
HAL Id: hal-02425974
https://hal.science/hal-02425974

Submitted on 31 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kullback-Leibler-Quadratic Optimal Control of Flexible
Power Demand

Neil Cammardella, Ana Bušić, Yuting Ji, Sean Meyn

To cite this version:
Neil Cammardella, Ana Bušić, Yuting Ji, Sean Meyn. Kullback-Leibler-Quadratic Optimal Control
of Flexible Power Demand. CDC 2019 - 58th IEEE Conference on Decision and Control, Dec 2019,
Nice, France. �hal-02425974�

https://hal.science/hal-02425974
https://hal.archives-ouvertes.fr


Kullback-Leibler-Quadratic Optimal Control
of Flexible Power Demand

Neil Cammardella1, Ana Bušić2, Yuting Ji3, and Sean Meyn4

Abstract— A new stochastic control methodology is intro-
duced for distributed control, motivated by the goal of creating
virtual energy storage from flexible electric loads, i.e. Demand
Dispatch. In recent work, the authors have introduced Kullback-
Leibler-Quadratic (KLQ) optimal control as a stochastic control
methodology for Markovian models. This paper develops KLQ
theory and demonstrates its applicability to demand dispatch.
In one formulation of the design, the grid balancing authority
simply broadcasts the desired tracking signal, and the hetero-
geneous population of loads ramps power consumption up and
down to accurately track the signal. Analysis of the Lagrangian
dual of the KLQ optimization problem leads to a menu of
solution options, and expressions of the gradient and Hessian
suitable for Monte-Carlo-based optimization. Numerical results
illustrate these theoretical results.

I. INTRODUCTION

The replacement of controllable fossil-fuel generators by
volatile renewable generation is creating new challenges for
power grid operators, who must continuously match demand
with supply to maintain reliable operation. Consequently,
some have begun spending millions of dollars on grid-
scale batteries. Do we require this massive infrastructure
investment? Research demonstrates that distributed control
of flexible loads can provide battery-like services such as
frequency regulation while guaranteeing quality of service
(QoS) to the consumer [1], [2], [3], [4]. This emerging
science is called Demand Dispatch.

The present paper is motivated by [5], in which a net
load forecast (total power demand minus wind and solar)
is used to calculate an optimal schedule for flexible loads.
Dynamic models for thermostatically-controlled loads [6],
[7] and other loads are used to enforce constraints on
power and energy, ensuring QoS to the consumers. Fig.
1 shows the results of one experiment from [5]. Demand
dispatch is able to provide many GWs of flexibility, which
allows non-renewable generation to follow a much flatter
trajectory, and potentially raises the ceiling on renewable
energy penetration.
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Fig. 1: Taming the Duck Curve with feed-forward control

A salient question, only partially addressed in [5], remains
unanswered: how is an optimal demand dispatch schedule
realized at full capacity, without centralized control? In this
paper, we answer this question by posing the problem as
optimal control of a Markov decision process at each load. To
balance the needs of the grid and the consumers, we propose
a control objective that is a sum of two terms: a quadratic
penalty for tracking error plus the Kullback-Leibler (K-L)
divergence of the controlled stochastic model with respect
to the nominal stochastic model. We show a unique solution
exists and present convergent algorithms to compute it.

A. Control Architecture Overview

Our goal is to modify the behavior of loads so that their
aggregate power consumption tracks a reference signal r =
{rk} that is broadcast by a Balancing Authority (BA). An
individual load is modeled as a Markov chain X , with finite
state space X = {x1, ..., xd}, evolving on a discrete time
horizon 0, 1, . . . ,M . The nominal stochastic model is defined
by a probability mass function (pmf) p0 that defines the
nominal pmf of (X0, . . . , XM ). We use ~x to denote a generic
element of XM+1 and P(XM+1) to denote the space of pmfs
on XM+1. The power consumption of the load in state xk is
Y(xk). The marginal pmfs are denoted {ν0k : 0 ≤ k ≤ M}
and the transition matrices {Pk : 0 ≤ k ≤ M − 1} so that
the nominal pmf can be factored as:

p0(~x) = ν00(x0)P0(x0, x1)P1(x1, x2) · · · (1)

To achieve our goal, we construct a Kullback-Leibler-
Quadratic (KLQ) optimal control objective; fix κ > 0, and



minimize over p:

J(p; ν00) := D(p‖p0) +
κ

2

M∑
k=1

[
〈 νk,Y 〉 − rk

]2
s.t. ν0 = ν00

(2)

where ν0 is the marginal of p at time 0. The relative entropy
is the mean log-likelihood:

D(p‖p0) =
∑
~x

L(~x) p(~x) , L = log(p/p0). (3)

It is shown in this paper that the optimizing pmf on XM+1

can be expressed as a tilting of the nominal pmf, of the form:

pβ(~x) = p0(~x) exp(Lβ(~x)) (4)

in which the log-likelihood ratio is

Lβ(~x) = Yβ(~x)− Λβ(x0), (5)

where Yβ(~x) =
∑M
k=1 βkY(xk), β ∈ RM are Lagrange

multipliers, and Λβ(x0) is viewed as a normalizing constant
for each x0 ∈ X. It follows that pβ(~x) is Markovian and
can be factored in a form similar to (1) with transition
matrices {P βk : 0 ≤ k ≤ M − 1} and marginal pmfs
{νβk : 0 ≤ k ≤M}; henceforth, we suppress the superscript
in νβk to lighten the notation:

pβ(~x) = ν0(x0)P β0 (x0, x1)P β1 (x1, x2) · · · (6)

Mean-field theory is used to model aggregate load behav-
ior. For N loads, the empirical pmf at time k is defined as

ν
(N)
k (x) :=

1

N

N∑
i=1

I{Xi
k = x}, x ∈ X. (7)

It can be shown that the approximation ν(N)
k ≈ νk becomes

exact as N →∞. The mean-field model is the deterministic
system defined by

νk+1 = νkP
β
k (8)

in which νk is interpreted as a d-dimensional row vector, and
P βk a d× d matrix for each k.

An example of mean field dynamics is illustrated in Fig. 2.
This shows the evolution of the {νk} for a particular example
described in Section IV. Although the initial pmfs are very
different, they become nearly identical after three hours. This
suggests that {νk} can be estimated in a distributed manner,
which has important implications for distributed control.
Further discussion is contained in Section IV.

B. Literature Review

The goal in much of the prior work [8], [9], [13], [14],
[2], [15] and in the present paper is to modify the behavior
of loads so that their aggregate power consumption tracks
a reference signal. Control design is based on a mean-field
model where p0 is an approximation of the behavior of the
collection of loads in the absence of load control. In the
context of power systems applications, mean-field models
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Fig. 2: Evolution of the marginals {ν∗
k} for a refrigerator model

from four different initial (degenerate) marginals.

first appeared in [10], [11]. Conditions are imposed there and
in later work [12], [13], [2] so that the mean-field approx-
imation becomes exact as the number of loads approaches
infinity. Randomization is introduced for two reasons: first,
it leads to a convex relaxation of a combinatorial online
decision problem; second, just as in telecommunications,
randomization is a simple means to avoid synchronization
of the population [1], [14], [15].

The current paper introduces new distributed control tech-
niques based on finite horizon optimal control, building on
the individual perspective design of [3]. It is related to [16],
[17], [18], in that relative entropy is used as a penalty term
to discourage deviations from nominal behavior. A similar
optimal control approach is briefly described in Section 5 of
the book chapter [19]:

min
p
D(p‖p0)

subject to Ep
[
Y(Xk)

]
= rk.

(9)

The optimization criterion (9) is precisely one-step dead-
beat control: the constraint yk ≡ rk, with yk = Ep

[
Y(Xk)

]
,

means that we wish to partially invert the system dynamics.
The potential challenge is most clear when we realize that we
eventually pose the problem as a single-input single-output
nonlinear system, with input β and output y, and then the
goal is to invert the system to obtain β∗ as a function of r.
It is known that that this inversion process can lead to high
gain and even instability. This is most easily seen here by
considering a small gain analysis: if r and β are small, then
the dynamics from β to y can be linearized, and high gain is
a consequence of inverting the linear mapping between these
two signals. This solution may be highly sensitive to model
error. The KLQ setting allows us to make the right tradeoff
between tracking and gain, and learn what reference signals
are easily followed by the collection of loads.

