
HAL Id: hal-02425973
https://hal.science/hal-02425973v1

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cascade-structured meta-specialists approach for
neural network-based intrusion detection

Maxime Labonne, Alexis Olivereau, Baptiste Polve, Djamal Zeghlache

To cite this version:
Maxime Labonne, Alexis Olivereau, Baptiste Polve, Djamal Zeghlache. A cascade-structured meta-
specialists approach for neural network-based intrusion detection. CCNC 2019 - 16th Annual Con-
sumer Communications & Networking Conference, Jan 2019, Las Vegas, United States. pp.1-6,
�10.1109/CCNC.2019.8651856�. �hal-02425973�

https://hal.science/hal-02425973v1
https://hal.archives-ouvertes.fr

A Cascade-structured Meta-Specialists Approach

for Neural Network-based Intrusion Detection
Maxime Labonne

Institut LIST, CEA,

Université Paris-Saclay

F-91120, Palaiseau, France

maxime.labonne@cea.fr

Alexis Olivereau

Institut LIST, CEA,

F-91120, Palaiseau, France

alexis.olivereau@cea.fr

Baptiste Polvé

Institut LIST, CEA,

F-91120, Palaiseau, France

baptiste.polve@cea.fr

Djamal Zeghlache

Institut Télécom

Télécom SudParis

Évry, France

djamal.zeghlache@telecom-

sudparis.eu

Abstract—An ensemble learning approach for classification in

intrusion detection is proposed. Its application to the KDD Cup 99

and NSL-KDD datasets consistently increases the classification

accuracy compared to previous techniques. The cascade-

structured meta-specialists architecture is based on a three-step

optimization method: data augmentation, hyperparameters

optimization and ensemble learning. Classifiers are first created

with a strong specialization in each specific class. These specialists

are then combined to form meta-specialists, more accurate than

the best classifiers that compose them. Finally, meta-specialists are

arranged in a cascading architecture where each classifier is

successively given the opportunity to recognize its own class. This

method is particularly useful for datasets where training and test

sets differ greatly, as in this case. The cascade-structured meta-

specialists approach achieved a very high classification accuracy

(94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test

set) with a low false positive rate (0.33% and 1.94% respectively).

Keywords—intrusion detection, ensemble learning, neural

networks, data augmentation, NSL-KDD, KDD Cup 99

I. INTRODUCTION

In recent years, network security has become a major
concern for businesses and states. High-profile attacks with
negative impacts have captured the attention of the public and
decision makers. This is why multi-layer security is now more
necessary than ever to defend a network against inevitable
attacks.

Intrusion detection within a network or system is provided
by an Intrusion Detection System (IDS). Network-based IDS
monitors the traffic generated by network entities in order to
identify malicious activity. They traditionally rely on the
detection of known attack signatures. They compare the
signature of an activity with a signature database, and raise an
alert when they find a match. However, the rapid rise in the
number of attacks, both in their diversity and complexity,
increases the difficulty to detect attacks using signatures.

An ideal IDS must therefore be able to detect attacks never
seen before, with a zero false positive rate. Although there is no
such IDS yet, anomaly detection is a popular solution to deal
with this issue. Instead of detecting attack signatures, anomaly
detection identifies unexpected activities. There are several ways
to develop a classification or prediction software for anomaly
detection, but machine learning is now the most efficient method
to do it. Among these machine learning algorithms, neural

networks have been highly successful in different areas such as
image recognition [1] or natural language processing [2]. Neural
networks have been applied to intrusion detection, but without
spectacular results; they are indeed still challenged by other
machine learning algorithms [3]. This difference can be
explained by the constraints of this problem: any error can be
very costly, the scope is broad, and current successful neural
network architectures are not suitable to intrusion detection.

In this paper, we present an ensemble learning approach with
neural networks to obtain the best possible performance for a 5-
class classification, as is required by these datasets. The cascade-
structured meta-specialists architecture is based on a three-step
optimization method: 1/ data augmentation; 2/ hyperparameters
optimization and 3/ ensemble learning. This study focuses on the
two most popular datasets of this field: KDD Cup 99 and NSL-
KDD. In order to show that our optimization method
consistently gives better results than the state of the art, we
compare it to other algorithms proposed in the literature.

