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Distributed Control of Thermostatically Controlled Loads:
Kullback-Leibler Optimal Control in Continuous Time

Ana Bušić1 and Sean Meyn2

Abstract— The paper develops distributed control techniques
to obtain grid services from flexible loads. The Individual
Perspective Design (IPD) for local (load level) control is extended
to piecewise deterministic and diffusion models for thermostat-
ically controlled load models.

The IPD design is formulated as an infinite horizon average
reward optimal control problem, in which the reward function
contains a term that uses relative entropy rate to model de-
viation from nominal dynamics. In the piecewise deterministic
model, the optimal solution is obtained via the solution to an
eigenfunction problem, similar to what is obtained in prior
work. For a jump diffusion model this simple structure is
absent. The structure for the optimal solution is obtained, which
suggests an ODE technique for computation that is likely far
more efficient than policy- or value-iteration.

I. INTRODUCTION

This paper concerns distributed control of a large collec-
tion of electric loads, focusing on thermostatically controlled
loads (TCLs). This is a topic of significant recent research
[1], [5], [6], [20]–[22], [24]; the motivation of each of these
authors is to obtain grid level services from the collection of
loads, by harnessing their inherent flexibility.

A high level description is based on a single balancing
authority (BA) that must meet supply-demand balance in
the grid in real-time. The BA has access to controllable
generation and battery systems for this purpose. In addition,
a large collection of loads can receive instructions from the
BA to increase/decrease power consumption in such a way
that the ensemble appears as a large battery. The creation
of virtual energy storage from a collection of loads requires
either point-to-point control of each load, as in the priority-
stack approach [11], or a carefully designed distributed
control architecture.

The current paper extends the control architecture intro-
duced in [21], which in its most basic form is composed of
two parts:

(i) Intelligence at the load: at each time t, the ith load
observes its internal state Xi(t) along with a common
signal ζt broadcast from the BA to all loads of a given
type. The load changes its power consumption with some
probability that depends on the observations (Xi(t), ζt).
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(ii) Intelligence at the BA: Given aggregate measurements
of the grid and the load population, the signal ζ is
synthesized. This requires a macro model of input-output
behavior, where ζ is the input and the output y is the
aggregate power deviation.
A macro-model for a population of loads begins with

an understanding of the individual. This leads to a mean-
field model, which was originally introduced to the power
systems field in [17], [18]. Models for an individual TCL
are well understood, and are typically formulated as a first-
order linear system with “jumps” due to hysteresis. In the
case of a single water heater, a typical model is

d

dt
Θ(t) = −β[Θ(t)−Θa(t)] + γM(t)− d(t) , (1)

with d(t) is a function of inlet flow and the temperature of
the cold water entering the tank, Θ(t) is the temperature of
the water in the tank, Θa(t) is ambient temperature (deg. F.),
and β, γ are constants [5], [24].

The process M = {M(t)} is the power mode: taking
values 0 or 1. A hysteresis control rule is determined by a
temperature interval [θmin, θmax]. The power mode changes
only when Θ(t) reaches the boundary of this interval. For
example, when Θ(t0) = θmax, then M(t0) = 0 so that the
temperature may cool to its lower limit.
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Fig. 1: State space for a water heater under hysteresis control: left hand side shows
behavior with deterministic hysteresis control, and right hand side shows behavior
under local randomized control

A challenge with TCL models is that the state space
is continuous, while the local control designs in much of
prior research requires a discrete state space (this is true in
particular for [20], [21]). The papers [6], [24] embrace the
continuous state space, but their control solutions present
difficulties discussed below. Malhamé introduced mean field
models for TCLs in continuous time [17]. More recently, he
and his co-authors have introduced mean field game tech-
niques for control: [12], [13] contain surveys. The approach
is open loop, but the loop can be closed through an MPC
implementation.

The main contribution of this paper is to demonstrate that
the local control designs introduced in [3], [4], [21] admit



practical extension to continuous-state models. This is true
even in the significantly more complex setting in which
the nominal dynamics include stochastic disturbances that
are outside of direct control (such as variations in ambient
temperature, or inlet temperature of water to the TCL).

A. Related Literature

Mean-field models for TCLs have been considered since
the 1994 paper by Laurent and Malhamé [15]. The jump-
diffusion model considered in Section IV is similar to the
model of [15], [16], except that in this prior work the jump
rate is assumed independent of temperature.