For the KLQ control objective proposed in this paper,
the tracking constraint in (9) is replaced by a quadratic
loss function and a constraint is added to keep the initial
distribution unchanged. This provides many advantages:

(i) The approach is less sensitive to modeling error



(ii) An optimal solution always exists, while feasibility
of (9) requires conditions on p0 and r
(iii) Tradeoffs can be made between tracking performance

and deviating from nominal behavior
(iv) The approach respects the physical impossibility of

changing the initial distribution, while (9) only respects
this constraint for degenerate distributions.

As κ → ∞ we recover the solution to the dead-beat
control problem (9) only if ν00 is degenerate, so that ν0 = ν00
is automatic when D(p‖p0) <∞.

The rest of the paper is organized as follows: Section II
contains a proof of the existence of a unique optimal solution
to the KLQ problem. A Lagrangian dual formulation is
presented in Section III, leading to convergent algorithms.
Section IV contains numerical results illustrating KLQ so-
lutions, and further insight on how this can be applied to
demand dispatch in practice. The section contains discussion
of possible control architectures. Section V concludes the
paper and contains directions for future research.

II. KLQ OPTIMALITY

We begin with a characterization of optimality:

Theorem 2.1. Consider the problem of minimizing J(p; ν00)
over the set of pmfs p with given initial marginal ν00 . An
optimizer p∗ exists and is unique. The log-likelihood L∗ =
log(p∗/p0) is given by

L∗(~x) = Yβ∗(~x)− Λβ∗(x0), (10)

The vector β∗ ∈ RM and function Λ∗ : X→ R solve

β∗k = κ
[
rk − 〈 ν∗k ,Y 〉

]
, 1 ≤ k ≤M (11)

Λβ∗(x0) = log
(
Ep0 [exp(Yβ∗(~x)) | X0 = x0]

)
. (12)

Proof. Existence of a unique solution to (11), (12) is con-
tained in Prop. 3.1. Optimality is established in Lemma 2.3;
the proof is based on Kullback’s Lemma [20], which is
summarized in Lemma 2.2.

In this finite state-space setting, (12) becomes

Λβ∗(x0) = log
∑

x1,...,xM

p0(~x | x0) exp(

M∑
k=1

β∗kY(xk)) ,

where the conditional pmf is defined via Bayes’ rule:

p0(x0, . . . , xM | x0) =
1

ν00(x0)
p0(x0, x1, . . . , xM )

Thm. 2.1 follows from Kullback’s Lemma [20]:

Lemma 2.2. For p0, p1, p2 ∈ P(XM+1):

D(p2‖p0) ≥ D(p1‖p0) + 〈 p2 − p1, L〉

in which L = log(p1/p0).

The next lemma establishes Thm. 2.1 under the assump-
tion that there exists a solution β∗ to (11). The fact that a
solution always exists is postponed to Prop. 3.1.

r∗ r0

Fig. 3: A plot of the dual function along a line-segment

Lemma 2.3. Suppose that there exists a solution to the fixed
point equation (11). Then p∗, with log likelihood ratio given
in (10), is the optimizer of J(p; ν00) over all pmfs p with
initial marginal ν00 .

Proof. We begin with an application of Lemma 2.2 using
p2 = p and p1 = p∗. The quadratic term in J(p; ν00) admits
a lower bound, starting with the simple inequality x2 ≥ y2+
2y(x − y). Applying this with x = 〈 νk,Y 〉 − rk and y =
〈 ν∗k ,Y 〉 − rk gives[

〈 νk,Y 〉 − rk
]2 ≥ [〈 ν∗k ,Y 〉 − rk]2

+ 2
[
〈 ν∗k ,Y 〉 − rk

]
〈 νk − ν∗k ,Y 〉

We have 〈 ν∗k ,Y 〉 − rk = −β∗k/κ under the assumptions of
the lemma. Combining the inequality with Lemma 2.2:

J(p; ν00) ≥ D(p∗‖p0) + 〈 p− p∗, L∗ 〉

+
κ

2

M∑
k=1

[
〈 νk,Y 〉 − rk

]2
≥ J(p∗; ν00) + 〈 p− p∗, L∗ 〉

+ κ

M∑
k=1

(−β∗k/κ)〈 νk − ν∗k ,Y 〉

(13)

Since ν0 = ν00 , we have 〈 p− p∗, L∗ 〉 = 〈 p− p∗,Yβ∗ 〉:
J(p; ν00) ≥ J(p∗; ν00) + 〈 p− p∗,Yβ∗ 〉

−
M∑
k=1

β∗k〈 νk − ν∗k ,Y 〉

= J(p∗; ν00)

(14)

where the final equality follows from the definition of Yβ∗ .