To the best of our knowledge, the maximum classification
accuracy obtained for NSL-KDD on test set is 85.016% with a
two-level classifier ensemble [4]. Until now, the best neural
network achieved a classification accuracy of 79.10% with self-
taught learning [5]. Using the cascade-structured meta-
specialists approach that we propose in this work, we obtained a
classification accuracy of 88.39%. We also achieved superior
results on KDD Cup with 94.44% accuracy on test set, against
92.70% for the winning entry of the competition [6]. We have
ensured that these results were comparable, using 2 training
processes for each dataset (training set only or training + test
sets).

The rest of this paper is organized as follows. Section II
describes the two datasets used in this paper and assesses data
augmentation techniques. Section III introduces
hyperparameters and two optimization techniques to maximize
accuracy. Section IV details how the models obtained in the
previous step are combined to create a better classifier. Section
V provides concluding remarks.

II. PREPROCESSING AND DATA AUGMENTATION

A. Datasets and preprocessing

For this work, we selected the two most popular datasets in
intrusion detection: KDD Cup 99 and NSL-KDD. KDD Cup 99

© 2019 IEEE. This is the author’s accepted version of the article that has been published in the proceedings of the 16th IEEE Annual Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 2019. The final version of this article is available at https://ieeexplore.ieee.org/document/8651856 (M. Labonne, A. Olivereau, B. Polvé and D. Zeghlache, "A Cascade-structured
Meta-Specialists Approach for Neural Network-based Intrusion Detection," 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2019, pp. 1-6,
 10.1109/CCNC.2019.8651856.). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

was created in 1999 for a classifier learning contest [7]. The
purpose of this competition was to accurately classify network
connections as legitimate or malicious. Malicious connections
fall into four main categories: Denial of Service (DoS), network
probing (probe), Remote to Local (R2L) and User to Root
(U2R). Each connection has 41 characteristics that allow the
classifier to attempt to predict its class correctly (normal, DoS,
probe, R2L or U2R). NSL-KDD was created in 2009 to address
some of the inherent problems of KDD Cup 99 [8]. Redundant
and duplicate connections, which comprised 75% to 78% of the
dataset, have been removed. The total number of connections is
thus much lower: 148,517 for NSL-KDD compared to 805,050
for KDD Cup 99. NSL-KDD also offers several subsets of
different difficulties that we will not use in this paper.

KDD Cup 99 has been repeatedly criticized by the scientific
community for its deficiencies. While NSL-KDD corrects the
redundancy and duplicating problem, it is based on the same
1998 DARPA Intrusion Detection Evaluation datasets. These
data include connections and attacks from 1998, recovered on a
simulated U.S. Air Force LAN. The connections and attacks in
these datasets are therefore not a good representation of the
activity and threats of a modern network. The number of
elements in the different classes of the two datasets is strongly
imbalanced, which favors the recognition of the most frequent
classes. In addition, the distribution probabilities of classes vary
significantly between the training set and the test set (TABLE I).

TABLE I. KDD CUP 99 AND NSL-KDD DISTRIBUTIONS OF CLASSES

KDD Cup 99

 Normal DoS Probe R2L U2R

Train

97278

(19.69%)

391458

(79.24%)

4107

(0.83%)

1126

(0.23%)

52

(0.01%)

Test

60593

(19.48%)

229855

(73.90%)

4166

(1.34%)

16345

(5.26%)

70

(0.02%)

NSL-KDD

 Normal DoS Probe R2L U2R

Train

67343

(53.46%)

45927

(36.46%)

11656

(9.25%)

995

(0.79%)

52

(0.04%)

Test

9711
(43.08%)

7460
(33.09%)

2421
(10.74%)

2885
(12.80%)

67
(0.30%)

For this work, we did the same preprocessing for both
datasets. First, the attack label of each malicious connection was
transformed into one of the four attack classes. The values of the
numerical features were then normalized between 0 and 1.
Categorical features were finally one-hot encoded to be readable
by the neural network [9].

B. Data augmentation

Learning from imbalanced data is a classic machine learning
problem. The first step in our optimization process is to
rebalance the training data, in order to obtain better results on the
validation set.