The most closely related work is contained in the book
chapter [6], and in particular a problem formulation proposed
in Section 5 of this prior work. The finite time-horizon
problem is considered:

min
p
DT (p‖p0)

s.t. Ep[U(X(t))] = rt , 0 ≤ t ≤ T
(2)

where DT denotes relative entropy, and r is a reference
signal to be tracked, and U(x) denotes power consumption
in state x. Relative entropy is a useful notion of distance
between probability measures, and its surrounding geometry
leads to tractable algorithms in optimization (as will be seen
in the present paper).

While elegant, the approach does present challenges. First,
it is an open-loop solution: the authors of [6] suggest a
forward-backward (in time) algorithm to compute the opti-
mizer. It requires knowledge of p0, which means knowledge
of the initial histogram of loads. The control solution is only
physically meaningful for a model in which all randomness is
introduced through randomized control. The optimal solution
to (2) will distort the dynamics of each load, without respect
for the laws of physics: this is made clear in Lemma 4.1
for the diffusion model considered here. The conclusion
also holds for models in discrete time. If constraints on
the optimization problem are imposed so that physical con-
straints are respected, then the optimizer can be efficiently
computed only in special settings [4], [5]. Finally, the control
objective can be viewed as “dead beat” control, which may
be infeasible or sensitive to model error.

Another related paper is [24], which treats TCL models
in continuous time. This paper is in fact more similar to
the prior work [19], [20]. Through a sequence of trans-
formations, the authors obtain a linear model for input-
output dynamics. In [24] the authors propose dead-beat
control, as in the control formulation (2), while [19], [20]
propose LQR control. A challenge with these approaches is
implementation, since the original model is far from linear.
In each of these papers, once the control solution is found
for the linear model, this must be transformed to obtain the
randomized decision rule for the load. This step requires,
for each time t, division by an estimate of the histogram of
loads. The robustness of this control approach has not been
tested.

The remainder of this paper is organized as follows.
Section II contains notation and the model description. The
IPD solution is obtained first in Section III for the Piecewise
Deterministic Markov Model, and then generalized in Sec-
tion IV to a diffusion model. Conclusions and directions for
future research are contained in Section V.

II. DISTRIBUTED CONTROL ARCHITECTURE

The state process for a load at time t is expressed

X(t) = (M(t),Θ(t)) , t ≥ 0 (3)

which evolves on the state space X = {0, 1} × R. Further
constraints are imposed in the piece-wise deterministic model
considered in Section III, so that X evolves on the compact
set X = {0, 1} × [θmin, θmax]. In this case, it is convenient to
identify the two bounded intervals with a circle, as illustrated
in Fig. 1.

The mean-field model over a time horizon [0, T ] is defined
by a probability measure p on state-trajectoriesX = {X(t) :
0 ≤ t ≤ T}. At each time t, the marginal pt is intended
to approximate the histogram of the finite population: for a
continuous function f : X→ R,

1

N

N∑
i=1

f(Xi(t)) ≈ 〈pt, f〉 :=

∫
X

f(x)pt(x) dx

In prior work [5], [12], [13], [17], [18], assumptions are
imposed so that this approximation becomes exact in the
limit as N →∞.

The decentralized control approach proposed in the prior
work [3], [5], [21] is based on the construction of a controlled
Markov model with input denoted ζ. This may be regarded as
a randomized decision rule at each load, designed to respect
quality of service (QoS) constraints, and also ensure that the
input-output behavior from ζ to y has desirable properties
from the viewpoint of the BA.

The design of the parametrized family of randomized
decision rules is just the first step in a distributed control
architecture. The balancing authority broadcasts the common
signal ζ = {ζt : t ≥ 0} to all loads, based on measurements
of aggregate power consumption y = {yt : t ≥ 0}.

A. Local control

Consider an aggregator in a region of at least one hun-
dred homes, with electric loads such as water heaters, air-
conditioning, and refrigerators. For each type of load, the
aggregator wishes to ramp up and down power consumption
to meet the needs of the grid, subject to strict bounds on
QoS delivered by each load to each household. For example,
in the case of a water heater, the temperature must remain
within pre-determined bounds. Additional on/off cycling is
permitted, but excess cycling may also be subject to strict
bounds.

Local control refers to the randomized decision rule at
an individual load. This is specified by modification of the
statistics of the power mode process M , and analysis is
based on the associated differential generator.



The main contribution of this paper is local control design
for models in continuous time and continuous state. This
avoids an approximation based on quantization of the state
space, and theory gives greater insight on the structure of the
solutions. The theory is developed for a jump diffusion model
for which a PDE approach can be used to generate the family
of differential generators. Their dependence on ζ is only
through the modified jump-rate function. An understanding
of this transformation is a central technical component of the
paper.

