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Abstract

This article presents a new method to monitor beam shapes from strain measures. The beam is instrumented

with strain sensors placed on its surface with an angle of orientation. The method developed is a 3D large

deflection beam shape reconstruction based on a beam model incorporating Poisson effect and is thus

able to take into account bending, torsion, shearing and tensile-compression deformations. Exemple of

application on circular beams is conducted with beam shape reconstructed from FEM simulations strain

measures. Results show that, compared to beam shape sensing methods using axial strain, the beam shape

method proposed provides a significant increase in the reconstruction accuracy when the beam is subject to

deformations containing torsion.

Keywords: Beam; Isotropic; Large deflection; Large displacement; Poisson effect; Rod; Shape sensing;

Small strain;

1. Introduction

Real-time shape monitoring of a beam structure is a problem with various domains of applications such

as construction, medical field or aerospacial. An effective way to monitor a beam deformed shape consists

in using cameras or optics which then provide directly the deformed beam shape. Nevertheless, this method

can not be applicable everywhere due to lack of space or accessibility. In these cases the shape can be

obtained from the measures of sensors implented in the structures, such as strain sensors. The beam shape

is then not available directly and requires a reconstruction using the sensor data to be obtained. The topic

of using strain sensors to monitor beam structures has been covered in the litterature with applications

to the construction, medical and aeronautical field. In these works, the hypothesis concerning the beam
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Figure 1: Poisson effect

deformation play a key role in the choice of the beam model used to reconstruct the shape. The modeling

of the beam will thus notably be specific to the hypothesis concerning the cross-section of the beam during

the deformation.

The Euler-Bernoulli beam theory makes the assumption the cross section remains rigid and perpendicular

to the neutral axis. Different beam shape monitoring methods based on this hypothesis have been proposed

over the years [42, 10, 13, 16, 22, 31, 45, 50, 36] with applications such as bridge monitoring [9, 11, 39, 47],

minimally-invasive surgery [1, 33, 32, 38, 18, 26, 30, 43, 49, 37] or wing deformation [23]. In these methods,

the bending informations of the beam are retrieved from the measures of the strain sensors placed parallel

to the beam at its surface and are used to reconstruct the beam shape in 2D or 3D. The torsion informations

of the beam can be retrieved by placing the strain sensors not parallel to the beam such as in Askins et al.

[3] and Xu et al. [46]. The deformation considered under the hypothesis of Euler-Bernoulli are bending,

torsion and tensile-compression. The shearing deformation can be taken into account by assuming that the

cross sections still remain rigid but are no longer perpendicular to the neutral axis, such as formulated in

the Timoshenko beam theory. It is then possible to reconstruct the beam shape by taking into account this

additional deformation type such as in Chadha et al. [6].

The validity of these hypothesis greatly depends of the characteristics of the beam, for as stated in

Beck et al. [5], the choice of one hypothesis or the other involves generally the geometry of the beam.

The hypothesis of Euler-Bernoulli will be used to model flexure-dominated (”slender”) beam wheareas the

Timoshenko theory will be prefered in a case of shear-dominated (”short”) beams, these two theories still

assuming that the cross-section of the beam remains rigid during the deformation. The validity of this last

assumption also depends of the beam characteristics as some deformation of the cross section might occur,

such as Poisson effect (in-plane deformation) and warping (out-of-plane deformation). The warping effect

is influenced by the cross-section geometry, symmetry and beam thickness whereas the Poisson effect is a

phenomenon caused during the deformation by the material characteristics. The work presented in this

article is devoted to beam shape sensing including the in-plane deformation caused by the Poisson effect.

As illustrated in Fig. 1 the Poisson effect appears during a material deformation and is characterized by the
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appearance of transversal strains ε2, ε3 caused by the axial strain ε1 such that:

εi = −νε1, i = 2, 3 (1)

where ν is the Poisson ratio of the material. Chadha et al. developed a beam shape sensing method including

Poisson effect based on geometrically-exact beam theory containing a Poisson transformation intended to

include the Poisson effect directly into the beam configuration [8, 7]. The beam configuration is noted

ξ1, ξ2, ξ3 in the reference state, with ξ1 the position on the beam neutral axis and ξ2, ξ3 the position on the

beam cross section. Due to the deformations caused by the Poisson effect, the position on the beam cross

section at the current state are denoted ξ̂2 and ξ̂3. The axial strain is noted ε1. The Poisson transformation

defined by Chadha et al. is:

ξ̂i = (1− νε1(ξ1, ξ2, ξ3)) ξi i = 2, 3 (2)

By derivation of (2) one obtains:

∂ξ̂i
∂ξi

= 1− νε1(ξ1, ξ2, ξ3)− ν ∂ε1(ξ1, ξ2, ξ3)

∂ξi
i = 2, 3 (3)

which can be rewritten as:

εi = −νε1(ξ1, ξ2, ξ3)− ν ∂ε1(ξ1, ξ2, ξ3)

∂ξi
i = 2, 3 (4)

As a consequence, by using the Poisson transformation the transverse strain obtained in (4) thus differs from

the transverse strain from Poisson relation (1) by an additional non-null term containing the derivative of

ε1(ξ1, ξ2, ξ3). In [7] the derivative ∂ε1(ξ1, ξ2, ξ3)/∂ξi is not null as it contains terms in ξ2 and ξ3 related to

the bending deformation. The expression of the transverse strain obtained from the Poisson transformation

thus differs from the Poisson relation. In [8] the axial strain ε1(ξ1, ξ2, ξ3) is replaced by the midcurve axial

strain (ε1(ξ1, 0, 0) = ε1(ξ1)) which leads to:

εi = −νε1(ξ1) i = 2, 3 (5)

Thus the transverse strain only depends of the midcurve axial strain and by consequences neglect the bending

deformation. Consequently, the Poisson transformation is an approximation of the beam configuration which

does not satisfy the Poisson relation.

