to prove the following.

Theorem 1.5. Let (V,C, u) be an order unit space that is complete under its order unit
norm. There is an order isomorphism between intC and V if and only if the state space
of V is a Bauer simplex.

A corollary of this result was conjectured by Molnár in [16].

Corollary 1.6. Let A be a unital C∗-algebra. Then, there is an order isomorphism
between the cone A−1

+ of invertible positive elements and the space Asa of self-adjoint
elements if and only if A is commutative.

Proof. We use that a unital C∗-algebra is commutative if and only if its state space is a
Bauer simplex; see Corollary 2.4 of [7]. �

In [16], Molnár settled the case of the algebra B(H) of bounded operators on a Hilbert
space H, and also of the finite dimensional non-commutative C∗-algebras.

The content of the present paper is as follows. After recalling some background mate-
rial in section 2, we prove the easier direction of Theorem 1.3 in section 3. In section 4, we
study the order ideals of the cone of an order unit space. We use a purely order theoretic
notion of ideal, which is appropriate here because we are interested in maps that are
not assumed to preserve any linear structure. In section 5, we examine how these ideals
behave under order isomorphisms. The main outcome is that there is a homeomorphism
induced between the pure state spaces of the domain and the image. This generalises
Kaplansky’s theorem [11] concerning the space C(K) of continuous real-valued functions
on a compact space K. In a follow-up paper [12], Kaplansky determined the form of
the order isomorphisms on C(K) that are continuous in the supremum norm topology.
He showed that associated to each pure state is a function that determines how that
coordinate is transformed. We find that a similar expression holds in our setting; see
Proposition 5.6. In section 6, we restrict our attention to order isomorphisms on a cone
where the induced homeomorphism is the identity map, and show that, for each pure
state in the support of an affine dependency, the transformation map is affine. We use
this in section 7 to show that in the general case the coordinate transformation associated
to a pure state in the support of an affine dependency is homogeneous of some degree.
In section 8, we show that an order isomorphism all of whose coordinate transformations
are homogeneous is Gateaux differentiable, and we prove Theorem 1.1. We complete
the proofs of Theorems 1.3 and 1.5 in section 9. Finally in section 10, we provide some
examples, including a proof of Corollary 1.4.

2. Preliminaries

A useful reference for this section is Alfsen’s book [3].

2.1. Order unit spaces. Let V be a real vector space. A cone C in V is a subset that
is closed under addition and under multiplication by non-negative real numbers, and
satisfies C ∩ −C = {0}. Such a cone induces a partial order ≤ on V when we set x ≤ y
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whenever y − x ∈ C. An ordered vector space is a vector space with a partial order
determined in this way from a cone.

An ordered vector space V is said to be Archimedean if x ≤ 0 whenever x ∈ V and
y ∈ C satisfy nx ≤ y, for all n ∈ N. In finite dimension, this is equivalent to the cone
being closed. An order unit is an element u of the cone such that for each x ∈ V there
is a λ > 0 such that x ≤ λu. When V is equipped with an Archimedean cone C and an
order unit u, it becomes an order-unit space (V,C, u). The following norm is called the
order-unit norm:

||x||u := inf{λ > 0 | −λu ≤ x ≤ λu}, for all x ∈ V .

When V has the topology induced by this norm, the cone C is closed and has non-empty
interior, which we denote by intC. Indeed, the interior is exactly the set of order units
of V . By a complete order unit space, we mean one that is complete with respect to its
order-unit norm.

Let V and V ′ be two ordered vector spaces. A map ϕ from a subset X of V to a
subset X ′ of V ′ is said to be isotone or order-preserving if x ≤ y, for two elements x and
y of X, implies that ϕ(x) ≤ ϕ(y). If ϕ is bijective and both it and its inverse are order
preserving, then ϕ is said to be an order isomorphism between X and X ′.

Lemma 2.1. Let ϕ : C → C ′ be an order isomorphism between the cones of two order-
unit spaces. Then, there exist order units u and u′ in C and C ′, respectively, such that
ϕ(u) = u′.

Proof. Let v and v′ be order units of C and C ′, respectively. Choose λ > 0 such that
u := λv ≥ ϕ−1(v′). Observe that u is an order unit of C. Since u′ := ϕ(u) ≥ v′, we also
have that u′ is an order unit of C ′. �

2.2. The dual space. Let (V,C, u) be an order-unit space endowed with the topology
coming from its order-unit norm, and denote by V ∗ the topological dual space. In other
words, V ∗ is the space of continuous real-valued functionals on V . The weak* topology
on V ∗ is coarsest topology such that each element of V is a continuous function. It
is characterised by the following convergence criterion: a net yα in V ∗ converges to an
element y of V ∗ if and only if yα(x) converges to y(x) for all x in V . The dual cone C∗

of C is the subset of V ∗ consisting of positive functionals, that is,

C∗ :=
{
y ∈ V ∗ | y(x) ≥ 0, for all x ∈ C

}
.

The cross-section

K :=
{
y ∈ C∗ | y(u) = 1

}
is compact in the weak* topology. The elements of this set are called the states of V .
The extreme points of K are called the pure states, and they play an important role. An
extreme point of K is an element e such that there is no line segment contained in K
with e in its relative interior. By the Krein–Milman theorem, K is guaranteed to have
extreme points—indeed, it is the closed convex hull of the set of these points. We denote
by ∂eK the set of pure states. The closure of the set of pure states is called the pure
state space, and we denote it F := cl ∂eK. Here cl denotes the topological closure of a
set. We have that x ∈ V is in C if and only if p(x) ≥ 0, for all states p.
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2.3. Choquet representation. We denote by A(K) the set of affine real-valued func-
tions on K that are continuous in the weak* topology. Every element of A(K) can be
extended to a continuous linear functional on whole of V ∗ if and only if V is complete
in the order-unit norm; see [3, Theorem II.1.8].

The support suppµ of a measure µ on a measurable topological space Ω is the largest
subset of Ω having the property that every open neighbourhood of each of its points has
positive measure. The support of a measure is always closed. The support of a signed
measure µ is defined to be suppµ := suppµ+ ∪ suppµ−, where µ = µ+−µ− is the Hahn
decomposition.

A measure µ on K is said to represent a point y ∈ K if the barycenter formula holds
for all g ∈ A(K), that is,

g(y) =

∫
K

g(x) dµ(x), for all g ∈ A(K).

By taking g to be the constant function 1, we see that any measure representing a
point must be a probability measure, that is, have total mass 1. The Choquet–Bishop–
de Leeuw theorem states that every point in K can be represented by a probability
boundary measure, that is, a measure of total mass 1 that is maximal with respect to a
certain partial order on the set of measures on K. The details of this partial order are
not important to us—we will only need that the support of any boundary measure is a
subset of the pure state space F := cl ∂eK; see [3, Proposition I.4.6].

2.4. Affine dependencies. A non-zero signed measure µ on K said to be an affine
dependency if

µ(g) :=

∫
K

g(x) dµ(x) = 0, for all g ∈ A(K).

Observe that, if µ1 and µ2 are probability measures supported on K representing a
point y ∈ K, then µ1 − µ2 is an affine dependency. In fact, by considering the Hahn
decomposition of an affine dependency, it is easy to see that all affine dependencies arise
in this way, up to a scalar factor.

The following lemma establishes a criterion for when a function defined on F is the
restriction of an element of V . This result is known (see the remark on page 108 of [3]),
but we give an explicit proof for convenience.

Lemma 2.2. Assume that V is a complete order-unit space. Let f : F → R be a con-
tinuous function such that µ(f) = 0 for every affine dependency supported by F . Then,
there exists an element g of V such that g(p) = f(p) for all p ∈ F .

Proof. Define

g(x) :=

∫
F

f(ξ) dµx(ξ), for all x ∈ K.

Here µx is any probability measure on F representing the point x.
First we show that the choice of representing measure is not important. Suppose that

x ∈ K can be represented by two different measures µx and µ′x on F . Observe that
µx − µ′x is an affine dependency, and so (µx − µ′x)(f) = 0. Therefore,∫

F

f(ξ) dµx(ξ)−
∫
F

f(ξ) dµ′x(ξ) =

∫
F

f(ξ) d(µx − µ′x)(ξ) = 0.

Thus, it does not matter whether we integrate with respect to µx or µ′x.
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We wish to show that g is continuous. Let xα be a net in K converging to a limit
x ∈ K. By taking a subnet if necessary, we may assume that g(xα) converges to some
limit. For each α, choose a probability measure µxα on F representing xα. Since F is
compact, there is a subnet µxβ of this net of measures converging to a limiting probability
measure µ. By evaluating along the net xβ an arbitrary continuous affine function on
K, we see that µ represents x. The map f is continuous, and so we deduce that g(xα)
converges to g(x).

To show that g is affine, let x1 and x2 be two points in K, represented, respectively,
by probability measures µx1

and µx2
on F . Each convex combination (1 − λ)x1 + λx2,

with λ ∈ [0, 1], of these two points can be represented by the same convex combination
(1− λ)µx1

+ λµx2
of the measures. Since integrals are linear in the measure, we see that

g is an affine function on K.
We have shown that g is well-defined, continuous, and affine; hence it is the restriction

to K of an element of V . Here we are using that V is complete in its order-unit norm. �

2.5. Extension of positive maps. For a proof of the following proposition, see for ex-
ample [5, Lemma 1.26]. Note that the assumption in that version that C ′ is Archimedean
is not needed here because we are assuming positive homogeneity.