B. Markov models
The notation x = (m, θ) is used for any state x ∈ X,

where m ∈ {0, 1} and θ ∈ R. For m ∈ {0, 1}, denote by
m ∈ {0, 1} the power mode that is alternate to m; that is,
m = 1−m. For any function g : X→ R, denote

ḡ(m, θ) = g(m, θ) , x = (m, θ) ∈ X . (4)

A Markovian model for a X is described by a differential
generator D. For all functions g : X→ R in some domain,

Dg (x) = lim
t↓0

1

t
E[g(X(t))− g(X(0)) | X(0) = x] (5)

The most general form considered is expressed as follows:

Dg = Q0g + κ[ḡ − g] , (6)

where κ : X → R+ is the jump-rate function (JRF). The
nominal model with generator D0 has JRF denoted κ0. In
control solutions it is permissible to modify κ0, but not Q0.

For simplicity it is assumed in this paper that Q0 is a first
or second-order differential operator,

Dg = ρg′ + 1
2σ

2
Bg
′′ + κ[ḡ − g] . (7)

The drift function ρ is described in Section III. The instan-
taneous variance σ2

B is part of the diffusion model described
in Section IV.

It is assumed that there is a unique invariant density %0

for the nominal model. The steady-state mean of a function
g : X→ R is denoted

〈%0, g〉 :=

∫
g(x)%0(x) dx

Invariance implies that 〈%0,D0g〉 = 0 for g ∈ C2
0 .

The function U : X → R+ denotes power mode: U(x) =
m for x = (m, θ) ∈ X. Poisson’s equation for the nominal
model is

D0H = −Ũ (8)

in which H is the solution, and Ũ = U − U0 is normalized
so it has zero steady-state mean: U0 = 〈%0,U〉.

Distributed control solutions will be based on a family
of models, parameterized by a scalar ζ ∈ R, with similar
notational conventions for the generator and other objects of
interest: Ďζ , %̌ζ , and Uζ := 〈%̌ζ ,U〉. A typical design results
in a generator of the form:

Ď := I−1
v [IG +D0]Iv , (9)

in which G, v are C2 functions on X, and IG denotes the
multiplication operator. The constraint Ď1 = 0 results in
G = −v−1D0v.

C. Individual perspective design

The Individual Perspective Design (IPD) for Markov mod-
els in discrete time was developed in [4], [5], [21]. Its
continuous time version is defined by the solution to the
convex program,

arg max
p

{
ζEp
[∫ T

0

U(X(t)) dt
]
−DT (p‖p0)

}
(10)

where the expectation is with respect to the probability law
p, and DT again denotes relative entropy. Attention here is
devoted to the infinite horizon case, based on the relative
entropy rate:

R(D‖D0) := lim sup
T→∞

1

T
DT (p‖p0) . (11)

Following the definition of the IPD solution of [2], [3],
[21], we denote

η∗ζ := max
%,D

{
ζ〈%,U〉 −R(D‖D0)

}
(12)

subject to the invariance constraint %D = 0. The optimal
controlled generators are denoted {Ďζ : ζ ∈ R}.

An alternative interpretation of the IPD is through a
constrained optimization problem. The proof of Prop. 2.1
is via a Lagrangian relaxation of the constraint 〈%,U〉 = r.

Proposition 2.1: For any ζ ∈ R, let Ďζ , %̌ζ denote a
solution to (12) and let r denote the mean

r = Uζ := 〈%̌ζ ,U〉 (13)

Then Ďζ , %̌ζ also optimize the convex program

min
%,D

R(D‖D0)

subject to 〈%,U〉 = r , %D = 0
(14)

That is, the solutions to (14) and (12) coincide. �

For the piecewise deterministic model considered in Sec-
tion III, Ďζ is obtained as the solution to an eigenvector
problem, exactly as in the discrete-time case [5], [21]. It is
shown in Section IV that this approach fails for the diffusion
model, but the family of optimizers {Ďζ} can be computed
through a reformulation of the optimal control problem.

III. PIECEWISE DETERMINISTIC MARKOV MODEL

A Markovian model is considered here, in which the only
randomness in the system is introduced through the power
mode process M . It is a piecewise-deterministic Markov
process (PDMP) [7], [8]; in Section IV we turn to a jump-
diffusion process.