Gherlone et al. [14, 15] has proposed a beam shape monitoring method including Poisson effect based on

inverse finite element method. The method consists in reconstructing the three-dimensional displacement

field of a beam structure from surfaced-measured strains by minimizing the square difference of the strain

measures and the theoretical strains. The displacement field is then interpolated to give the full beam

displacement. The configuration of beam being derived from the classical Timoshenko beam theory, the

method is thus restricted to small rotations [24].
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2. Proposed approach

We propose here a small strain large deflection beam shape sensing method taking into account the

Poisson effect which allows to reconstruct the shapes of beams undergoing small strain deformations, with

no restrictions on the amplitude of the deflections. Deflection refers to the movement of a beam from its

original position due to the forces and loads being applied to the beam. In the following, the deflection of

the beam denotes the distance related to the displacement of the free end of the beam between the reference

and the deformed configurations. In the first part, the beam is first modeled using 3D beam theory and

deformations in bending, torsion, shearing and tensile-compression are included in the configuration space.

The Poisson phenomenon is then added in the expression of the small-strain strain tensor which is used

to express the strain measure at the surface of the beam. The local strain measures at the surface are

then used reversely to retrieve the local beam configuration. In the second part a reconstruction method is

proposed to reconstruct the full shape of the beam undergoing large deflections and rotation deformations.

An application on the circular beam is then presented and the impact of the Poisson effect on the strain

parameters evaluations is evaluated. Finally, numerical simulations based on FEM were used to validate the

reconstruction process and revelance of the strain model developed including the Poisson effect.

The beam model proposed is derived from the geometrically exact beam theory of Simo [40] from which is

added the effect of the Poisson deformation directly in the small-strain tensor, thus providing a formulation of

the beam strain in terms of bending, torsion, shearing, tensile/compression and Poisson ratio. By doing so it

is then possible to choose the deformation to consider. The Poisson effect is implemented in the strain tensor

and not in the configuration. In fact, the Poisson effect is moderate on the beam displacement but has huge

impact on its deformation, which means that this effect impacts heavily the measures of the strain sensor but

moderately their positions on the beam. The Poisson effect is thus only taken into account in the expression

of the small-strain tensor and not in the beam configuration neither in the beam shape reconstruction as

only the neutral axis of the beam is reconstructed and the Poisson effect has no impact on the neutral axis.

This choice have double advantages as it allows to simplify the model and to inverse the relationships in

order to express the beam configuration according to the strain measures. The necessity to take into account

the Poisson effect and the validity of the strain model propose is demonstrated by comparison of beam shape

reconstruction with FEM simulation of beam deformations. Moreover, the impact of the Poisson effect on

the estimation of the strain configuration is expressed anatically. These validations shows that including

the Poisson effect in the strain tensor only allows to obtain accurate reconstruction. The difficulty of beam

shape sensing lie in the fact that the model should be complete enough to be accurate but not too much to

still be inversible, here being able to express beam configuration in terms of strains measures. To achieve

this goal the model is restricted to small-strain and coupling effects are neglected. On the contrary of

Gherlone, the strain measures are used to reconstruct the beam shape explicitly and by taking into account
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(a) Beam reference configuration (b) Beam current configuration

Figure 2: Beam different configurations

the large rotations and displacements deformations. To the best of author’s knowledge, no beam shape

method including Poisson effect and accounting for large rotations and displacements have been proposed

before.

3. Beam shape sensing including bending, torsion, shearing, tensile, compressive and Poisson

deformations : General method

This section presents the beam modeling, the strain tensor including Poisson effect, the expression of

the beam configuration in terms of strain measures and the beam shape reconstruction method.

3.1. Strain measure including Poisson effect for isotropic beams

The beam is modeled using the beam theory developed by Simo [40] under the hypothesis of linear

elasticity and its material is supposed isotropic. The beam is straight at the reference configuration. The

reference coordinates is the orthonormal frame (E1,E2,E3). The position on the neutral axis at length s is

noted X0(s) in the reference configuration and x0(s) in the current configuration. The position of a point

of the beam located at length s along E3 and radial position ξ1 and ξ2 along E1 and E2 is noted X(ξ, s) in

the reference configuration and x(ξ, s) in the current configuration with ξ = ξ1E1 + ξ2E2. At the reference

configuration we then have:

X(ξ, s) = ξ1E1 + ξ2E2 + sE3 (6)

The orthonormal moving frame (t1(s), t2(s), t3(s)) is defined such that the current configuration x(ξ, s) of

the beam is noted:

x(ξ, s) = ξ1t1(s) + ξ2t2(s) + x0(s) (7)

Reference and current beam configurations are illustrated respectively in Fig. 2a and Fig. 2b. As the

moving frame (t1(s), t2(s), t3(s)) is orthonormal for each s, there exists an orthonormal transformation

s→ Λ(s) ∈ SO(3) such that:

∀I ∈ J1, 3K , tI(s) = Λ(s)EI, Λ(s) = Λi,j(s)Ei ⊗Ej (8)
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Figure 3: Beam shearing coefficients

The derivative of the frame (t1, t2, t3) according to s can be written ti
′(s) = Ω(s)ti(s) where Ω is a

skew-symmetric tensor defined by:

Ω(s) = Λ′(s)ΛT (s) (9)

The tensor Ω can be expressed relatively to the moving frame (t1, t2, t3) with the coefficients κ1, κ2, κ3.

