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In the article Flourent et al. (Submitted), a Biomimetic Statistical Learning tool was developed. This tool is based on a system of Partial Dierential Equations.

Some applications showed that this tool provides accurate predictions and has an extrapolation capability. Hence, the mathematical analysis of the integrated PDE system becomes mandatory.

Yet, the two rst equations of this system contain a diusion operator depending on the sum of two unknown densities. This fact, coupled with the presence of a convection term, makes impossible the direct application of the classical results about parabolic equations. Therefore, the mathematical analysis of this model constitutes a new challenge for PDE analysis.

Some properties typically veried in the framework of the parabolic PDEs are not obtainable for the studied PDE system. Hence, we worked on two toy models to put in evidence the lost properties and the ones which can be expected despite the presence of an atypical diusion term.

Introduction

In Flourent et al. (Submitted), an Articial Intelligence (AI) tool was developed to perform forecasting and Data Assimilation in the framework of Smart Farming issues. Some applications of this tool, on ctitious and real data, showed that it provides accurate predictions and has interesting capabilities such as the capability to be tted on a given range of data and then to be accurately applied on a wider range of data. This AI tool, falling within the Data-Model Coupling approach, is based on a PDE system. The two rst equations of this system are: These equations are set for x p0, 1q and t p0, Vq, Φ f p0, xq, Φ b p0, xq, Ψp0, xq and Ξp0, xq are given for all x in p0, 1q, and the following boundary conditions are imposed: dt p0, Vq , Φ f pt, 0q Φ b pt, 0q,

(1.3) and, dt p0, Vq , Φ b pt, 1q Φ f pt, 1q.

(1.4) Moreover, χ is a non-negative function depending exclusively on x and being continuously dierentiable and compactly supported in p0, 1q: χ ¥ 0, χ C 1 0 p0, 1q ¨.

(1.5) Function F is a Location function and Q is an Entry function. They are nonnegative, square integrable on p0, 1q and have their support included in the support of χ:

F L 2 p0, 1q ¨, Q L V ¡ p0, Vq, L 2 p0, 1q ¨©.

(1.6) F ¥ 0, Q ¥ 0.

(1.7)

From this Variational Formulation, we established classical a priori estimates remaining valid even in our situation. Among them, there is the L 2 a priori estimate that stands as follow:

Theorem 1.1. Under assumptions (1.5) and (1.6), if Φ f H and Φ b H are solutions to Variational Formulation (1.10), then, for any T ¡ 0, there exist constants L 2a pTq, L 2b pTq and L 3 pTq such that for all t p0, T q, }Φ f } 2 2 ptq ¤ L 2a pTq,

(1.11) }Φ b } 2 2 ptq ¤ L 2b pTq,

(1.12)

and, §

§ § § § § § § § § § § § § § § § § c χ f ¡ Φ f Φ b © fx § § § § § § § § § § § § § § § § § § 2 2 ¤ L 3 pTq, (1.13)
where,

}Φ} 2 2 ptq » 1 0 Φ 2 pt, xqdx (1.14) and, § § § § § § § § § § § § fΦ fx § § § § § § § § § § § § 2 2 » T 0 » 1 0 fΦ 2 fx pt, xqdxdt (1.15)
The proof of this theorem is given in Section 2.3. where Ω is subset of p0, 1q.

In Flourent et al. (Submitted), an alternative equation to Equation (1.17) whithout limiter is also used. In this case, function Ξpt, xq is solution to: fΞ ft pt, xq uΨpt, xq.

( .18). Moreover, for any T ¡ 0, there exists K Q pTq ¡ 0 such that for any t p0, T q,

f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft ¤ K Q pTq. (1.19)
Remark. Estimate (1.19) would give a L 1 estimate in cases when we can prove the non-negativity of functions Φ f , Φ b , Ψ and Ξ.

Yet, as we shall see later on, this question of the non-negativity is a real issue for our model. Moreover, obtaining Estimate (1.19) with Equation (1.17) in place of Equation (1.15.b) seems to be not obvious.

The proof of this property is given in Section 2.

Beyond the question of the non-negativity, other properties typically veried in the framework of the parabolic PDEs are not obtainable for the studied PDE system. Therefore, we worked on two toy models to put in evidence the lost properties and the ones which can be expected despite the presence of a diusion term depending on the sum of two unknown densities.

The rst studied toy model is made of two equations. It considers Φ f and Φ b , dened for x p0, 1q and t p0, Vq, are respectively solutions to, (1.21)

fΦ f ft pt, xq ¡ c f 2 Φ f Φ b $ fx 2 pt, xq 0,
In this toy model we imposed for all x p0, 1q, Φ f p0, xq ¥ 0 and Φ b p0, xq ¥ 0, (1.22) and for all t p0, Vq and for non-negative functions Φ 0 f ptq, Φ 0 b ptq, Φ 1 f ptq and Φ 1 b ptq,

Φ f pt,0q Φ 0 f ptq ¥ 0 and Φ b pt,0q Φ 0 b ptq ¥ 0 Φ f pt,1q Φ 1 f ptq ¥ 0 and Φ b pt,1q Φ 1 b ptq ¥ 0 (1.23)
The loss of the regularizing eect was put in evidence through this rst toy model.

It is illustrated by the fact that if Φ 0

f ptq 0, Φ 1 f ptq 1, Φ 0 b ptq 1 and Φ 1 b ptq 0, then,
for any r

x p0, 1q, the couple of functions Nevertheless, for this rst toy model we proved that:

Φ f pt, xq 5 1, if x r x 0, otherwise (1.24) and, Φ b pt, xq 5 0, if x r x 1, otherwise (1.
Property 1.3. If Φ 0 f ptq Φ 1 f ptq Φ 0 b ptq Φ 1 b ptq 0, Φ f p0, .q L 2 p0, 1q ¨, Φ b p0, .q L 2 p0, 1q ¨and Φ f p0, .q ¡ Φ b p0, .q ¨ H 1 0, 1 ¨,
then, there exists a unique solution to (1.20), (1.21), (1.22) and (1.23). This solution belongs to C 1 p0, Vq, H 1 p0, 1q

¨.

This property, demonstrated in Section 3.2, set a framework to ensure regularity.

Through this toy model we also showed that the non-negativity of Φ f and Φ b is not insured, even in the framework set by Property 1.3. This is illustrated by an example given in Section 3.3.

Then, reformulating (1.6), (1.7), (1.20), (1.21), (1.22) and (1.23) and using Fourier Transform, we demonstrated some properties of a second toy model, closer to the initial model developed in Flourent et al. (Submitted). This second toy model corresponds to the initial model without the convection term and with boundary conditions (1.23) replaced by periodicity conditions for Φ f and Φ b with respect to variable x. To do so we introduced Space H # dened as:

H # tΦ H, dt p0, Vq, Φpt, 0q Φpt, 1qu

(1.26) Space H # can be seen as the functions of H that are periodic consistently with the topology of H.

Hence, in this model Φ f H # is a periodic function of period 1 with respect to x,

solution to, fΦ f ft pt, xq ¡ c f 2 Φ f Φ b $ fx 2 pt, xq 1 2 Qpt, xq ¡ f Φ f pt, xq ¡ rΦ f pt, xq, (1.27) and, Φ b H # is a periodic function of period 1 with respect to x, solution to, fΦ b ft pt, xq ¡ c f 2 Φ f Φ b $ fx 2 pt, xq 1 2 Qpt, xq ¡ f Φ b pt, xq rΦ f pt, xq. (1.28)
The three other equations of this model remain Equations (1.16), (1.18) and (1.17) or (1.15.b).

In the framework of this second toy model we assumed that,

Q L V ¡ p0, Vq, L 2 p0, 1q ¨©, Q ¥ 0, (1.29) Φ f p0, .q ¥ 0 and Φ b p0, .q ¥ 0 (1.30) Φ f p0, .q Φ b p0, .q ¤ 1 f sup xp0,1q Qp0, xq ¨, (1.31) Φ f p0, .q L V p0, 1q ¨, Φ b p0, .q L V p0, 1q ¨, (1.32) Φ f p0, .q ¡ Φ b p0, .q H 1 p0, 1q ¨, (1.33) Φ f p0, 0q ¡ Φ b p0, 0q Φ f p0, 1q ¡ Φ b p0, 1q, (1.34) Ψp0, .q L V p0, 1q ¨, Ψp0, .q ¥ 0, (1.35) Ξp0, .q L V p0, 1q ¨, Ξp0, .q ¥ 0, (1.36) 0 ¤ Op0q ¤ L, (1.37)
and,

hT F ¡ 0, dt ¡ T F , dx p0, 1q, Qpt, xq 0.

(1.38)

Through this second toy model we demonstrated that:

Theorem 1.4. Under Assumptions (1.29) to (1.38), there exists unique

Φ f H # , Φ b H # , Ψ C 1 p0, Vq; L 1 pp0, 1qq ¨, Ξ C 1 p0, Vq; L 1 pp0, 1qq ¨and O C 1 p0, Vq ¨,
solutions to the PDE system made of (1.27), (1.28), (1.16), (1.18) and Equation (1.17) or (1.15.b). Moreover, this PDE system has a conservation property. Hence, for any

T ¡ 0, there exists K Q 2 pTq ¡ 0 such that for any t p0, T q, f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft ¤ K Q 2 pTq. (1.39)
The demonstration of Theorem 1.4 is presented in Section 4.

In section 2, we will present the demonstration of the conservation of the model developed in Flourent et al. (Submitted). In this section, the Variational Formulation principle applied to the studied model will be also explained. After giving sense to the equations of the PDE system by dening the suitable mathematical space in which the solution is sought, the results of a priori estimates will be presented. Those a priori estimates permitted to put in evidence some peculiarities of the initial studied mathematical model, preventing from the direct application of the classical results about parabolic equations to prove the wellposedness of the PDE system.

In Section 3 we will present the properties lost due to the structure of the diusion term by analyzing a rst simplied model.