Proposition 2.3. Let (V,C) and (V ′, C ′) be two ordered vector spaces, and let ϕ : C →
C ′ be an additive and positively homogeneous map between their cones. Assume that C
generates V . Then, ϕ can be extended in a unique way to an order-preserving linear map
from V to V ′.

2.6. The Pettis integral. Let f : X → V be a function from a measure space (X,Σ, µ)
to a topological vector space V admitting a dual space V ∗ that separates points. We say
that f is Pettis integrable if y ◦ f is Lebesgue integrable for each y ∈ V ∗ and there exists
an element v of V satisfying

〈y, v〉 =

∫
X

〈y, f(x)〉dµ(x), for all y ∈ V ∗.

The point v is called the Pettis integral of f . See [18] for more information about this
integral.

3. The existence of non-linear order isomorphisms

In this section, we show that non-affine order isomorphisms exist when Condition 1.2
is not satisfied. Throughout the section, we assume that V is an order unit space that
is complete under its order unit norm. Recall that F is the weak* closure of the set of
extreme points ∂eK of the state space K.

Let L be the weak* closure of the union of the supports of the affine dependencies
supported by F , that is,

L := cl
⋃{

suppµ | µ is an affine dependency supported by F
}
.(1)

Clearly, L is a subset of F . Condition 1.2 is that the two sets are equal.
A Tychonoff space is a topological space in which each closed set can be separated by a

continuous real-valued function from any point that it does not contain. More precisely,
in a Tychonoff space, if A is a closed set, and x is a point not in A, then there exists a
real-valued continuous function on the space that takes the value 0 on all of A, and the
value 1 at x. Tychonoff spaces are also called “completely regular” or T3½. A compact
Hausdorff space is always Tychonoff.
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Lemma 3.1. Let X be a non-empty subset of V that is upper and directed downward.
If Condition 1.2 does not hold, that is, if L 6= F , then there exists an order isomorphism
from X to itself that is not affine.

Proof. By conjugating with translations if necessary, we may assume without loss of
generality that 0 is an element of X.

Let w ∈ F lie outside L. Since F is a compact Hausdorff space, it is Tychonoff. So,
there exists a continuous function s : F → R that separates w from L; in fact, we may
choose s to take the value 0 on all of L, the value 1 at w, and values in [0, 1] everywhere
else.

Choose a continuous function Γ: [0, 1]× [−∞,∞]→ [−∞,∞] with the following prop-
erties. We require that, for each y ∈ [0, 1], the map Γ(y, ·) is an order isomorphism of
[−∞,∞] and agrees with the identity map outside the interval [1, 2]. We furthermore
require that Γ(0, ·) is the identity map, and that Γ(1, ·) is non-affine in the interval [1, 2].

Let g be in V . The map f : F → R defined by f(p) := Γ(s(p), g(p)) is continuous.
Let µ be an affine dependency supported by F . The support of µ is a subset of L, and
on this set the function s takes the value 0. Using then that Γ(0, ·) is the identity map,
we get that µ(f) = µ(g) = 0. Applying Lemma 2.2, we see that there is an element of
V agreeing with f on F . We denote this element ϕg. This defines a map ϕ from V to
itself.

For each y ∈ [0, 1], define the function Γ̄(y, ·) to be the inverse of Γ(y, ·). Let yn be a
sequence in [0, 1] converging to y in the same set, and let xn be a sequence in [−∞,∞]
converging to x ∈ [−∞,∞]. Writing zn := Γ̄(yn, xn), we have xn = Γ(yn, zn), for all
n ∈ N. If any subsequence of zn converges to a limit z ∈ [−∞,∞], then x = Γ(y, z),
which is equivalent to z = Γ̄(y, x). We conclude that zn converges to Γ̄(y, x), which
shows that Γ̄ is continuous. Note that Γ̄ also satisfies all the other assumptions we made
on Γ.

Analogously to how we defined ϕ, we can define a map ϕ̄ : V → V such that

ϕ̄g(p) = Γ̄
(
s(p), g(p)

)
, for all g ∈ V and p ∈ F .

A similar formula holds for ϕ, and we deduce that

(ϕ̄ ◦ ϕ)g(p) = g(p), for all g ∈ V and p ∈ F .

Since, for each g ∈ V , both g and (ϕ̄ ◦ ϕ)g are continuous and affine, the barycenter
formula holds for both, and we conclude that the two functions agree on all of K, and
hence represent the same element of V . Similar reasoning shows that (ϕ ◦ ϕ̄)g always
equals g. We have shown that the maps ϕ̄ and ϕ are inverse to one another. It is clear
that both ϕ and ϕ̄ are order preserving.

Let f ∈ X. Since X is directed downward, there is an element g of X such that g ≤ 0
and g ≤ f . Note that g is a fixed point of ϕ. It follows that g ≤ ϕf , and we deduce that
ϕf is in X, since this set is upper. This establishes that ϕ leaves the set X invariant. A
similar argument shows that the same is true for ϕ−1 = ϕ̄. The restriction of ϕ to X is
the order isomorphism we require.

It remains to show that this restriction is not affine. This follows since ϕg(w) =
Γ(1, g(w)) is not affine in g. �

4. Order ideals in cones

Our goal now is to study order isomorphisms between subsets of complete order unit
spaces. Since initially we have no other information about such maps than that they
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preserve the order structure, it will necessary to start by considering some purely order-
theoretic notions.

Let P be a partially ordered set. This means that P is equipped with a partial order,
in other words, a binary relation ≤ that is reflexive, antisymmetric, and transitive. A
subset U of P is said to be lower if x ∈ P is in U whenever y ∈ U and x ≤ y. It is said
to be directed upward if, for every x and y in U , there exists z in U such that x ≤ z and
y ≤ z. The subset U is an ideal if it is non-empty, lower, and directed upward. An ideal
in a partially ordered set P is called proper if it does not equal the whole of P .

Let (V,C, u) be a complete order-unit space. We denote by I the set of all proper
ideals of the cone C. Our strategy will be to study an order isomorphism between the
cones of order-unit spaces by examining its behaviour on the ideals of the cones. In
particular, we are interested in ideals such as {x ∈ C | 〈y, x〉 < λ}, where y is a pure
state and λ > 0. However, in general, the ideals of C can be quite complicated. Note
the result of Namioka and Saeki [19] who proved that, for some compact spaces X, there
are order isomorphisms on the cone C(X)+ of non-negative real-valued functions on X
that do not preserve the strictly-less-than relation. Consequently, this strict relation
cannot be defined in terms of the relation ≤. So, the ideals {x ∈ C | 〈y, x〉 < λ} are not
necessarily mapped to similar such ideals.

For every ideal I ∈ I, we define sup I to be the pointwise supremum of the elements
of I, considered as functions on the state space K. The function sup I is non-negative
and lower semicontinuous on K. Less obviously, it is also affine. This is because the
map α 7→ α on I is a non-decreasing net of functions, and hence converges pointwise,
necessarily to an affine function since each term is affine. Another fact that we will need
is that the supremum of any proper ideal is not identically infinity.

For each pure state y and λ ≥ 0, we denote by Ly,λ the function on K that takes the
value λ at y, and the value infinity everywhere else. We also define Iy,λ to be the set of
proper ideals I of C such that sup I = Ly,λ.

Lemma 4.1. For each pure state y and λ > 0, the set of ideals Iy,λ is non-empty.

Proof. Let I := {x ∈ C | 〈y, x〉 < λ}. This set is clearly lower, and is non-empty
because it contains 0. It is also directed upward, since Ly,λ is a lower semicontinuous
affine function on K—see the proof of Corollary I.1.4 of Alfsen [3]. Again from the
same corollary, there is a non-decreasing net of elements of I converging pointwise on
K to Ly,λ. Therefore, sup I is greater than or equal to Ly,λ. The opposite inequality is
obvious. �

Lemma 4.2. Let I1 and I2 be ideals of C such that sup I1(y) < sup I2(y), for all y ∈ K
such that I1(y) is finite. Then I1 ⊂ I2.

Proof. Given x ∈ I1, we can approximate sup I2 closely enough with an element of I2, so
that the element is above x. So, x is in I2. �

The set containment relation ⊂ is a partial order on I. It turns out that we can
characterise the elements of I that are of the form Iy,λ, with y a pure state and λ ≥ 0,
using only this partial order. It even allows us, given two ideals of this form, to tell
whether the associated pure states are the same. This is the content of the next two
lemmas. For each ideal I ∈ I, denote by I↑ the set of ideals in I that contain I.

Lemma 4.3. A proper ideal I is in Iy,λ for some pure state and λ ≥ 0 if and only if I↑

is directed upward under the containment relation.
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Proof. Assume that I is in Iy,λ, with y a pure state and λ ≥ 0, and let I1 and I2
be proper ideals containing I. So, both sup I1 and sup I2 are greater than or equal to
sup I. It follows that I1 ∈ Iy,λ1 and I2 ∈ Iy,λ2 , where λ1 and λ2 are non-negative real
numbers greater than or equal to λ. Choose λ′ strictly greater than both λ1 and λ2. By
Lemma 4.1, Iy,λ′ contains a proper ideal, and by Lemma 4.2 this ideal contains both I1
and I2. We have shown that I↑ is directed upward.