The expression of Ω in the basis (t1, t2, t3) is then:

[Ω(s)]t =


0 −κ3(s) κ2(s)

κ3(s) 0 −κ1(s)

−κ2(s) κ1(s) 0

 (10)

The coordinates of x0
′ in the frame (t1, t2, t3) are denoted γ1, γ2 and 1 + γ3:

x0
′(s) = γ1(s)t1(s) + γ2(s)t2(s) +

(
1 + γ3(s)

)
t3(s) (11)

The parameters κi and γi are respectively the rotational and translational strain measures conjugate to the

stress acting on the cross sections. More precisely, the components κ1 and κ2 are the bending strains whereas

κ3 is the twist rate change. The components γ1 and γ2 are the shear strains and γ3 is the extensional strain

[12, 20]. The parameters κi and γi define the beam configuration. The deformation gradient F is a two-point

tensor containing the derivatives of the current configuration according to the reference configuration:

F =
∂x

∂X
(12)

=
∂x

∂Xj
⊗Ej (13)

Using the reference beam configuration in (6) we have:

F =
∂x

∂ξ1
⊗E1 +

∂x

∂ξ2
⊗E2 +

∂x

∂s
⊗E3 (14)

And from (7) we have:
∂x

∂ξ1
= t1,

∂x

∂ξ2
= t2,

∂x

∂s
= ξ1t1

′ + ξ2t2
′ + x0

′ (15)
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Consequently:

F =t1 ⊗E1 + t2 ⊗E2 + (ξ1t1
′ + ξ2t2

′ + x0
′)⊗E3 (16)

=ti ⊗Ei + (ξ1t1
′ + ξ2t2

′ + x0
′ − t3)⊗E3 (17)

=Λ + e⊗E3 (18)

with:

e = ξ1t1
′ + ξ2t2

′ + x0
′ − t3 (19)

which gives:

e = (γ1−ξ2κ3)t1+(γ2+ξ1κ3)t2+(γ3+ξ2κ1−ξ1κ2)t3 (20)

Thus F is the sum of the rotation tensor Λ and the tensor e⊗E3 containing the pure current strain vector e

[35]. It should be noted that for any vector ξ = ξ1E1 + ξ2E2 included in the cross-section we have Fξ = Λξ

which a rotation of that vector. This illustrates the rigidity hypothesis of the cross section during the beam

deformation. The definition of the Green-Lagrange strain tensor is:

E =
1

2

(
FTF− I

)
(21)

Inserting the expression of F from (18) in (21) gives:

E =
1

2

(
(Λ + e⊗E3)

T
(Λ + e⊗E3)− I

)
(22)

and using the expression of e from (20) thus provides the following expression of the Green-Lagrange strain

tensor E:

E =
1

2
((e.ti)(Ei ⊗E3 + E3 ⊗Ei)+(e.e) E3 ⊗E3) (23)

The small-strain tensor ε is then obtained by neglecting the quadratic part of the expression of the finite

strain tensor (23):

ε =
1

2
((e.ti) (Ei ⊗E3 + E3 ⊗Ei)) (24)

The expression of the small strain tensor ε in the basis Ei ⊗Ej is thus:

ε =
1

2


0 0 e.t1

0 0 e.t2

e.t1 e.t2 2e.t3

 (25)

This beam model does not yet take into account the Poisson effect. The transverse strains created by this

effect from the normal strains are thus ignored, which deteriorate the strain accuracy given by the model.

Rather than trying to incorporate it into the beam configuration, the Poisson effect will be added into the

small strain tensor formulation (24) following a method used by Weiss [44], Linn et al. [25] and Liu et al.
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[27]. As shown in (25) the coefficients ε11, ε12, ε21, ε22 of the tensor ε are null due to the rigid cross section

assumption which restricts the inclusion of Poisson’s effect [7]. The idea consists to allow uniform lateral

contraction of the cross section by including the transverse strains due to the normal strain orthogonal to the

cross section. The small-strain tensor ε̃ taking into account the Poisson effect is then defined the following

way [25, 27]:

ε̃ij =

 −νε33, (i,j)∈{(1,1),(2,2)}

εij , (i,j)/∈{(1,1),(2,2)}
(26)

According to the expression of ε in (24) we then have:

ε̃ =
1

2
(e.ti) (Ei ⊗E3 + E3 ⊗Ei)

− νe.t3 (E1 ⊗E1 + E2 ⊗E2) (27)

And the expression of the strain tensor ε̃ in the basis Ei ⊗Ej is then:

ε̃ =
1

2


−2νe.t3 0 e.t1

0 −2νe.t3 e.t2

e.t1 e.t2 2e.t3

 (28)

3.2. Objectivity of the strain measure

In order to have a method taking into account large displacement and rotation it is necessary to check

that the strain measure used is objective [35]. The objectivity of material strain measure at a particular

configuration is understood as their inherent ability to remain unaffected by a constant motion of the

configuration [12]. In order to prove the objectivity of the small-strain tensor including Poisson deformation

proposed in (27) we will demonstrate the invariance of its expression under a rigid body motion decomposed

in translation c ∈ R3 and rotation Q ∈ SO(3). This rigid body motion modifies the current configuration

of the beam such that:

x∗0 = c + Qx0 (29)

t∗i = Qti (30)
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The strain vector and the small strain tensor undergoing the rigid body motion are denoted e∗ and ε̃∗.