There are two ways to rebalance classes: under-sampling and
over-sampling. As the names suggest, under-sampling reduces
the populations of the most represented classes, while over-

sampling increases those of the least represented classes. In our
case, we want to decrease the number of connections in the
normal and DoS classes, and increase those in the probe, R2L
and U2R classes. Thus, the classifier should not overlearn the
most represented classes.

We compared 16 data augmentation methods on the two
datasets to determine which ones give the highest Area Under
the Curve (AUC) of the Receiver Operating Characteristic
(ROC). The ROC curve is the plot of the true positive rate
against the false positive rate. The AUC ROC score is the
probability that a randomly chosen positive is ranked before a
randomly chosen negative.

Our classifier is a deep Multi-Layer Perceptron (MLP) with
3 hidden layers, each composed of 128 units with a Rectified
Linear Unit (ReLU) activation function. It is trained on 20
epochs with a batch size of 256 with the Adam optimizer. The
training is carried out on 80% of the training set, and the
validation on the remaining 20% of the training set. The AUC
ROC score presented in TABLE II is an average value obtained
by repeating this process 10 times per method. We developed
our code using Python 3 with the imbalanced-learn package [10]
for data augmentation, and Tensorflow [11] with Keras [12] for
the neural network.

TABLE II. COMPARISON OF DATA AUGMENTATION METHODS
FOR NSL-KDD

Method
Normal class

AUC ROC score

No sampling 0.9453

Over-sampling methods

Random Over Sampling 0.9595

SMOTE 0.9533

Borderline 1 SMOTE 0.9524

Borderline 2 SMOTE 0.9559

SVM SMOTE 0.9693

ADASYN 0.9493

Under-sampling methods

Cluster Centroids 0.9416

Random Under Sampler 0.9624

NearMiss 0.9375

Edited Nearest Neighbours 0.9607

Repeated Edited Nearest Neighbours 0.9609

Condensed Nearest Neigbour 0.8818

AllKNN 0.9618

Instance Hardness Threshold 0.7254

Combination methods

SMOTEENN 0.9561

SMOTE Tomek 0.9602

Results in TABLE II show that combination methods have
not performed as well as expected [13]. Therefore, we manually
combined the best under-sampling method (Random Under
Sampler) with the best over-sampling method (SVM SMOTE).
This combination gave the best results for the two datasets, with
a ROC AUC score of 1.0000 for normal class on NSL-KDD
validation set (processed in 37 minutes and 22 seconds). The

RUS + SVM SMOTE combination is used in the rest of the paper
for both datasets.

III. HYPERPARAMETERS OPTIMIZATION

A. Hyperparameters and optimization techniques

Hyperparameters are the variables of a neural network set
before training. This includes the number of neurons, batch size,
optimizer, learning rate, activation functions, etc.
Hyperparameters are often tuned manually, or by testing all
possible combinations of a set of values (i.e., grid search). We
chose two faster automated techniques: random search and Tree-
structured Parzen Estimator (TPE) [14].

Random search randomly tests combinations of a range of
values, with a fixed number of iterations. According to Bergstra
and Bengio [15], random search can find better models than grid
search and requires less computational time. The time allocated
to this task is also easier to foresee, since the number of iterations
is defined in advance. TPE is a Sequential Model-Based
Optimization (SMBO) algorithm. Unlike random search, it
chooses which parameters to test and converges to an optimal set
of parameters. The choice of the optimization algorithm is data-
dependent, that is why we test two different algorithms.

Optimization is a long process that is more reliable with few
parameters. We manually defined as many parameters as
possible that do not need to be optimized. For example, we know
that the ReLU activation function [1] or the Adam optimizer
outperforms the others. We also realized that any attempt at
regularization, however slight, would lead to a decrease in
accuracy. With this knowledge, the following hyperparameters
have been optimized:

 Number of hidden layers: between 1 and 5 (step = 1).

 Number of units in each hidden layer: between 1 and
512 (step = 1).

 Number of epochs: between 1 and 200 (step = 1).

 Batch size = [16, 32, 64, 128, 256, 512, 1024, 2048].

 Adam’s parameters: learning rate (between 10-5 and
0.2), beta 1 (between 0 and 1), beta 2 (between 0 and 1)
and epsilon (between 10-9 and 10-5).