Now assume that I is a proper ideal such that I↑ is directed upward. Let y1 and y2

be pure states of K where sup I takes non-negative finite values λ1 and λ2, respectively.
Take λ′1 > λ1 and λ′2 > λ2. By Lemma 4.1, there exist proper ideals I1 ∈ Iy1,λ′

1
and

I2 ∈ Iy2,λ′
2
. Both of these ideals contain I, by Lemma 4.2. Since I↑ is directed upward,

it has as an element a proper ideal containing both I1 and I2. This is only possible if
y1 = y2. We have shown that sup I is finite at only a single pure state, and since it is
lower semicontinuous and affine it follows that it takes the form Ly,λ, with y = y1 = y2

and λ = λ1 = λ2. We deduce that I is in Iy,λ. �

Lemma 4.4. Let I1 ∈ Iy1,λ1
and I2 ∈ Iy2,λ2

, where y1 and y2 are pure states, and λ1

and λ2 are non-negative real numbers. Then, y1 = y2 if and only if there is an element
of I containing both I1 and I2.

Proof. Assume that y1 = y2 =: y. Take a positive real number λ strictly greater than
both λ1 and λ2. By Lemma 4.1 there is an ideal in Iy,λ, and by Lemma 4.2 this ideal
contains both I1 and I2.

Now assume that y1 and y2 differ, and that there is an ideal I containing both I1
and I2. So, sup I is greater than or equal to both sup I1 = Ly1,λ1

and sup I2 = Ly2,λ2
,

and hence takes the value ∞ everywhere on the state space K. This shows that I is the
whole of C, and so not proper. �

The following lemma gives two criteria, one necessary and the other sufficient, for an
element of C to be contained in any of the ideals in Iy,λ .

Lemma 4.5. Let g be a non-negative continuous affine real-valued function on K, and
let I be an ideal in Iy,λ, with y a pure state, and λ a non-negative real number. If
g(y) < λ, then g ∈ I. If g(y) > λ, then g 6∈ I.

Proof. Assume that g(y) < λ. The ideal I is directed upward, and so the map α 7→ α−g
on this set is a net in V . Observe that this net is non-decreasing. Hence it converges
pointwise to its supremum Ly,λ − g. Moreover, the infimum of α − g over K converges
to the infimum of Ly,λ − g, which is λ − g(y) > 0; see Lemma 2.4 of [26]. So, we may
choose α ∈ I large enough that α−g is positive on all of K, in other words, α > g. Since
I is lower, we deduce that g ∈ I. This proves the first part of the lemma. The second
part follows directly from the definition of Iy,λ. �

5. The behaviour of order ideals under order isomorphisms

In this section we study the behaviour of order isomorphisms by examining what they
do to the ideals considered in the previous section.

We assume that we have an order isomorphism ϕ between the cones C and C ′ of order
unit spaces V and V ′, respectively. Both spaces are assumed to be complete under their
order unit norms. Recall that we are using F to denote the weak* closure of the set of
extreme points of the state space K of the cone C. Observe that F is compact. We use
similar notation concerning the cone C ′.
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Lemma 5.1. There exists a bijection Φ between the pure states of V and those of V ′

such that if I is an ideal in Iy,λ, with y a pure state and λ a non-negative real number,
then ϕI is an ideal in IΦy,λ′ , where λ′ is some non-negative real number.

Proof. Lemma 4.3 characterises the proper ideals having the property that they lie in
Iy,λ, for some pure state y and λ ≥ 0. This characterisation is purely in terms of the
order structure on C. A similar characterisation holds for the cone C ′. It follows that a
proper ideal is in Iy,λ, with y an pure state of V and λ ≥ 0, if and only if its image is in
Iy′,λ′ for some pure state y′ of V ′, and some λ′ ≥ 0.

Combining this with Lemma 4.4, we get that if two ideals I1 and I2 lie in Iy,λ1
and

Iy,λ2 , respectively, then there exists a pure state y′ of V ′ such that their images lie in
Iy′,λ′

1
and Iy′,λ′

2
, respectively, where λ′1 and λ′2 are non-negative real numbers. We define

the map Φ so that Φy := y′. We do this for each pure state y of V .
Applying the same considerations to the inverse map ϕ−1, we see that Φ is a bijection

from the pure states of V to those of V ′. �

Lemma 5.2. Let xα be a net of pure states of V converging to a point x of F , and assume
that Φxα converges to a point z of F ′. If g1 and g2 in C are such that g1(x) < g2(x),
then ϕg1(z) ≤ ϕg2(z).

Proof. Choose a positive number λ such that g1(x) < λ < g2(x). By Lemma 4.1, we
can find a net of proper ideals Iα, defined on the same directed set as xα, such that
sup Iα = Lxα,λ for all α. Note that, for α large enough, g1(xα) < λ < g2(xα), and so,
by Lemma 4.5, Iα contains g1 but does not contain g2. So, for α large enough, the ideal
ϕIα contains ϕg1 but not ϕg2. By Lemma 5.1, for each α, the ideal ϕIα is an element of
IΦxα,λ′

α
, with λ′α ≥ 0. We deduce using Lemma 4.5 that

ϕg1(Φxα) ≤ λ′α ≤ ϕg2(Φxα),

for α large enough. Taking the limit as α tends to infinity, we get the result. �

A set Z of functions defined on a set X is said to separate points if, for every pair of
distinct points x and y in X, there exists a function f in Z such that f(x) differs from
f(y).

Lemma 5.3. If xα is a net of pure states of V that converges to a limit in F , then Φ(xα)
converges to a limit in F ′.

Proof. Denote the limit of xα by x. Since F ′ is compact, it suffices to show that Φ(xα)
has a most one limit point. Assume for the sake of contradiction that there are two
distinct limit points y and z, and take subnets yβ and zγ of xα such that Φ(yβ) and
Φ(zγ) converge to y and z, respectively. The set C ′ separates K ′, and so there exists an
element h of C ′ that takes distinct values on y and z. Switch y and z if necessary and
choose λ > 0 such that h(y) < λ < h(z). For ρ > 0 large enough,

g1 := h+ ρu′ and g2 := (2λ+ ρ)u′ − h

are in C ′, where u′ is the order unit of V ′. Observe that g1(y) < g2(y) and g1(z) > g2(z).
We apply Lemma 5.2 to the map ϕ−1 twice, once for each of these inequalities. This
gives that ϕ−1g1(x) = ϕ−1g2(x).

Let

δ :=
g2(y)− g1(y)

2
> 0.
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The function g3 := g1 + δu′ is in C ′ and satisfies the relations g3(y) < g2(y) and g3(z) >
g2(z). Using the same reasoning as before, we get that ϕ−1g3 and ϕ−1g2 agree at x.

Let g4 := g2 + δu′. Again, ϕ−1g3 and ϕ−1g4 agree at x. Continuing in this manner,
we see that the functions ϕ−1(g1 + nδu′) all take the same value at x, independently of
n ∈ N. But every element of C ′ lies below g1 + nδu′ for some value of n ∈ N, and ϕ−1 is
an order isomorphism between C ′ and C. It follows that no element of C takes a value
strictly greater than ϕ−1g1(x) at x, which is absurd. �

A regular topological space is one in which each closed set can be separated by neigh-
bourhoods from each point that it does not contain. More precisely, a topological space
is regular if, given a closed set G and any point x not in G, there exist a neighbourhood of
x and a neighbourhood of G that are disjoint. Every compact Hausdorff space is regular.

Recall the following theorem from [8, §8.5, p.81]. Let f : A→ Y be a mapping from a
dense subset A of a topological space X into a regular Hausdorff space Y . Then, f can
be extended continuously to the whole of X if and only if, for each x ∈ X, we have that
f(y) converges in Y as y tends to x while remaining in A. The continuous extension is
of course unique, if it exists.

Proposition 5.4. The mapping Φ extends in a unique way to a homeomorphism between
F and F ′. This extension, which we again denote by Φ, has the property that, if g1(x) <
g2(x) for some x ∈ F and g1 and g2 in C, then ϕg1(Φx) ≤ ϕg2(Φx).

Proof. From Lemma 5.3 and the theorem from [8] mentioned above, we get that Φ extends
in a unique way to a continuous mapping between F and F ′. Similar reasoning shows
that the inverse mapping Φ−1 also extends to a continuous mapping, this time between
F ′ and F , and it is easy to see that this extension is the inverse of the extension of Φ.
Thus, the extension of Φ is a homeomorphism.

The second part is proved by applying Lemma 5.2 to any net of pure states of V
converging to x. �

We will need to know how the homeomorphism induced by a product of order isomor-
phisms is related to those induced by the factors.

Lemma 5.5. Let C, C ′, and C ′′ be the cones of complete order-unit spaces, and let
ϕ : C → C ′ and ϕ′ : C ′ → C ′′ be order isomorphisms. Let Φ: F → F ′ and Φ′ : F ′ → F ′′,
respectively, be the homeomorphisms they induce, and let Φ′′ : F → F ′′ be the homeomor-
phism induced by ϕ′ ◦ ϕ. Then, Φ′′ = Φ′ ◦ Φ.