According to (20) the expression of the strain vector e∗ is then:

e∗ =ξ1t
∗
1
′ + ξ2t

∗
2
′ + x∗0

′ − t∗3 (31)

=ξ1(Qt1)′ + ξ2(Qt2)′ + (c + Qx0)′ −Qt3 (32)

=ξ1(Q′t1 + Qt1
′) + ξ2(Q′t2 + Qt2

′) (33)

+ (c′ + Q′x0 + Qx0
′)−Qt3 (34)

=ξ1Qt1
′ + ξ2Qt2

′ + Qx0
′ −Qt3 (35)

=Q(ξ1t1
′ + ξ2t2

′ + x0
′ − t3) (36)

=Qe (37)

As the scalar product remains invariant by orthogonal transformations:

e∗.t∗i =Qe.Qti (38)

=e.ti (39)

Consequently, according to the tensor definition in (27) we then have:

ε̃∗ = ε̃ (40)

Finally, the small-strain tensor including Poisson effect ε̃ is invariant under rigid body motions and is then

an objective strain measure.

3.3. Beam configuration from strain measures

Let U = UiEi be a unit vector in the reference undeformed configuration noted u in the deformed current

configuration. The normal strain including Poisson effect at location (ξ, s) in the direction U for a material

with Poisson ratio ν is noted ε and can then be expressed using the tensor ε̃:

ε = U ε̃(ξ, s, ν) U (41)

Using the expression of ε̃ in (27) then gives:

ε = e(ξ, s).ti(s)UiU3 − νe(ξ, s).t3(s)
(
U2
1 + U2

2

)
(42)

The expression (42) shows that the inclusion of the Poisson effect in our model leads to the appearance of

the new term νe(ξ, s).t3(s)
(
U2
1 + U2

2

)
in the strain expression. From the definition of the strain vector in

(20) results the following scalar relations:

e(ξ, s).t1(s) =γ1(s)− ξ2κ3(s) (43)

e(ξ, s).t2(s) =γ2(s) + ξ1κ3(s) (44)

e(ξ, s).t3(s) =γ3(s) + ξ2κ1(s)− ξ1κ2(s) (45)
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Using the relations (43), (44) and (45) the strain ε can therefore be expressed as the scalar product between

the beam position and direction vector V(ξ,U, ν) and the beam configuration vector K(s):

ε = V(ξ,U, ν).K(s) (46)

with the vector field V : R2 × R3 × R→ R6 having the following components Vi:

V1(ξ,U, ν) = ξ2
(
U2
3 − ν

(
U2
1 + U2

2

))
(47)

V2(ξ,U, ν) = −ξ1
(
U2
3 − ν

(
U2
1 + U2

2

))
(48)

V3(ξ,U, ν) = U3 (ξ1U2 − ξ2U1) (49)

V4(ξ,U, ν) = U1U3 (50)

V5(ξ,U, ν) = U2U3 (51)

V6(ξ,U, ν) = U2
3 − ν

(
U2
1 + U2

2

)
(52)

and the vector field K : R→ R6 defined by:

K1(s) = κ1(s) (53)

K2(s) = κ2(s) (54)

K3(s) = κ3(s) (55)

K4(s) = γ1(s) (56)

K5(s) = γ2(s) (57)

K6(s) = γ3(s) (58)

The strain measured at location (ξk, s) in the direction Uk is noted εk with k ∈ I. As six strain measures

are necessary to retrieve the full strain configuration of a beam cross section, we pose I = J1, 6K. The vector

composed of the strain measures is noted B with Bi = εi. Using (46) the system associating the strain

configuration K(s) to the strain measures B is defined by:

A (ξk,Uk, ν) K(s) = B (59)

with A the matrix of the system such that:

Ai,j = Vj(ξi,Ui, ν) (60)

Under the assumption of the inversibility of matrix A, the beam configuration of a cross section K(s) can

then be expressed from the strain measures B on that cross section:

K(s) = A−1 (ξk,Uk, ν) B (61)
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3.4. Beam shape reconstruction

The resolution of system (59) gives the values of each parameters κi(s) and γi(s) at each abscissa s where

strain measures are made. The interpolation of those values gives the estimates of κi and γi on the whole

length of the beam. From (9) we have the following relation where [.]E is the matrix form of a tensor in the

(E1,E2,E3) basis:

[Λ′]E = [Ω]E [Λ]E (62)

Using the transformation matrix [Λ] we have by coordinate transformations of tensor components:

[Ω]E = [Λ] [Ω]t
[
ΛT
]

