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Abstract—An ensemble learning approach for classification in 

intrusion detection is proposed. Its application to the KDD Cup 99 

and NSL-KDD datasets consistently increases the classification 

accuracy compared to previous techniques. The cascade-

structured meta-specialists architecture is based on a three-step 

optimization method: data augmentation, hyperparameters 

optimization and ensemble learning. Classifiers are first created 

with a strong specialization in each specific class. These specialists 

are then combined to form meta-specialists, more accurate than 

the best classifiers that compose them. Finally, meta-specialists are 

arranged in a cascading architecture where each classifier is 

successively given the opportunity to recognize its own class. This 

method is particularly useful for datasets where training and test 

sets differ greatly, as in this case. The cascade-structured meta-

specialists approach achieved a very high classification accuracy 

(94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test 

set) with a low false positive rate (0.33% and 1.94% respectively). 

Keywords—intrusion detection, ensemble learning, neural 

networks, data augmentation, NSL-KDD, KDD Cup 99 

I. INTRODUCTION 

In recent years, network security has become a major 
concern for businesses and states. High-profile attacks with 
negative impacts have captured the attention of the public and 
decision makers. This is why multi-layer security is now more 
necessary than ever to defend a network against inevitable 
attacks. 

Intrusion detection within a network or system is provided 
by an Intrusion Detection System (IDS). Network-based IDS 
monitors the traffic generated by network entities in order to 
identify malicious activity. They traditionally rely on the 
detection of known attack signatures. They compare the 
signature of an activity with a signature database, and raise an 
alert when they find a match. However, the rapid rise in the 
number of attacks, both in their diversity and complexity, 
increases the difficulty to detect attacks using signatures. 

An ideal IDS must therefore be able to detect attacks never 
seen before, with a zero false positive rate. Although there is no 
such IDS yet, anomaly detection is a popular solution to deal 
with this issue. Instead of detecting attack signatures, anomaly 
detection identifies unexpected activities. There are several ways 
to develop a classification or prediction software for anomaly 
detection, but machine learning is now the most efficient method 
to do it. Among these machine learning algorithms, neural 

networks have been highly successful in different areas such as 
image recognition [1] or natural language processing [2]. Neural 
networks have been applied to intrusion detection, but without 
spectacular results; they are indeed still challenged by other 
machine learning algorithms [3]. This difference can be 
explained by the constraints of this problem: any error can be 
very costly, the scope is broad, and current successful neural 
network architectures are not suitable to intrusion detection. 

In this paper, we present an ensemble learning approach with 
neural networks to obtain the best possible performance for a 5-
class classification, as is required by these datasets. The cascade-
structured meta-specialists architecture is based on a three-step 
optimization method: 1/ data augmentation; 2/ hyperparameters 
optimization and 3/ ensemble learning. This study focuses on the 
two most popular datasets of this field: KDD Cup 99 and NSL-
KDD. In order to show that our optimization method 
consistently gives better results than the state of the art, we 
compare it to other algorithms proposed in the literature. 

To the best of our knowledge, the maximum classification 
accuracy obtained for NSL-KDD on test set is 85.016% with a 
two-level classifier ensemble [4]. Until now, the best neural 
network achieved a classification accuracy of 79.10% with self-
taught learning [5]. Using the cascade-structured meta-
specialists approach that we propose in this work, we obtained a 
classification accuracy of 88.39%. We also achieved superior 
results on KDD Cup with 94.44% accuracy on test set, against 
92.70% for the winning entry of the competition [6]. We have 
ensured that these results were comparable, using 2 training 
processes for each dataset (training set only or training + test 
sets). 

The rest of this paper is organized as follows. Section II 
describes the two datasets used in this paper and assesses data 
augmentation techniques. Section III introduces 
hyperparameters and two optimization techniques to maximize 
accuracy. Section IV details how the models obtained in the 
previous step are combined to create a better classifier. Section 
V provides concluding remarks. 