Each of the models considered in this paper are variants
of the standard TCL model (1). For the nominal model it is
necessary to introduce randomness in the times at which the
power mode M changes.

The state space for the PDMP model remains equal to
the union of two half-circles. However, with the introduction
of a randomized mode process, the state process will jump
between the upper and lower halves, as illustrated at right
in Fig. 1, rather than flow continuously in the clockwise



direction. The randomness will be designed with care, so
that cycling is increased by a small amount (say, 5%).

A brief survey of the rate function for a Markov process
can be found in Section 2.2 of [26], with more details in
[25]. Girsanov’s transformation plays a central role in this
paper as well as in [3], [4], [6], [21]. Section 6.2 of [25]
contains useful material in this continuous time setting; see
also Theorem 1.31 of [23] (Girsanov Theorem I for Itô-Lévy
Processes).

A. Model construction

A time-invariant approximation for (1) is described as a
nonlinear ordinary differential equation:

d

dt
Θ(t) = ρ(X(t)) , t ≥ 0 . (15)

In the PDMP it is assumed that the temperature process
evolves as (15) in-between jumps, with θmin ≤ Θ(t) ≤ θmax
for all t, so that X = {0, 1} × [θmin, θmax].

The detailed structure of the function ρ is not important,
except for the following controllability property: for some
ερ > 0,

ρ(1, θ) ≥ ερ if θ < θmax , ρ(0, θ) ≤ −ερ if θ > θmin .
(16)

It is also assumed that ρ is continuous and bounded on X.
The statistics of jump-times are specified by a jump-rate

function (JRF) κ : X → R+. For each t ≥ 0, the following
approximation holds for small δ > 0:

P{M(t+ δ) 6= M(t) | Ft} = δκ(X(t)) + o(δ) (17)

with filtration generated by the state process:

Ft := σ{X(s) : s ≤ t} , t ≥ 0 (18)

Any JRF κ is assumed to be non-negative and continuous
in the interior of X. In addition, the following assumptions
will be assumed throughout:

lim
θ↑θmax

κ(1, θ) =∞ , lim
θ↓θmin

κ(0, θ) =∞ , (19)∫ θmax

θmin

κ(1, θ) =

∫ θmax

θmin

κ(0, θ) =∞. (20)

The resulting jump process never hits a temperature bound-
ary: θmin < Θ(t) < θmax for all t > 0.

To avoid frequent cycling it is reasonable to impose the
constraint κ(1, θ) = 0 in a neighborhood of θmin, and
κ(0, θ) = 0 in a neighborhood of θmax.

The JRF for the nominal model is denoted κ0.

B. Realizations

To describe a realization of the Markov process with JRF
κ, it suffices to describe the statistics of the first jump time:

τ1 = min{t > 0 : M(t) 6= M(0)} . (21)

For each x = (m, θ) ∈ X, let Ψ(t;x) denote the solution
to the ordinary differential equation:

Ψ(t;x) = ξ(t) ,
d

dt
ξ(t) = ρ(ξ(t),m) , t ≥ 0 , ξ(0) = θ ,

(22)

and denote τ̄1 = min{t ≥ 0 : Ψ(t;x) ∈ ∂X}, where the
boundary is the finite set ∂X = {0, 1} × {θmin, θmax}.

Let R∗ denote a unit-mean exponentially distributed ran-
dom variable that is independent of X(0) = x0, and denote

R(t) =

∫ t

0

κ(Ψ(s;x0)) ds , 0 ≤ t < τ̄1(x0) . (23)

The following definition is then consistent with (17):

τ1 = min{t > 0 : R(t) = R∗} .

The bound τ1 < τ̄1 holds with probability one since the JRF
satisfies (19), (20).

This provides a realization of the first jump time. For
the initial condition x0 = (m0, θ0) and all t ∈ [0, τ1),
we then define M(t) = m0, Θ(t) = Ψ(t;x0), and hence
d
dtΘ(t) = ρ(X(t)). This construction can be repeated to
define the process for all t ≥ 0.