(63)

Finally using the fact that the matrix form of the tensor Λ in the basis (E1, E2, E3) is equal to the

transformation matrix [Λ] we have: [
ΛT
]′
E

=
[
ΩT
]
t

[
ΛT
]
E

(64)

Let tji be the components of vector ti in the basis (E1, E2, E3) such that ti = tjiEj. From (64) we build the

following matrix differential equation:

Y′ =AY (65)

Y(0) =Y0 (66)

with:

Y =


t11 t21 t31

t12 t22 t32

t13 t23 t33

 , A =


0 κ3 −κ2
−κ3 0 κ1

κ2 −κ1 0

 (67)

and Y0 containing the initial coordinates of the frame (t1, t2, t3) at one of the extremity. Equation (66)

will be solved with the iterative method called Local Coordinates Approach [17]. The iteration relies on

the Magnus expansion which provides an exponential formulation of the solution of the first order matrix

differential equation [29]. The interval of resolution is [sn, sn+1] with h = sn+1− sn the step of the method.

The matrix Yn is the approximation of Y(sn). Truncation of the Magnus expansion and approximation by

the midpoint rule provides an iterative step of order 2:

Yn+1 = exp

(
hA

(
sn +

h

2

))
Yn (68)

Equation (68) contains a matrix exponential. Let define the isomorphismˆ: R3 → so(3) such that for θ ∈ R3:

∀h ∈ R3, θ̂h = θ × h (69)
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with:

θ =


θ1

θ2

θ3

 , θ̂ =


0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0

 (70)

and according to Simo et al. we have [41]:

exp(θ̂) = cos(‖θ‖)I + sin(‖θ‖)ê + (1− cos(‖θ‖))e⊗ e (71)

with e = θ/ ‖θ‖. By posing:

λ = −h


κ1
(
sn + h

2

)
κ2
(
sn + h

2

)
κ3
(
sn + h

2

)
 (72)

we then have:

λ̂ = hA

(
sn +

h

2

)
(73)

and using (71) we then have:

exp

(
hA

(
sn +

h

2

))
= cos(‖λ‖)I + sin(‖λ‖)µ̂ (74)

+ (1− cos(‖λ‖))µ⊗ µ (75)

with µ = λ/ ‖λ‖. Consequently, the set (Yn)n=0,..,N is obtained by iteration. Let γn be the following

vector:

γn =


γ1(sn)

γ2(sn)

1 + γ3(sn)

 (76)

According to (11), the set (x1n)n=0,..,N containing the approximations of the tangent to the beam neutral

axis x0
′(si) can be expressed by:

∀n ∈ J0, NK , x1n = Yn
Tγn (77)

Let (x0n)n=0,..,N be the set of points of the neutral axis of the beam for the discretization (sn)n=0,..,N

with x00 the coordinates of the beam extremity. This set can be calculated iteratively using the tangents

obtained previously:

x0n+1 = x0n + hx1n (78)

Finally, the deformed shape of the beam neutral axis has been reconstructed from strain measures.
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(a) Circular beam surface reference configuration (b) Circular beam angle of orientation of the strain measure

Figure 4: Circular beam

4. Beam shape sensing including bending, torsion and Poisson deformations : Application to

circular beams

This section proposes a method for beam shape sensing with a circular beam as an application of the

theory presented in the previous section. As there is no warping for a beam with a circular cross section

[4], the choice of this cross section geometry is consistent with the choice to not consider the out-of-plane

deformation in the beam model. This application illustrates also the the possibility to select in the model

the deformations to be taken into account. Here the bending and torsion deformation will be retrieve from

the strain measures, to be used in the reconstruction, whereas the tensile and shearing deformation will not

be exploited. This selection allows to decrease the number of strain measures to four instead of six without

degrading the reconstruction accuracy as the tensile and shearing deformation have very little impact on it.

They can thus be neglected compared to bending and torsion deformation. Consequently, only bending and

torsion are taken into account in the strain configuration estimation and in the shape reconstruction. There

is no impact on the estimation of bending and torsion as tensile and shearing are set together in the bias

parameter which feature the unexploited parameters together. This choice meets the need to have a good

cost-accuracy trade-off and the possibility, already developed in the litterature, to instrument a beam with

four strain sensors on the cross sections [43, 48, 28, 19, 21].

4.1. System expression

Let’s consider a straight beam with circular cross section of radius r. Let ξ be a position at the surface

of the beam parameterized with cylindrical coordinates, as illustrated in Fig. 4a:

ξ = ξ1E1 + ξ2E2 (79)

with

ξ1 = r cosα, ξ2 = r sinα, α ∈ [0, 2π[ (80)

Let U be the vector tangent to the surface of the beam at location ξ and which makes an angle β with E3,

13



A (αk, βk, ν) = (82)
(cos2 β1 − ν sin2 β1) sinα1 −(cos2 β1 − ν sin2 β1) cosα1 cosβ1 sinβ1 1

(cos2 β2 − ν sin2 β2) sinα2 −(cos2 β2 − ν sin2 β2) cosα2 cosβ2 sinβ2 1

(cos2 β3 − ν sin2 β3) sinα3 −(cos2 β3 − ν sin2 β3) cosα3 cosβ3 sinβ3 1

(cos2 β4 − ν sin2 β4) sinα4 −(cos2 β4 − ν sin2 β4) cosα4 cosβ4 sinβ4 1

 (83)

as shown in Fig. 4b. The angle β will be the angle of orientation of the strain measure. The coordinates of