II. PREPROCESSING AND DATA AUGMENTATION 

A. Datasets and preprocessing 

For this work, we selected the two most popular datasets in 
intrusion detection: KDD Cup 99 and NSL-KDD. KDD Cup 99 
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was created in 1999 for a classifier learning contest [7]. The 
purpose of this competition was to accurately classify network 
connections as legitimate or malicious. Malicious connections 
fall into four main categories: Denial of Service (DoS), network 
probing (probe), Remote to Local (R2L) and User to Root 
(U2R). Each connection has 41 characteristics that allow the 
classifier to attempt to predict its class correctly (normal, DoS, 
probe, R2L or U2R). NSL-KDD was created in 2009 to address 
some of the inherent problems of KDD Cup 99 [8]. Redundant 
and duplicate connections, which comprised 75% to 78% of the 
dataset, have been removed. The total number of connections is 
thus much lower: 148,517 for NSL-KDD compared to 805,050 
for KDD Cup 99. NSL-KDD also offers several subsets of 
different difficulties that we will not use in this paper. 

KDD Cup 99 has been repeatedly criticized by the scientific 
community for its deficiencies. While NSL-KDD corrects the 
redundancy and duplicating problem, it is based on the same 
1998 DARPA Intrusion Detection Evaluation datasets. These 
data include connections and attacks from 1998, recovered on a 
simulated U.S. Air Force LAN. The connections and attacks in 
these datasets are therefore not a good representation of the 
activity and threats of a modern network. The number of 
elements in the different classes of the two datasets is strongly 
imbalanced, which favors the recognition of the most frequent 
classes. In addition, the distribution probabilities of classes vary 
significantly between the training set and the test set (TABLE I). 

TABLE I.  KDD CUP 99 AND NSL-KDD DISTRIBUTIONS OF CLASSES 

KDD Cup 99 

 Normal DoS Probe R2L U2R 

Train 

97278 

(19.69%) 

391458 

(79.24%) 

4107 

(0.83%) 

1126 

(0.23%) 

52 

(0.01%) 

Test 

60593 

(19.48%) 

229855 

(73.90%) 

4166 

(1.34%) 

16345 

(5.26%) 

70 

(0.02%) 

NSL-KDD 

 Normal DoS Probe R2L U2R 

Train 

67343 

(53.46%) 

45927 

(36.46%) 

11656 

(9.25%) 

995 

(0.79%) 

52 

(0.04%) 

Test 

9711 
(43.08%) 

7460 
(33.09%) 

2421 
(10.74%) 

2885 
(12.80%) 

67 
(0.30%) 

 

For this work, we did the same preprocessing for both 
datasets. First, the attack label of each malicious connection was 
transformed into one of the four attack classes. The values of the 
numerical features were then normalized between 0 and 1. 
Categorical features were finally one-hot encoded to be readable 
by the neural network [9]. 

B. Data augmentation 

Learning from imbalanced data is a classic machine learning 
problem. The first step in our optimization process is to 
rebalance the training data, in order to obtain better results on the 
validation set. 

There are two ways to rebalance classes: under-sampling and 
over-sampling. As the names suggest, under-sampling reduces 
the populations of the most represented classes, while over-

sampling increases those of the least represented classes. In our 
case, we want to decrease the number of connections in the 
normal and DoS classes, and increase those in the probe, R2L 
and U2R classes. Thus, the classifier should not overlearn the 
most represented classes. 

We compared 16 data augmentation methods on the two 
datasets to determine which ones give the highest Area Under 
the Curve (AUC) of the Receiver Operating Characteristic 
(ROC). The ROC curve is the plot of the true positive rate 
against the false positive rate. The AUC ROC score is the 
probability that a randomly chosen positive is ranked before a 
randomly chosen negative. 

Our classifier is a deep Multi-Layer Perceptron (MLP) with 
3 hidden layers, each composed of 128 units with a Rectified 
Linear Unit (ReLU) activation function. It is trained on 20 
epochs with a batch size of 256 with the Adam optimizer. The 
training is carried out on 80% of the training set, and the 
validation on the remaining 20% of the training set. The AUC 
ROC score presented in TABLE II is an average value obtained 
by repeating this process 10 times per method. We developed 
our code using Python 3 with the imbalanced-learn package [10] 
for data augmentation, and Tensorflow [11] with Keras [12] for 
the neural network. 