C. Local control solutions

Based on the definition (5), it appears that the function
Dg can be expressed in the form (6). This is true provided
g is smooth, and the additional boundary conditions hold:

g(0, θmin) := lim
θ↓θmin

g(0, θ) = g(1, θmin)

g(1, θmax) := lim
θ↑θmin

g(1, θ) = g(0, θmax)
(24)

The boundary conditions are explained in the Appendix.
Under these conditions we can justify the expected repre-
sentation:

Dg = ρg′ + κ[ḡ − g] , g ∈ C1 . (25)

1) Myopic design: In analogy with the definition in [5],
the myopic design is defined here as the family of Markov
processes with differential generator of the form (9) in which
v = vζ = eζU for ζ ∈ R. It is indeed of the form (6), with
modified JRF:

Proposition 3.1: The myopic design has generator defined
for C1 functions g by Ďζg = ρg′ + κζ [ḡ − g], with

κζ = exp(ζ[Ū − U ])κ0 (26)

�

The same conclusion holds for the diffusion model; see
Prop. 4.2. So, we postpone the proof to the next section.

2) IPD design: The convex optimization problem (12)
defines an optimal JRF denoted κ̌ζ , which then defines a
generator Ďζ of the form (25) in which ρ is unchanged.

As in the discrete-time setting [4], [5], [21], the IPD
solution is based on the associated eigenfunction problem:

[ζIU +D0]vζ = Λζvζ , ζ ∈ R , (27)

which for this model becomes

ζUvζ + ρv′ζ + κ0[v̄ζ − vζ ] = Λζvζ (28)

For fixed ζ, if Λζ is given, then vζ is obtained as the solution
to two coupled ODEs.



The solution is unique only up to a multiplicative constant:
fix a state θ◦ ∈ X, and choose the solution to satisfy vζ(θ◦) =
1 for all ζ.

Theorem 3.2: Suppose that the eigenfunction equation
(27) admits a family of solutions {vζ} that are continuously
differentiable in ζ. Then, the solution to the optimal-reward
optimization problem has the following structure for the
PDMP model. For each ζ ∈ R,
(i) The optimal JRF is

κ̌ζ(x) = κ0(x)
vζ(x̄)

vζ(x)
, x ∈ X . (29)

(ii) The function H∗ζ := d
dζ log(v∗ζ ) solves Poisson’s equa-

tion:
ĎζH∗ζ = −Ũζ , Ũζ = U − Uζ (30)

(iii) η∗ζ = Λζ . �

The proof is contained in the Appendix.
Smoothness of {vζ} in ζ is established in [4] for a discrete-

time/discrete-space model. The proof, based on the implicit
function theorem, likely carries over to the present setting.

IV. DIFFUSION MODEL

Consider the following extension of the PDMP model.
Within an interval of continuity, the temperature evolves as
the SDE

dΘ(t) = ρ(X(t)) dt+ dB(t) (31)

in which ρ is as in (15), and B is Brownian motion, with
instantaneous variance denoted σ2

B ≥ 0. It is assumed that
X(t) is independent of B(t+ T )−B(t) for each t, T ≥ 0.

Note that (31) includes the PDMP model as a special case,
since we do not rule out σ2

B = 0.
The previous assumptions on ρ are maintained: this func-

tion is bounded, continuous, and satisfies (16). The state
space however is no longer bounded. It is assumed of the
form

X = {0} × [θmin,∞) ∪ {1} × (−∞, θmax] (32)

It is assumed that M(t) = 0 when Θ(t) > θmax, and M(t) =
1 when Θ(t) < θmin.

The differential generator is modified to include a second
order differential term:

Dg = 1
2σ

2
Bg
′′ + ρg′ + κ[ḡ − g] , g ∈ C2 .

In the notation introduced in (6), we have Q0g = 1
2σ

2
Bg
′′ +

ρg′ (see [23, Thm. 1.22]). It will be clear that the assumptions
on Q0 are far stronger than necessary. We could for example
allow a variance term that depends on the state.

For any JRF under consideration, it is assumed that
κ(0, θ) = 0 when θ > θmax, and κ(1, θ) = 0 when θ < θmin.
It is always assumed that g satisfies (24).

The realization of the Markov process can be described
as in Section III-B with only one change. The mapping Ψ
is now stochastic: a standard Brownian motion B is given,

and for each x ∈ X, denote the solution to the SDE without
jumps by

Ψ(t;x) = ξ(t) , dξ(t) = ρ(ξ(t),m) dt+ dB(t) (33)

The first jump time τ1 is again defined by (21). It does not
admit a deterministic upper bound when σ2

B > 0.

A. Preserving dynamic constraints

Here it is shown that a generator of the form (9) cannot
be optimal if the function v depends upon θ. Consider a
general transformation of the generator of this form (9),
where v : X → (0,∞) is a C2 function. The proof of the
following representation follows from the definitions:

Lemma 4.1: The identity Ďg = Q̌0g+ κ̌[ḡ− g] holds for
any C2 function g : X→ R, where

Q̌0g = 1
2σ

2
Bg
′′ + ρ̌g′ , κ̌ = κ0v̄/v

ρ̌(x) = ρ(x) + σ2
B
d
dθ log(v(x)) , x = (m, θ) ∈ X .