In Section 4 we will present the analysis of a second toy model that does not contain convection term and by using Variable Substitutions and Fourier Transforms. The goal of this analysis is to put in evidence the properties preserved despite the structure of the diusion term. In this section we will present the demonstration of the existence and the uniqueness of the solution of this second toy model. We will also demonstrate the conservation of this second toy model and the non-negativity of some components of the solution.

2 Structure and analysis of the initial developed mathematical model We summed and integrated those four equations over space. We obtained the following equality:

» 1 0 f ¡ Φ f Φ b Ψ Ξ © ft pt, xqdx » 1 0 2 f cχ f Φ f Φ b % fx ' fx pt, xqdx » 1 0 Qpt, xqdx.
(2.1)

According to (1.5), Function χ is null at x 0 and x 1. Hence, integrating the rst term of the right-hand side, we obtained:

f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft » 1 0 Qpt, xqdx ¤ sup tR ¢» 1 0 Qpt, xqdx . (2.2)
Therefore, with or without the limiter coecient, for all x belonging to p0, 1q and for all t belonging to p0, T q, T belonging to p0, Vq, there exists a constant K Q pTq ¡ 0 satisfying Inequality (1.19). Therefore, we demonstrated Property 1.2.

Principle of the Variational Formulation

To prove the existence and the uniqueness of the solution of the PDE system presented in Introduction, it is essential to give a sense to the equations. To do so, it is necessary to dene the mathematical space in which the solution is sought.

Given the structure of Equations (1.1) and (1.2), the two rst components of the solution of the PDE system could be intuitively sought in spaces such as C 1 p0, Vq, C 2 p0, 1q ¨. Yet, as it can be read in [START_REF] Menza | Analyse numérique des équations aux dérivées partielles[END_REF] and [START_REF] David | Equations aux dérivées partielles-2e éd[END_REF], it is well known that Sobolev spaces are more suitable to study and prove the existence and the regularity of the solutions of PDEs. For this reason, the notion of solution needs to be weakened by searching the two rst components of the solution associated to Equations (1.1) and (1.2) in a larger Banach space presenting a lower regularity. To do that it is necessary to write a weak formulation of the equations.

The objective of the Variational Formulation is to weaken the notion of solution by applying Test Functions to the PDE system and performing integrations in the sense of distributions. The goal is to search the solution in a mathematical space presenting a lower regularity but providing a suitable framework to establish the existence and the uniqueness of the solution.

There are several ways to get this formulation. Yet, we chose to use the distributions framework. Therefore, we considered Equations (1.1) and (1.2) as distribution equalities and we applied (1.1) to ϕ f D p0, Vq¢p0, 1q ¨and (1.2) to ϕ b D p0, Vq¢p0, 1q ¨, where space D p0, Vq¢p0, 1q ¨is the topological space of the functions, innitely continualy dierentiable and compactly supported in p0, Vq ¢ p0, 1q ¨. Then by using the denition of equality and derivation in the distributions framework, we obtained respectively:

d ϕ f D p0, Vq ¢ p0, 1q ¨, -xΦ f , f t ϕ f y ¡ ω xΦ f , f x ϕ f y c e χ ¡ f x Φ f f x Φ b © , f x ϕ f i 1 2 xQ, ϕ f y ¡ f xΦ f , ϕ f y ¡ r xΦ f , ϕ f y , (2.3) d ϕ b D p0, Vq ¢ p0, 1q ¨, -xΦ b , f t ϕ b y ω xΦ b , f x ϕ b y c xχpf x Φ f f x Φ b q, f x ϕ b y 1 2 xQ, ϕ b y ¡ f xΦ b , ϕ b y r xΦ f , ϕ b y . (2.4)
In the light of the Variational Formulations (2.3) and (2.4), it seems reasonnable to suppose that weak solutions of (1.1) and (1.2) are functions belonging to L 2 p0, Vq ¢ p0, 1q ¨, such as their rst derivatives also belong to L 2 p0, Vq ¢ p0, 1q ¨. Therefore, we sought the two rst components of the solution in Sobolev space H 1 p0, Vq ¢ p0, 1q ¨, such as Equalities (1.3) and (1.4) are respected in the sense of traces in Soboloev spaces.

In this framework, Equations (2.3) and (2.4) can be rewritten such as: ¨.

d ϕ f H 1 0 p0, Vq ¢ p0, 1q ¨, ¡ » V 0 » 1 0 Φ f pt, xq fϕ f ft pt, xqdx dt ¡ » V 0 » 1 0 ωΦ f pt, xqq fϕ f fx pt, xqdx dt » V 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fϕ f fx pt, xqdx dt » V 0 » 1 0 1 2 Qpt, xqϕ f pt, xqdx dt ¡ » V 0 » 1 0 f FpxqΦ f pt, xqϕ f pt, xqdx dt ¡ » V 0 » 1 0 rΦ f pt, xqϕ f pt, xqdx dt, (2.5) and d ϕ b H 1 0 p0, Vq ¢ p0, 1q ¨, ¡ » V 0 » 1 0 Φ b pt, xq fϕ b ft pt, xqdx dt » V 0 » 1 0 ωΦ b pt, xq fϕ b fx pt, xqdx dt » V 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fϕ b fx pt, xqdx dt » V 0 » 1 0 1 2 Qpt, xqϕ b pt, xqdx dt ¡ » V 0 » 1 0 f FpxqΦ b pt, xqϕ b pt, xqdx dt » V 0 » 1 0 rΦ f pt
Yet, some boundary conditions are imposed for x 0 and x 1. Therefore, the continuity of the functions Φ f and Φ b and their existence at x 0 and x 1 have to be ensured at each instant t belonging to p0, Vq. Hence, Φ f and Φ b have also to belong to C 0 p0, Vq, H 1 p0, 1q ¨.

The initial formulations (1.1) and (1.2) involve the Laplacian of Φ f and Φ b . Those terms is then multiplied by Test Functions which can be Φ f or Φ b . Yet, the Laplacian of a function belonging to H 1 p0, 1q, belongs to H ¡1 p0, 1q. Hence, Φ f pt, .q and Φ b pt, .q have to be continuous and dierentiable functions belonging to H ¡1 p0, 1q, for each t p0, Vq. Hence, Φ f and Φ b have to belong to C 1 p0, Vq, H ¡1 p0, 1q ¨.

Therefore, it seems correct to think that Φ f and Φ b belong to H.

To sum up, Space H is the space of functions belonging to L 2 p0, Vq ¢ p0, 1q ¨, such as their rst derivatives also belong to L 2 p0, Vq ¢ p0, 1q ¨, and at each instant t p0, Vq, continuous, dierentiable and belonging to H 1 p0, 1q and H ¡1 p0, 1q.

If Test Functions ϕ f and ϕ b , also belong to H, the weak formulations would be close to (2.5) and (2.6) except that the expressions of Φ f , Φ b , ϕ f and ϕ b at the edges of the domain, appear in the equations. Hence, we considered that we sought Φ f , Φ b , ϕ f and ϕ b in H such that:

dϕ f H, ¡ » T 0 » 1 0 Φ f pt, xq fϕ f ft pt, xqdx dt » 1 0 Φ f p0, xqϕ f p0, xqdx ¡ » 1 0 Φ f pT, xqϕ f pT, xqdx ¡ » T 0 » 1 0 ωΦ f pt, xqq fϕ f fx pt, xqdx dt ¡ » T 0 ωΦ f pt, 1qϕ f pt, 1qdt » T 0 ωΦ f pt, 0qϕ f pt, 0qdt » T 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fϕ f fx pt, xqdx dt » T 0 » 1 0 1 2 Qpt, xqϕ f pt, xqdx dt ¡ » T 0 » 1 0 f FpxqΦ f pt, xqϕ f pt, xqdx dt ¡ » T 0 » 1 0 rΦ f pt, xqϕ f pt, xqdx dt, (2.7) and dϕ b H, ¡ » T 0 » 1 0 Φ b pt, xq fϕ b ft pt, xqdx dt » 1 0 Φ b p0, xqϕ b p0, xqdx ¡ » 1 0 Φ b pT, xqϕ b pT, xqdx » T 0 » 1 0 ωΦ b pt, xq fϕ b fx pt, xqdx dt » T 0 ωΦ b pt, 1qϕ b pt, 1q ¡ » T 0 ωΦ b pt, 0qϕ b pt, 0q » T 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fϕ b fx pt, xqdx dt » T 0 » 1 0 1 2 Qpt, xqϕ b pt, xqdx dt ¡ » T 0 » 1 0 f FpxqΦ b pt, xqϕ b pt, xqdx dt » T 0 » 1 0 rΦ f pt, xqϕ b pt, xqdx dt. (2.8)
Finally, by summing (2.7) and (2.8) we obtained the global Variational Formulation

(1.10).

The rst a priori estimates

In this section, the rst a priori estimates will be presented. They permitted to demonstrate Theorem 1.1.

Proof of Theorem 1.1: We noticed that, if Φ f and Φ b , solutions to (1.1) and

(1.2), exist and belong to H, they can be used as test functions in formulations (2.7) and (2.8). Hence, in a rst time, we chose ϕ f Φ f and ϕ b Φ b . Equations (2.7) and

(2.8) became respectively:

¡ » T 0 » 1 0 Φ f pt, xq fΦ f ft pt, xqdx dt » 1 0 Φ f 2 p0, xqdx ¡ » 1 0 Φ f 2 pT, xqdx ¡ » T 0 » 1 0 ωΦ f pt, xq fΦ f fx pt, xqdx dt ¡ » T 0 ωΦ 2 f pt, 1qdt » T 0 ωΦ 2 f pt, 0qdt » T 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fΦ f fx pt, xqdx dt » T 0 » 1 0 1 2 Qpt, xqΦ f pt, xqdx dt ¡ » T 0 » 1 0 f FpxqΦ f pt, xqΦ f pt, xqdx dt ¡ » T 0 » 1 0 rΦ f pt, xqΦ f pt, xqdx dt, (2.9) and, ¡ » T 0 » 1 0 Φ b pt, xq fΦ b ft pt, xqdx dt » 1 0 Φ b 2 p0, xqdx ¡ » 1 0 Φ b 2 pT, xqdx » T 0 » 1 0 ωΦ b pt, xq fΦ b fx pt, xqdx dt » T 0 ωΦ 2 b pt, 1qdt ¡ » T 0 ωΦ 2 b pt, 0qdt » T 0 » 1 0 cχ f Φ f Φ b % fx pt, xq fΦ b fx pt, xqdx dt » T 0 » 1 0 1 2 Qpt, xqΦ b pt, xqdx dt ¡ » T 0 » 1 0 f FpxqΦ b pt, xqΦ b pt, xqdx dt » T 0 » 1 0 rΦ f pt, xqΦ b pt, xqdx dt. (2.10)
Then, the objective was to verify from (2.9) and (2.10) that Φ f and Φ b belong to

L V ¡ p0, T q, L 2 pp0, 1qq © 
, for any T p0, Vq, which would be consistent with the fact that Φ f and Φ b belong to H.