TABLE II.  COMPARISON OF DATA AUGMENTATION METHODS  
FOR NSL-KDD 

Method 
Normal class 

AUC ROC score 

No sampling 0.9453 

Over-sampling methods 

Random Over Sampling 0.9595 

SMOTE 0.9533 

Borderline 1 SMOTE 0.9524 

Borderline 2 SMOTE 0.9559 

SVM SMOTE 0.9693 

ADASYN 0.9493 

Under-sampling methods 

Cluster Centroids 0.9416 

Random Under Sampler 0.9624 

NearMiss 0.9375 

Edited Nearest Neighbours 0.9607 

Repeated Edited Nearest Neighbours 0.9609 

Condensed Nearest Neigbour 0.8818 

AllKNN 0.9618 

Instance Hardness Threshold 0.7254 

Combination methods 

SMOTEENN 0.9561 

SMOTE Tomek 0.9602 

 

Results in TABLE II show that combination methods have 
not performed as well as expected [13]. Therefore, we manually 
combined the best under-sampling method (Random Under 
Sampler) with the best over-sampling method (SVM SMOTE). 
This combination gave the best results for the two datasets, with 
a ROC AUC score of 1.0000 for normal class on NSL-KDD 
validation set (processed in 37 minutes and 22 seconds). The 



RUS + SVM SMOTE combination is used in the rest of the paper 
for both datasets. 

III. HYPERPARAMETERS OPTIMIZATION 

A. Hyperparameters and optimization techniques 

Hyperparameters are the variables of a neural network set 
before training. This includes the number of neurons, batch size, 
optimizer, learning rate, activation functions, etc. 
Hyperparameters are often tuned manually, or by testing all 
possible combinations of a set of values (i.e., grid search). We 
chose two faster automated techniques: random search and Tree-
structured Parzen Estimator (TPE) [14]. 

Random search randomly tests combinations of a range of 
values, with a fixed number of iterations. According to Bergstra 
and Bengio [15], random search can find better models than grid 
search and requires less computational time. The time allocated 
to this task is also easier to foresee, since the number of iterations 
is defined in advance. TPE is a Sequential Model-Based 
Optimization (SMBO) algorithm. Unlike random search, it 
chooses which parameters to test and converges to an optimal set 
of parameters. The choice of the optimization algorithm is data-
dependent, that is why we test two different algorithms. 

Optimization is a long process that is more reliable with few 
parameters. We manually defined as many parameters as 
possible that do not need to be optimized. For example, we know 
that the ReLU activation function [1] or the Adam optimizer 
outperforms the others. We also realized that any attempt at 
regularization, however slight, would lead to a decrease in 
accuracy. With this knowledge, the following hyperparameters 
have been optimized:  

 Number of hidden layers: between 1 and 5 (step = 1). 

 Number of units in each hidden layer: between 1 and 
512 (step = 1). 

 Number of epochs: between 1 and 200 (step = 1). 

 Batch size = [16, 32, 64, 128, 256, 512, 1024, 2048]. 

 Adam’s parameters: learning rate (between 10-5 and 
0.2), beta 1 (between 0 and 1), beta 2 (between 0 and 1) 
and epsilon (between 10-9 and 10-5). 

We used the hyperopt library for its implementation of TPE 
[16]. Models have been trained on two GTX 1080 Ti GPUs. 

B. Results 

Random search was quickly abandoned in favor of TPE, 
which consistently obtains better and faster results. Figure 1 
shows the distribution of the best models (i.e., the top 20% of 
models in terms of accuracy) with the two methods. The search 
space corresponds to the set of values covered by the 
optimization algorithm (minimum and maximum values of 
neurons for instance). We started with large search spaces, which 
were gradually reduced manually by observing the best results 
to speed up the process. 

 

Fig. 1. Comparison of results obtained with random search and TPE. 

 

Some hyperparameters clearly converged to an optimal value 
for both datasets. For example, a batch size of 256 obtained 
much better results than other values. Similarly, the number of 
layers quickly converged to a value of 1. KDD Cup 99 and NSL-
KDD only have 41 features, far from the thousands of features 
found in image recognition. This may explain a lower need for 
generalization, and therefore a low number of layers. On the 
other hand, the numbers of units and epochs never clearly 
converged to a specific value. On average, they obtain better 
accuracy for values between 10 and 150, and between 5 and 60 
for NSL-KDD respectively. Indeed, even after data 
augmentation, the distributions of classes in the training and test 
sets remain different: keeping a small number of epochs prevents 
overfitting. Likewise, the search of Adam’s parameters values 
has been narrowed manually. 