We used the hyperopt library for its implementation of TPE
[16]. Models have been trained on two GTX 1080 Ti GPUs.

B. Results

Random search was quickly abandoned in favor of TPE,
which consistently obtains better and faster results. Figure 1
shows the distribution of the best models (i.e., the top 20% of
models in terms of accuracy) with the two methods. The search
space corresponds to the set of values covered by the
optimization algorithm (minimum and maximum values of
neurons for instance). We started with large search spaces, which
were gradually reduced manually by observing the best results
to speed up the process.

Fig. 1. Comparison of results obtained with random search and TPE.

Some hyperparameters clearly converged to an optimal value
for both datasets. For example, a batch size of 256 obtained
much better results than other values. Similarly, the number of
layers quickly converged to a value of 1. KDD Cup 99 and NSL-
KDD only have 41 features, far from the thousands of features
found in image recognition. This may explain a lower need for
generalization, and therefore a low number of layers. On the
other hand, the numbers of units and epochs never clearly
converged to a specific value. On average, they obtain better
accuracy for values between 10 and 150, and between 5 and 60
for NSL-KDD respectively. Indeed, even after data
augmentation, the distributions of classes in the training and test
sets remain different: keeping a small number of epochs prevents
overfitting. Likewise, the search of Adam’s parameters values
has been narrowed manually.

Several models have been built for each configuration of
each dataset. In the first configuration, the model is trained with
80% of the training test, validated on 20% of the training test,
and tested on the whole test set. In the second configuration, the
model is trained on 60% of the training set, validated on 20% of
the training set, and tested on the remaining 20% of the training
set. This latter configuration gives better results, because the test
set adds new attacks as well as a very different class distribution.
The best models in each category are presented in TABLE III.

TABLE III. CLASSIFICATION ACCURACIES FOR OPTIMIZED NEURAL

NETWORKS ON KDD CUP 99 AND NSL-KDD

Train

set

Test

set

Number

of

units

Number

of

epochs

Adam’s

parameters
Accuracy

NSL-

KDD

train

(80%)

NSL-

KDD
test

81 15

lr: 0.075

beta1: 0.213

beta2: 0.850

epsilon: 9.50×10-6

84.70%

NSL-
KDD

train

(60%)

NSL-
KDD

train

(20%)

125 35

lr: 0.128
beta1: 0.125

beta2: 0.958

epsilon: 2.42×10-6

99.29%

KDD

Cup
99

train

(80%)

KDD

Cup

99
test

68 32

lr: 0.001

beta1: 0.9

beta2: 0.999
epsilon: 10-8

93.77%

KDD

Cup

99
train

(60%)

KDD

Cup

99
train

(20%)

130 24

lr: 0.001
beta1: 0.9

beta2: 0.999

epsilon: 10-8

99.95%

IV. ENSEMBLE LEARNING

A. Naive ensemble learning

Ensemble learning is a process combining several models to
improve the overall predictive performance. This approach has
been successful in many machine learning competitions, such as
KDD Cup 2009 [13]. The general idea is that a combination of
weak learners is more effective than a single strong learner.

We tested the performance of this approach by naively
combining our two best models from the previous step. There
are several combination rules to create an ensemble classifier:
averaging their predictions, keeping only the maximum value,
adding them up, multiplying them, etc. [18] We tested in TABLE
IV different algebraic combiners to create the final prediction 𝑝
from 𝑝1 (model 1 with 84.70% classification accuracy on NSL-
KDD test set) and 𝑝2 (model 2 with 84.17% classification
accuracy on NSL-KDD test set).

TABLE IV. COMPARISON OF DIFFERENT COMBINATION RULES FOR

ENSEMBLE LEARNING ON NSL-KDD TEST SET

Combination

rule
Prediction p for N models Accuracy

Mean rule p =
1

N
∑ p

i

N

i=1

 84.88%

Maximum rule p = maxi=1, …, N { p
i
} 84.82%

Sum rule p = ∑ p
i

N

i=1

 84.88%

Product rule p = ∏ p
i

N

i=1

 84.78%

All combination rules work better than the best model of the
previous section, especially the mean and sum rules with a
+0.18% increase in accuracy. This increase can be explained by
the way classifiers make their predictions. On average, a
classifier has less confidence in its predictions when they turn
out to be false than when they are true. Combining a false
prediction with a true prediction thus favors the latter.