Proof. Let x be a pure state of V , and choose λ > 0. By Lemma 4.1, Ix,λ contains an
ideal I. Applying Lemma 5.1 to the maps ϕ and ϕ′, we get that ϕ′ ◦ϕ(I) is in I(Φ′◦Φ)x,λ′ ,
for some λ′ ≥ 0. Applying the same lemma to the map ϕ′ ◦ϕ gives that ϕ′ ◦ϕ(I) is also
in IΦ′′x,λ′′ , for some λ′′ ≥ 0. This implies that Φ′ ◦ Φ and Φ′′ agree at x, and hence on
the set of pure states of V , since x was arbitrary. Finally, we extend the conclusion to
the whole of F using Proposition 5.4. �

For each p ∈ F and x ∈ R+, define

Λp(x) := ϕ(xu)(q),(2)

where q := Φ(p). We call these functions the coordinate transformations of ϕ because
they govern how the q-coordinate of ϕ(f) depends on the p-coordinate of f ∈ C, as can
be seen from the following proposition.
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Proposition 5.6. Let ϕ : C → C ′ be an order isomorphism between the cones of two
complete order-unit spaces V and V ′. Denote by Φ the induced homeomorphism between
F and F ′. Let p ∈ F , and write q := Φ(p). Let f ∈ C. If f(p) is positive and Λp is
continuous at f(p), then

ϕ(f)(q) = Λp(f(p)).

Proof. Write c := f(p) > 0. Take ε ∈ (0, c), and let g1 := (c − ε)u and g2 := (c + ε)u.
Observe that g1(p) < f(p) < g2(p). So, by Proposition 5.4, ϕg1(q) ≤ ϕf(q) ≤ ϕg2(q),
which is equivalent to Λp(c− ε) ≤ ϕf(q) ≤ Λp(c+ ε). Letting ε approach zero and using
the continuity of Λp gives the result. �

6. The case when the induced homeomorphism is the identity map

We consider first the special case of an order isomorphism having as domain and
image the cone of the same complete order-unit space, and such that the coordinate
homeomorphism induced by the order isomorphism is the identity map. The proof in
the general case will later rely on these results.

Let ϕ : C → C be an order isomorphism on the cone C of a complete order-unit space
(V,C, u).

6.1. Smoothing. Our method will involve differentiating the order isomorphism. To
ensure that this is possible, we will first smooth it by convoluting it with a sufficiently
smooth function.

Let Ξ: R→ R+ be a function of differentiability class C2, whose support is [0, 1], and
whose integral over this interval is equal to 1. Fix α > 0. Recall that we are denoting by
u the order unit of the space V . Define the smoothed map ϕ̄ using the following Pettis
integral:

ϕ̄(f) :=

∫ 1

0

ϕ
(
f + αtu

)
Ξ(t) dt, for f ∈ C.(3)

See Section 2 for a definition of the Pettis integral. To show that this integral is well-
defined, we use that the first factor of the integrand is isotone in t.

Lemma 6.1. Let f ∈ C and α > 0, and define the function V ∗ → R, y 7→ I(y),

I(y) :=

∫ 1

0

〈y, ϕ(f + αtu)〉Ξ(t) dt.

This integral is well-defined, for each y ∈ V ∗. The function I is continuous on the dual
cone C∗ in the weak* topology.

Proof. For each y in V ∗ define the function

hy : [0, 1]→ R, t 7→ 〈y, ϕ(f + αtu)〉.

Observe that, when y ∈ C∗, the function hy is isotone. Recall that every isotone real-
valued function on a closed interval is Lebesgue integrable, and that the product of two
integrable functions is integrable, provided that one of them is bounded. It follows that
hy(·)Ξ(·) is integrable when y ∈ C∗. The same must then be true for all y ∈ V ∗, because
C∗ generates V ∗, in the sense that V ∗ = C∗ − C∗. Hence the integral in the statement
of the lemma is well-defined.
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Let yβ be a net in C∗ converging in the weak* topology to a point y ∈ C∗. Take any
ε > 0. For x ∈ [0, 1], define

σ(x) :=

∫ x

0

Ξ(t) dt.

Note that σ(0) = 0 and σ(1) = 1. Partition [0, 1] into a finite number of intervals
[xi, xi+1], such that σ(xi+1)− σ(xi) < ε, for each i.

Observe that hyβ converges pointwise to hy, as β tends to infinity. So, for β large
enough, hyβ (xi) is within ε of hy(xi), for all i. Using this and that hy and all the hyβ
are non-decreasing, we get∑

i

hy(xi)
(
σ(xi+1)− σ(xi)

)
≤ I(y) ≤

∑
i

hy(xi+1)
(
σ(xi+1)− σ(xi)

)
and

−ε+
∑
i

hy(xi)
(
σ(xi+1)− σ(xi)

)
≤ I(yβ) ≤

∑
i

hy(xi+1)
(
σ(xi+1)− σ(xi)

)
+ ε.

So,

|I(y)− I(yβ)| ≤
∑
i

(
hy(xi+1)− hy(xi)

)(
σ(xi+1)− σ(xi)

)
+ ε

< (M + 1)ε,

where M := hy(1)− hy(0). We conclude that I(yβ) converges to I(y). �

Lemma 6.2. The Pettis integral in (3) is well-defined.

Proof. It was shown in Lemma 6.1 that the function from [0, 1] to R defined by

t 7→ 〈y, ϕ(f + αtu)〉Ξ(t)

is integrable, for each y in V ∗, and moreover that the function I in the statement of that
lemma is continuous on C∗. It is clear that I is a linear functional on V ∗.

Since I is weak* continuous and affine on K, and V is complete, there is an element
of v of V such that 〈y, v〉 = I(y), for all y ∈ K. This equation extends to all y in V ∗,
since both sides are linear in y. �

The smoothed map ϕ̄ is an order-preserving map from C to itself, but is not necessarily
bijective. As in the case of ϕ itself, the map ϕ̄ may be described in terms of how it
transforms coordinates. The smoothing however gives us stronger properties of these
transformations. For each p ∈ F , define the following function from R+ to R+:

Λ̄p(x) :=

∫ 1

0

Λp
(
x+ αt

)
Ξ(t) dt, for all x ∈ R+.(4)

This function is obviously non-decreasing.

Lemma 6.3. For each p ∈ F , the map Λ̄p satisfies(
ϕ̄f
)
(p) = Λ̄p

(
f(p)

)
, for all f ∈ C.(5)

Moreover, each of the maps Λ̄p is differentiable on (0,∞).

Proof. Fix p ∈ F and f ∈ C. By Proposition 5.6, for all except a countable number of
values of t ∈ R+,

ϕ
(
f + αtu

)
(p) = Λp

(
f(p) + αt

)
.

Multiplying by Ξ(t) and integrating from 0 to 1, we get (5).
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Next, we calculate the derivative of Λ̄p. Fix x > 0, and let δ ∈ R be sufficiently close
to zero that x+ δ > 0. We have

Λ̄p(x+ δ) =

∫ ∞
−∞

Λp
(
x+ δ + αt

)
Ξ(t) dt.

Note that we have extended the range of integration to the whole of the real line. We
may do this even though Λp is undefined for negative arguments because Ξ takes the
value zero whenever such a negative argument occurs. For clarity, we use the convention
that Λp takes the value zero on the negative halfline.

Make the change of variables τ := t+ δ/α to obtain

Λ̄p(x+ δ) =

∫ ∞
−∞

Λp
(
x+ ατ

)
Ξ
(
τ − δ

α

)
dτ.(6)

Subtracting Λ̄p(x), dividing by δ, and taking the limit as δ tends to zero gives, by the
dominated convergence theorem,

Λ̄′p(x) = − 1

α

∫ ∞
−∞

Λp
(
x+ ατ

)
Ξ′(τ) dτ.(7)

We conclude that Λ̄p is differentiable. �

6.2. The Gateaux derivative. We will consider the Gateaux derivative of the smoothed
map ϕ̄. This is defined to be, for h ∈ intC and f ∈ V ,

dϕ̄(h; f) := lim
τ→0

ϕ̄(h+ τf)− ϕ̄(h)

τ
=

d

dτ
ϕ̄(h+ τf)

∣∣∣∣
τ=0

,

provided the limit exists.
Recall that Taylor’s Theorem [4, p.604] implies the following. Let f be a function that

is twice differentiable on an interval I ⊂ R, and assume that |f ′′(x)| ≤ M on I. Then,
f(x) = f(a) + f ′(a)(x − a) + R(x, a), for all x and a in I, where the remainder term
satisfies

|R(x, a)| ≤M(x− a)2/2, for all x and a in I.

Define D to be the set of functions g on F such that there exists a point h ∈ intC
with

g(p) =
d

dt
Λ̄p(t)

∣∣∣∣
t=h(p)

,= Λ̄′p(h(p)) for all p ∈ F .(8)

Lemma 6.4. Let h ∈ intC and f ∈ V , and let g be as in (8). Then, for all p ∈ F ,

lim
δ→0

1

δ

(
ϕ̄
(
h+ δf

)
(p)− ϕ̄

(
h
)
(p)
)

= f(p)g(p),

and the convergence is uniform in p.