Equations (2.9) and (2.10) depend of each other. Hence, it is necessary to study the solutions of these two equations at the same time. Therefore, by summing (2.9) and

(2.10) we obtained the following equality:

¡ » T 0 » 1 0 Φ f pt, xq fΦ f ft pt, xqdx dt ¡ » T 0 » 1 0 Φ b pt, xq fΦ b ft pt, xqdx dt » 1 0 Φ f 2 p0, xqdx ¡ » 1 0 Φ f 2 pT, xqdx » 1 0 Φ b 2 p0, xqdx ¡ » 1 0 Φ b 2 pT, xqdx ¡ » T 0 ωΦ 2 f pt, 1qdt » T 0 ωΦ 2 f pt, 0qdt » T 0 ωΦ 2 b pt, 1qdt ¡ » T 0 ωΦ 2 b pt, 0qdt » T 0 » 1 0 ωΦ f pt, xq fΦ f fx pt, xqdx dt ¡ » T 0 » 1 0 ωΦ b pt, xq fΦ b fx pt, xqdx dt ¡ 2 » T 0 » 1 0 cχ £ fΦ f Φ b fx pt, xq 2 dx dt » T 0 » 1 0 Qpt, xqq ¡ Φ f pt, xq Φ b pt, xq © dx dt ¡ » T 0 » 1 0 f Fpxq ¡ Φ 2 f pt, xq Φ 2 b pt, xq © dx dt ¡ » T 0 » 1 0 rΦ 2 f pt, xqdx dt » T 0 » 1 0 rΦ f pt, xqΦ b pt, xqdx dt. (2.11)
From Equation (2.11), we calculated the integrals and we obtained the following equality:

» T 0 ¢ f }Φ f } 2 2 ft pt, .q f }Φ b } 2 2 ft pt, .q dt » 1 0 2 ¢ Φ f 2 p0, xqdx ¡ Φ f 2 pT, xqdx Φ b 2 p0, xqdx ¡ Φ b 2 pT, xq dx » T 0 2ω ¢ ¡ Φ 2 b pt, 1q Φ 2 b pt, 0q ¡ Φ 2 f pt, 1q Φ 2 f pt, 0q dt ¡ 2 » T 0 » 1 0 cχ ¤ ¥ f ¡ Φ f Φ b © fx pt, xq 2 dx dt 2 » T 0 » 1 0 Qpt, xqq ¡ Φ f pt, xq Φ b pt, xq © dx dt ¡ 2 » T 0 » 1 0 f Fpxq ¡ Φ 2 f pt, xq Φ 2 b pt, xq © dx dt ¡ 2 » T 0 » 1 0 rΦ 2 f pt, xqdx dt 2 » T 0 » 1 0 rΦ f pt, xqqΦ b pt, xqdx dt, (2.12)
where }.} 2 is the usual norm on L 2 pp0, 1qq.

Considering the imposed boundary conditions and since the function χ is nonnegative, we obtained from Equation (2.12) the following inequality:

» T 0 ¢ f }Φ f } 2 2 ft pt, .q f }Φ b } 2 2 ft pt, .q dt ¤ ¡2 » T 0 » 1 0 cχ ¤ ¥ f ¡ Φ f Φ b © fx pt, xq 2 dx dt 2 » T 0 » 1 0 Qpt, xqq ¡ Φ f pt, xq Φ b pt, xq © dx dt 2 » T 0 » 1 0 rΦ f pt, xqqΦ b pt, xqdx dt K 1 , (2.13)
where K 1 is a positive constant.

However, using Schwarz inequality, we obtained for any t p0, T q, T p0, Vq: §

§ § § » 1 0 Qpt, xqΦ f pt, xqdx § § § § ¤ }Qpt, .q} 2 }Φ f pt, .q} 2 , (2.14) § § § § » 1 0 Qpt, xqΦ b pt, xqdx § § § § ¤ }Qpt, .q} 2 }Φ b pt, .q} 2 , (2.15) and, § § § § » 1 0 Φ f pt, xqΦ b pt, xqdx § § § § ¤ }Φ f pt, .q} 2 }Φ b pt, .q} 2 .
(2.16) Therefore, from Inequality (2.13) and by using Inequalities (2.14), (2.15) and (2.16), we get:

» T 0 ¢ f }Φ f } 2 2 ft pt, .q f }Φ b } 2 2 ft pt, .q dt ¤ 2 » T 0 £ r }Φ f pt, .q} 2 }Φ b pt, .q} 2 }Qpt, .q} 2 ¡ }Φ f pt, .q} 2 }Φ b pt, .q} 2 © dt K 1 (2.17)
From Inequality (2.17) and by using the binomial theorem we obtained:

» T 0 ¢ f }Φ f } 2 2 ft pt., q f }Φ b } 2 2 ft pt, .q dt ¤ 2 » T 0 £ r ¢ }Φ f pt, .q} 2 2 }Φ b pt, .q} 2 2 }Qpt, .q} 2 ¢ 2 }Φ f pt, .q} 2 2 }Φ b pt, .q} 2 2 ¨ dt K 1 (2.18)
According to the Gronwall lemma, for any T p0, Vq, there exist a constant L 1 pTq, which can be seen as an increasing function of T , such that:

}Φ f pT, .q} 2 2 }Φ b pT, .q} 2 2 ¤ L 1 pTq. (2.19)
Hence, for any T p0, Vq and for any t p0, T q, we obtained:

}Φ f pt, .q} 2 2 }Φ b pt, .q} 2 2 ¤ L 1 pTq.
(2.20)

Therefore, for any T p0, Vq, there exist constants L 2a pTq and L 2b pTq such that Inequalities (1.11) and (1.12) are veried. Hence, we deduced from these two inequalities that Φ f and Φ b belong to L V ¡ p0 , T q, L 2 pRq © , T p0, Vq. Which is consistent with the fact that Φ f and Φ b belong to H.

In the aim of demonstrating that Φ f and Φ b belong to L V ¡ p0, T q, H 1 pp0, 1qq 

f }Φ f } 2 2 ft pt, .q f }Φ b } 2 2 ft pt, .q 2 » 1 0 cχ ¤ ¥ f ¡ Φ f Φ b © fx pt, xq 2 dx ¤ 2 }Qpt, .q} 2 ¡ }Φ f pt, .q} 2 }Φ b pt, .q} 2 © 2r }Φ f pt, .q} 2 }Φ b pt, .q} 2 K 1 (2.21)
To control the two rst terms of Inequality (2.21) we integrated it over time. Then, by using (1.11) and (1.12) we obtained for any T belonging to p0, Vq:

» T 0 f }Φ f } 2 2 ft pt, .qdt » T 0 f }Φ b } 2 2 ft pt, .qdt 2 » T 0 » 1 0 cχ ¤ ¥ f ¡ Φ f Φ b © fx pt, xq 2 dx dt ¤ L 2c pTq, (2.22)
where L 2c pTq is a positive constant.

In Inequality (2.22) the two rst terms are bounded. Hence we obtained Inequality (1.13).

Therefore, we proved Theorem (1.1) and Inequality (1.13) shows that, dT p0, Vq, f Φ f Φ b fx L 2 pp0, T q ¢ p0, 1qq.

(2.23)

Hence, according to (2.20), Φ f Φ b ¨belongs to H 1 pp0, T q¢p0, 1qq, for any T R.

To conclude this section, the obtained inequalities do not permit to deduce that 

Φ f and Φ b both belong to L V ¡ p0, T q, H 1 p0, 1q
V ¡ p0 , T q, H 1 p0, 1q © , T p0, Vq.
We made some explorations and we concluded that the studied equations do not fall within the framework studied by [START_REF] Ladyºenskaja | Linear and quasilinear equations of parabolic type[END_REF]. Therefore, we put in evidence the lost and the maintained properties on simplied models. The objective is to try to nd some directions to achieve the demonstration of the existence and uniqueness of the solution of the initial model developed in Flourent et al. (Submitted).

3 Identication of the properties lost due to the diffusion term structure, through the use of a rst toy model

In this section we will present the lost properties through the use of a rst toy model made of Equations (1.20) and (1.21). The imposed initial conditions associated to this model are given by (1.22) and (1.23).