B. Meta-specialists for ensemble learning

This statement led us to create classifiers specialized in the
detection of a single class. These specialists can be 5-class or 2-
class classifiers. We tested both approaches and obtained better
results for 5-class specialists on normal classes, DoS, R2L and
U2R (but not probe), that is why we continue to use 5-class
classifiers in the rest of this paper.

We applied the same method as in the first and second
sections for the training of these specialists. The preprocessing
of the training set depends on the classifier’s specialty. Indeed,
the class in which the classifier is specialized is over-represented
(1:5 to 1:30) compared to the others. First, all other classes are
under-sampled with the Random Under Sampler. If the specialty
of the classifier is probe, R2L or U2R, this class is then over-
sampled around 20,000 connections. The specialist's neural

network is optimized with the same search spaces obtained in
section II. In addition to the hyperparameters, the class ratio is
also optimized by the TPE on a validation set.

We then applied the ensemble learning method to each of the
5 sets of specialists. However, models have different accuracies:
some perform better than the others on a dataset. Increasing the
contribution of the best models in the final prediction would
naturally lead to better results. But poor models should not be
systematically excluded from the ensemble. They can indeed be
specialized in rare forms of connections that the best models do
not recognize. This way of favoring the best models can be
implemented by adding weights 𝜆𝑖 to the prediction 𝑝𝑖 of each
model 𝑖 in the previous combination rules. These weights are
then optimized with the TPE on a validation set to maximize the
AUC ROC score of the meta-specialist. In addition to the
previous combination rules, we added majority voting, which
selects the class that receives the largest total votes. We thus
defined a meta-specialist as the composition of several
specialists from the same class, and only participates in the
classification of its specialty. Results with meta-specialists for
NSL-KDD are shown in TABLE V. Mean rule achieved the
same accuracy than sum and product rules but is faster to
compute (approximately 1 hour and 20 minutes, depending
largely on models). This is why we use mean rule for both
datasets in the rest of this paper.

TABLE V. COMPARISON OF DIFFERENT COMBINATION RULES WITH

META-SPECIALISTS FOR ENSEMBLE LEARNING ON NSL-KDD TEST SET

Combination

rule

Prediction p of a meta-specialist for

N models
Accuracy

Mean rule p =
1

N
∑ λi pi

N

i=1

 86.33%

Maximum rule p = maxi=1, …, N {λi pi
} 86.01%

Sum rule p = ∑ λi pi

N

i=1

 86.33%

Product rule p = ∏ λi pi

N

i=1

 86.33%

Majority voting p = maxi=1, …, N ∑ λi pi

N

i=1

 86.17%

C. Cascade-structured meta-specialists architecture

Meta-specialists tend to over-recognize their own specialty
in the connections presented to them. This is a problem for rare
and therefore unreliable attacks like R2L and U2R, which can
produce many false positives. This problem can be mitigated by
presenting successively only the non-classified connections to
the different meta-specialists, as shown in Figure 2.

In this architecture, the entire NSL-KDD dataset is first
presented to the normal meta-specialist. This classifier only
classifies normal connections. Connections flagged as “normal”
are subtracted to the dataset, which is then presented to the probe
meta-specialist. This process is repeated for R2L, DoS and U2R
attacks. The order of meta-specialists was determined by
selecting the one that gave the best AUC ROC score on the

validation set. All remaining connections, those that have not
been recognized by any meta-specialist, are then classified. The
class of each of these connections is determined by the meta-
specialist with the highest probability.

Fig. 2. Cascade-structured meta-specialists architecture for NSL-KDD.

Unlike naive ensemble learning models, specialists have
never been trained or validated on the test set, in order to avoid
data leakage. Their performance was measured on a validation
set (20% of the training set), despite its important differences
with the test set. Indeed, validating the weight optimization of
specialists on the test set would greatly improve the results:
92.66% classification accuracy on NSL-KDD test set.

TABLE VI presents the final performance for our
architecture on KDD Cup 99 (with max rule combination) and
NSL-KDD (with sum rule combination).

