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Abstract 

 

Solar cells have been used since several decades for the detection of fission fragments at 

about 1 AMeV. The advantages of solar cells regarding their cost (few euros) and radiation 

damage resistance make them an interesting candidate for heavy ion detection and an 

appealing alternative to silicon detectors. A first exploratory measurement of the response of 

solar cells to heavy ions at energies above 1 AMeV has been performed at the GANIL 

facility, Caen, France. Such measurements were performed with 84Kr and 129Xe beams 

ranging from 7 to 13 AMeV. The energy and time response of several types of solar cells 

were studied. The best performance was observed for cells of 10x10 mm2, with an energy and 

time resolution of σ(E)/E=1.4% and 3.6 ns (FWHM), respectively. Irradiations at rates from a 

few hundred to 106 particles per second were also performed to investigate the behavior of the 

cells with increasing intensity. 

 

Keywords: heavy ions, particle detectors, solar cells, energy and time resolution 

 

1. Introduction 

 

Solar cells, the devices used to convert the energy of sunlight into electricity, appear as a very 

interesting and cost-efficient option to detect heavy ions. Solar cells, also referred as 

photovoltaic cells, were first used in 1979 by Siegert to detect fission fragments produced by 

the interaction of thermal neutrons with actinide nuclei [1]. The produced fission fragments 

cover a broad range of nuclei ranging from mass number A=60 to 160 with a typical kinetic 

energy of 1 AMeV. At the time, several advantages were already identified, such as the low 

cost, flexible geometry and the quality of the response to fission fragments (a FWHM energy 

resolution of 1% to 2% was reported).  

Some years later, Ajitanand et al. highlighted the solar cells radiation hardness as well 

as their capability to detect fission fragments in an intense background of light charged nuclei 

[2]. In 1987, Liatard et al. exposed solar cells to scattered ions of 12C up to energies of 240 

MeV revealing a linear energy response just up to 80 MeV [3]. This study also measured the 

time resolution between two cells of 10 mm2 to be 12 ns FWHM and pointed out the 

dependence of the time response on the cell size. Since then, solar cells have been used in a 

few experimental campaigns as fission fragment detectors, see e.g. [4-7]. They have often 

been used as heavy ion counters and to perform coincidence measurements [7].  
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1.1. Charge collection 

 

Similar to silicon detectors, solar cells present a semiconductor structure but with a smaller 

depletion zone, usually about 1 μm. As a consequence, the capacitance of solar cells is around 

40 nF/cm2, typically a thousand times larger than the capacitance of silicon detectors. 

Contrary to Si detectors, no bias voltage is required, in fact the application of a bias voltage 

increases the noise level due to an increase of the reverse current [1]. 

The origin of the electric field can be intriguing given that solar cells do not require any 

bias voltage. The importance of the built-in voltage of solar cells in charge collection is 

mentioned in [8] for the collection of photo-generated charges. Also referred is the role of the 

widths of the different layers, charge mobility and lifetime on the enhancement of charge 

collection by drift. 

In the usual mode of operation of a solar cell, when a photon strikes a cell, electron-hole 

pairs are created at the junction and the charge is collected mainly by diffusion. However, 

when a charged particle impinges on a solar cell, the effect is different. In 1981, Hsieh 

explained the severe transient distortion that takes place in the depletion zone when an alpha 

particle impinges on a silicon device and its role in the charge collection, the so-called field-

funneling effect [9].  

After the passage of a charged particle, an electron-hole plasma column is created along 

the particle track. This plasma density is usually orders of magnitude greater than the 

substrate doping density, neutralizing the initial junction depletion zone that is close to the 

track. In addition, the electrons that are directed towards the positive electrode cancel the 

electric fields of the junction. The plasma drives the electric fields into the substrate, along the 

particle track. The plasma column tends to spread radially and this enables the separation of 

electron and holes. It allows the charge collection to occur by drift and diffusion, in 

opposition to just diffusion as in the normal mode of operation. The electrons drift along the 

plasma column and are collected by the electrode. As the plasma density reduces, the 

depletion layer begins to reform until it is completely regenerated. The funneling efficiency is 

a strong function of the energy loss profile dE/dx, leading to very weak signals for light 

charged particles of few MeV, which cannot be detected. 