Several models have been built for each configuration of 
each dataset. In the first configuration, the model is trained with 
80% of the training test, validated on 20% of the training test, 
and tested on the whole test set. In the second configuration, the 
model is trained on 60% of the training set, validated on 20% of 
the training set, and tested on the remaining 20% of the training 
set. This latter configuration gives better results, because the test 
set adds new attacks as well as a very different class distribution. 
The best models in each category are presented in TABLE III. 

TABLE III.  CLASSIFICATION ACCURACIES FOR OPTIMIZED NEURAL 

NETWORKS ON KDD CUP 99 AND NSL-KDD 

Train 

set 

Test  

set 

Number 

of  

units 

Number 

of 

epochs 

Adam’s 

parameters 
Accuracy 

NSL-

KDD 

train 

(80%) 

NSL-

KDD 
test 

81 15 

lr: 0.075 

beta1: 0.213 

beta2: 0.850 

epsilon: 9.50×10-6 

84.70% 

NSL-
KDD 

train 

(60%) 

NSL-
KDD 

train 

(20%) 

125 35 

lr: 0.128 
beta1: 0.125 

beta2: 0.958 

epsilon: 2.42×10-6 

99.29% 

KDD 

Cup 
99 

train 

(80%) 

KDD 

Cup 

99 
test 

68 32 

lr: 0.001 

beta1: 0.9 

beta2: 0.999 
epsilon: 10-8 

93.77% 

KDD 

Cup 

99 
train 

(60%) 

KDD 

Cup 

99 
train 

(20%) 

130 24 

lr: 0.001 
beta1: 0.9 

beta2: 0.999 

epsilon: 10-8 

99.95% 



IV. ENSEMBLE LEARNING 

A. Naive ensemble learning 

Ensemble learning is a process combining several models to 
improve the overall predictive performance. This approach has 
been successful in many machine learning competitions, such as 
KDD Cup 2009 [13]. The general idea is that a combination of 
weak learners is more effective than a single strong learner. 

We tested the performance of this approach by naively 
combining our two best models from the previous step. There 
are several combination rules to create an ensemble classifier: 
averaging their predictions, keeping only the maximum value, 
adding them up, multiplying them, etc. [18] We tested in TABLE 
IV different algebraic combiners to create the final prediction 𝑝 
from 𝑝1 (model 1 with 84.70% classification accuracy on NSL-
KDD test set) and 𝑝2  (model 2 with 84.17% classification 
accuracy on NSL-KDD test set).  

TABLE IV.  COMPARISON OF DIFFERENT COMBINATION RULES FOR 

ENSEMBLE LEARNING ON NSL-KDD TEST SET 

Combination 

rule 
Prediction p for N models Accuracy 

Mean rule p = 
1

N
∑ p

i

N

i=1

 84.88% 

Maximum rule p = maxi=1, …, N { p
i
} 84.82% 

Sum rule p = ∑ p
i

N

i=1

 84.88% 

Product rule p = ∏ p
i

N

i=1

 84.78% 

 

All combination rules work better than the best model of the 
previous section, especially the mean and sum rules with a 
+0.18% increase in accuracy. This increase can be explained by 
the way classifiers make their predictions. On average, a 
classifier has less confidence in its predictions when they turn 
out to be false than when they are true. Combining a false 
prediction with a true prediction thus favors the latter. 

B. Meta-specialists for ensemble learning 

This statement led us to create classifiers specialized in the 
detection of a single class. These specialists can be 5-class or 2-
class classifiers. We tested both approaches and obtained better 
results for 5-class specialists on normal classes, DoS, R2L and 
U2R (but not probe), that is why we continue to use 5-class 
classifiers in the rest of this paper. 

We applied the same method as in the first and second 
sections for the training of these specialists. The preprocessing 
of the training set depends on the classifier’s specialty. Indeed, 
the class in which the classifier is specialized is over-represented 
(1:5 to 1:30) compared to the others. First, all other classes are 
under-sampled with the Random Under Sampler. If the specialty 
of the classifier is probe, R2L or U2R, this class is then over-
sampled around 20,000 connections. The specialist's neural 

network is optimized with the same search spaces obtained in 
section II. In addition to the hyperparameters, the class ratio is 
also optimized by the TPE on a validation set. 