Proof. From Lemma 6.3, we get

d

dδ
ϕ̄(h+ δf)(p)

∣∣∣
δ=0

= Λ̄′p
(
h(p)

)
f(p), for all p ∈ F ,

which establishes the first part of the lemma.
It remains to show that the convergence is uniform. In the same way we established (7),

one can show that the second derivative of Λ̄p exists and is given by

Λ̄′′p(x) =
1

α2

∫ ∞
−∞

Λp
(
x+ ατ

)
Ξ′′(τ) dτ, for all p ∈ F and x > 0.
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Observe the following facts. Firstly, the second derivative Ξ′′ is bounded on [0, 1] and is
zero outside this interval. Secondly, Λp is non-decreasing, for each p ∈ F . Thirdly, for
fixed x > 0, the map p 7→ Λp(x + α) is continuous, and hence bounded. We conclude
that Λ̄′′p is bounded uniformly in p on every compact interval of (0,∞).

Let I be a compact interval of (0,∞) containing {h(p) | p ∈ F} in its interior. So,
I also contains {h(p) + δf(p) | p ∈ F}, for δ small enough. Let M > 0 be such that
|Λ̄′′p(x)| ≤M for all x ∈ I and p ∈ F . Taylor’s theorem tells us that

Λ̄p(x) = Λ̄p(a) + Λ̄′p(a)(x− a) +R(x, a), for all x and a in I,

where the remainder term satisfies |R(x, a)| ≤ M(x − a)2/2. Taking a = h(p) and
x = h(p) + δf(p) gives∣∣∣1

δ

[
Λ̄p
(
h(p) + δf(p)

)
− Λ̄p

(
h(p)

)]
− Λ̄′p

(
h(p)

)
f(p)

∣∣∣ ≤ 1

2
Mδf(p)2,

for all p ∈ F , and δ small enough. The required uniform convergence now follows on
applying Lemma 6.3. �

Lemma 6.5. Let vα be a net of points in V , such that vα(·) converges uniformly on F
to a limit f : F → R. Then, vα converges in the order-unit norm to a point v of V such
that v(·) = f(·) on F .

Proof. For each x ∈ K, there exists a probability measure µx on F representing x. In
particular,

vα(x) =

∫
F

vα dµx, for all α.

It follows that vα converges uniformly on K to some function, which is necessarily affine
and continuous, and hence an element of V . �

Lemma 6.6. Let f ∈ V and g ∈ D. Then, there is a point v of V satisfying v(p) =
f(p)g(p), for all p ∈ F .

Proof. Let h be the point in the open cone intC such that g satisfies (8). For all δ ∈ R
close enough to zero that h+ δf lies in C, let

hδ :=
1

δ

(
ϕ̄(h+ δf)− ϕ̄(h)

)
.

By Lemma 6.4, hδ converges uniformly on F , as δ tends to zero, to fg. The existence of
a point v with the required property now follows upon applying Lemma 6.5. �

6.3. A quotient of the pure state space. We will define a quotient of the pure state
space F by considering elements whose transformation functions are affine with the same
slope to be equivalent. In other words, we define a relation ∼ on F , where p ∼ q if there
are real numbers α, β, and λ such that Λ̄p(x) = α + λx and Λ̄q(x) = β + λx, for all
x > 0. We denote by F∼ := F/∼ the topological quotient of F by this relation. Observe
that every element of D is constant on each equivalence class of ∼, and hence may be
considered to be a function on F∼. This function is moreover continuous. Indeed, taking
f in Lemma 6.6 to be the unit, we see that every element of D agrees with some element
of V on F , and is hence continuous on this set, which implies that it is continuous on
the quotient.

Lemma 6.7. Let p and q be points of F such that p 6∼ q. Then, there is a function in
D that takes distinct values at p and q.
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Proof. If there exists t ∈ (0,∞) such that Λ̄′p(t) and Λ̄′q(t) differ, then the requirement
of the lemma is satisfied by setting h := tu, where u is the unit, and defining an element
of D according to (8). So, we assume that Λ̄′p and Λ̄′q agree on all of (0,∞). Combining

this with the assumption of the lemma, we get that Λ̄′p and Λ̄′q are not constant.
Since intC separates F , it contains an element f such that f(p) differs from f(q). By

switching labels if necessary, we may assume that f(p) < f(q). Choose x and y in (0,∞),
with x < y, such that Λ̄′p(x) 6= Λ̄′q(y) and

y − x
x

<
f(q)− f(p)

f(p)
.

Then, the point

h(·) :=
y − x

f(q)− f(p)
f(·) +

(
x− y − x

f(q)− f(p)
f(p)

)
u(·)

is an element of intC since it is obtained from f by multiplying by a positive scalar and
adding a positive multiple of the unit u. Observing that h(p) = x and h(q) = y, we get
the required element of D using (8). �

Lemma 6.8. The quotient F∼ is compact and Hausdorff.

Proof. The compactness follows immediately from the compactness of F .
Let p and q be distinct elements of F∼. By Lemma 6.7, there is an element g of D

such that g(p) and g(q) are distinct. The map g is a continuous function on F∼. Take
neighbourhoods in R of g(p) and g(q), respectively, that are disjoint from one another.
The preimages of these neighbourhoods under g are disjoint neighbourhoods of p and q,
respectively. This shows that F∼ is Hausdorff. �

The space C(X,R) of continuous real-valued functions on a compact Hausdorff space
X is an algebra of functions, that is, it is a linear space of functions that is closed under
pointwise multiplication. Recall that a subalgebra of an algebra is a vector subspace
that is closed under multiplication. The Stone–Weierstrass Theorem states the following.
Assume X is a compact Hausdorff space and A is a subalgebra of C(X,R) that contains
a non-zero constant function. Then, A is uniformly dense in C(X,R) if and only if it
separates points of X. See [4, section 9.2] for more details.

Lemma 6.9. Let µ be an affine dependency of the space V that is supported by F . Then,
the pushforward µ∗ of µ to F∼ by the quotient map is the zero measure.

Proof. By Lemma 6.8, the quotient F∼ is a compact Hausdorff space. Observe that
each element of D is constant on each equivalence class of F . So, such functions may be
considered to be continuous functions on F∼.

Let P denote the set of functions that can be written as finite weighted sums of finite
products of elements of D, that is, functions of the form

n∑
i=1

cif
i
1 · · · f imi ,

where n ≥ 1, eachmi ≥ 0, each f ij is inD, and each ci is in R. Ifmi is zero for some i, then
the associated term is a constant function. Note that P is a vector subspace of C(F∼,R)
that is closed under multiplication—in other words it is a subalgebra. Furthermore, it
separates F∼ since it contains the set D, which is separating by Lemma 6.7. So, by the
Stone–Weierstrass theorem, P is uniformly dense in C(F∼,R).
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Let f ∈ P . It follows from repeated application of Lemma 6.6 that there is an element
of V that agrees with f on F . We denote this element again by f .

Since µ is an affine dependency, µ(f) = 0. We deduce that its pushforward satisfies
µ∗(f) = 0, where f is now considered to be a function on the quotient space F∼. Since
this is true for any f in a uniformly dense subset of C(F∼,R), we see that µ∗ is zero. �

6.4. Linearity when the induced homeomorphism is the identity map. We will
need that the coordinate transformation functions of the smoothed map converge nearly
everywhere to those of the original map, as the parameter α, which governs the scale
over which the smoothing happens, tends to zero,

Lemma 6.10. Let p ∈ F , and let x ∈ (0,∞) be such that Λp is continuous at x. Then,
Λ̄p(x) converges to Λp(x), as α tends to zero.

Proof. Since Λp is non-decreasing, Λp(x) ≤ Λp(x+ αt) ≤ Λp(x+ α), for t ∈ [0, 1]. Using
these bounds in (4), and that the area under Ξ in the interval [0, 1] is 1, we get that
Λp(x) ≤ Λ̄p(x) ≤ Λp(x+ α), Letting α approach zero gives us the result. �

Lemma 6.11. Let x > 0. The map F → R+, q 7→ Λ̄q(x) is continuous.

Proof. Taking f = xu in Lemma 6.1, we get that ϕ̄(xu)(q) is continuous in q on F , since
this set is a subset of C∗. By Lemma 6.3, this quantity equals Λ̄q(x). �

Recall that we are assuming that Φ is the identity map.

Lemma 6.12. If p ∈ F is in the support of some affine dependency supported by F ,
then Λp is affine on (0,∞).

Proof. Let r ∈ F be such that Λr is not affine on (0,∞). Recall that, given any choice
of α > 0, we have defined in (3) a smoothed map ϕ̄. By Lemma 6.10, Λ̄r converges
pointwise to Λr, as α tends to zero, everywhere on (0,∞) except at a countable number
of points. If Λ̄r were affine for all α > 0, then this would imply that Λr was affine on
all but a countable number of points of (0,∞), and hence on all of (0,∞), since Λr is
non-decreasing. We conclude that there is some α for which Λ̄r is not affine. Fix this α.