It is not our aim to deeply describe the complex funneling effect, a qualitatively 

description can be found in [10] and its model in [11]. However, its application to solar cells 

is yet to be described. The lack of predictive power supports the need for measurements 

considering heavy ions with energies above 1 AMeV. 

1.2. Motivation 

 

Solar cells are an alluring option for the detection of heavy ions at radioactive beam facilities, 

e.g. to detect heavy reaction products in nuclear physics experiments. They can also have a 

great impact as beam intensity monitoring devices.  

Moreover, the cells radiation hardness positions them as a very interesting option to be 

used in challenging and stringent vacuum environments like inside heavy-ion storage rings. 

Indeed, replacing damaged detectors implies venting the ring and re-establishing ultra-high 

vacuum (UHV), 10-10 to 10-12 mbar, even in a small part of a ring, takes several days. The 

outgassing rate of solar cells and detector supports will be investigated at the CENBG. A 

preliminary measurement showed a very low outgassing, bellow 10−11 mbar·l/(s·cm2) after 

baking for 48 hours at 200°C. The cells were operational after baking. This and the possibility 

to use them as counters in coincidence measurements, makes solar cells an interesting option 

to be considered in our future measurements at storage rings [12].  
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 The present work is a first exploratory measurement of the response of solar cells to 

heavy ions up to energies of 13 AMeV. 

 The energy and time response and the behavior with increasing beam intensity of solar 

cells were studied at the GANIL facility in Caen, France. 84Kr and 129Xe beams were used at 

energies from 7 to 13 AMeV. Two types of cells of different sizes were investigated, 

representing two types of composition and structure. The investigated cells were 

monocrystalline used in different applications: for energy production on Earth (roofs cells) 

[13] and in space (space cells) [14]. Their sizes ranged from 10x10 mm2 to 30x30 mm2 and 

the thickness between 220 and 250 μm. The composition and structure of the cells can have 

implications in the formation of the electrical signal and therefore in the response of the solar 

cell when exposed to heavy ions. As shown in section 3, the size of the cell has implications 

in the cell capacitance influencing the output signal and the electrical circuit that will follow, 

in particular the pre-amplifier. 

 

2. Characteristics of solar cells 

The composition of the solar cells was determined via the Rutherford Backscattering 

method using alpha particles of 2 MeV at the AIFIRA facility [15] in Bordeaux, France. This 

analysis allowed us to identify the main components of each cell given their different 

architecture. But mainly, it was verified that the roof cells had a substrate of silicon while the 

substrate of the cells used in space applications 

was germanium and for both the active layers 

were around 1.2 µm. Figure 1 shows a schematic 

drawing of a solar cell and Table 1 lists the solar 

cells we used during the experiments.  

 

 

From the difference in materials in the 

substrate, one can expect different output signal 

amplitudes as the energy needed to create an electron-hole pair in silicon and germanium are 

3.6 eV and 2.9 eV, respectively. For ideal detectors, if an ion of 129Xe impinges at 10 AMeV, 

the total collected charge for the silicon detector is 57 pC and 71 pC for the germanium 

detector. Assuming the same collection efficiency for both types of cells, this will affect the 

rise time and the amplitude of the output signal. 

Table 1- List of the solar cells used during the experiments: used name, product supplier, main application, 

main element of the substrate, size and number of cells tested during the measurements. 

 

Nomenclature Supplier Application Substrate Size (mm2) 
Number 

of cells 

10x10S Solar Made 
Household 

panels 
Silicon 10x10 3 

10x10G SpaceAzur Space Germanium 10x10 2 

20x20S Solar Made 
Household 

panels 
Silicon 20x20 2 

30x30S Solar Made 
Household 

panels 
Silicon 30x30 1 

Figure 1 – Simplified diagram of the structure of the 

used solar cells. 
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The germanium-substrate cells were cut using a silver wire, whereas the silicon-substrate 

cells were purchased with the correct sizes. The cells were cleaned through an ultra-sound 

bath using ethanol (96%) before the measurements. The response of cells of the same type 

and size was within the observed uncertainties. This was verified by comparing the signals 

induced by fission fragments originating from a 252Cf source and during irradiation with the 

higher-energy ions at GANIL. We found that the reproducibility of the results was dominated 

by the quality of the electric contact. 
 

3. Electronic model of solar cells 

 

The solar cell electronic model is presented in Fig. 2. The model was verified by 

performing impedance measurements using the Potencio-Electrochemical Impedance 

Spectroscopy technique at the IMS laboratory of the University of Bordeaux, considering 

silicon cells of different sizes.  