�

If v depends upon θ, then the transformed drift function
in the definition of Q̌0 implies altered dynamics:

dΘ(t) = ρ̌(X(t)) dt+ dB(t)

The solution cannot be applied in practice: nothing in our
modeling assumptions permits us to change ρ.

B. Local control

Given the preliminaries provided in the previous subsec-
tion, it is natural to begin with the myopic design.

1) Myopic design: The definition of the myopic design
remains the same: generators are the form (9), in which v =
vζ = eζU for ζ ∈ R. The proof of Prop. 4.2 follows directly
from Prop. 4.1, since v depends only on m.

Proposition 4.2: The myopic design has generator defined
for C1 functions g by

Ďζg = Q0 + κζ [ḡ − g] where κζ = eζ(Ū−U)κ0 (34)

�

2) IPD solution: Theorem 4.3 provides a representation
for the relative entropy rate R(D‖D0) defined as the limit
(11), in which p0 is the distribution for the nominal model,
and p is the distribution for the Markov model with differ-
ential generator

Dg = Q0g + κ[ḡ − g] , g ∈ C2 . (35)

Theorem 4.3: the relative entropy rate can be expressed

R(D‖D0) =

∫
Rx(κ‖κ0) %(x)dx (36)

where % is the invariant density for the Markov process with
generator (35), and

Rx(κ‖κ0) = κ(x) log(κ(x)/κ0(x)) + κ0(x)− κ(x) (37)

�



It is a useful fact that R(D‖D0) depends on σ2
B only

through the invariant density, and in particular thatRx(κ‖κ0)
does not depend on this variance parameter.

The IPD optimization problem (14) is thus the solution
to an average-reward optimal control problem. This is true
even in the degenerate case σ2

B = 0. The average reward
optimality equation (AROE) is

η∗ζ = max
κ

[
ζU(x)−Rx(κ‖κ0) +Dh∗ζ (x)

]
, x ∈ X , (38)

where the generator depends on κ via (35). The function
h∗ζ : X→ R is known as the relative value function. It is not
unique, so we normalize as follows: fix a state θ◦ ∈ X, and
choose the solution to satisfy h∗ζ(θ

◦) = 0 (for each ζ).
Theorem 4.4: Suppose that the AROE admits a family

of solutions {hζ} that are continuously differentiable in ζ.
Then the generator for the optimal solution has the following
defining properties:
(i) The maximizer in (38) defines the optimal JRF:

κ̌ζ = κ0 exp(h̄∗ζ − h∗ζ) . (39)

(ii) The function H∗ζ := d
dζh
∗
ζ solves Poisson’s equation:

ĎζH∗ζ = −Ũζ , Ũζ = U − Uζ (40)

These results remain valid in the degenerate case σ2
B = 0.

The relative value function in this case is the logarithm of
the eigenfunction:

h∗ζ = log(vζ) (41)
Proof: The formula for κ̌ is obtained on computing the

maximum in (38):

κ̌ = arg max
κ

[
ζU(x)−Rx(κ‖κ0) +Dh∗ (x)

]
= arg max

κ

[
−κ(x) log(κ(x)/κ0(x))

+ [κ(x)− κ0(x)] + κ(x)[h∗(x̄)− h∗(x)]
] (42)

where we have substituted the formula (6) for D, and
removed terms that do not depend on κ. Applying the first-
order conditions for optimality gives (39) and establishes (i).

The identity (41) follows from (i) and Theorem 3.2 (i).
To establish (ii) we simply differentiate each side of (38),

in the form[
ζU(x)−Rx(κ‖κ0) +Dκh∗ζ (x)

]∣∣∣
κ=κ̌ζ

= η∗ζ , x ∈ X .

Observe that (i) implies that κ̌ζ is C1 since this is assumed
for h∗ζ . The equation above implies that η∗ζ is also C1. This
justifies differentiation of each side of this identity. This
calculus step is simplified due to the fact that sensitivity with
respect to κ is zero:

d
dζ

[
ζU(x)−Rx(κ‖κ0) +Dκh∗ζ (x)

]∣∣∣
κ=κ̌ζ

= U(x)−Rx(κ̌ζ‖κ0) +Dκ̌ζ d
dζh
∗
ζ (x)

Substituting Dκ̌ζ = Ďζ and d
dζh
∗
ζ = H∗ζ completes the proof.