U in the basis (E1, E2, E3) are:

U =


− sinα sinβ

cosα sinβ

cosβ

 (81)

Based on (46) the strain ε is now expressed as the scalar product between the beam position and direction

vector V ∈ R4 and the beam configuration vector K ∈ R4:

ε = V(α, β, ν).K(r, α, β, s, ν) (84)

with

V1(α, β, ν) =
(
cos2 β − ν sin2 β

)
sinα (85)

V2(α, β, ν) = −
(
cos2 β − ν sin2 β

)
cosα (86)

V3(α, β, ν) = cosβ sinβ (87)

V4(α, β, ν) = 1 (88)

and

K1(r, α, β, s, ν) = rκ1(s) (89)

K2(r, α, β, s, ν) = rκ2(s) (90)

K3(r, α, β, s, ν) = rκ3(s) (91)

K4(r, α, β, s, ν) = δ(α, β, s, ν) (92)

with:

δ(α, β, s, ν) =− sinα cosβ sinβγ1(s) (93)

+ cosα cosβ sinβγ2(s) (94)

+
(
cos2 β − ν sin2 β

)
γ3(s) (95)
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The beam configuration vector K is composed of the bending parameters κ1 and κ2, the torsion paramereter

κ3 and δ containing the shearing and tensile parameters γ1, γ2 and γ3. For a beam instrumented with 4

strain sensors on a cross section, with αi and βi being the radial and axial angle of the ith sensor, we then

have the following system:

A (αk, βk, ν) K(r, α, β, s, ν) = B (96)

The vector B contains the strain measures, with Bi = εi and the expression of the matrix A is presented in

(83). If β1 = β2 = β3 = β4 the matrix A is not invertible because its third and fourth column are collinear,

as shown in (83). Consequently, in order to solve the system (96) βi angles cannot be constant. The values

of βi are set to the following values: β1 = β, β2 = −β, β3 = β, β4 = −β with β ∈]0, π/2[. The values of αi are

spaced with the same angle π/2 as present in litterature [43, 48, 28, 19, 21]: α1 = 0, α2 = π
2 , α3 = π, α4 = 3π

2 .

The matrix A has then the following expression:

A (αk, βk, ν)=
0 −(cos2β−νsin2β) cosβ sinβ 1

(cos2β−νsin2β) 0 − cosβ sinβ 1

0 (cos2β−νsin2β) cosβ sinβ 1

−(cos2β−νsin2β) 0 − cosβ sinβ 1

 (97)

It should be noted that for the value β = βb with βb = tan−1(1/
√
ν), the matrix A is not inversible. The

reason can be explained by the value of V1 and V2 in (85) and (86) which are null for this specific value of

βb. In this case the strain ε expressed in (84) only depends of torsion and shearing deformation. The strain

measure ε is then blind to bending and tensile deformation as this value of βb is the angle for which the

axial strain due to these phenomenon and the transverse strain caused by the Poisson effect due to these

phenomenon are cancelling each other. The angle β is thus chosen such that β 6= βb and the expression of

the inverse A−1 is then:

A−1 (αk, βk, ν) =

1

4


0 2

cos2 β−ν sin2 β
0 −2

cos2 β−ν sin2 β

−2
cos2 β−ν sin2 β

0 2
cos2 β−ν sin2 β

0

1
cos β sin β

−1
cos β sin β

1
cos β sin β

−1
cos β sin β

1 1 1 1

 (98)

4.2. Impact of Poisson effect

The absence of the variable ν in the third row of the expression of A−1 in (98) demonstrates that the

Poisson effect does not have any influence on the estimation of the torsion parameter κ3. In fact, as the

torsion of a beam being the rotation of the cross sections between each other, the axial strain thus does not
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Figure 5: Impact of the non-inclusion of the Poisson effect on the estimates of the bending parameters κ1 and κ2: the relative

error of curvature estimation in percent is expressed according to to Poisson ratio ν and strain sensor orientation angle β.

have any impact on it. On the opposite, the presence of the variable ν in the first and second rows illustrates

that the Poisson effect has an impact on the estimate of the bending parameters κ1 and κ2:

κ1 =
ε2 − ε4

2r(cos2 β − ν sin2 β)
(99)

κ2 =
−ε1 + ε3

2r(cos2 β − ν sin2 β)
(100)

The strain parameters estimated without taking into account the Poisson effect are noted κ∗1 and κ∗2 and are

obtained from (99) and (100) by setting ν = 0. These parameters κ∗i can then be expressed in terms of κi:

κ∗i = (1− ν tan2 β)κi (101)

Finally, when the Poisson effect is not taken into consideration the estimate of the bending parameters are

multiplied by the coefficient (1 − ν tan2 β). Therefore, when the strain sensors measure the axial strain

and are placed parallel to the beam (β = 0) these estimates are the same. This explains why works in the

litterature with beam shape sensing methods where axial strains are considered produce good results without

taking into account Poisson effect. The relative error of the estimates for the current beam instrumentation

when the Poisson effect is not considered is illustrated in Fig. 5.