The model consists on one 

capacitor (Cd) in parallel with a 

resistor (Rp), which are in their turn 

connected in series with the resistor 

Rs. The current (id) generated by an 

impinging particle is represented in the 

circuit with a current generator. The 

values of Rp (5 kΩ), Rs (0 -10 Ω) and 

Cd (38 nF/cm2) were determined. Such information allowed us to obtain the transfer function 

of the electronic circuit shown in Fig. 2:  

� = ��
1

1 + �
�� ∙ �


�� + �

�� 


 

Where i is the amplified output current. When considering that �
 ≪ ��, the transfer 

function can be simplified to: 

� = ��
1

1 + ��
�� 

       (1) 

The latter expression reveals a low pass filter behavior with a cutoff frequency (�� =
�

������
) dependent on Cd and Rs values. In the frequency domain, a large capacitance 

translates in a lower cutoff frequency. While in the time domain, the integration or time 

constant (τ=RC) is larger and therefore for the same pulse duration, one obtains smaller 

amplitudes for larger capacitances and thus, larger solar cells. 

 

4. Experimental set-up 

 

At the GANIL facility, the CIME cyclotron was used to accelerate beams of 84Kr at 7 and 10 

AMeV and of 129Xe at 10 and 13 AMeV, covering a total energy range from 588 MeV up to 

1677 MeV.  

The solar cells were mounted on a rotating stainless-steel support that could house up to 9 

cells (Fig. 3). The rotating support was inserted into the beam line with a propulsor. With the 

aid of a goniometer, each cell was positioned and irradiated at a time. In one of the positions, 

a silicon detector was placed for a reference measurement: an ORTEC surface barrier silicon 

detector with an active area of 100 mm2, a depletion depth of 300 μm and a guaranteed 

resolution of 14 keV for 5 MeV alpha particles. The bias voltage of this detector was 40 V. 

Figure 2 - Solar cell electronic model considered for equation 1. 
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Figure 3- Rotating holder with the 

mounted solar cells from Table 1, 

exposed to heavy ion beams at GANIL. 

The rotating stainless-

steel structure was set as the 

electrical ground. It was placed at 

the exit of the CIME cyclotron. A 

gas profiler allowed us to 

evaluate the beam spot size, 

which had a typical size of 5 mm 

and 7 mm in X and Y direction, 

respectively. Each cell at its turn 

was placed perpendicular to the 

beam.  

The solar cells were 

sandwidched between two 

rectangular shaped pieces of 

PEEK (PolyEtherEther Ketone). 

Copper frames, integrated on 

each PEEK structure, allowed the collection of the signal from the front part of the cell and 

the connection to the ground set at the backside of the cell.  

Since we foresee to use solar cells in UHV conditions, only mechanical contacts were 

used to support the cells, avoiding any welding. Kapton insulated cables were used to profit 

from their excellent electrical insulation properties and low outgassing rates. The connection 

of the signal cables with the single ended BNC feedthroughs on the flange was done using 

BeCu connectors. 

Regarding the electronic set-up, the used pre-amplifier device, consisting of a 

transimpedance pre-amplifier (i.e. a current to voltage 

converter) and a fast shaper, was the one previously 

developed for experimental campaigns aiming at 

detection of low-energy fission fragments (1 AMeV) 

[16]. An example of the output signal of the pre-

amplifier device, for a 10x10 mm2 silicon cell 

exposed to 84Kr beam at 7 AMeV, can be seen in Fig. 

4.  

Figure 4 - Signal at the output of the pre-amplifier of a 10x10 

mm2 silicon cell from 84Kr beam at 7 AMeV. The scale was set to 

200 mV/division and 1 µs/division vertical and horizontally, respectively. 

The RMS noise level for all the solar cells sizes was around 6 mV. The noise level is 

the same because the low-pass filter behavior of the solar cells ensures that the high frequency 

noise component is removed for all cell sizes.  Nevertheless, the signal to noise ratio was 

dependent on the solar cell size, as expected from eq. 1. 