III. DUALITY AND ALGORITHMS

The difficulty with the fixed-point formula (11) is that it
is not obvious that standard algorithms such as successive
approximation will find a solution. In Prop. 3.1 that follows,
the fixed point equation is interpreted as a first-order con-
dition for optimality of a concave function. Based on this
result we are led to existence of a solution, and convergent
algorithms to compute β∗.

The minimization of J(p; ν00) is expressed as the following
convex program:

J∗(ν00) := min
p,γ

D(p‖p0) +
κ

2

M∑
k=1

γ2k

s.t. γk = 〈 νk,Y 〉 − rk , 1 ≤ k ≤M
ν0 = ν00

(15)
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Fig. 4: Tracking for a refrigerator model from four different initial conditions, with two different values of κ. The aggregate power
consumption nearly coincides after about three hours with κ = 150, and coupling occurs much faster when κ is increased to 1,500.

Let β ∈ RM denote a Lagrange multiplier for the first
constraint and h the Lagrange multiplier for the marginal
constraint. While it is most natural to regard h as a real-
valued function on X, for computational simplicity we take
h : XM+1 → R, with the understanding that it only depends
on x0.

The Lagrangian is a function of the variables p, γ, β, h:

L(p, γ, β, h) =D(p‖p0) +
κ

2

M∑
k=1

γ2k + 〈 p− p0, h 〉

+

M∑
k=1

βk[γk + rk − 〈 νk,Y 〉]

(16)

The dual function is defined as the infimum

ϕ∗(β, h) = inf
γ,p
L(p, γ, β, h)

Strong duality holds: maxβ,h ϕ
∗(β, h) = J∗(ν00). Through

analysis of this dual convex program we obtain algorithms
to obtain the optimizer (β∗, h∗) for the dual, and thence the
optimizer (p∗, γ∗) for the primal.

Properties of the dual function are contained in Prop. 3.1.
The first order condition for optimality of the Lagrange
multipliers corresponding to the average power constraints is
shown in (20). It coincides with the fixed point equation for
β∗ in (11). Consequently, β∗ exists and coincides with these
optimal Lagrange multipliers. Furthermore, from (18) and (5)
it follows that h∗ = Λβ∗ . A proof is found in Appendix A.

Proposition 3.1. The dual function and optimizers (β∗, h∗)
have the following representations:

(i) For any β ∈ RM and function h, the dual function is

ϕ∗(β, h) = − 1

2κ
‖β‖2 + βTr − log〈 p0, eYβ−h 〉 − 〈 p0, h 〉

(17)
(ii) For a given β ∈ RM , a maximizer of (17) over h is

h∗β(x0) = log
( ∑
x1,...,xM

p0(~x | x0)eYβ(~x)
)

(18)

with corresponding value and first derivatives:

ϕ∗(β) := max
h

ϕ∗(β, h) = − 1

2κ
‖β‖2 + βTr − 〈 p0, h∗β 〉

∂

∂βk
ϕ∗(β) = − 1

κ
βk + rk − 〈 νk,Y 〉, 0 ≤ k ≤M

(19)

(iii) The function ϕ∗(β) in (19) is strictly concave, and
admits a unique maximizer β∗ that satisfies the first-order
optimality condition; for 0 ≤ k ≤M ,

0 =
∂

∂βk
ϕ∗(β∗) = − 1

κ
β∗k + rk − 〈 ν∗k ,Y 〉 (20)

The remainder of the section contains application of
Prop. 3.1 to algorithm design. In algorithms such as steepest
ascent to obtain β∗, we construct a sequence of approximat-
ing pmfs, each of the form (4). The next result asserts that
these pmfs are Markov. A proof is found in Appendix B

Proposition 3.2. If the nominal model is Markov, then pβ is
also Markov for any β:

pβ(~x) = ν00(x0)P β0 (x0, x1) · · ·P βM−1(xM−1, xM ). (21)

The transition matrices are constructed via the following:
(i) for each k, a positive matrix is defined:

P̂k(x, x′) = Pk(x, x′) exp(βk+1Y(x′)) , x, x′ ∈ X

(ii) A sequence of functions {ak : X → R+} is defined
inductively as follows: aM (x) = 1 for all x and

ak = P̂kak+1, 0 ≤ k ≤M − 1

Then, for each k,

P βk (x, x′) =
1

ak(x)
P̂k(x, x′)ak+1(x′) , x, x′ ∈ X

The steepest ascent algorithm to maximize ϕ∗, and thereby
obtain β∗, is based on the gradient representation in (19).
Lemma 3.3 that follows provides representations of the
Hessian in terms of the second-order statistics of the random
variables {Y(Xk) : 1 ≤ k ≤M}:

Σi,j(β) = E[Y(Xj)Y(Xk)]

− E
[
E[Y(Xj) | X0]E[Y(Xk) | X0]

] (22)

in which the expectations are with respect to pβ .

Lemma 3.3. For any β ∈ RM , the Hessian has entries

∂2

∂βi∂βj
ϕ∗(β) = − 1

κ
I{i = j} − Σi,j(β)
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Fig. 5: Tracking of a signal anticipated in California during a very sunny day.

Given the simple form of these derivatives, it is tempting
to apply Newton-Raphson to obtain β∗. The difficulty with
second order methods is illustrated in Fig. 3. This is a plot
of a typical example in which βn ∈ RM is given, v =
∇ϕ∗ (βn), and the plot shows ϕ∗ (βn + rv) for a range of
positive r. The norm of the Hessian is very nearly zero for
r = r∗, so that the standard Newton-Raphson method will
result in large “overshoot”.

We have also found in examples that steepest ascent may
be slow to converge. In the numerical results that follow we
opt for line-search using the Golden Section method [21],
[22]. Based on Fig. 3, βn+1 = βn + r∗n∇ϕ∗ (βn).

IV. APPLICATION TO DEMAND DISPATCH

Returning to our goal of distributed control of flexible
loads, we present numerical results of KLQ control applied to
refrigerators. In summary, given a feasible reference signal,
tracking becomes excellent with high enough κ. Also, in
the scenario where each load optimizes according to its own
initial state, rapid coupling of the pmfs is observed, which
has interesting implications for distributed control.

Additional structure, described in [3], is imposed on the
Markov chain X . The full state space is the Cartesian
product of two finite state spaces: X = Xn × Xu, and we
write X = (Xu,Xn): the components Xu can be directly
controlled, and Xn represents remaining states (such as the
temperature evolution within a refrigerator). A deterministic
model for Xn is assumed so that the KLQ control solution
does not modify these physical dynamics. The extension
of KLQ for fully stochastic models is a topic of current
research; see [23], [24], [25] for preliminary results.

A. Coupling in KLQ

Fig. 4 displays the results of two tracking experiments for
a refrigerator model from four different initial conditions,
with two different values of κ, where yk = 〈 ν∗k ,Y 〉.
Tracking is nearly perfect with the larger κ.

Observe that the power trajectories from different initial
conditions couple rapidly for either value of κ. Fig. 2 shows
the controlled marginals becoming very similar within three
hours. It is argued in the next section that this can simplify
distributed control implementation.

Fig. 5 shows tracking results based on a decomposition
of net load in California: the resource allocation algorithm
[5] was applied to decompose the desired reference signal
as a sum of several signals, distinguished by intended load

class. The algorithm is a quadratic program, in which the
objective is a flatter and smoother net load. Power and energy
constraints ensure feasibility of the reference signal for each
class of loads. The reference signal shown is the power
trajectory intended to be tracked by residential refrigerators.

Tracking is excellent for large κ. It is not perfect, but there
is good reason for imperfection: the deep belly in the middle
of the day is tough for the loads, as it requires the average
temperature of the population to stray far from its mean. The
spike at the end of the day is somewhat uncomfortable for
them, but not so bad. The plots suggest that the cheapest
way to track the spike is to introduce a bit of undershoot.

Coupling of aggregate power consumption occurs quickly:
on this 24-hour time window, the power consumption from
different initial conditions is indistinguishable.

B. Control Architectures

Below are three examples of communication and com-
putation architectures to apply the KLQ method in demand
dispatch applications:

(i) Smart BA: The BA uses the reference signal r and its
estimate of ν00 to compute β∗ and broadcast it to the loads.
(ii) Smart Load: The BA broadcasts r to the loads. Each

load computes β∗ based on its internal model and ν00 =
δx0 , with x0 ∈ X its current state.
(iii) Genius Load: The BA broadcasts r to the loads.