5. Beam shape sensing including bending, torsion and Poisson deformation : Validation for

circular beams

This section presents the results of validation by simulation of the beam shape sensing method presented

in Section 4. The beam considered is a circular beam with a cross section diameter of 4 mm and a length
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Deformation
Loads

Type Value Location Direction

1 F -10 N 400 mm Ox

2
F 5 N 200 mm Ox

F -10 N 400 mm Oy

3

F -10 N 100 mm Oy

M -1000 N.mm 200 mm Oz

F 10 N 300 mm Ox

M 1000 N.mm 400 mm Oz

4
M -1000 N.mm 200 mm Oz

F -10 N 400 mm Oy

5
M -200 N.mm 400 mm Oz

F -4 N 400 mm Oy

6
M -1000 N.mm 400 mm Oz

F 1 N 400 mm Oy

Table 1: Load cases used for the simulations of beam deformation. The letter F and M denotes respectively a force and a

moment.

of 400 mm. The material of the beam is stainless steel and has a Poisson ratio of ν = 0.30. The initial

geometry of the beam is straight, clamped at one of its extremity and free at its other. Different cases

of deformations of beams subject to the static loads were simulated with FEM using ANSYS software.

The method presented in Section 4 integrate in a full manner not only the bending but also the torsion

deformations and how the strain due to that torsion is impacted by the Poisson effect. It is thus interesting

to evaluate the reconstruction method accuracy on torsion deformations cases to assess the validity of the

Poisson effect inclusion in the beam shape sensing method. In order to do so, the beam shape sensing method

proposed in (4) is compared to beam shape sensing taking into account only bending deformation. The beam

deformations considered are six cases of deformations with different intensity of torsion deformations for the

purpose of sweeping out cases of very different mechanical loadings. The different loads applied in each of

the cases are described in Table 1. Deformation 1 is a case of simple bending with a single load applied at

the extremity of the beam. Deformation 2 is a case of combined bending with two loads applied orthogonally

to each other at the middle and at the extremity of the beam. Deformation 3 is a case of bending combined

with torsion, with two loads applied at 25% and 75% of the beam and two opposite moments of torsion

applied at the middle and at the end of the beam. Deformation 4 is a case of bending combined with

torsion, with a single load applied at the middle on the beam and a moment of torsion applied at the end
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of the beam. Deformation 5 and 6 are bending combined with torsion, with single load and moment of

torsion applied at the end of the beam. Exemple of the deformed beam shapes are shown in Fig. 6a and

Fig. 6b and their tip deflections, obtained from the deformed beam configurations of the simulation results,

are presented in Table 2. Simulation results obtained with FEM are used to obtain the strain measures at

(a) Deformation 1: One force (b) Deformation 3: Two moments & two forces

Figure 6: Beam deformations

the surface of the beam for any angle of orientation β. Using these strain measures as input data of beam

shape sensing method allows to obtain the reconstructed beam shape. It is then possible to compare it with

the actual deformed shape of the beam in order to evaluate the reconstruction accuracy of the beam shape

method. The beam shape method proposed in Section 4, using 4 strain measures per intrumented cross

sections will be used with the angle of strain measure β = 45◦ to maximize the shear strain due to torsion.

This method will be compared with a beam shape method derived also from Section 3 but using only 3 strain

measures of axial strain (β = 0◦), as proposed in the litterature for circular beams [31, 33, 32, 18, 30, 2, 34].

Tip distances between reconstructed shapes are used to assess of the quality of the reconstruction methods

proposed. The reconstructed beam shapes are presented along with the actual beam shape in Fig. 7 for

each of the six cases. The results of reconstruction tip errors are presented in Table 2. The beam length

was discretized using a step of 2 millimeters. The reconstruction accuracy for deformation 1 is the same as

both of the methods exhibit a tip error of 1.7 mm. In case of deformation 2 and 3 the beam shape is better

reconstructed with our method with tip errors of 1.7 mm and 1.6 mm compared to 1.9 mm and 2.0 mm with

axial strain beam shape sensing method. Beam shapes reconstructions are exhibited in Fig. 7b and Fig. 7c.

This improvement corresponds to a relative gain in accuracy of 11% and 20%. Concerning deformations 4, 5

and 6 the reconstructions are significantly better with our method, as shown in Fig. 7d, Fig. 7e and Fig. 7f.

The reconstructed tip errors are thus 2.3 mm, 0.1 mm and 0.1 mm with our method compared to 7.5 mm,

0.9 mm and 1.1 mm with beam shape sensing method using axial strain. This increase of reconstruction
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accuracy constitutes a relative gain of 70%, 89% and 91%. Not only the absolute reconstruction tip errors

are smaller with our method, but the relative tip errors are also more consistent as their values are not

higher than 3% of the beam deflection, as opposed to beam shape sensing method using axial strain which

presents a 9.1% and 12.9% relative tip error for deformation 4 and 6 according to Table 2.

(a) Deformation 1 (b) Deformation 2 (c) Deformation 3

(d) Deformation 4 (e) Deformation 5 (f) Deformation 6

Figure 7: Original and reconstructed beam deformed shapes. The original beam shapes are represented in green. The beam

shapes in blue have been reconstructed using 4 strain measures (β = 45◦) per cross sections and the beam shapes in black have

been reconstructed using 3 axial strain measures (β = 0◦) per cross sections.