Fig. 5 presents the scheme of the electronic chain used. The signal after the pre-

amplifier device (Fig. 4) was delivered to a linear amplifier and a fast amplifier. Through a 

constant fraction discriminator (CFD), the output signal from the fast amplifier generated the 

trigger signal, opening a gate. The gate defined the time during which the peak-sensing 

Solar cells 

PEEK support 

Kapton wires 

Rotating structure 
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Figure 5 – Scheme of the electronics used in the present measurements. 

Analog to Digital Converter (ADC) would track the maximum of the output signal of the 

amplifier. Also, the output of the CFD was used as a START signal in a Time to Digital 

Converter (TDC), while the STOP signal was provided by the operating frequency (HF) of the 

CIME cyclotron (typically in the 10 MHz range). The output of the CFD was also sent to a 

Scaler to measure the frequency and number of events. Except for the trigger module, all the 

used electronic modules are commercially available. The names of the modules are given in 

Fig. 5. 

5. Results 

 

5.1. Signal features at the output of the pre-amplifier device: rise time, fall time and 

amplitude 

 

The characteristics of the output signals (rise time, fall time and amplitude) of the pre-

amplifier device were observed with the help of an oscilloscope for each cell and each beam.   

The rise time ranged from 200 to 1300 ns as shown in Fig. 6. The rise time was evaluated for 

the different substrates (silicon (S) or germanium (G)) (Fig. 6-left) and the different cells sizes 

(Fig. 6-right). For each substrate, a dependence on the energy is observed: higher beam 

energies are associated to higher rise times. In addition, the rise time is always lower for cells 

whose main substrate element is germanium, which can be explained either by the signal 

collection process or by the expected lower capacitance of a germanium junction [17]. 

Looking at the dependence with the cells size, the larger rise times were registered for larger 

cells. This is in agreement with the expected low pass filter behavior as larger cells have a 

Figure 6 - Average rise time observed for each beam energy considering: (left) the two different substrates 

(silicon (S) and germanium (G)) for 10x10 mm2 cells and (right) different cell sizes (10x10, 20x20 and 30x30 

mm2). The rise time corresponds to the time needed to go from 0 to 100% of the signal amplitude. 
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larger capacitance. Regarding the fall time, it ranged between 1.6 to 16 μs and the dependence 

with the substrate main element and size was similar to the rise time.  

The average amplitude of the output signal of the pre-amplifier device was also 

measured, for the different beam energies and cells, and its values are presented in Fig 7. 

A higher amplitude of the pre-amplifier output signal is observed for silicon substrate 

cells (Fig. 7- left). This was not the anticipated behavior due to the larger number of charges 

produced in the germanium substrate and the expected smaller capacitance when compared to 

silicon, and might be explained by a lower charge collection efficiency for the germanium 

type cells.  On Fig. 7-right, it is shown the amplitude for different sizes of solar cells of silicon 

substrate. It is observed that larger cells provide a smaller signal amplitude. Such dependence 

with the cell size is well understood with the electronic model of solar cells, as larger cells 

have a larger capacitance. In fact, we observe that the ratio of the amplitudes is fairly close to 

the inverse of the ratio of the surfaces. 

Regarding the energy dependence, we observe a general increase of the amplitude 

with the beam energy, except for the 10x10 mm2 cell with silicon substrate, which tends to 

show a slight decrease. This behavior is not yet clear to us and needs further investigation. 

5.2 Energy and Time Resolution 

 

Spectra like the ones of Fig. 8 allowed us the characterization of solar cells in terms of 

energy and time resolution. The time spectrum was calibrated with a time calibrator. On the 

energy spectrum shown on the left part of Fig. 8, a tail is visible on the left side, which can be 

related to pile-up events during the fall-time of the pre-amplifier signal where an undershoot 

is observed (Fig. 4). In addition, for each beam energy the silicon detector was placed in line 

to have a point of comparison and to control the beam quality. 

The energy and time resolution were obtained for the different ion beams, energies and 

cell types. The presented values in Fig. 9 for the energy resolution refer to the ratio of the 

standard deviation and the mean value of the distribution, while the time resolution was 

obtained via the FWHM of the distribution. These results were obtained using a Gaussian fit 

(as seen on Fig. 8). For such measurements the beam intensity was of a few hundred particles 

per second (pps).   