V. CONCLUSIONS

The treatment of distributed control in continuous time
is motivated by the well developed theory of linear TCL
models. It is great news that the optimal control solution (the
IPD design) has a straightforward extension to continuous
time/state models, and that the form of the solution is largely
invariant to the form of the model, as seen in Theorem 4.4.
Moreover, the solution is in some sense simpler to implement
than the solution obtained in the discrete time setting: at
the start of a power mode transition, an exponential random
variable is drawn. The next power mode transition is made
at the time τ1 given in (21).

Remaining open questions mainly concern implementa-
tion. In particular, can the local algorithms be adapted
to take into account water usage and other non-stationary
disturbances? In the case of water heaters, perhaps these
shocks to the system are so rare that they do not impact
significantly the behavior of the aggregate. These and many
related questions are topics of current research.
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APPENDIX

A. Generators

Suppose that g ∈ C2 and the boundary condition (24)
holds. Then, with f = D0g, the function below is a local
martingale:

M(t) := g(X(t))− g(X(0))−
∫ t

0

f(X(s)) ds (43)

If f and g are bounded, then this is a martingale [10].
It is not difficult to see now that the boundary condition

(24) is required. To establish the first limit, take an initial
condition of the form x = (0, θ). Suppose that f = D0g,
with f and g bounded and continuous. Then the following
representation follows from the martingale property:

Ex[g(1,Θτ1)] = Ex[g(Xτ1)] = g(x) + Ex
[∫ τ1

0

f(Xt) dt
]

Consider a sequence of initial conditions of the form xk =
(0, θk) with θk ↓ θmin as k → ∞. Then by (19), (20) we
must have Exk [τ1]→ 0, and hence from the above

g(0, θmin) = lim
k→∞

g(0, θk)

= lim
k→∞

Exk [g(1,Θτ1)] = g(1, θmin)

where the first equation is by continuity of g, the second
follows because the expected integral vanishes, and the final
limit again uses continuity of g.

B. Ergodic Theorems

All of the models considered in this paper are ergodic in a
strong sense. Note that Prop. 1.1 does not exclude σ2

B = 0, so
the conclusions hold for the piecewise deterministic model.

Proposition 1.1: For the jump-diffusion with rate function
κ and σ2

B ≥ 0, there is a C2 function V : X → [1,∞)

satisfying the boundary conditions (24), a compact set S,
and γ > 0 such that

DV ≤ −γV + bIS (44)

Moreover, compact sets are small, so that the Markov process
is V -uniformly ergodic [9].

Proof: (sketch) The proof of the small set condition is
not complex, but beyond the scope of this paper because it
requires lengthy background from [9].

Turning to the drift condition (44), consider first V0(x) =
k log(exp(εvθ) + exp(−εvθ)), x = (m, θ) ∈ X. For each
εv > 0 there is k <∞, such that for a compact set S0 and
a constant b0, a version of Foster’s criterion holds: DV0 ≤
−1 + b0IS0

. For fixed parameters satisfying this inequality,
we take V = eεV0 , with ε > 0 chosen sufficiently small.

A mean ergodic theorem holds for measurable functions
LV∞, defined as the set of measurable functions f : X → R
satisfying

‖f‖V := sup
x∈X

|f(x)|
V (x)

<∞ .

For f ∈ LV∞ we have, for each initial condition,

lim
t→∞

E[f(X(t))] = 〈%, f〉

where the rate of convergence is exponential [9].
The Law of Large Numbers holds under weaker condi-

tions:
Proposition 1.2: Let % denote the unique invariant mea-

sure for the jump-diffusion with rate function κ, and let F,G
denote two functions satisfying

〈%,G−〉 <∞ , 〈%, κF−〉 <∞

where G− = max(−G, 0), F− = max(−F, 0). Then, the
following limits hold for each initial condition:

lim
T→∞

1

T
E
[ ∑
i:ti≤T

F (X(t−i ))
]

= 〈%, κF 〉

lim
T→∞

1

T
E
[∫ T

0

G(X(s)) ds
]

= 〈%,G〉

where {ti : i ≥ 1} are the jump times for X . �

The notation X(t−i ) means the usual limit from the left;
since it is only the power mode M that jumps, we have

X(t−i ) = X(ti) , i ≥ 1.