Uniqueness of the solution

We demonstrated that: 

Φ f 1 Φ f 2 (3.1)
and,

Φ b 1 Φ b 2 (3.2)
By substraction we obtained,

fΦ f 1 ¡ Φ f 2 ft pt, xq ¡ c f ! χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx ( ) fx pt, xq 0 (3.3) and, fΦ b 1 ¡ Φ b 2 ft pt, xq ¡ c f χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx & fx pt, xq 0 (3.4) We multiplied Equation (3.10) by Test Function Φ f 1 ¡ Φ f 2 : fΦ f 1 ¡ Φ f 2 ft pt, xq Φ f 1 ¡ Φ f 2 ¨pt, xq ¡ c f ! χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx ( ) fx pt, xq Φ f 1 ¡ Φ f 2 ¨pt, xq (3.5) Then, we multiplied Equation (3.4) by Test Function Φ b 1 ¡ Φ b 2 : fΦ b 1 ¡ Φ b 2 ft pt, xq Φ b 1 ¡ Φ b 2 ¨pt, xq ¡ c f χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx & fx pt, xq Φ b 1 ¡ Φ b 2 ¨pt, xq (3.6)
By integrating over space the rst terms and by integrating by part the diusion term in Equations (3.5) and (3.6) we obtained,

1 2 f }Φ f 1 ¡ Φ f 2 } 2 2 ft pt, .q » 1 0 cχ ¤ ¥ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx 2 pt, xq dx (3.7) and, f }Φ b 1 ¡ Φ b 2 } 2 2 ft pt, .q » 1 0 cχ ¤ ¥ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx 2 pt, xq dx (3.8)
We summed Equations (3.7) and (3.8):

1 2 f }Φ f 1 ¡ Φ f 2 } 2 2 }Φ b 1 ¡ Φ b 2 } 2 2 ft pt, .q ¡ » 1 0 2cχ ¤ ¥ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx 2 pt, xq dx ¤ (3.9)
Therefore, according to the Gronwall lemma we obtained:

}Φ f 1 ¡ Φ f 2 } 2 2 pt, .q }Φ b 1 ¡ Φ b 2 } 2 2 pt, .q ¤ 0 (3.10)
We deduced that,

}Φ f 1 ¡ Φ f 2 } 2 2 pt, .q 0 (3.11) and, }Φ b 1 ¡ Φ b 2 } 2 2 pt, .q 0 (3.12)
Hence, we obtained Equalities (3.1) and (3.2). Therefore we proved Property 3.1.

The regularizing eect of the diusion operator

In this subsection we will present the framework ensuring regularity, by demonstrating Property 1.3.

Proof of Property 1. fV ft pt, xq 0,

, if Φ f Φ b ¨p0, .q L 2 pp0, 1qq and Φ f Φ b ¨p., 1q Φ f Φ b ¨p., 0q 0, then Φ f Φ b ¨exists,
(3.18) Hence, V pt, xq Φ f p0, xq ¡ Φ b p0, xq V 0 pxq. (3.19)
We searched the elementary solutions of Equation (3.17) by resolving the heat equation and by using the method of the separation of variables. We obtained an elementary solution of the form,

U n pt, xq C n exp 2cpnπq 2 t ¨sinpnπxq.

(3.20)

According to the supperposition principle, all the linear combinaitions based on Equation (3.20), are also solutions to Equation (3.15). Therefore, the general solution of (3.15) is :

U pt, xq V ņ1 ¡ C n exp 2cpnπq 2 t ¨sinpnπxq © (3.21)
where,

C n 2 » 1 0 U p0, yq sinpnπyqdy (3.22)
If there exists a time T F such that, for all t ¡ T F , and for all x p0, 1q, Qpt, xq 0, as soon as t ¡ T F , when t increase, Function U exponentially decreases to 0. Hence, if we xed V 0 pxq ¡ 0 for all x p0, 1q, there exists a constant T U 1 ¡ 0 such that for all t ¡ T U 1 , U pt, xq ¤ V pt, xq.

(3.23)

It implies that, Φ b pt, xq ¤ 0.

(3.24)

We also noticed that if we xed V 0 pxq 0 for all x p0, 1q, there exists a constant T U 2 ¡ 0 such that for all t ¡ T U 2 , U pt, xq ¤ ¡V pt, xq.

(3.25)

It implies that,

Φ f pt, xq ¤ 0.

(3.26)

Therefore, we deduced from this very simple toy model that the non-negativity of Φ f and Φ b can be not veried.

By using this very simplied toy model we put in evidence that the involvement of a diusion term depending on the sum of two unknown densities, induces the lost of properties as the regularizing eect relative to the diusion term and the non-negativity of each component of the solution.

In 

The exact expressions of Φ f and Φ b

In this section we will present the dierent steps permitting to nd the exact expression of Φ f and Φ b . For this we will call upon Fourier Transform and we wrote: and all t p0, Vq:

Φ f pt, xq 1 2 ņZ £ » t 0 Qn pτq exp ¡ ¡ K n u pt ¡ τ q
Then, we deducted Equation (1.28) from Equations (1.27): U and V respect periodicity boundary conditions with respect to x and U p0, .q and V p0, .q are periodic and belong to L 2 pp0, 1qq. The terms expp2iπnxq ¨nZ form a Hilbert basis. Therefore, for all n Z, we obtained:

fΦ f ¡ Φ b ft pt, xq ¡f ¡ Φ f pt, xq ¡ Φ b pt, xq © ¡ 2rΦ f pt, xq.
Û nI ptq expp2iπnxq p8cn 2 π 2 f q Û n ptq expp2iπnxq Qn ptq expp2iπnxq. (4.17)

Hence,

Û nI ptq p8cn 2 π 2 f q Û n ptq Qn ptq.

(4.18)

For all n Z this ODE is provided with an initial condition Û n p0q related with the Fourier coecients of Φ f p0, xq and Φ b p0, xq.

We resolved Equation (4.18) and we obtained:

Û n ptq Û n p0q expp¡K n u tq » t 0 Qn pτq exp ¡ ¡ K n u pt ¡ τ q © dτ, (4.19)
where K n u is given by Equality (4.4).

4.1.2

The exact expression of V

We also applied the Fourier Transform to Equation (4.13) by xing:

V pt, 

Φf n ptq 1 2 £ » t 0 Qn pτq exp ¡ ¡ K n u pt ¡ τ q © dτ » t 0 » τ 0 r Qn pνq exp ¡ ¡ K n u pτ ¡ νq © exp ¡ ¡ pr f qpt ¡ τ q © dν dτ » t 0 r Û n p0q exp ¡ ¡ K n u τ © exp ¡ ¡ pr f qpt ¡ τ q © dτ Û n p0q exp ¡ K n u t ¨ V n p0q exp ¡ pr f qt ¨, (4.27)
and,

Φb n ptq 1 2 £ » t 0 Qn pτq exp ¡ ¡ K n u pt ¡ τ q © dτ ¡ » t 0 » τ 0 r Qn pνq exp ¡ ¡ K n u pτ ¡ νq © exp ¡ ¡ pr f qpt ¡ τ q © dν dτ ¡ » t 0 r Û n p0q exp ¡ ¡ K n u τ © exp ¡ ¡ pr f qpt ¡ τ q © dτ Û n p0q exp ¡ K n u t ¨¡ V n p0q exp ¡ pr f qt ¨. (4.28)
By using Equations (4.2) and (4.27), and then Equations (4.3) and (4.28), we nally obtained the exact expressions of Φ f and Φ b .

4.1.4

Belonging of Φ f and Φ b to H #

The expressions of Φ f and Φ b are given by Equations (4.5) and (4.6). Now, we have to prove that these two densities belong to H # . To do so we will proved that Functions U and V , dened by Equations (4.9) and (4.10), belong to H # and we will deduce that Φ f and Φ b belong to H # .

In a periodic context, Space H # can be dened such that, 

H # H 1 p0, Vq ¢ p0, 1q ¨ C 0 p0, Vq, H 1 # p0, 1q ¨ C 1 p0,
n Û n ptq © 2 ¤ C 1 ¡ n 2 Û n p0q 2 expp¡2K n u tq n 2 » t 0 Qn pτq 2 exp ¡ 2K n u pt ¡ τ q ¨dτ © , (4.33)
where K n u is given by Equality (4.4) and C 1 is a positive constant.

We noticed that:

n 2 » t 0 Qn pτq 2 exp ¡ 2K n u pt ¡ τ q ¨dτ » t 0 n 2 Qn pτq 2 exp ¡ 8π 2 c d n 2 pt ¡ τ q © exp ¡ 2f d pt ¡ τ q ¨dτ ¤ C 2 » t 0 n 2 Qn pτq 2 exp ¡ C 3 n 2 pt ¡ τ q ¨dτ, (4.34)
where C 2 and C 3 are two positive constants. Yet, according to assumption (1.29), p Qn q nZ belongs to L V p0, T q, l 2 ¨, for all t p0, T q, T p0, Vq. Therefore, there exists Q n such that for all t p0, T q, T p0, Vq:

Qn ptq 2 ¤ Q n 2 (4.35) Moreover, » t 0 n 2 exp ¡ ¡ C 3 n 2 pt ¡ τ q © dτ 1 C 3 exp ¡ ¡ C 3 n 2 pt ¡ τ q © & t 0 1 C 3 ¡ 1 ¡ exp ¡ C 3 n 2 t ¨© (4.36)
Therefore, from Equations (4.34), (4.35) and (4.36), we obtained:

n 2 » t 0 Qn pτq 2 exp ¡ 2K n u pt ¡ τ q ¨dτ ¤ C 4 Q n 2 ¡ 1 ¡ exp ¡ C 3 n 2 t ¨©. (4.37) Since 0 ¤ exp ¡ C 3 n 2 t ¨¤ 1
, for all t p0, T q, T p0, Vq: 

n 2 » t 0 Qn pτq 2 exp ¡ 2K n u pt ¡ τ q ¨dτ ¤ C 5 Q n 2 .
n Û n ptq © 2 ¤ C 6 ¡ ņZ n 2 Û n p0q 2 expp¡2K n u tq ņZ Q n 2 © , (4.39)
where C 6 is a positive constant.

According to assumption (1.29), Qn ptq ¨nZ belongs to l 2 , for all t p0, T q, T p0, Vq. Therefore, there exists K 1 ¡ 0 such that for all t p0, T q, T p0, Vq:

ņZ Qn ptq 2 ¤ K 1 and ņZ Q n 2 ¤ K 1 .
(4.40)

According to assumption (1.32), U p0, .q belongs to L V p0, 1q We nally proved that U belongs to H # .

According to Equalities (4.20) and (4.24) and the binomial squares we obtained:

¡ n V n ptq © 2 ¤ C 7 ¡ n 2 V n p0q 2 exp ¡ 2pr f qt ¨ n 2 » t 0 » τ 0 r 2 Qn pνq 2 exp ¡ 2K n u pτ ¡ νq ¨exp ¡ 2pr f qpt ¡ τ q ¨dν dτ n 2 » t 0 r 2 Û n p0q 2 exp ¡ 2K n u τ ¨exp ¡ 2pr f qpt ¡ τ q ¨dτ © , (4.44)
where K n u is given by Equality (4.4) and C 7 is a positive constant.