We then applied the ensemble learning method to each of the 
5 sets of specialists. However, models have different accuracies: 
some perform better than the others on a dataset. Increasing the 
contribution of the best models in the final prediction would 
naturally lead to better results. But poor models should not be 
systematically excluded from the ensemble. They can indeed be 
specialized in rare forms of connections that the best models do 
not recognize. This way of favoring the best models can be 
implemented by adding weights 𝜆𝑖 to the prediction 𝑝𝑖  of each 
model 𝑖 in the previous combination rules. These weights are 
then optimized with the TPE on a validation set to maximize the 
AUC ROC score of the meta-specialist. In addition to the 
previous combination rules, we added majority voting, which 
selects the class that receives the largest total votes. We thus 
defined a meta-specialist as the composition of several 
specialists from the same class, and only participates in the 
classification of its specialty. Results with meta-specialists for 
NSL-KDD are shown in TABLE V. Mean rule achieved the 
same accuracy than sum and product rules but is faster to 
compute (approximately 1 hour and 20 minutes, depending 
largely on models). This is why we use mean rule for both 
datasets in the rest of this paper. 

TABLE V.  COMPARISON OF DIFFERENT COMBINATION RULES WITH 

META-SPECIALISTS FOR ENSEMBLE LEARNING ON NSL-KDD TEST SET 

Combination 

rule 

Prediction p of a meta-specialist for 

N models 
Accuracy 

Mean rule p = 
1

N
∑ λi pi

N

i=1

 86.33% 

Maximum rule p = maxi=1, …, N {λi pi
} 86.01% 

Sum rule p = ∑ λi pi

N

i=1

 86.33% 

Product rule p = ∏ λi pi

N

i=1

 86.33% 

Majority voting p = maxi=1, …, N ∑ λi pi

N

i=1

 86.17% 

C. Cascade-structured meta-specialists architecture 

Meta-specialists tend to over-recognize their own specialty 
in the connections presented to them. This is a problem for rare 
and therefore unreliable attacks like R2L and U2R, which can 
produce many false positives. This problem can be mitigated by 
presenting successively only the non-classified connections to 
the different meta-specialists, as shown in Figure 2. 

In this architecture, the entire NSL-KDD dataset is first 
presented to the normal meta-specialist. This classifier only 
classifies normal connections. Connections flagged as “normal” 
are subtracted to the dataset, which is then presented to the probe 
meta-specialist. This process is repeated for R2L, DoS and U2R 
attacks. The order of meta-specialists was determined by 
selecting the one that gave the best AUC ROC score on the 



validation set. All remaining connections, those that have not 
been recognized by any meta-specialist, are then classified. The 
class of each of these connections is determined by the meta-
specialist with the highest probability. 

Fig. 2. Cascade-structured meta-specialists architecture for NSL-KDD. 

 

Unlike naive ensemble learning models, specialists have 
never been trained or validated on the test set, in order to avoid 
data leakage. Their performance was measured on a validation 
set (20% of the training set), despite its important differences 
with the test set. Indeed, validating the weight optimization of 
specialists on the test set would greatly improve the results: 
92.66% classification accuracy on NSL-KDD test set. 

TABLE VI presents the final performance for our 
architecture on KDD Cup 99 (with max rule combination) and 
NSL-KDD (with sum rule combination). 

TABLE VI.  CLASSIFICATION ACCURACIES FOR CASCADE-STRUCTURED 

META-SPECIALISTS ARCHITECTURE ON KDD CUP 99 AND NSL-KDD 

Train set Test set Accuracy 

NSL-KDD train (80%) NSL-KDD test 88.39% 

NSL-KDD train (60%) NSL-KDD train (20%) 99.91% 

KDD Cup 99 train (80%) KDD Cup 99 test 94.44% 

KDD Cup 99 train (60%) KDD Cup 99 train (20%) 99.95% 

These results are detailed by class for test sets in TABLE 
VIII according to the following metrics:  

TABLE VII.  CONFUSION MATRIX 

 Predicted result 

Negative Positive 

Actual 

result 

Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 

 Accuracy is the ratio of correctly identified results. 