Take the quotient F∼ of F as above, by considering elements p and q to be equivalent
if the maps Λ̄p and Λ̄q are affine with the same slope. Let µ be an affine dependency of
the space V that is supported by F . By Lemma 6.9, its pushforward µ∗ to F∼ is zero.

By Lemma 6.11, there is an open neighbourhood N of r such that Λ̄p is not affine for
any p ∈ N . Each element of N lies in an equivalence class consisting of a single point,
and so the quotient map is a bijection between N and its image N∼. This implies that
the restrictions to N of µ and µ∗, respectively, are equal. Hence, |µ|[N ] = 0. It follows
that r is not in the support of µ. �

To go from the affineness of Λp to its homogeneity, we will introduce a new assumption.
The following is the main result of this section.

Recall that we are considering a complete order-unit space V , and we are denoting by
F its pure state space, and by L the closure of the union of the supports of the affine
dependencies supported by F ; see (1).

Lemma 6.13. Let ϕ : C → C be an order isomorphism on the cone C of a complete
order-unit space V . Assume that the homeomorphism Φ induced by ϕ on the pure state
space is the identity map. Let p ∈ L be such that

lim
x↘0

Λp(x) = 0.(9)
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Then, the coordinate transformation Λp is homogeneous of degree 1.

Proof. By assumption, there is a net pβ in F converging to p such that each pβ is in the
support of an affine dependency supported by F . By Lemma 6.12, for each β, the map
Λpβ is affine on (0,∞). Using that Λpβ converges pointwise to Λp, we get that Λp is affine
on (0,∞). This, combined with (9), implies that it is homogeneous of degree 1. �

7. Homogeneity of the coordinate transformations

In this section, we return to considering a general order isomorphism ϕ between the
cones C and C ′ of complete order-unit spaces V and V ′, respectively. We establish
that each of the coordinate transformations Λp; p ∈ L is homogeneous of some degree,
possibly different from one. We will strengthen this conclusion later, with Lemma 9.1.
Recall that F is the pure state space of V , and L is as defined in (1).

For each λ > 0, define the homogeneity defect map:

∆λ : C → C, ∆λ := ϕ−1 ◦Mλ ◦ ϕ.(10)

Here Mλ means multiplication by the scalar λ. The map ∆λ measures how far away
from being homogeneous the map ϕ is. Indeed, if ϕ is homogeneous, then ∆λ is simply
multiplication by λ. In any case, ∆λ is an order isomorphism from C to itself. For each
λ > 0 and p ∈ F , denote by Φ(λ) the homeomorphism on F induced by ∆λ, and denote

by Λ
(λ)
p the pth-coordinate transformation function as defined in (2). These maps are

related to one another by Proposition 5.6.
The first lemma of this section shows that the main result of the previous section

applies to the homogeneity defect map.

Lemma 7.1. For all λ > 0, the homeomorphism Φ(λ) on F induced by the defect map

∆λ is the identity map. Moreover, Λ
(λ)
p is homogeneous of degree 1, for each p ∈ L.

Proof. The first part follows from Lemma 5.5.
To prove the second part, fix p ∈ L. Consider first the case where 0 < λ ≤ 1. Observe

that since Mλ(g) ≤ g, for all g ∈ C ′, we have ∆λ(g) ≤ g, for all g ∈ C. We deduce that

Λ
(λ)
p (x) ≤ x, for all x ≥ 0. This implies that (9) holds. So, by Lemma 6.13, we get that

Λ
(λ)
p is homogeneous of degree 1.

When λ ≥ 1, we apply the same argument to ∆1/λ, to get that Λ
(1/λ)
p is homogeneous

of degree 1, and then use that ∆λ = (∆1/λ)−1, and so Λ
(λ)
p is the inverse of Λ

(1/λ)
p , and

hence homogeneous of degree 1. �

Lemma 7.2. For each p ∈ L, the coordinate transformation Λp is homogeneous of some
degree α(p) > 0.

Proof. Fix p ∈ L. For each λ > 0, define the homogeneity defect map as in (10). By
Lemma 7.1, the associated coordinate transformation maps can be written

Λ(λ)
p (x) = ρ(λ)x, for all λ > 0 and x ≥ 0,

where ρ : (0,∞)→ R+ is some function.
Note that, for all positive λ and λ′, we have ∆λ ◦∆λ′ = ∆λλ′ . The homeomorphism

induced by each of ∆λ, ∆λ′ , and ∆λλ′ is the identity map, and the coordinate transfor-

mations Λ
(λ)
p , Λ

(λ′)
p , and Λ

(λλ′)
p are all continuous on (0,∞). So, from Proposition 5.6

we get that Λ
(λ)
p ◦ Λ

(λ′)
p = Λ

(λλ′)
p . It follows that ρ(λ)ρ(λ′) = ρ(λλ′). The function ρ is

non-decreasing on its domain (0,∞). Clearly ρ cannot be identically zero, because each
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∆λ is an order isomorphism. According to [10, Theorem 1.49], the only other possibility
is that ρ(λ) = λc, for all λ > 0, where c is a non-negative real number.

Observe that ϕ ◦∆λ = Mλ ◦ ϕ, for each λ > 0. We deduce that

Λp(λ
cx) = λΛp(x), for all λ > 0 and x ≥ 0.

Recall that Λp is non-decreasing and unbounded, but not necessarily continuous. By
evaluating both sides of this equation at a point where Λp is positive and continuous,
taking λ 6= 1, we see that c cannot be zero.

Substituting γ := λc, we get

Λp(γx) = γ1/cΛp(x), for all γ > 0 and x ≥ 0.

This shows that Λp is homogeneous of degree 1/c. �

8. Differentiating order isomorphisms

As before, we assume that (V,C, u) and (V ′, C ′, u′) are complete order-unit spaces.
Recall that F is the pure state space of V , and L is as defined in (1), and that analogous
notation is used concerning V ′.

The next lemma provides a way of obtaining a linear order-isomorphism between the
spaces V and V ′, provided there is a sufficiently regular order isomorphism between their
cones.

Lemma 8.1. Let ϕ : C → C ′ be an order isomorphism, such that ϕ(u) = u′. Denote by Φ
the homeomorphism it induces from F to F ′. Assume that each coordinate transformation
Λp; p ∈ F is homogeneous of some degree α(p) > 0. Then, ϕ is Gateaux differentiable at
u, and its derivative in the direction f ∈ V is given by

dϕ(u; f)(q) = α(p)f(p), for all q ∈ F ′,

where p := Φ−1(q). The map f → dϕ(u; f) is a linear order-isomorphism from V to V ′,
and it induces the same homeomorphism between F and F ′ as ϕ, namely Φ.

Proof. Fix f ∈ V . For each p ∈ F , we have that Λp(1) = 1, and so Λp(x) = xα(p), for

all x ∈ R+. Since ϕ(2u) is continuous on F ′, and ϕ(2u)(q) = 2α(p), for each q ∈ F ′,
where p = Φ−1(q), we see that α is continuous on F , and hence bounded. This implies
that the second derivative of Λp is bounded uniformly in p in an interval neighbourhood
I ⊂ (0,∞) of 1, that is, there exists M > 0 such that∣∣∣d2Λp(x)

dx2

∣∣∣ ≤M, for all p ∈ F and x ∈ I.

Taylor’s theorem gives that, for p ∈ F and δ small enough,

ϕ(u+ δf)(Φ(p)) = Λp
(
(u+ δf)(p)

)
= 1 + δα(p)f(p) +R(δ, p, f(p)),

with the remainder term satisfying |R(δ, p, f(p))| ≤Mδ2f(p)2/2.
This shows that the limit in the definition of the Gateaux derivative converges uni-

formly on F ′ to α(p)f(p). By Lemma 6.5, this means that the Gateaux derivative dϕ(u; f)
exists and has the required form.

The map D : f 7→ dϕ(u; f) is obviously linear and order preserving.
Consider the inverse ϕ−1 of ϕ. Each of the coordinate transformations Λ′q, with q ∈ F ′,

of this map is also homogeneous, this time of degree 1/α(p), where p := Φ−1(q). Using
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the same reasoning as for ϕ, we get that the Gateaux derivative of ϕ−1 at the order unit
u′ in the direction f ∈ V ′ is given by

dϕ−1(u′; f)(p) =
1

α(p)
f(q), for all q ∈ F ′,

where p := Φ−1(q). From this expression, we see that the map f 7→ dϕ−1(u′; f) is also
linear and order preserving. Moreover, it is the inverse of the map D. Hence, D is a
linear order-isomorphism between V and V ′.

It remains to show that the homeomorphism ΦD induced by D is the same as that
induced by ϕ. Let p be a pure state of V , and choose λ > 0. By Lemma 4.1, the set Ip,λ
contains an ideal I, satisfying sup I = Lp,λ. Since D is an order isomorphism, it maps I
to an ideal I ′ of C ′. We see from the explicit formula for D that sup I ′ takes the value
α(p)λ at Φ(p) and the value infinity everywhere else. So, I ′ is in IΦ(p),α(p)λ. It follows

using Lemma 5.1 that ΦD(p) = Φ(p). Since this holds for an arbitrary pure state of V ,
the pure states are dense in F , and ΦD and Φ are continuous, the conclusion follows. �

A normal topological space is one in which every two disjoint closed sets have disjoint
open neighborhoods. Every compact Hausdorff space is normal. Recall that Tietze’s
extension theorem states that every continuous real-valued function defined on a closed
subset of a normal topological space can be extended to a continuous function on the
whole space, and, moreover, that if the function is bounded, then the extended function
can be chosen to have the same bounds.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we may assume that the domain of ϕ
is C and the co-domain is C ′—if this is not the case, then choose some element f of X
and consider the map g 7→ ϕ(f + g)−ϕ(f) from C to C ′. By Lemma 2.1, we can choose
order units u and u′ of V and V ′ respectively, such that ϕ(u) = u′.