For all t p0, T q, T p0, Vq, 0 ¤ exp ¡ 2pr f qpt ¡ τ q ¨¤ 1. Hence, from Inequality (4.44) and for all t p0, T q, T p0, Vq we obtained:

¡ n V n ptq © 2 ¤ C 7 ¡ n 2 V n p0q 2 n 2 » t 0 » τ 0 r 2 Qn pνq 2 exp ¡ 2K n u pτ ¡ νq ¨dν dτ n 2 » t 0 r 2 Û n p0q 2 exp ¡ 2K n u τ ¨dτ © . (4.45)
We noticed that:

n 2 » t 0 r 2 Û n p0q 2 exp ¡ 2K n u τ ¨dτ » t 0 n 2 r 2 Û n p0q 2 exp ¡ 8π 2 c d n 2 τ ¨exp ¡ 2f d τ ¨dτ ¤ C 8 Û n p0q 2 » t 0 n 2 exp ¡ C 9 n 2 τ ¨dτ, (4.46)
where C 8 and C 9 are two positive constants.

Moreover, for all t p0, T q, T p0, Vq,

» t 0 n 2 exp ¡ C 9 n 2 τ ¨dτ ¡1 C 9 exp ¡ C 9 n 2 τ ¨&t 0 1 C 9 ¡ 1 ¡ exp ¡ C 9 n 2 t ¨© (4.47)
Therefore, from Inequalities (4.46) and (4.47), for all t p0, T q, T p0, Vq we have:

n 2 » t 0 r 2 Û n p0q 2 exp ¡ 2K n u τ ¨dτ ¤ C 10 Û n p0q 2 ¡ 1 ¡ exp ¡ C 9 n 2 t ¨© ¤ C 10 Û n p0q 2 , (4.48)
where C 10 is a positive constant.

Using Inequality (4.35) we have:

n 2 » t 0 » τ 0 r 2 Qn pνq 2 exp ¡ 2K n u pτ ¡ νq ¨dν dτ ¤ C 11 Q n 2 » t 0 » τ 0 n 2 exp ¡ C 12 n 2 pτ ¡ νq ¨dν dτ (4.49)
where C 11 and C 12 are two positive constants.

We noticed that:

» τ 0 n 2 exp ¡ C 12 n 2 pτ ¡ νq ¨dν 1 C 12 exp ¡ C 12 n 2 pτ ¡ νq ¨&τ 0 1 C 12 ¡ 1 ¡ exp ¡ C 12 n 2 τ ¨© (4.50)
Therefore, from Inequalities (4.49) and (4.50) we obtained:

n 2 » t 0 » τ 0 r 2 Qn pνq 2 exp ¡ 2K n u pτ ¡ νq ¨dν dτ ¤ C 13 Q n 2 » t 0 ¡ 1 ¡ exp ¡ C 12 n 2 τ ¨© dτ ¤ C 14 Q n 2 (4.51)
where C 13 and C 14 are two positive constants.

From Inequalities (4.45), (4.48) and (4.51) we obtained:

ņZ ¡ n V n ptq © 2 ¤ C 14 ¡ ņZ n 2 V n p0q 2 ņZ Q n 2 ņZ Û n p0q 2 © . (4.52)
According to assumptions (1.32) and (1.33) there exists K 4 ¡ 0 such that:

ņZ

n 2 V n p0q 2 ņZ Û n p0q 2 ¤ K 4 (4.53)
Therefore, from Inequalities (4.52), (4.53) and ( 4.40) we demonstrated that for all t p0, T q, T p0, Vq Function V veries (4.31).

Function V veries (4.31). Hence, for all t p0, T q, T p0, Vq there exists K 5 ¡ 0

such that: ņZ V n ptq 2 ¤ K 5 (4.54) Moreover, 0 ¤ 1 |1 n 2 | ¤ 1, for all n Z. Hence, Function V veries (4.32).
We nally proved that V belongs to H # .

In this section we proved that

Φ f Φ b and Φ f ¡ Φ b belong to H # . Hence, Φ f and Φ b belong to H # .
Finally we proved Property 4.1.

Non-negativity of some components of the solution of the PDE system

In this section we will demonstrate the non-negativity of some components of the PDE system solution.

4.2.1

Non-negativity of pΦ f Φ b q

In this section we will demonstrate that, f

Φ f Φ b $ ft pt, xqm Φ pt, xq ¡ 2c f 2 Φ f Φ b $ fx 2 pt, xqm Φ pt, xq Qpt, xqm Φ pt, xq ¡ f ¡ Φ f pt, xq Φ b pt, xq © m Φ pt, xq. (4.57)
Integrating by part Equation (4.57) with respect to x, we obtained, 

» 1 0 f Φ f Φ b $ ft pt, xqm Φ pt, xqdx » 1 0 2c fΦ f Φ b fx pt, xq fm Φ fx pt, xqdx » 1 0 ¡ Qpt, xqm Φ pt, xq ¡ f ¡ Φ f pt, xq Φ b pt, xq © m Φ pt, xq © dx. (4.58) We have, f Φ f Φ b s ft pt, xqm Φ pt, xq fm Φ ft pt, xqm Φ pt,
» 1 0 1 2 fpm 2 Φ q ft pt, xqdx » 1 0 2c ¢ fm Φ fx pt, xq 2 dx » 1 0 ¡ Qpt, xqm Φ pt, xq ¡ f m Φ pt, xq ¨2© dx. (4.61)
according to Assumption (1.29) Q is non-negative and by denition Function m Φ is negative for all t p0, Vq and for all x p0, 1q. Hence, from Equation (4.61) we obtained the following inequality: (4.66)

1 2 f }m Φ } 2 2 ft pt, .q ¤ » 1 0 Qpt, xqm Φ pt, xqdx ¤ 0 (4.62)
According to Property 4.2 Φ b pt, xq Φ f pt, xq ¨is non-negative for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq. Therefore, Ψpt, xq is non-negative, for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq.

4.2.3

Non-negativity and majoration of Function O

The objective of this subsection is to prove that:

Property 4.4. Under assumptions (1.29), (1.30), (1.35) and (1.37) if Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation (1.17) and O C 1 p0, Vq ¨is solution to Equation (1.18), then for all t in p0, T q, T belonging to p0, Vq, 0 ¤ Optq ¤ L, 

fO ft ptqm O ptq » 1 0 uΨpt, xq ¢ L ¡ Optq L m O ptqdx u ¢ L ¡ Optq L m O ptq » 1 0 Ψpt, xqdx um O ptq » 1 0 Ψpt, xqdx ¡ u ¢ Optq L m O ptq » 1 0 Ψpt, xqdx (4.70) 
By denition Function m O is negative and according to Property 4.3 Ψpt, xq is nonnegative, for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq. 

1 2 fpm O q 2 ft ptq ¤ ¡ u L m 2 O ptq » 1 0 Ψpt, xqdx ¤ 0 (4.74)
Therefore, Function m 2 O is decreasing and according to Assumption (1.37) m 2 O p0q 0. Hence, for all t in p0, T q, T belonging to p0, Vq,

m 2 O ptq ¤ 0 (4.75) Therefore, Function m 2
O is null for all t in p0, T q, T belonging to p0, Vq. It means that Function O is non-negative.

To prove the majoration of Function O by the positive constant L we posed, Hence,

M O ptq max ¡ 0, Optq ¡ L ¨©,
M O } 2 2 ¤ 0 (4.81) Therefore, Function M 2
O is null for all t in p0, T q, T belonging to p0, Vq. It means that Function O is not upper than L.

We nally proved Property 4.4.

Proof of Property 4.5:

In case when 

4.2.4

Non-negativity of Ξ

In the second toy model, Function Ξ can be solution to Equations (1.17) or (1.15.b).

Therfore we proved that:

Property 4.6. Under Assumptions (1.36) and (1.37) Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ïs solution to Equation (1.17) or (1.15.b) and if O C 1 p0, Vq ¨is solution to Equation (1.18), then for all t in p0, T q, T belonging to p0, Vq, Function Ξ is non-negative.

Proof of Property 4.6:

In case when Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation (1.17) and O C 1 p0, Vq ¨is solution to Equation (1.18), Equation (1.17) is a nonlinear ODE. Hence, for all t in p0, T q and for all x in p0, 1q we have, Optq is not upper than L, for all x in p0, 1q and for t in p0, T q, T belonging to p0, Vq. Therefore, in this case Ξpt, xq is non-negative, for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq.

Ξpt, xq Ξp0, xq » t 0 uΨpτ, xq ¢ L ¡ Opτ q L dτ.
In case when Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation (1.15.b) and Function O C 1 p0, Vq ¨is solution to Equation (1.18), Equation (1.17) is a linear ODE. Hence, for all t in p0, T q, T belonging to p0, Vq and for all x in p0, According to Property 4.3 Ψpt, xq is non-negative, for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq. Therefore, in this case Ξpt, xq is also non-negative, for all x in p0, 1q and for all t in p0, T q, T belonging to p0, Vq.

We nally proved Property 4.6.

conservation of the second toy model

In this section we will prove that, Property 4.7. Under Assumptions (1.29) to (1.38) and according to Properties 4. 2, 4.3, 4.4, 4.5 and 4.6, for Φ f H # and Φ b H # solutions to Equations (1.27) and

(1.28), Ψ C 1 p0, Vq; L 1 pp0, 1qq ¨solution to Equation (1.16), Ξ C 1 p0, Vq; L 1 pp0, 1qq solution to Equation (1.17) or (1.15.b), and O C 1 p0, Vq ¨solution to (1.18), then, for any T ¡ 0, there exists K Q 2 pTq ¡ 0 such that for all x in p0, 1q and for all t in p0, T q, Inequality (1.39) is satised.