 

Figure 7 - Average amplitude observed for each beam energy considering: (left) silicon (S) and germanium (G) 

substrates for 10x10 mm2 cells and (right) the different cell sizes (10x10, 20x20 and 30x30 mm2). 
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Figure 8 – Energy (left) and time (right) spectra of a 10x10 mm2 silicon cell irradiated with a 129Xe beam at 10 

AMeV. The time spectrum was obtained from the time difference between the cell signals (START) and the 

cyclotron frequency signal (STOP). The calibration value to convert channels into ns is given. The Gaussian fits 

represented by the full red lines provided the standard deviation σ for the energy and time resolutions. 

The energy resolution ranged from 1.2 and 2.9%. The best result was observed for a 

germanium substrate 10x10 mm2 cell: 1.2%. Although the energy response of the overall 

beam settings was to some extent better for the germanium substrate cells, the results for the 

silicon substrate do not lay far from it, as observed in Fig. 9-left. 

From Fig. 9, 10x10 mm2 cells present in general a better energy resolution, between 1 

and 3%. Once again, this can be explained by the lower capacitance of the smaller solar cells 

that provide a better signal-to-noise ratio response. When comparing the solar cells results 

with the silicon detector, the latter provides an energy resolution of 1% or better for the same 

beam settings. The energy resolution of the beam delivered by the CIME cyclotron is 

Figure 9 - Energy resolution (standard deviation over mean value) observed for each beam energy considering 

(left) the two different substrates (silicon (S) and germanium (G)) for 10x10 mm2 cells and (right) the different 

cell sizes (10x10, 20x20 and 30x30 mm2). The results obtained with the silicon detector (Si) are also shown. 
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typically 0.5%. Therefore, the measured energy resolutions are dominated by the detectors 

response. 

The results for the time resolution are presented in Fig. 10 for all cells sizes considered in this 

exploratory study. The time resolution 

ranged from 3.6 to 14 ns, from which the 

best result corresponds again to the 10x10 

mm2 size. Here, similarly to the energy 

response, it is also observed that the smaller 

the size, the better is the time response. As 

follows from Fig. 10, the time response of a 

silicon detector is always better than the 

response of the solar cells, being between 

about 1 and 4 ns. The main contributions to 

the time resolution are the detector response 

and the time spread of the pulses delivered 

by the CIME cyclotron. Assuming a time 

resolution for the Si detectors of about 0.8 

ns, which is associated to the minimum value 

in Fig. 10, we deduce that the time spread of 

the pulses varies between 0.6 and 4 ns, 

depending on the beam energy. Therefore, 

we conclude that the time resolution of the 

solar cells is always dominated by the 

detector response. 

The presented measurements with the 84Kr and 129Xe beams, together with the 

characterization of the solar cells, allowed us to develop a new pre-amplifier for the solar cells 

which was successfully tested at GANIL using a 238U beam. 

 5.3. Behavior as a function of the beam intensity 

 

Radiation damages have been investigated thoroughly for silicon detectors [18-21] and even 

considering heavy ions [22-24]. According to Shiraishi et al., fission fragments produce more 

defects than lighter particles [22]; Kurokawa et al. go further and evaluate the damages in 

silicon detectors as being 103 to 105 times larger for heavy ions than for protons [23]. When a 

heavy ion impinges on a silicon detector, it can create a defect that can change the energy gap 

level of the material. Locally, it can create an electron emission center which will be the 

source of a leakage current. It can also decrease the output pulse-height due to recombination 

of charge carriers and lower the energy resolution. The bias voltage can be increased to 

compensate for the incomplete charge collection. 

In the case of solar cells, such detailed studies have not yet been performed. 

Nevertheless, the integrated flux and the pulse-height for a solar cell and a surface barrier 

detector were compared using fission fragments from a 252Cf source: for an integrated flux of 

107 fragments/cm2 a solar cell loses 10-15% of its pulse-height, while the surface barrier 

detector loses 50% [25]. It was also reported that bombarding a solar cell with 109 protons/s 

during 30 minutes had no effect on the performance of the solar cells in the detection of 

fission fragments from a 252Cf source [2].  

Figure 10 - Time resolution (FWHM) observed for each 

beam energy considering the different sizes: 10x10, 

20x20 and 30x30 mm2 for silicon (S) substrate cells. The 

results obtained with the silicon detector (Si) are also 

shown. 
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We have conducted a first test on radiation resistance of solar cells. Several cells were 

irradiated at different energies and intensities. The intensity ranged from a hundred of pps up 

to one million pps. Most of the cells used in this test, had already been irradiated during the 

energy and time resolution evaluation, the aim of this study was to verify the stability of the 

measurements with time and different beam intensities. 