Accuracy = 
TP + TN

TP + TN + FP + FN
 (1) 

 True Positive Rate (TPR) is the proportion of positives that 

are correctly detected. 

TPR = 
TP

TP + FN
 (2) 

 False Positive Rate (FPR) is the proportion of negatives 

incorrectly flagged as positives. 

FPR = 
FP

TN + FP
 (3) 

 Precision is the proportion of predicted positives that are 

indeed positives. 

Precision = 
TP

TP + FP
 (4) 

 F1 score is the harmonic mean of precision and TPR 

F1 score = 2× 
precision × TPR

precision + TPR
 (5) 

 The AUC ROC score is the probability that a randomly 

chosen positive is ranked before a randomly chosen 

negative. 

TABLE VIII.  SUMMARY OF TEST RESULTS FOR CASCADE-STRUCTURED 

META-SPECIALISTS ARCHITECTURES 

KDD Cup 99 (classification accuracy = 94.44%) 

 Normal DoS Probe R2L U2R 

Accuracy 98.10% 94.77% 99.73% 96.32% 99.97% 

TPR 97.54% 98.74% 90.06% 36.28% 28.57% 

FPR 0.33% 6.19% 0.14% 0.35% 0.01% 

F1 score 0.9870 0.8803 0.8986 0.5089 0.2985 

AUC 

ROC  
0.9861 0.9628 0.9496 0.6797 0.6428 

NSL-KDD (classification accuracy = 88.39%) 

 Normal DoS Probe R2L U2R 

Accuracy 95.02% 92.37% 96.86% 93.40% 99.12% 

TPR 88.87% 96.10% 85.38% 64.92% 35.82% 

Normal

meta-specialist

Dataset

Normal connections

Dataset without flagged

normal connections

Probe

meta-specialist
Probe connections

R2L

meta-specialist
R2L connections

Dataset without flagged normal

and probe connections

DoS

meta-specialist
DoS connections

Dataset without flagged normal

and probe and R2L connections

U2R

meta-specialist
U2R connections

Dataset without flagged normal and  

probe and R2L and DoS connections

Unclassified connections

Other connections
Max prediction of 

all meta-specialits



FPR 1.94% 10.46% 1.75% 2.42% 0.69% 

F1 score 0.9220 0.9156 0.8540 0.7158 0.1943 

AUC 

ROC 
0.9347 0.9282 0.9181 0.8125 0.6756 

 

 Finally, TABLE IX shows a comparison study on NSL-KDD 
between our model and previous results in terms of classification 
accuracy and FPR. Our solution performs better than the best 2-
class classifiers in the literature in both metrics. 

TABLE IX.  COMPARISON STUDY ON NSL-KDD 

Study Accuracy FPR 

Our solution 88.39% 1.94% 

Two-level classifier ensemble [4] 85.016% 12.6% 

Bagging (J48) + feature selection [19]  84.25% 2.79% 

GAR-forest + feature selection [20] 85.05% 12.2% 

SVM + feature selection [21] 82.37% 15% 

 

V. CONCLUSION 

In this paper, we presented a three-step methodology for 
optimizing intrusion detection with neural networks. The 
cascade-structured meta-specialists architecture is based on the 
creation of specialized classifiers in a single class. Specialists are 
first trained on a modified training set to over-represent their 
class. The hyperparameters of these classifiers are then 
optimized to maximize their accuracy on a validation set. 
Specialists of the same class are combined into a meta-specialist. 
Non-flagged connections in the dataset are successively tested 
by all meta-specialists. This system has proven to greatly 
improve the quality of detection on KDD Cup 99 and 
particularly on NSL-KDD, with a classification accuracy of 
88.39% and 1.94% FPR. It could be applied to any other labeled 
dataset for intrusion detection, with a similar performance 
increase compared to a naive classifier. 

This approach could be improved by combining neural 
networks with other machine learning algorithms (e.g., Random 
Forest or SVM). These algorithms are more deterministic than 
neural networks, and could thus compensate for certain 
deficiencies of the latter. Besides, preprocessing is done on the 
entire training dataset, but selecting a combination of data 
augmentation algorithms class by class would make more sense. 
This would help to extend the classification system to the attacks 
themselves rather than the categories. 
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