Proof of Property 4.7: In case when Functions Φ f , Φ b , Ψ, Ξ and O are respectively solutions to (1.27), (1.28), (1.16), (1.15.b) and (1.18). According to Assumption (1.29), Function Q is also non-negative. Hence, summing Equations (1.27), (1.28), (1.16), (1.15.b) and (1.18),and according to Properties 4.2,4.3,4.4,4.5 and 4.6, we obtained,

f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft 2c » 1 0 f 2 Φ f Φ b $ fx 2 pt, xqdx » 1 0 Qpt, xqdx (4.84)
Since Functions Φ f and Φ b belong to H # , the integration of the rst term of the righthand side makes it vanish. Hence,

f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft » 1 0 Qpt, xqdx ¤ sup tR ¢» 1 0 Qpt, xqdx (4.85) 
In the case when Functions Φ f , Φ b , Ψ, Ξ and O are respectively solutions to (1.27),

(1.28), (1.16), (1.17) and (1.18). Hence, summing Equations (1.27), (1.28), (1.16),

(1.17) and (1.18), and according to Properties 4.2, 4.3, 4.4, 4.5 and 4.6, we obtained, 

f » 1 0 Φ f pt, xqdx » 1 0 Φ b pt, xqdx » 1 0 Ψpt, xqdx » 1 0 Ξpt, xqdx & ft 2c » 1 0 f 2 Φ f Φ b $ fx 2 pt, xqdx » 1 0 Qpt, xqdx ¡ » 1 0 u Optq L Ψpt,
Φ f Φ b ¨ }Φ f Φ b } V ¤ K Φ . ( 4 
» 1 0 fΦ f Φ b ft pt, xqM Φ pt, xqdx ¡ » 1 0 2c f 2 Φ f Φ b $ fx 2 pt, xqM Φ pt, xqdx » 1 0 Qpt, xqM Φ pt, xqdx ¡ » 1 0 f ¡ Φ f pt, xq Φ b pt, xq © M Φ pt, xqdx. (4.92)
By integrating by part we obtained, 

» 1 0 fΦ f Φ b ft pt, xqM Φ pt, xqdx » 1 0 2c f Φ f Φ b $ fx pt, xq fM Φ fx pt, xqdx » 1 0 Qpt, xqM Φ pt, xqdx ¡ » 1 0 f ¡ Φ f pt, xq Φ b pt, xq © M Φ pt, xqdx. (4.93) We have, f Φ f Φ b $ ft pt, xqM Φ pt, xq 1 f fM Φ ft pt, xqM Φ pt, xq 1 2f f M Φ ¨2 ft pt
1 2f » 1 0 f M Φ ¨2 ft pt, xqdx » 1 0 2c f £ f M Φ fx 2 pt, xqdx » 1 0 Qpt, xqM Φ pt, xqdx ¡ » 1 0 f ¡ Φ f pt, xq Φ b pt, xq © M Φ pt, xqdx. (4.96)
By denition, Function M Φ is non-negative. Hence, from Assumption (1.29) and Equality (4.91) we have,

1 2f » 1 0 f M Φ ¨2 ft pt, xqdx ¤ » 1 0 KM Φ pt, xqdx ¡ » 1 0 f ¡ Φ f pt, xq Φ b pt, xq © M Φ pt, xqdx. (4.97)
Hence, we have, The objective of this section is to prove that Equation (1.17) admits a unique solution.

1 2f f }M Φ } 2 2 ft ptqdx ¤ ¡ » 1 0 M Φ pt, xq ¨2dx ¤ 0. ( 4 
To do so we posed:

G ξ 1 pt, xq G ξ 1 p0, xq » t 0 gpτ, xq ¢ L ¡ s ξ 1 pτq L dτ, s ξ 1 ptq s ξ 1 p0q » 1 0 ξ 1 pt, xqdx, (4.100) 
and, Functions ξ 1 and ξ 2 are positive functions belonging to C 1 p0, T q, L 1 pp0, 1qq ¨and Functions s ξ 1 and s ξ 2 are positive functions belonging to C 1 pp0, T qq, T p0, Vq.

G ξ 2 pt, xq G ξ 2 p0, xq » t 0 gpτ, xq ¢ L ¡ s ξ 2 pτq L dτ, s ξ 2 ptq s ξ 2 p0q » 1 0 ξ 2 pt, xqdx, (4.101 
We deducted Equation (4.101) from Equation (4.100):

|G ξ 1 ¡ G ξ 2 | pt, xq § § § § » t 0 gpτ, xq ¢ s ξ 2 pτq ¡ s ξ 1 pτq L dτ § § § § § § § § » t 0 » 1 0 gpτ, xq ¢ ξ 1 pτ, αq ¡ ξ 2 pτ, αq L dτ dα § § § § (4.105)
and dt ¤ T 1 , T 1 p0, T q, we obtained:

|G ξ 1 ¡ G ξ 2 | pt, xq ¤ T 1 L » 1 0 gpxq ξ 1 pαq ¡ ξ 2 pαq L V pp0,T 1 qq dα, ¤ T 1 ḡ L # # #ξ 1 ¡ ξ 2 # # # L V pp0,T 1 q,L 1 pp0,1qqq , (4.106) where, gpxq u Ψpxq L V pp0,T 1 qq and ḡ u # # #Ψ # # # L V pp0,T 1 q,L 1 pp0,1qqq (4.107) Ψpxq L V pp0,T 1 qq sup tp0,T 1 q |Ψpt, xq | (4.108) and, u # # #Ψ # # # L V pp0,T 1 q¢p0,1qq sup tp0,T 1 q xp0,1q
Ψpt, xq (4.109) Since, according to Property 4.8 ḡ is bounded, we chose T 1 L ḡ . Hence, we obtained for all t ¤ T 1 :

|G ξ 1 ¡ G ξ 2 | pt, xq ¤ k # # #ξ 1 ¡ ξ 2 # # # L V pp0,T 1 q,L 1 pp0,1qqq
, where k 1 (4.110) Therefore, we have:

# # #G ξ 1 ¡ G ξ 2 # # # L V pp0,T 1 q,L 1 pp0,1qqq ¤ k # # #ξ 1 ¡ ξ 2 # # # L V pp0,T 1 q,L 1 pp0,1qqq . (4.111) Equation (4.111) demonstrates that operator G : ξ Þ Ñ G ξ , is k-contractive from C 0 pp0, T 1 q, L 1 pp0, 1qqq in C 0 pp0, T 1 q,L 1 pp0, 1qqq.
Yet, G is equivalent to Ξ which is solution to Equation (1.17). Hence, for all t p0, T 1 q and for all x p0, 1q, the solution of Equation (1.17) corresponds to the xed-point of G. According to the Banach xed-point theorem, this xed-point exists and is unique. Therefore, Equation (1.17) admits a unique solution for all t p0, T 1 q and for all x p0, 1q.

The value of Function Ξ at t T 1 is given. Then, for all t such as T 1 ¤ t ¤ T 2 , T 2 p0, T q, we have:

|G ξ 1 ¡ G ξ 2 | pt, xq ¤ T 2 ¡ T 1 L » 1 0 gpxq ξ 1 pαq ¡ ξ 2 pαq L V ppT 1 ,T 2 qq dα, ¤ pT 2 ¡ T 1 q ḡ L # # #ξ 1 ¡ ξ 2 # # # L V ppT 1 ,T 2 q,L 1 pp0,1qqq . (4.112) We chose T 2 such that T 2 ¡ T 1 L ḡ .
Hence, for all t pT 1 , T 2 q and for all x p0, 1q, we obtained:

|G ξ 1 ¡ G ξ 2 | pt, xq ¤ k 2 # # #ξ 1 pαq ¡ ξ 2 pαq # # # L V ppT 1 ,T 2 q,L 1 pp0,1qqq
, where k 2 1 (4.113) Therefore, we have:

# # #G ξ 1 ¡ G ξ 2 # # # L V ppT 1 ,T 2 q,L 1 pp0,1qqq ¤ k 2 # # #ξ 1 ¡ ξ 2 # # #
L V ppT 1 ,T 2 q,L 1 pp0,1qqq

.

(4.114) Equation (4.114) demonstrates that Operator G is k-contractive from C 0 ppT 1 , T 2 q, L 1 pp0, 1qqq in C 0 ppT 1 , T 2 q, L 1 pp0, 1qqq. As G is equivalent to Ξ which is solution to Equation (1.17), for all t pT 1 , T 2 q and for all x p0, 1q, the solution of Equation (1.17) corresponds to the xed-point of G. According to the Banach xed-point theorem, this xed-point exists and is unique. Therefore, Equation (1.17) admits a unique solution for all t pT 1 , T 2 q and for all x p0, 1q.

By iteration and by proceeding in the same way we can range time-interval p0, T q, T p0, Vq. Indeed, by iteration we can demonstrate that G is k-contractive over a series of intervals pT n , T n 1 q covering the interval p0, T q and verifying T n ¡ T n 1 ¤ L ḡ .

According to the Banach xed-point theorem, since G is equivalent to Ξ solution to Equation (1.17), this equation admits a unique solution on all those intervals of time and for all x p0, 1q.

We nally proved Property 4.10.

Since Equation (1.18) is an ODE the wellposedness of this equation is obvious.

Finally, we proved in this section the existence of a solution of the second toy model made of Equations (1.27), (1.28), (1.16), (1.18) and Equation (1.17) or (1.15.b).

Uniqueness of the solution of the PDE system

In this section we will prove the uniqueness of the solution of the PDE system.

We assumed that Φ f 1 and Φ f 2 solutions of (1.27), and Φ b 1 and Φ b 2 solutions of (1.28).