6. Discussion

In this article was presented a large deflection beam shape sensing method fully including the Poisson

effect. In fact, the transversal strain caused by axial strain due to Poisson effect can have a significant impact

on the beam strain. The Poisson effect has also an influence on the configuration of the cross section, but

opposed to its influence on strains, the influence of the Poisson effect on sensor positions is minimal. The

Poisson effect was thus included in an extended version of the small strain tensor and not in the beam space
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Deformation
Deflection

at free end

Reconstruction tip error
Gain in accuracy

3 parallel strain sensors 4 non-parallel strain sensors

Absolute
Relative

(% of deflection)
Absolute

Relative

(% of deflection)
Absolute Relative

1 81.3 mm 1.7 mm 2.1% 1.7 mm 2.1% 0.0 mm 0%

2 82.2 mm 1.9 mm 2.3% 1.7 mm 2.1% 0.2 mm 11%

3 53.4 mm 2.0 mm 3.7% 1.6 mm 3.0% 0.4 mm 20%

4 82.0 mm 7.5 mm 9.1% 2.3 mm 2.8% 5.2 mm 70%

5 33.7 mm 0.9 mm 2.7% 0.1 mm 0.3% 0.8 mm 89%

6 8.5 mm 1.1 mm 12.9% 0.1 mm 1.2% 1.0 mm 91%

Table 2: Beam tip deflections of the deformed beams and reconstruction tip errors according to the sensors configurations.

configuration. This method was described previously in the litterature but to the author’s knowledge has

not been used before for beam shape sensing. A small-strain tensor including Poisson effect is thus obtained

and can then be used to express the strain parameters in terms of strain measures. The large deflection

property of the beam shape sensing method is preserved thanks to the objectivity of this tensor which is due

to the geometrically-exact characteristics of the beam theory used. It results that the beam shape sensing

is then able to handle bending, torsion, shearing and tensile-compression deformations.

A practical exemple of beam shape sensing was presented with a circular straight beam of 400 mm

length and instrumented with 4 strain sensors per cross sections with an angle of orientation β = 45◦. The

number of 4 strains measures was dictated by the cost-accuracy trade-off governing real instrumentation.

It was then chosen as a compromise between the necessity to handle deformations having the most impact

on the shape reconstruction (bending and torsion) and the need to limit the number of strain measures by

cross section. The goal of this restriction to bending and torsion is also to facilitate the comparison with

other method only taking into account bending. The principal difference then residing in the inclusion of

torsion, it is then possible to evaluate its impact on reconstruction from adequate cases of deformation.

The reconstruction results can then be used to evaluate the accuracy of the beam shape sensing method

proposed and specifically of the beam model with Poisson effect.

The deformations cases were conceived to contained various level of torsion. In every case flexion has

been added by application of point loads because reconstruction of the beam neutral axis under torsion

only would have been unnoticeable. The shear center is the point on the cross section of the beam where

the application of loads does not cause its twisting. As the cross section of the beam is circular and thus

symmetrical, the shear center of the beam is the same as the center of gravity and is thus the neutral axis.

Deformation 1 is a case of simple bending and as the load is applied on the center of the cross section there
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is no torsion. Deformation 2 is a case of combined bending caused by two orthogonal loads, one at the

center of the beam and the other at the extremity. Deformation 3 is a combination of bending and torsion

by application of two loads and two opposed moments applied on the middle and the extremity of the beam.

The last three deformations are combination of bending and torsion with a single moment of torsion applied

in each case. It is suggested that these are the cases where the torsion intensity is the highest. In the case

of deformation 4 the moment of torsion is applied at the center of the beam and is then null between the

center and the free extremity. For deformations 5 and 6 the moment is applied at the extremity of the beam

and is then uniform the whole length of the beam. The moment value is higher in case of deformation 6.

Even though it can seem logical that the beam shape sensing methods with 4 strain measures per cross

section produce better reconstruction results than the method with 3 strain measures, it should be noted that:

1) the gain in accuracy is significant, 2) the more the torsion is, the higher the gain is. Taking into account

torsion thus allow to reconstruct more accurately some case of deformations. Here, deformation 1 does not

include torsion and is thus reconstructed with the same accuracy by both methods. The deformation 2 and

3 have limited torsion (deformation 2 because the torsion is induced by the double bending and deformation

3 because the two moments applied are have opposed signs). The gain for those two reconstructions with

our method is then limited. In the case of deformation 4, 5 and 6 the torsion is high due to the property

of the loads: the gain of accuracy is thus significant with our method. Our method then give better or

even results than the classical beam shape sensing methods using axial strains. The beam shape sensing

method proposed thus take into account effectively torsional deformations. Finally, these results validate

our approach concerning the Poisson effect and the beam shape sensing method proposed.

7. Conclusion

In this article a new large deflection beam shape method including Poisson effect was presented. Sim-

ulation results showed the improvement of reconstruction accuracy obtained with this method compared

to beam shape method using axial strain in case of deformations not limited to bending. This validates

the relevancy of the approach concerning the inclusion of the Poisson effect in the beam model and the

beam shape sensing method proposed. Future works will include experimental beam shape reconstructions,

optimal angle of strain measures, impact of sensor positioning accuracy on parameters estimations, beam

load reconstruction from strain measures as well as addition of the out-of-plane warping effect.
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