TABLE VI. CLASSIFICATION ACCURACIES FOR CASCADE-STRUCTURED

META-SPECIALISTS ARCHITECTURE ON KDD CUP 99 AND NSL-KDD

Train set Test set Accuracy

NSL-KDD train (80%) NSL-KDD test 88.39%

NSL-KDD train (60%) NSL-KDD train (20%) 99.91%

KDD Cup 99 train (80%) KDD Cup 99 test 94.44%

KDD Cup 99 train (60%) KDD Cup 99 train (20%) 99.95%

These results are detailed by class for test sets in TABLE
VIII according to the following metrics:

TABLE VII. CONFUSION MATRIX

 Predicted result

Negative Positive

Actual

result

Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

 Accuracy is the ratio of correctly identified results.

Accuracy =
TP + TN

TP + TN + FP + FN
 (1)

 True Positive Rate (TPR) is the proportion of positives that

are correctly detected.

TPR =
TP

TP + FN
 (2)

 False Positive Rate (FPR) is the proportion of negatives

incorrectly flagged as positives.

FPR =
FP

TN + FP
 (3)

 Precision is the proportion of predicted positives that are

indeed positives.

Precision =
TP

TP + FP
 (4)

 F1 score is the harmonic mean of precision and TPR

F1 score = 2×
precision × TPR

precision + TPR
 (5)

 The AUC ROC score is the probability that a randomly

chosen positive is ranked before a randomly chosen

negative.

TABLE VIII. SUMMARY OF TEST RESULTS FOR CASCADE-STRUCTURED

META-SPECIALISTS ARCHITECTURES

KDD Cup 99 (classification accuracy = 94.44%)

 Normal DoS Probe R2L U2R

Accuracy 98.10% 94.77% 99.73% 96.32% 99.97%

TPR 97.54% 98.74% 90.06% 36.28% 28.57%

FPR 0.33% 6.19% 0.14% 0.35% 0.01%

F1 score 0.9870 0.8803 0.8986 0.5089 0.2985

AUC

ROC
0.9861 0.9628 0.9496 0.6797 0.6428

NSL-KDD (classification accuracy = 88.39%)

 Normal DoS Probe R2L U2R

Accuracy 95.02% 92.37% 96.86% 93.40% 99.12%

TPR 88.87% 96.10% 85.38% 64.92% 35.82%

Normal

meta-specialist

Dataset

Normal connections

Dataset without flagged

normal connections

Probe

meta-specialist
Probe connections

R2L

meta-specialist
R2L connections

Dataset without flagged normal

and probe connections

DoS

meta-specialist
DoS connections

Dataset without flagged normal

and probe and R2L connections

U2R

meta-specialist
U2R connections

Dataset without flagged normal and

probe and R2L and DoS connections

Unclassified connections

Other connections
Max prediction of

all meta-specialits

FPR 1.94% 10.46% 1.75% 2.42% 0.69%

F1 score 0.9220 0.9156 0.8540 0.7158 0.1943

AUC

ROC
0.9347 0.9282 0.9181 0.8125 0.6756

 Finally, TABLE IX shows a comparison study on NSL-KDD
between our model and previous results in terms of classification
accuracy and FPR. Our solution performs better than the best 2-
class classifiers in the literature in both metrics.

TABLE IX. COMPARISON STUDY ON NSL-KDD

Study Accuracy FPR

Our solution 88.39% 1.94%

Two-level classifier ensemble [4] 85.016% 12.6%

Bagging (J48) + feature selection [19] 84.25% 2.79%

GAR-forest + feature selection [20] 85.05% 12.2%

SVM + feature selection [21] 82.37% 15%

V. CONCLUSION

In this paper, we presented a three-step methodology for
optimizing intrusion detection with neural networks. The
cascade-structured meta-specialists architecture is based on the
creation of specialized classifiers in a single class. Specialists are
first trained on a modified training set to over-represent their
class. The hyperparameters of these classifiers are then
optimized to maximize their accuracy on a validation set.
Specialists of the same class are combined into a meta-specialist.
Non-flagged connections in the dataset are successively tested
by all meta-specialists. This system has proven to greatly
improve the quality of detection on KDD Cup 99 and
particularly on NSL-KDD, with a classification accuracy of
88.39% and 1.94% FPR. It could be applied to any other labeled
dataset for intrusion detection, with a similar performance
increase compared to a naive classifier.