These measurements were possible due to the beam intensity reduction devices 

available before injecting the beam into CIME. As discussed in section 4, the total number of 

signals delivered by the cell during irradiation was recorded by a scaler. In addition, the signal 

from a pulse generator with 20 Hz frequency was fed into the scaler to provide a time 

reference.  

The evolution of the energy and time response of the cells can be observed by plotting 

the ADC and TDC channels against the accumulated number of registered events. Such 

temporal evolution is shown in Fig. 11, where a 7 AMeV 84Kr beam was used to irradiate a 

10x10 mm2 silicon cell. From such measurement it was verified that for a low rate of 470 pps 

the energy and time response do not change over 1 minute of irradiation.  

Figure 11 – Energy and time response in arbitrary units as a function of the accumulated number of events for a 

10x10 mm2 silicon cell irradiated during one minute at a rate of 470 pps with a 7 AMeV 84Kr beam. 

Figure 12 - Energy and time response of a 10x10 mm2 cell irradiated with an 84Kr beam at 7 AMeV with a beam 

intensity of 53 thousand pps. 
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When increasing the beam intensity up to 53k pps, the signal amplitude first decreased 

abruptly from channel 2750 and then stabilized around channel 1260, whereas the time 

response was stable all along the irradiation (Fig. 12). The energy resolution was severely 

affected at this rate, a relative decrease of 8 % was observed after the irradiation.  

The irradiation studies showed that rates higher than 53k pps had an impact on the 

energy response of a 10x10 mm2 solar cell. Such behavior was observed for all cells sizes 

irradiated with rates above a hundred thousand pps. Nevertheless, the time response was only 

affected after irradiating with intensities above one million pps.  

After the irradiation, the cell would continue to provide a signal amplitude 4 times 

lower (ch 800) in the energy spectrum. Interestingly, the time response was essentially not 

affected (Fig. 13). 

Figure 13- Energy and time response of a 10x10 mm2 cell irradiated with 84Kr beam at 7 AMeV (225 pps) after 

having been irradiated with a total of 3427 million 84Kr ions with rates as high as 1 million pps. 

We have also investigated 

an intermediate intensity range 

using a 10x10 mm2 cell that was 

irradiated with a 3.8 AMeV 238U 

beam at a 4000 pps rate (Fig. 14). 

The experimental conditions were 

worse than for the Kr and Xe 

beams, which explains the 

observed tail spreading to larger 

energies, but the figure shows the 

stability of the energy response at 

higher rates and deposited energy. 

Figure 14 - Energy response of a 

germanium 10x10 mm2 cell at a rate of 

4000 pps with 238U beam at 3.8 AMeV. 
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6. Conclusions and Outlook 

 

 Solar cells were for the first time exposed to heavy ions of energies above 1 AMeV, at 

the GANIL facility, Caen, France. For such tests a new set-up was developed. This set-up was 

prepared considering very stringent possible vacuum requirements. All cells tested have 

responded to the heavy ion beams used and all energies, however the best results for energy 

and time resolution were observed for smaller cells of 10x10 mm2. The energy resolution of a 

10x10 mm2 solar cell ranges from 1 to 3% while the time resolution ranges from 3.6 to 7 ns. 

These results are to some extent comparable to the ones obtained from a silicon detector with 

an energy resolution of about 0.5% and a time resolution between 1 and 4 ns. Regarding the 

behavior as a function of the beam intensity, we observe a stable behavior for rates ranging 

from few hundreds to few thousands pps and a clear loss of energy resolution and amplitude 

when irradiating a solar cell with 84Kr at 7 AMeV at a rate of 50 thousand pps. The time 

response was stable at all the rates. 

The general behavior observed demonstrates that solar cells can be used to count 

heavy ions and measure time coincidences over a broad range of incident energies well above 

1 A MeV and for rates as high as several thousand pps. 

All the results obtained in these first exploratory measurements showed evidence of a 

promising heavy ion detector to be used for beam diagnostic or as heavy-ion detector in 

experiments with radioactive ion beams and storage rings. In the near future, we foresee 

additional studies to further investigate the behavior with beam energy, with different ions at 

similar energies and to compare the radiation resistance between the solar cells and a silicon 

detector. In particular, we aim at evaluating fluences and pulse-heights for a long and 

continuous irradiation. We also aim to perform further irradiations improving the beam 

diagnostics conditions to study the position sensitivity of the cells. Other improvements will 

be carried out regarding the pre-amplifiers, mainly to optimize their signal-to-noise ratio. 