Each load computes β∗ based on its internal model and
its estimate of ν00 .
Each approach has advantages and disadvantages. If the

BA broadcasts β∗, then it must partition the load population
into approximately homogeneous subpopulations and opti-
mize over each. It must also estimate ν00 . If the BA broadcasts
r, then it must be tailored for each load, as in [5], or suitably
transformed at each load.

The total cost in cases (i) or (iii) is equal to J∗(ν00)
(assuming perfect estimates of ν00 ). The total cost in the
control architecture (ii) is the sum,

d∑
i=1

ν0(xi)J∗(δxi)

since in this case, a load starting at state xi solves the
KLQ optimization problem using the degenerate initial pmf.
However, even when the aggregate can easily track r, the cost
J∗(δxi) may be very large for loads with initial condition
xi that are at odds with the reference signal. For example,



power reduction could be requested while a fridge is near
its upper temperature limit and must turn on. So, optimizing
with respect to the initial distribution of the population, (i)
and (iii), may create less stress on the loads, as compared to
(ii).

A significant advantage of approaches (ii) and (iii) is that
they automatically address the challenge of heterogeneity of
the population. In approach (i) the BA computes a different
signal β∗ for each load class, based on the respective model.
In the other approaches, the load performs calculations based
on local observations of its behavior (from which the nominal
model is easily constructed locally).

Approach (iii) may appear overly ambitious – how can a
load estimate the histogram of the population? We do not
expect exactly that. Rather, an implementation of (iii) may
be performed as follows: fix a review period T0. At a time
t0 at which the KLQ optimization problem is solved, the
estimate of νt0 is defined as the mean-field histogram based
on the state of the particular load T0 time units prior. A
glance at Fig. 2 suggests that this may be a good estimate of
the population, provided T0 is chosen with care. There can
of course be refinements of this “open loop” approach by
applying standard techniques for state estimation/smoothing.

V. CONCLUSIONS

A new stochastic, distributed control technique is pre-
sented that uses a quadratic performance penalty plus
Kullback-Leibler divergence to balance control actions and
deviations from nominal behavior. We show a unique so-
lution exists and propose convergent algorithms based on a
Lagrangian dual formulation. Numerical results of KLQ con-
trol applied to refrigerators exhibit excellent signal tracking
and rapid coupling of the pmfs. Many extensions will be
considered in future research.

(i) A deeper understanding of the relationship between
optimality and coupling of the pmfs is desired.
(ii) It is assumed for simplicity in this paper that Y(xk)

is power consumption associated with xk. In some appli-
cations it may be useful to allow this to be a function of
two variables, and also time dependent, resulting in

P̂k(x, x′) = Pk(x, x′) exp(βk+1Yk(x, x′)) , x, x′ ∈ X

The main results go through with only notational changes.
(iii) In an MPC setting, we may view YM (xM ) as a

terminal cost function. Careful design of this may result
in better performance with smaller time horizon [26].
(iv) We are considering wavelet transforms to reduce

complexity, which will be critical when we move to models
with continuous state and/or continuous time.
(v) Application of KLQ to simultaneous resource alloca-

tion and control is another topic of current research.

APPENDIX

A. Proof of Prop. 3.1

The proof of Prop. 3.1 is based on another well known re-
sult regarding relative entropy. For any function g : XM+1 →

R denote

Λ0(g) := sup
p

{
〈p, g〉 −D(p‖p0)

}
(23)

Lemma 1.1 (Convex dual of relative entropy). For each p0 ∈
P(XM+1) and function g : XM+1 → R, the (possibly infinite)
value of (23) coincides with the log moment generating
function:

Λ0(g) = log〈 p0, eg 〉

Moreover, provided Λ0(g) < ∞, the supremum in (23) is
uniquely attained at p∗ = p0 exp(g − Λ0(g)). That is, the
log-likelihood L∗ = log(p∗/p0) is given by

L∗(~x) = g(~x)− Λ0(g) .