This approach could be improved by combining neural
networks with other machine learning algorithms (e.g., Random
Forest or SVM). These algorithms are more deterministic than
neural networks, and could thus compensate for certain
deficiencies of the latter. Besides, preprocessing is done on the
entire training dataset, but selecting a combination of data
augmentation algorithms class by class would make more sense.
This would help to extend the classification system to the attacks
themselves rather than the categories.

ACKNOWLEDGMENT

This work was supported by the French-German project
BERCOM jointly funded by ANR and BMBF under the grant
number ANR-14-PICS-0001.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.

[2] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in

Proceedings of the 25th international conference on Machine learning,

2008, pp. 160–167.
[3] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine

Learning Methods for Cyber Security Intrusion Detection,” IEEE

Commun. Surv. Tutor., vol. 18, no. 2, pp. 1153–1176, Secondquarter
2016.

[4] B. A. Tama, A. S. Patil, and K.-H. Rhee, “An Improved Model of

Anomaly Detection Using Two-Level Classifier Ensemble,” in 2017
12th Asia Joint Conference on Information Security (AsiaJCIS), Seoul,

South Korea, 2017, pp. 1–4.

[5] Q. Niyaz, A. Javaid, W. Sun, and M. Alam, “A Deep Learning
Approach for Network Intrusion Detection System,” in Proceedings of

the 9th EAI International Conference on Bio-inspired Information and

Communications Technologies (Formerly BIONETICS), BICT, 2016,
vol. 15, pp. 21–26.

[6] “Results of the KDD’99 Classifier Learning Contest.” [Online].

Available: http://cseweb.ucsd.edu/~elkan/clresults.html. [Accessed:
13-Apr-2018].

[7] “KDD-CUP-99 Task Description.” [Online]. Available:
https://kdd.ics.uci.edu/databases/kddcup99/task.html. [Accessed: 18-

Jun-2017].

[8] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Computational Intelligence

for Security and Defense Applications, 2009. CISDA 2009. IEEE

Symposium on, 2009.
[9] M. Z. Alaya, S. Bussy, S. Gaïffas, and A. Guilloux, “Binarsity: a

penalization for one-hot encoded features,” ArXiv170308619 Stat, Mar.

2017.
[10] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A

python toolbox to tackle the curse of imbalanced datasets in machine

learning,” J. Mach. Learn. Res., vol. 18, no. 17, pp. 1–5, 2017.
[11] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems,” ArXiv160304467 Cs, Mar. 2016.

[12] F. Chollet, “Keras,” 2015.
[13] S. Kudugunta and E. Ferrara, “Deep Neural Networks for Bot

Detection,” ArXiv180204289 Cs, Feb. 2018.

[14] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Advances in neural information

processing systems, 2011, pp. 2546–2554.

[15] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. Feb, pp. 281–305,

2012.

[16] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms,” in

Proceedings of the 12th Python in Science Conference, 2013, pp. 13–

20.

[17] “SIGKDD : KDD Cup 2009 : Customer relationship prediction.”

[Online]. Available: http://www.kdd.org/kdd-cup/view/kdd-cup-2009.

[Accessed: 15-Apr-2018].
[18] R. Polikar, “Ensemble learning,” Scholarpedia, vol. 4, no. 1, p. 2776,

Jan. 2009.

[19] N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M. Lahza,
“Improving performance of intrusion detection system using ensemble

methods and feature selection,” in Proceedings of the Australasian

Computer Science Week Multiconference on - ACSW ’18, Brisband,
Queensland, Australia, 2018, pp. 1–6.

[20] N. K. Kanakarajan and K. Muniasamy, “Improving the Accuracy of

Intrusion Detection Using GAR-Forest with Feature Selection,” in
Springer, 2016, pp. 539–547.

[21] M. S. Pervez and D. M. Farid, “Feature selection and intrusion

classification in NSL-KDD cup 99 dataset employing SVMs,” in The
8th International Conference on Software, Knowledge, Information

Management and Applications (SKIMA 2014), 2014, pp. 1–6.