C. Infinite-horizon control problem

The theory in discrete time goes through exactly as in the
discrete time setting of [3], [21]. Below is equation (3) of
[21], translated to continuous time:

WT (p) = ζEp
[∫ T

0

U(X(t))
]
ds−DT (p‖p0) (45)

Proposition 2.1 of [21] has an exact analog here: The
optimizer of (45) is expressed

p∗ = `∗T p
0 (46)



where the likelihood ratio is as before:

`∗T (xT1 ) = exp
(
ζ

∫ T

0

U(xt) dt− ΛT (ζ)
)

For example, what is the probability that S =
∫ T

0
f(X(t)) dt

exceeds zero under p∗? Answer:

P{S > 0} = Ep0
[
`∗T I{S > 0}

]
where the probability is under p∗, and expectation under p0.

The infinite-horizon average reward (12) can be expressed
as the limit

η∗ζ = lim
T→∞

1

T
WT (p∗T )

where p∗T is defined in (46). As in the discrete time setting,
the eigenvalue Λ appearing in (28) coincides with η∗ζ , and
also the cumulative log-moment generating function:

Λζ = lim
T→∞

1

T
log
{
E
[
exp
(∫ T

0

ζU(X(t)) dt
)]}

Finally, just as in discrete time, the value η∗ζ = Λζ is realized
by a Markov process obtained through the solution of an
eigenfunction problem. Let vζ denote a positive solution to

[IζU +D0]vζ = Λζvζ

One solution is given by the limit (see [14])

vζ(x) = lim
T→∞

E
[
exp
(∫ T

0

[ζU(X(t))−Λζ ] dt
)
| X(0) = x

]
Exactly as in the discrete time setting, the optimal Markov
process can be defined with the optimizing generator:

Ďζ = I−1
vζ

[IζU−Λζ +D0]Ivζ (47)

D. Proof of Theorem 4.3

The representation of the relative entropy rate in (36) is
based on the construction of the log-likelihood ratio on a
finite time horizon.

Consider two diffusions, each of which evolve according
to (31) between jumps, and each with the same initial
condition x ∈ X. The JRF for the nominal model is denoted
κ0, and let κ denote any other jump rate. For the Markov
process with JRF κ0, functions F and G are constructed so
that the following function of time is a martingale for the
nominal model:

`T = exp
(∫ T

0

G(X(s)) ds+
∑
i:ti≤T

F (X(t−i ))
)

(48)

Lemma 1.3: For any continuous JRF κ, consider the func-
tions

F (x) = log(κ(x)/κ0(x)) , G(x) = κ0(x)−κ(x) , x ∈ X .

Then the semi-group {PT : T ≥ 0} defines the Markov
process with JRF κ, where for bounded functions g,

PT g (x) = Ep0 [`T g(X(T )) | X(0) = x] , T ≥ 0 .

where the expectation on the right is with respect to the
Markov process with JRF κ0.

Proof: If g ∈ C2
0 satisfies the boundary condition (24),

then the representation of the differential generator follows
from the definition of the semigroup {P t}

Dg =
d

dt
P tg

∣∣∣
t=0

= Q0g + κ[ḡ − g]

Based on Lemma 1.3, it follows that

DT (p‖p0) = E[LT ] , with LT = log(`T ) ,

and the relative entropy rate between D and D0 appearing
in (11) is the limiting average

R(D‖D0) := lim
T→∞

1

T
E[LT ]

= lim
T→∞

1

T
E
[∫ T

0

G(X(s)) ds
]

+ lim
T→∞

1

T
E
[ ∑
i:ti≤T

F (X(t−i ))
] (49)

where the expectations are all with respect to p0. Applying
Lemma 1.2 then establishes the formula in (37):

R(D‖D0) = 〈%,G〉+ 〈%, κF 〉
= 〈%, κ0 − κ〉+ 〈%, κ log(κ/κ0)〉

�

E. Proof of Theorem 3.2

For simplicity we suppress dependency on ζ.
To establish (29), apply (47) and simplify:

Ďg = (ζU − Λ)g + v−1D0(vg)

= −gv−1D0v + v−1
(
ρ[v′g + vg′] + κ0[v̄ḡ − vg]

)
= −gv−1D0v + v−1

(
gD0v + ρvg′ + v̄κ0[ḡ − g]

)
which simplifies to Ďg = ρg′ + κ̌[ḡ − g], with κ̌ given in
(29). This proves part (i).

Theorem 4.4 (ii) then implies Theorem 3.2 (ii). �
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