The objective of this demonstration is to prove that, 

Φ f 1 Φ f 2
fΦ f 1 ¡ Φ f 2 ft pt, xq ω fΦ f 1 ¡ Φ f 2 fx pt, xq ¡ c f ! χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx ( ) fx pt, xq ¡fFpxq pΦ f 1 ¡ Φ f 2 qpt, xq ¡ r pΦ f 1 ¡ Φ f 2 qpt, xq. (4.117) and, fΦ b 1 ¡ Φ b 2 ft pt, xq ¡ ω fΦ b 1 ¡ Φ b 2 fx pt, xq ¡ c f χ f Φ f 1 ¡ Φ f 2 Φ b 1 ¡ Φ b 2 % fx & fx pt, xq ¡fFpxq pΦ b 1 ¡ Φ b 2 qpt, xq r pΦ f 1 ¡ Φ f 2 qpt, xq. (4.118)
We applied the same method used in Section 3 until the obtainment of an equation close to (3.10). Hence, from Equations (4.117) and (4.118) we obtained the following inequality:

» T 0 ¢ f }Φ f 1 ¡ Φ f 2 } 2 2 ft ptq f }Φ b 1 ¡ Φ b 2 } 2 2 ft ptq dt ¤ 2 » T 0 £ r ¢ }Φ f 1 ¡ Φ f 2 } 2 2 ptq }Φ b 1 ¡ Φ b 2 } 2 2 ptq
. (4.119)

According to the Gronwall lemma, for any T p0, Vq and for any t p0, T q, we obtained:

}Φ f 1 ¡ Φ f 2 } 2 2 ptq }Φ b 1 ¡ Φ b 2 } 2 2 ptq ¤ }Φ f 1 ¡ Φ f 2 } 2 2 p0q }Φ b 1 ¡ Φ b 2 } 2 2 p0q 0 (4.120)
We deduced from Equation (4.120) that: Therefore we proved the uniqueness of the solution of Equations (1.27) and (1.28).

}Φ f 1 ¡ Φ f 2 } 2 2 ptq }Φ b 1 ¡ Φ b 2 }
Equation (1.16) is a linear ODE. Hence, the uniqueness of its solution of this equation is obvious. We demonstrated in Section 4.5 that in case when Function Ξ C 1 p0, Vq; L 1 pp0, 1qq ¨is solution to Equation (1.17) this function is k-contractive from C 0 pp0, T q¢p0, 1qq in C 0 pp0, T q¢p0, 1qq. Therefore, according to the Banach xedpoint theorem, Equation (1.17) admits a unique solution.

Equation (1.15.b) is an ODE. Hence this equation admits a unique solution.

Function O C 1 p0, Vq ¨solution to Equation (1.18) only depends on Ξ. Hence, Equation (1.18) also admits a unique solution. Finally, we proved the uniqueness of the solution of the PDE system.

In the section we proved the existence and the uniqueness of the solution of the PDE system. Moreover, we proved the conservation property of this PDE system and the non-negativity of some components of the solution. Hence, we nally prove Theorem 1.4.

Conclusion

The The analysis of the second toy model which does not contain convection term and by using Variable Substitutions and Fourier Transforms put in evidence the properties preserved despite the structure of the diusion term. We proved the existence and the uniqueness of the solution of the PDE system. Moreover, we also proved the conservation property of this PDE system and the non-negativity of some components of the solution.

  ¡ f FpxqΦ f pt, xq ¡ rΦ f pt, xq, ¡ f FpxqΦ b pt, xq rΦ f pt, xq. (1.2)

  pt, xq ¡ c f 2 Φ f Φ b $ fx 2 pt, xq 0.

  25) is solution to Equations (1.20), (1.21), (1.22) and (1.23), and is clearly not regular.

©,

  T p0, Vq. Indeed, the dependence between Equations (1.1) and (1.2) requires to study the sum Φ f Φ b ¨and we only bounded the average of χ Φ f Φ b ¨over time. Furthermore, Function χ, vanishing near fΩ, masks the regularity or the irregularity of Φ f and Φ b at the edges of the domain. Yet, some boundary conditions are imposed to those functions. Hence, Function χ hinders the demonstration of the regularity of Φ f and Φ b at fΩ. The a priori estimates showed us that the dierent hypotheses and boundary conditions associated to the mathematical model developed in Flourent et al. (Submitted) complicate from demonstrating that Φ f and Φ b belong to L

  3: We started by summing Equations (1.20) and (113) is the heat equation where the diusion term provides a regularizing eect. Hence

  the next section we will use a second toy model, closer to the model developed in Flourent et al. (Submitted), to put in evidence the properties which can be expected despite the structure of the diusion term. 4 Proof of the wellposedness of the second toy model: A mathematical model without convection In this section we will present the a priori estimates performed on the second toy model. This simplied model corresponds to the initial model presented in Introduction but whithout the convection terms. Moreover, we decided to work in a periodic framework. Therefore, in this framework, there are no edges and the function χ is not necessary anymore. Hence, the two rst equations of this second toy model are (1.27) and (1.28). The three other equations remain Equations (1.16), (1.18) and (1.17) or (1.15.b). In this model Φ f and Φ b are periodic functions with respect to x belonging to H # and we made Assumptions (1.29) to (1.38).

V

  in Equations (4.7) and (4.8) several terms involving the dierence and the sum of Φ f and Φ b . Therefore, we xed:U pt, xq Φ f pt, xq Φ b pt, xq, pt, xq Φ f pt, xq ¡ Φ b pt, xq.

Φ

  b ps, xq Φ f ps, xq © ds.

  M 2 O is decreasing and according to Assumption (1.37) M 2 O p0q 0.

  4.3 and 4.4, Functions Ψpt, xq and Optq are non-negative and

  b 1 Φ b 2 (4.116)By substraction we obtained,

  two rst equations of the mathematical model developed in the article Flourent et al. (Submitted), contain a diusion operator depending on the sum of two unknown densities. This fact, coupled with the presence of a convection term, makes impossible the direct application of the classical results about parabolic equations. Hence, we worked on two toy models The loss of the regularizing eect and the positivity of each component of the solution due to the structure of the diusion term was put in evidence through the rst toy model.

  The model developed inFlourent et al. (Submitted) contains three other equations that are not real issues for the mathematical analysis. They involve function Ψpt, xq,

	solution to:				
	fΨ ft pt, xq f Fpxq	Φ (1.16)
	function Ξpt, xq, solution to:				
	fΞ ft pt, xq uΨpt, xq	¢	L ¡ Optq L	,	(1.17)

b pt, xq Φ f pt, xq & ¡ uΨpt, xq, for x p0, 1q and t p0, Vq and for positive constants u and L. And nally the Outcome Optq of the model is given by: Optq » Ω Ξpt, xq dx, (1.18)

  Under assumptions (1.5) and (1.6), if Φ f H and Φ b H are solutions to Equation (1.10), then there exists Ψ C 1 p0, Vq; L 1 pp0, 1qq ¨solution to Equation (1.16), Ξ C 1 p0, Vq; L 1 pp0, 1qq ¨solution to Equation (1.15.b), and O C 1 p0, Vq

	1.15.b)
	The mathematical model made of Equations (1.1), (1.2), (1.16), (1.15.b) and (1.18),
	has a conservation property:
	Property 1.2.

solution to (1

  For further details we refer readers to Flourent

	et al. (Submitted).
	2.1 Conservation property of the initial developed mathemati-
	cal model

The mathematical model developed in

Flourent et al. (Submitted)

, made of Equations (1.1), (1.2), (1.16), (1.15.b) and (1.18), is biomimetic and describes the evolution and the action over time t p0, Vq, of an information circulating and diusing in a geometrical space that is interval p0, 1q.

Proof of Property 1.2: To demonstrate this property we assumed the existence of Φ f , Φ b , Ψ, Ξ and O respectively solutions to (1.1), (1.2), (1.16), (1.15.b) and (1.18).

  , xqϕ b pt, xqdx dt, (2.6) xq, x p0, 1qu, tpt, 0q, t p0, Vqu and tpt, 1q, t p0, Vqu.In view of the Variational Formulation (2.5) and (2.6), Φ f , Φ b , fΦ f fx and fΦ b fx have to belong to L 2 p0, Vq¢p0, 1q ¨. Hence, Φ f and Φ b have to belong to H 1 p0, Vq¢p0, 1q

	Yet, to take the boundary and the initial conditions into account, we enriched for-
	mulations (2.5) and (2.6) to get formulations for test functions having non-vanishing traces on tp0,

  Property 3.1. If the solution of Equations (1.20) and (1.21) exists, then it is unique. Proof of Property 3.1: We assumed that Φ f 1 H and Φ f 2 H are solutions to (1.20), and Φ b 1 H and Φ b 2 H are solutions to (1.21). The objective of this demonstration is to prove that

  is unique and belongs to H. However, in Equation (3.14) there is no regularizing eect. Nevertheless this equa-tion shows that Φ f pt, xq¡Φ b pt, xq ¨is constant over time. Hence, as Φ f ¡Φ b ¨p., 1q Φ f ¡ Φ b ¨p., 0q 0 and Φ f p0, xq ¡ Φ b p0, xq is in H 1 p0, 1q, there is no irregularity generated by (3.14). Then Φ f ¡ Φ b ¨belongs to C 1 p0, Vq; H 1 p0, 1q ¨.Hence, we proved the existence of Φ f and Φ b and that they belong to C 1 p0, Vq; H 1 p0, 1q ¨. Therefore, involving Property 3.1 ends the proof of Property 1.3. .3 The question of the non-negativity of Φ f and Φ b We studied the question of the non-negativity of Φ f and Φ b solutions of Equations (1.20) and (1.21) by using this rst toy model. We started by setting: U pt, xq Φ f pt, xq Φ b pt, xq, pt, xq Φ f pt, xq ¡ Φ b pt, xq.

		(3.15)
	and,	
		(3.16)
	Therefore, from Equations (3.15) and (3.16), Equation (3.13) became:	
	fU ft pt, xq ¡ 2c f 2 U fx 2 pt, xq 0,	(3.17)
	and, Equation (3.14) became:	

This result showed us that the structure of the built model and especially the structure of the diusion operator implied into it, seems to require to imposed some regularity on initial conditions.