Recall that we are using L to denote the closure of the union of the supports of the
affine dependencies of V supported by F . By Lemma 7.2, for each p ∈ L, the coordinate
transformation Λp is homogeneous of some positive degree. Likewise, the coordinate
transformation Λ′q of the inverse map ϕ−1 is homogeneous of positive degree, for each
q ∈ L′, where L′ is defined analogously to L. Observe that Λp and Λ′q are inverses when

q = Φ(p). It follows that Λp is homogeneous of positive degree for all p ∈ Φ−1(L′).
Therefore, we can write

Λp(x) = xα(p), for all p ∈ L ∪ Φ−1(L′) and x ∈ R+,

where α is a positive function.
By considering the image under ϕ of 2u, where u is the unit, we see that α is continuous

on L∪Φ−1(L′). Since L and L′ are compact, α is bounded above and below by positive
numbers on this set.

By Tietze’s extension theorem, we may extend α to a continuous function on the whole
of F . We reuse the symbol α to denote this extended map. The extension can be chosen
to be bounded above and below by positive numbers.

Let h ∈ C, and consider the function f : F ′ → R defined by

f(q) := h(p)α(p), for all q ∈ F ′,

where p and q are related by q = Φ(p). The function f is continuous. Moreover, it agrees
with ϕ(h) on L′, and so µ(f) = 0, for each affine dependency µ of V ′ supported by F ′.
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Applying Lemma 2.2, we get that there is a element gh of V ′ such that gh(q) = f(q), for
all q ∈ F ′. Since gh takes non-negative values on F ′, it is an element of C ′.

Define the map κ : C → C ′ by setting κ(h) := gh, for all h ∈ C. This map is clearly
order preserving. Similar reasoning to that in the previous paragraph shows that one
may define a map from C ′ to C having coordinate transformations

Λ′q(x) = x1/α(p), for all q ∈ F ′,

where p = Φ−1(q). This map is the inverse of κ and is also order preserving. Hence κ is
an order isomorphism. Observe that κ(u) = u′. It only remains to apply Lemma 8.1 to
get that there is a linear order-isomorphism between V and V ′. �

9. Affineness of order isomorphisms

In this section, we complete the proofs of Theorems 1.3 and 1.5.
First, we sharpen Lemma 7.2 to say that the degree of homogeneity of the coordinate

transformation maps is actually 1, for elements of L.

Lemma 9.1. Let ϕ : C → C ′ be an order isomorphism between the cones of two complete
order-unit spaces V and V ′. Then, for each p ∈ L, the coordinate transformation Λp is
homogeneous of degree 1.

Proof. By Theorem 1.1, there is a linear order-isomorphism D from V ′ to V . Moreover,
this map induces the same homeomorphism between F ′ and F as ϕ−1. By Lemma 5.5,
this homeomorphism is the inverse of the one Φ induced by ϕ between F and F ′.

Consider the map ϑ := D ◦ ϕ. This is an order isomorphism from C to itself, and, by
Lemma 5.5, the homeomorphism it induces on F is the identity map. By Lemma 7.2,
each of the coordinate transformations Λp; p ∈ L of ϕ is homogeneous of some positive
degree. Furthermore, every coordinate transformation ΛDq ; q ∈ F ′ of D is homogeneous

of degree 1. Let Λϑp ; p ∈ F , be the coordinate transformations of ϑ. Observe that,

for each p ∈ L, we have Λϑp = ΛDq ◦ Λp, where q := Φ(p), and hence the coordinate

transformation Λϑp is homogeneous of the same degree as Λp. This implies that (9) holds,
and Lemma 6.13 is therefore applicable. We deduce that, for all p ∈ L, the transformation
Λϑp is homogeneous of degree 1, and hence so is Λp. �

The next lemma generalises our results about isomorphisms between cones to isomor-
phisms between upper sets.

Lemma 9.2. Let V and V ′ be two complete order-unit spaces, and let ϕ : U → U ′ be
an order isomorphism between non-empty upper sets U ⊂ V and U ′ ⊂ V ′. Then, there
exists a homeomorphism Φ between F and F ′ such that, for each p ∈ L, the following
holds: there exists an increasing affine function a : R→ R satisfying ϕ(f)(q) = a(f(p)),
for all f ∈ U , where q := Φ(p).

Proof. Let z ∈ U . The map

ϑz : C → C ′, f 7→ ϕ(f + z)− ϕ(z)

is an order isomorphism from the cone C of V to the cone C ′ of V ′. Let Φ be the
homeomorphism from F to F ′ that this induces.

Let p ∈ L, and write q := Φ(p). From Lemma 9.1, the coordinate transformation
Λp of ϑz is homogeneous of degree 1. This means that there is some λ > 0 such that
ϑz(f)(q) = λf(p), for all f ∈ C. Note that, for all f ≥ z,

ϕ(f) = ϑz(f − z) + ϕ(z),
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and so,

ϕ(f)(q) = λf(p)− λz(p) + ϕ(z)(q)

= a(f(p)),

where a : R→ R is defined to be a(x) := λx+ c, with c := −λz(p) + ϕ(z)(q).
Now let w be another point of U , and define ϑw in a similar way to how we defined

ϑz. Again, we get a homeomorphism from F to F ′, taking p to some element q′ of F ′.
As before, we have ϕ(f)(q′) = a′(f(p)), for all f ≥ w, where a′ is some increasing affine
function from R to itself.

Since V is an order unit space, it has an element x that is greater than both z and w.
Consider the set X := {f ∈ V | f ≥ x}. Every point f of this set satisfies both f ≥ z
and f ≥ w. Its image is ϕ(X) = {g ∈ V ′ | ϕ(x) ≤ g}. For g in ϕ(X), both g(q) and g(q′)
only depend on ϕ−1(g)(p). By varying g within ϕ(X), we see that q and q′ are equal.
Comparing the expressions for ϕ(·)(q) and ϕ(·)(q′) on X then gives that the two affine
functions a and a′ are equal.

We have shown that the homeomorphism Φ and the affine function a do not depend on
the choice of z. We conclude that the equation ϕ(f)(q) = a(f(p)) holds for all f ∈ U . �

We can now proof the other half of Theorem 1.3.

Lemma 9.3. Let V and V ′ be two complete order-unit spaces, and let ϕ : U → U ′ be an
order isomorphism between non-empty upper sets U ⊂ V and U ′ ⊂ V ′. Assume that V
satisfies Condition 1.2. Then, ϕ is affine.

Proof. Denote by Φ the homeomorphism from F to F ′ given by Lemma 9.2. Let f and
g in U and α ∈ [0, 1] be such that (1− α)f + αg lies in U .

Let q ∈ F ′, and let p ∈ F be such that q = Φ(p). By assumption, p is in L. So,
by Lemma 9.2 again, there exists an increasing affine function a : R → R such that
ϕ(h)(q) = a(h(p)), for all h ∈ U . Therefore,

ϕ
(
(1− α)f + αg

)
(q) = a

(
(1− α)f(p) + αg(p)

)
= (1− α)a

(
f(p)

)
+ αa

(
g(p)

)
=
(
(1− α)ϕ(f) + αϕ(g)

)
(q).

Since this is true for all q ∈ F ′, we deduce that

ϕ
(
(1− α)f + αg

)
=
(
(1− α)ϕ(f) + αϕ(g)

)
.

It follows that ϕ is an affine map. �

Finally, we can prove Theorems 1.3 and 1.5.

Proof of Theorem 1.3. If Condition 1.2 holds, then Lemma 9.3 shows that every order
isomorphism between U and U ′ is affine.

Assume now that U is directed downward, that all order isomorphisms between U and
U ′ are affine, and that there exists an order isomorphism ϑ between U and U ′, which
is of course necessarily affine. If Condition 1.2 does not hold for the space V , then by
Lemma 3.1 there exists an order isomorphism ϕ from U to itself that is not affine. In
this case, the composition ϑ ◦ ϕ is an order isomorphism between U and U ′ that is not
affine. We conclude that Condition 1.2 holds for V . �
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Proof of Theorem 1.5. Assume that the state space is not a Bauer simplex, and let ϕ be
an order isomorphism between intC and a non-empty upper subset U of V . We must
show that U does not equal V . Since the state space is not a Bauer simplex, there exists
an element p of L. Let Φ be the homeomorphism on F given by Lemma 9.2, and write
q := Φ(p). According to the same lemma, there is an increasing affine function a : R→ R
such that ϕ(f)(q) = a(f(p)), for all f ∈ intC. Observe that f(p) is positive for all
f ∈ intC. It follows that ϕ(f)(q) is bounded below by a(0) as f varies in intC, which
means that the map g 7→ g(q) is bounded below on U . Since this map is not bounded
below on V , we deduce that U and V differ.