Acknowledgements 

 

This work has been supported by the French défi interdisciplinaire NEEDS and by the 

European commission within the EURATOM FP7 Framework Program through the 

CHANDA (project no. 605203). This project as received funding from the European Union’s 

Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 

agreement No 834308 “NURING”. B. Jurado gratefully acknowledges the support provided 

by the ExtreMe Matter Institute EMMI at the GSI Helmholtzzentrum fuer 

Schwerionenforschung, Darmstadt, Germany. We thank L. Hirsch for making possible the 

measurement of the solar cell impedance at the IMS laboratory of the University of Bordeaux. 

We thank the technical staff members of the AIFIRA facility. The AIFIRA facility is 

financially supported by the CNRS, the University of Bordeaux and the Région Nouvelle 

Aquitaine. Yu. A. Litvinov, J. Glorius and L. Varga acknowledge the funding from the 

European Research Council (ERC) under the European Union’s Horizon 2020 research and 

innovation programme (grant agreement No 682841 “ASTRUm”). 

  

References 

 

[1] G. Siegert et al., Nucl. Instrum. Methods Phys. Res. 164 (3) (1979) 437-438.  



13 

 

[2] N. Ajitanand et al., Nucl. Instrum. Methods Phys. Res. A 300 (2) (1991) 354-356. 

[3] E. Liatard et al., Nucl. Instrum. Methods Phys. Res. A 267 (1988) 231-234.  

[4] G. Kessedjian et al., Physics Letters B 692 (5) (2010) 297-301. 

[5] G. Kessedjian et al., Phys. Rev. C 91 (2015) 044607.  

[6] J. Koglin et al., Nucl. Instrum. Methods Phys. Res. A 854 (2017) 64-69. 

[7] R. Pérez Sánchez et al., Nucl. Instrum. Methods Phys. Res. A 933 (2019) 63-70. 

[8] T. Kirchartz et al., Phys. Chem. Chem. Phys. 17 (2015) 4007-4014.  

[9] C. Hsieh et al., Electron Device Letters, IEEE 2 (1981) 103-105.  

[10] F. B. McLean et al., IEEE Transactions on Nuclear Science 29 (1982) 2017-2023.  

[11] G. C. Messenger et al., IEEE Transactions on Nuclear Science 29 (6) (1982) 

                  2024-2031.  

[12] B. Jurado et al., European Phys. J. Web of Conf. 146 (2017) 11006. 

[13] Solar made, https://www.solarmade.com/, accessed: 2019-10-08. 

[14]Space Azur solar power gmbh, http://www.azurspace.com/index.php/en/, 

                    accessed: 2019-10-08. 

[15] S. Sorieul et al., Nucl. Instrum. Methods Phys. Res. B 332 (2014) 68–73. 

[16] C. Theisen et al. Proceedings of the Second International Workshop on Nuclear 

                    Fission and Fission-Product Spectroscopy, The American Institute of Physics,  

                    Seyssins, France, (1998), pp. 143–150. 

[17] G. F. Knoll, Radiation, Detection and Measurement, 3rd ed. (John Wiley & Sons, 

                   New York, 2000) 

[18] H.W. Kraner et al., Nucl. Instrum. Methods Phys. Res. B 225 (1984) 615-618. 

[19] V.A.J. Van Lint et al., Nucl. Instrum. Methods Phys. Res. A 253 (1987) 453-459. 

[20] G. Hall et al., Nucl. Instrum. Methods Phys. Res. A 368 (1995) 199-214. 

[21] G. Lindström et al., Nucl. Instrum. Methods Phys. Res. A 512 (2002) 30-43. 

[22] F. Shiraishi et al., Nucl. Instrum. Methods Phys. Res. 69 (1969) 316-322. 

[23] M. Kurokawa et al., IEEE Transactions on Nuclear Science 42 (3) (1995) 163- 

                 168. 

[24] V. Eremin et al., JINST 13 P01019 (2018). 

[25] C. Gautherin, PhD Thesis, CEA/Saclay DSM (1997), URL :  

https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/017/31017434.pdf?r=1&r=1 

 