3

V

  admit respectively a solution Φ f H # and Φ b H # , such that for all x p0, 1q

	Φ f pt, xq	ņZ	Φf	n ptq expp2iπnxq,	(4.2)
	and,				
	Φ b pt, xq	ņZ	Φb	n ptq expp2iπnxq,	(4.3)
	we dened,				
	K n u 8π 2 n 2 c f,	(4.4)
	and we obtained the following property:			
	Property 4.1. Under Assumptions (1.32), (1.33) and (1.34), Equations (1.27) and
	(1.28)				
	Qpt, xq				(4.1)

ņZ

Qn ptq expp2iπnxq,

  xq ¡ 2c f 2 U fx 2 pt, xq Qpt, xq ¡ f Upt, xq, xq ¡pr f qVpt, xq ¡ rU pt, xq. nI ptq expp2iπnxq p8cn 2 π 2 f q Û n ptq expp2iπnxq

				%
				ņZ	Qn ptq expp2iπnxq
	Equation (4.7) became:		
		fU ft pt, (4.11)
	and Equation (4.8) became:		
		fV ft pt, xq ¡fVpt, xq ¡ 2rΦ f pt, xq,	(4.12)
	or,			
		fV ft pt, (4.13)
	4.1.1	The exact expression of U		
	We applied the Fourier Transform to Equation (4.11) by setting:
		U pt, xq	ņZ	Û n ptq expp2iπnxq,	(4.14)
	and then, from Equations (4.11) and (4.14), we obtained:

ņZ Û nI ptq expp2iπnxq 2c Û n ptq4n 2 π 2 expp2iπnxq % ņZ Qn ptq expp2iπnxq ¡ f Û n expp2iπnxq % . (4.15) Then, by gathering some terms, we get: ņZ Û % . (4.16)

  V nI ptq pr f q V n ptq4n 2 π 2 ¡r Û n ptq (4.22) For all n Z this ODE is provided with an initial condition V n p0q related with the Fourier coecients of Φ f p0, xq and Φ b p0, xq.

	We resolved Equation (4.22) and we obtained:
						dτ. (4.24)
	4.1.3	The exact expression of Φ f and Φ b
	By summing Equations (4.9) and (4.10), we obtained:
						Û n ptq V n ptq 2 Φf	n ptq,	(4.25)
	and by deducting Equation (4.10) to Equation (4.9), we obtained,
						Û n ptq ¡ V n ptq 2 Φb	n ptq,	(4.26)
	where Φf	n	and Φb	n	are given by Equalities (4.2) and (4.3).
	xq Therefore, from Equations (4.25), (4.26), (4.19) and (4.24), we obtained: ņZ V n ptq expp2iπnxq	(4.20)
	Therefore Equation (4.13) became:
	ņZ	V nI ptq expp2iπnxq pr f q V n ptq4n 2 π 2 expp2iπnxq	%	ņZ	¡r Û n ptqpxq expp2iπnxq %
						(4.21)
	As previously, the terms

expp2iπnxq ¨nZ form a Hilbert basis. Therefore, for all n Z,

  ¨. It means that there exists K 2 ¡ 0 such that:

				ņZ	Û n p0q 2 ¤ K 2	(4.41)
	Therefore, since the sum	ņZ	n 2 expp¡2K n u tq converges, there exists K 3 ¡ 0 such that:
		ņZ	n 2 Û n p0q 2 expp¡2K n u tq ¤ K 3	(4.42)
	Finally, from Equations (4.39), (4.40) and (4.42) we proved that Function U veries
	(4.31).		

Function U veries Inequality (4.31). Hence, for all t p0, T q, T p0, Vq:

ņZ Û n ptq 2 ¤ K 2 (4.43) Moreover, 0 ¤ 1 |1 n 2 | ¤ 1, for all n Z.

Hence, Function U veries (4.32).

  It satises Φ f H # and Φ b H # and for all x p0, 1q and for all

	Concerning the proof of Inequality (4.55), we started by xing,	
	m Φ pt, xq min	(4.56)
	and then we multiplied Equation (4.7) by m Φ . We get:	
	Property 4.2. Under Assumption (1.29) to (1.34) there exists a solution Φ f , Φ b ¨to
	(1.27) and (1.28). t p0, Vq,	
	Φ f Φ b ¨pt, xq ¥ 0	(4.55)
	Proof of Property 4.2:	

In a rst place, the existence of the solution Φ f , Φ b ¨to (1.27) and (1.28) claimed in Property 4.2 is a direct consequence of Property 4.1. ¡ 0, Φ f Φ b ¨pt, xq © ,

  Property 4.3. Under Assumptions assumptions assumptions (1.29), (1.30) and (1.35) and if Φ f and Φ b belonging to H # are solutions to (1.27) and (1.28), then Equation p1.16q admits a unique solution belonging to C 1 p0, Vq, L 1 pp0, 1qq ¨. Moreover, this solution is non-negative. Φ f H # and Φ b H # are solutions to Equations p1.27q and p1.28q and Ψ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation p1.16q which is a linear Ordinary

	Therefore, Function }m Φ } 2 2 is decreasing and according to assumption (1.30) m 2 Φ p0, .q
	0. Hence,
		m Φ pt, .q} 2 2 ¤ 0	(4.63)
	Therefore,
		}m Φ pt, .q} 2 0	(4.64)
	Hence, Property 4.1 and Equality (4.64) prove Property 4.2.
	4.2.2	Non-negativity of Ψ
	Proof of Property 4.3:

Functions

Dierential Equation (ODE). Hence, we have, Ψpt, xq Ψp0, xq expp¡utq

  of Property 4.4: To prove the non-negativity of Function O in case when Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation (1.17) and O C 1 p0, Vq ¨is solution to Equation (1.18) we posed, m O ptq min

									(4.68)
	From Equations (1.17) and (1.18) we obtained,				
	fO ft ptq	» 1 0	fΞ ft pt, xqdx	» 1 0	uΨpt, xq	¢	L ¡ Optq L	dx	(4.69)
	As a rst step, we multiplied Equation (4.69) by m O :				

Under assumptions (1.29), (1.30), (1.35) and (1.37) if Function Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is non-negative and solution to Equation (1.15.b) and if O C 1 p0, Vq ¨is solution to Equation (1.18), then for all t in p0, T q, T belonging to p0, Vq, Function O is non-negative. Proof ¡ 0, Optq © .

  Ξ C 1 p0, Vq, L 1 pp0, 1qq ¨is solution to Equation (1.15.b) and O C 1 p0, Vq ¨is solution to Equation (1.18), Function O only depends on Ξ. Hence, if Function Ξ is non-negative, O is also non-negative.

  xqdx (4.86) As previously, since Functions Φ f and Φ b belong to H # , the integration of the rst term of the right-hand side makes it vanish. Moreover, according to Assumption (1.29) and Property 4.3 Functions O and Ψ are postive. Hence, Majoration of the innity norm of Φ f , Φ b and ΨThe objective of this section is to prove that: Property 4.8. Under Assumptions (1.29) to (1.38), if Ψp0, .q L 1 pp0, 1qq, then there exists a unique solution to Equation (1.16). Moreover, if there exists a time T F such that, for all t ¡ T F , and for all x p0, 1q, Qpt, xq 0, then there exists a positive constant K Ψ ¡ 0 such that, , if there exists a time T F such that, for all t ¡ T F , and for all x p0, 1q, Qpt, xq 0, then there exists a constant K Φ ¡ 0 such that Φ f H and Φ b H, solutions to (1.27) and (1.28) and given by Property

	4.4 sup tR	Ψ }Ψ} V ¤ K Ψ .	(4.88)
					xp0,1q			
	Before that, we have to demonstrate that,	
	Property 4.9. Under Assumptions (1.29) to (1.38)4.2, satisfy,
					sup				
					tR				
					xp0,1q				
	f	» 1	Φ f pt, xqdx	» 1	Φ b pt, xqdx	» 1	Ψpt, xqdx	» 1	Ξpt, xqdx &
		0		0	ft		0		0	¤ sup	¢» 1	Qpt, xqdx	(4.87)
										tR	0
	Therefore, with or without a limiter coecient, the model made of Equations (1.27),
	(1.28), (1.16), (1.18) and (1.17) or (1.15.b), has a conservation property.
	We nally proved Property 4.7.				

  , xq,

							(4.94)
	and,						
	f	Φ f Φ b fx pt, xq fM Φ $ fx pt, xq 1 f	fM Φ fx pt, xq fM Φ fx pt, xq 1 f	¢ fM Φ fx pt, xq	2	.	(4.95)
	Hence, by using (4.94) and (4.95), we obtained from Equation (4.93):			

  Therefore, for all t in p0, Vq and for all x p0, 1q, function M Φ pt, xq is null. It means that, for all t in p0, Vq and for all x p0, 1q, pΦ f Φ b q is bounded by a positive .5 The existence of the solution of Equations (1.17) and(1.15.b) In this section we will prove that: Property 4.10. Under Assumptions (1.29) to (1.38), Equations (1.15.b) and (1.17), associated with Equation (1.18), admit a unique solution belonging to C 1 p0, T q, L 1 pp0, 1qq

		¨,
	T p0, Vq.	
	Proof of Property 4.10:	
	Equation (1.15.b) is a linear ODE. Hence, this equation admits a unique solution.
		.98)
	Therefore, Function }M Φ } 2 2 is decreasing and according to Assumption (1.31) }M Φ } 2 2 p0q
	0. Hence,	
	}M Φ } 2 2 pt, .q ¤ 0	(4.99)

constant K Φ . Therefore, Property 4.9 is well veried.

Proof of Property 4.8: The exact expression of Ψ is given by Equation (4.65).

From this equation and according to Assumption (1.35) and Property 4.9 there exists a positive constant K Ψ such as Property 4.8 is veried. 4

  }Φ f 1 ¡ Φ f 2 } 2 2 pt, .q 0 }Φ b 1 ¡ Φ b 2 } 2 2 pt, .q 0 Φ f 1 pt, xq Φ f 2 pt, xq Φ b 1 pt, xq Φ b 2 pt, xq

	and,	
		(4.123)
	Therefore,	
		(4.124)
	and,	
		(4.125)
	2 2 ptq 0	(4.121)
	We deduced that,	
		(4.122)