Proof of Prop. 3.1. The optimization problem that defines
ϕ∗ admits a convenient decomposition:

ϕ∗(β, h) = − sup
p

{
〈 p, gβ 〉 −D(p‖p0)

}
+ min

γ

{κ
2
‖γ‖2 + βT[γ + r]

}
− 〈 p0, h 〉

(24)

where gβ = Yβ − h. Lemma 1.1 then gives

ϕ∗(β, h) = −Λ0(gβ) + min
γ

[κ
2
‖γ‖2 + βT[γ + r]

]
− 〈 p0, h 〉

where Λ0(gβ) = log〈 p0, eYβ−h 〉. Minimizing over γ gives
κγ∗ = −β, and substituting into the above gives (i).

The function to be maximized in part (ii) is denoted

G(h) = − log〈 p0, eYβ−h 〉 − 〈 p0, h 〉

Since h depends only on x0, we obtain

G(h) = − log〈 ν00 , eg 〉 − 〈 ν00 , h 〉

where g(x0) = −h(x0)+log
(∑

x1,...,xM
p0(~x | x0)eYβ(x)

)
.

Recall that log〈 ν00 , eg 〉 = Λ0(g) is a log moment-generating
function and hence Lemma 1.1 implies the inequality

Λ0(g) ≥ Λ0(g0) + 〈 νg00 , g − g0 〉

where g− g0 = h0− h. Substitution into G(h) = −Λ0(g)−
〈 ν00 , h 〉 reveals another inequality

G(h) ≤ −Λ0(g0)− 〈 νg00 , h0 − h 〉 − 〈 ν00 , h 〉

Adding and subtracting 〈 ν00 , h0 〉 results in

G(h) ≤ G(h0) + 〈 νg0 − ν00 , h− h0 〉

We see that h0 is a maximizer when νg
0 − ν00 = 0. We can

now characterize the optimizer:

g∗ = g0 provided νg0 = ν00 (25)

Since νg
∗

= ν00 exp(g∗ − Λ0(g∗)), we must have g∗ ≡
Λ0(g∗), which is satisfied by any constant function g∗. For
simplicity, we take 0 = g∗ = Λ0(g∗), resulting in (ii):

h∗β(x0) = log
( ∑
x1,...,xM

p0(~x | x0)eYβ(x)
)

The proof of (iii) can be obtained from Lemma 3.3:
∂2ϕ∗(β) ≤ −κ−1I for every β, which implies that ϕ∗ is
strictly concave.



B. Proof of Prop. 3.2

Proof. First, we prove (21), then we show each P βk is a
Markov transition matrix. Thm. 2.1 allows pβ to be expressed

pβ(~x) = p0(~x) exp
( M∑
k=1

βkY(xk)− Λβ(x0)
)
, (26)

which leads to

pβ(~x) = ν00(x0) exp(−Λβ(x0))P̂0(x0, x1)P̂1(x1, x2) · · ·
(27)

Next, we insert the functions a1 through aM , while leaving
pβ(x) unchanged:

pβ(x) = ν00(x0) exp(−Λβ(x0))P̂0(x0, x1)a1(x1)

1

a1(x1)
P̂1(x1, x2)a2(x2)

1

a2(x2)
· · ·

= ν00(x0) exp(−Λβ(x0))P0(x0, x1)a1(x1)

P β1 (x1, x2)P β2 (x2, x3) · · ·

Via induction, we see that a0(x0) can be calculated via the
matrix product:

a0(x0) =

[M−1∏
k=0

P̂k

]
1
∣∣∣∣
x=x0

(28)

where 1 is a column vector of ones.
Now consider the term exp(Λβ(x0)). From (12) and

repeated use of the Markov property:

exp(Λβ(x0)) =

[M−1∏
k=0

P̂k

]
1
∣∣∣∣
x=x0

(29)

Thus, exp(−Λβ(x0)) = 1/a0(x0) and (21) is true.
Now we will show each P βk (x, x′) is a Markov transition

matrix. Consider the definition of P βk (x, x′):

P βk (x, x′) =
1

ak(x)
P̂k(x, x′)ak+1(x′), (30)

Each element of P βk (x, x′) is non-negative because each
element of ak(x), ak+1(x′), and Pk(x, x′) are non-negative.
The rows also sum to one:∑

x′

P βk (x, x′) =
1

ak(x)

∑
x′

P̂k(x, x′)ak+1(x′) = 1 (31)

Thus, pβ is Markov for any β.
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