Now assume that the state space is a Bauer simplex, that is, that the set of affine
dependencies supported by F is empty. Define the map ϕ : intC → V , x 7→ ϕ(x) by

ϕ(x)(p) := log(x(p)), for all p ∈ F .
Since, for each x ∈ intC, the function ϕ(x)(·) is continuous on F , we have by Lemma 2.2
that ϕ(x) is a well-defined element of V . It is clear that ϕ is order preserving. Similar
reasoning shows that the coordinate-wise exponential function defined on V is also well-
defined and order preserving. Since this function is the inverse of ϕ, the proof is complete.

�

10. Examples

In this section, we see how our results apply to some examples.

Example 10.1 (Finite dimensional cones). We say that a finite-dimensional ordered
vector space has no one-dimensional factors if it is not linearly order-isomorphic to a
space of the form V := V1 ⊕R with cone C1 × [0,∞), where (V,C1) is an ordered vector
space and ⊕ denotes the direct sum of two vector spaces. Note that a space has no
one-dimensional factors if and only if the same is true for its dual.

Proposition 10.2. A finite dimensional ordered vector space (V,C) satisfies condi-
tion 1.2 if and only if it has no one-dimensional factors.

Proof. Let p be a pure state. If p is not isolated in the set of pure states, then it can
be expressed as a linear combination of other pure states, and is thus in the support of
an affine dependency supported by the pure state space. Indeed, this affine dependency
consists of a finite number of atoms. On the other hand, if p is isolated and in the support
of an affine dependency supported by the pure state space, then the dependency has an
atom on p, which combined with Carathéodory’s theorem [4, page 184] implies that p
can again be written as a linear combination of other pure states. We deduce that every
element of L is in the support of an atomic affine dependency supported by the pure state
space. So, condition 1.2 is equivalent to every pure state being a linear combination of
other pure states. This is equivalent to the dual space V ∗ having no one-dimensional
factors, which in turn is equivalent to V having no one-dimensional factors. �

Example 10.3 (The Lorentz cone). Consider, in particular, the space L := (R3,Λ, u),
which is three-dimensional Euclidean space endowed with the Lorentz cone

Λ :=
{

(x, λ) ∈ R2 × R | ||x||2 ≤ λ
}

and the order unit u := (0, 1). The state space here is the disk KL := {(x, 1) | ||x||2 ≤ 1}
in the dual space, and the set of pure states is its boundary circle ∂eKL. If p := (x1, 1)
and q := (x2, 1) are pure states such that x1 and x2 are linearly independent, then,
writing r := (−x1, 1) and s := (−x2, 1), we have that δp − δq + δr − δs is an affine
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dependency, whose support is composed of four points. Here, δx represents an atom of
unit mass at a point x. Thus, every pure state appears in the support of some affine
dependency, and so condition 1.2 holds.

Example 10.4 (The cone of non-negative continuous functions). Let X be a compact
Hausdorff space, and let C(X) be the space of continuous real-valued functions on X.
We use the pointwise order, which means that the relevant cone is the cone C+(X) of
non-negative continuous functions. The dual space is the space of signed Radon measures
on X. The states are the probability measures, and the pure states are the Dirac masses.
There are no affine dependencies at all, and so Condition 1.2 does not hold.

Example 10.5 (Piece-of-string-in-a-cone). Consider the space C([0, 1],L) of continuous
maps from the interval [0, 1] to the three-dimensional space L ordered by the Lorentz
cone; see example 10.3 above. The order we take is the pointwise order, and the cone
is the set C([0, 1],Λ) of continuous maps into the Lorentz cone. Each point of this cone
describes the configuration of an elastic string lying in the Lorentz cone.

The dual space is the space M([0, 1],L∗) of regular Borel vector measures on [0, 1]
with values in L∗ that are of bounded variation; see [23, Lemma 1.6, p. 193]. Here, L∗
denotes the dual space of L. The set of pure states in this case can be identified with
the Cartesian product [0, 1] × ∂eKL, with the product topology. Here, ∂eKL is the set
of pure states of the space L. Each copy of ∂eKL has the same affine dependencies as
∂eKL, and so C([0, 1],L) satisfies Condition 1.2.

An interesting variant of this example occurs when one of the endpoints of the string
is constrained to lie on the axis of the Lorentz cone, that is, we consider the subspace
of C([0, 1],L) consisting of those elements x(·) satisfying x(0) ∈ {0} × R ⊂ L. The dual
space is a quotient of the dual space of C([0, 1],L). In particular, the pure state space can
be obtained from that of C([0, 1],L) be collapsing one end of the cylinder [0, 1]× ∂eKL
to a point. There are no atomic affine dependencies with mass on this point; however,
there are affine dependencies consisting of a countable number of atoms that have the
collapsed point in their support.

The following example shows why it is necessary to consider the closure of the union
of the supports of the affine dependencies, rather than just the union.

Example 10.6. Let ω1 denote the first uncountable ordinal. The set Ω := ω1 + 1
contains all the ordinals up to and including ω1, and is compact when given its order
topology; see [4, Section 2.37]. The space C(Ω,L) satisfies Condition 1.2 for the same
reason that C([0, 1],L) does; see example 10.5.

Consider now the subspace Q of C(Ω,L) obtained by requiring the ω1 coordinate to
be on the axis of the Lorentz cone, that is,

Q :=
{
g ∈ C(Ω,L) | g(ω1) ∈ {0} × R

}
.

Similarly to in the previous example, the set of pure states can be identified with the
quotient of the product Ω×∂eKL obtained when one copy of ∂eKL, namely {ω1}×∂eKL,
is collapsed to a point, which we denote by ω1. This quotient is a closed subset of the
state space of Q. The point ω1 is not isolated in the set of pure states, and each of
the other pure states, that is, each point of (Ω\{ω1}) × ∂eKL, is in the support of an
affine dependency consisting of a finite number of atoms. We conclude that Q satisfies
Condition 1.2.

However, ω1 is not itself in the support of any affine dependency, as the following
proposition shows.
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Proposition 10.7. The pure state ω1 is not in the support of any affine dependency.

Proof. Note that, if µ is a measure on Ω and x ∈ Ω is the least element of the support
of µ, then [0, x + 1) is an open neighbourhood of x, and so x = [0, x + 1) ∩ suppµ has
positive mass, and hence there is an atom at x. It follows that any measure on Ω with
no atoms must be zero, or stated another way, every measure on Ω consists entirely of
atoms. The number of atoms, of course, must be countable.

Let µ be an affine dependency supported by the pure state space F of Q, and consider
its positive and negative parts µ+ and µ−, respectively. Denote by µ∗ the push forward
of |µ| := µ− + µ+ by the projection map π : F → Ω. Let M be the supremum of the set
suppµ∗\{ω1}. Note that M is a countable ordinal and so is strictly less than ω1.

Let µ+ and µ− have atoms of mass m+ and m− at ω1, respectively. The measures µ+

and µ− are mutually singular, and so at least one of m+ and m− is zero. We denote by
u := (0, 1) the order unit of the space L. The function taking the value 0 on [0,M ] and
the value u on [M + 1, ω1] is continuous, and so is an element of Q. It therefore gives
rise to a continuous function on the pure state space. The integral of this function with
respect to µ is m+−m−, and so this quantity is zero. We conclude that µ does not have
an atom at ω1, and hence that µ∗ does not have an atom at ω1 = π(ω1).

We have shown that (M,ω1] does not intersect the support of µ∗. It follows that
π−1(M,ω1] has measure zero with respect to the affine dependency µ. Since this set is
an open set containing ω1, we see that ω1 is not in the support of µ. �

Example 10.8 (Bounded operators on a Hilbert space). Let B(H)sa be the space of
bounded self-adjoint linear operators on a Hilbert space H. The cone in this case is the
cone B(H)+

sa of positive semi-definite elements of B(H)sa, that is, the elements A such
that 〈Ax, x〉 ≥ 0, for all x ∈ H. Recall that a vector state is a function of the form
A 7→ ωx(A) := 〈Ax, x〉, for A ∈ B(H)sa, where x is a unit vector in H. It is known (see
Theorem 4.3.9 and Exercises 4.6.68 and 4.6.69 of [9]) that every vector state is a pure
state, and that the set of vector states is dense in the pure state space. Note however
that when the dimension of H is infinite there exist pure states that are not vector states,
and the set of pure states is not closed. Let x and y be linearly independent unit vectors
in H. Observe that the following algebraic relation holds:

〈A(x+ y), x+ y〉+ 〈A(x− y), x− y〉 = 2〈Ax, x〉+ 2〈Ay, y〉, for A ∈ B(H)sa.

Defining the unit vectors

w :=
x+ y

||x+ y||
and z :=

x− y
||x− y||

,

we see that the signed measure consisting of atoms of weight ||x+y||2 on ωw and ||x−y||2
on ωz, and atoms of weight −2 on ωx and ωy, is an affine dependency. We conclude that
every vector state is in the support of an affine dependency, and, since these are dense in
the pure state space, that condition 1.2 holds. This completes the proof of Corollary 1.4.
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