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Abstract Inserting renewable energy in the electric grid in a decentralized
manner is a key challenge of the energy transition. However, at local stage,
both production and demand display erratic behavior, be it for the depen-
dence upon local weather conditions. Thus, the match between supply and
demand is delicate to achieve in such a stochastic context. It is the goal of
Energy Management Systems (EMS) to achieve such balance at least cost.
We present EMSx, a numerical benchmark for testing control algorithms for
the management of electric microgrids doted with a photovoltaic unit and an
energy storage system. Our benchmark is based on a rich collection of histor-
ical observations and forecasts collected by the company Schneider Electric.
Besides the dataset, we also publicly release EMSx.jl, a package implemented
in the Julia language which enables to easily implement a microgrid controller
and to test it on the EMSx benchmark. Eventually, we showcase the results
of standard microgrid control methods, including Model Predictive Control,
Open Loop Feedback Control and Stochastic Dynamic Programming.
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1 Introduction

Inserting renewable energy in the electric grid is a key challenge of the energy
transition. Compared with standard power units, wind and solar generators
are subject to more uncertainties, due to their dependence on local weather
conditions. Their integration in the power system is often envisaged at a lo-
cal scale, where the demand is more erratic than at a global scale. In this
work, we focus on photovoltaic units integrated in local power networks, with
uncertainties arising both from the electric load and from the photovoltaic
power generation. Ideally, the local production would match the consumption
at all time. In practice, the stochasticity of both signals lowers the covering of
the load by the photovoltaic power. Introducing an energy storage system can
help equating supply with demand in such electric microgrids. The resulting
complex management problem aims at reducing the energy bill.

The optimal operation of such systems is a well-known challenge. We refer
to [8, 9, 13] for examples of battery management for renewable power integra-
tion in electric microgrids. Our work is concentrated on Energy Management
Systems (EMS) that set target state of charge or average power for the stor-
age system over time spans of a few minutes. An EMS is a high level layer of
hierarchical control, responsible for operating the microgrid while optimizing
security and economic criteria [11].

In this paper, we are concerned with the numerical assessment of EMS
strategies, yielded by control algorithms. Several works have proposed to com-
pare such control algorithms on a problem that they provide [9, 13, 14]. We
introduce the EMSx benchmark, an electric microgrid management problem
designed for evaluating controllers on a unified challenge. Compared with pre-
vious EMS experimental benchmarks, the strength of EMSx relies on its open-
data and open-software inclination. Besides, the data that we release offer a
diversified and realistic pool of microgrids collected by the Schneider Electric
company on 70 industrial sites. While these data can be used for various tasks
related to microgrid simulation, we also release the EMSx.jl package imple-
mented in the Julia [4] language, that enables simulating a large range of con-
trollers on Schneider Electric’s dataset. We also propose a score for measuring
the aggregated performance of controllers across different sites. We illustrate
the application of the EMSx benchmark on a selection of controllers derived
from multistage deterministic and stochastic optimization techniques. Our se-
lection includes standard Model Predictive Control (MPC, [2,7]), Open Loop
Feedback Control (OLFC, [1, Vol. 1, §6.2], sometimes referred to as stochas-
tic MPC), Stochastic Dynamic Programming (SDP [3, 12]), and an extended
state formulation of a plain SDP controller that models uncertainties with an
auto-regressive process (SDP-AR , [15, §3.1.1] and [10]).

This paper is structured as follows. We introduce our dataset in Sect. 2,
then we formalize the EMSx benchmark in Sect. 3 by providing a microgrid
simulation model, a score and simulation parameters. In Sect. 4, we introduce
some control methods and outline their performance on the EMSx benchmark.
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The Appendix A gathers additional material on the numerical experiments of
Sect. 4.

2 Dataset

We present the Schneider Electric dataset which offers a large collection of field
data, from 70 sites, for studying the management of electric microgrid. The
dataset includes battery parameters, and both historical observations (§2.1)
and historical forecasts (§2.2). In §2.3, we illustrate how the 70 sites differ in
terms of “predictability”.

Schneider Electric has collected a large data base of photovoltaic and load
profiles on real operated microgrids deployed on a various collection of sites. We
provide a set I of 70 sites. On each site i ∈ I, we provide battery parameters
(ci, l

i
, ρic, ρ

i
d)i∈I (see the storage dynamics part in §3.1 below). We also sample

the continuous time every 15 minutes, giving, for each site i ∈ I, a time index
t ∈ {1, 2, . . . , θi − 1, θi}, over a horizon θi (with at least one year of historical
observations per site). Every interval [t, t+ 1] corresponds to 15 minutes.

2.1 Historical observations

We dispose of measures of the photovoltaic generation gt and of the energy
demand dt over the last 15 minutes, providing vectors of historical observations
for each site i ∈ I

gi = (gi1, . . . , g
i
θi) ∈ Rθ

i

, ∀i ∈ I , (1a)

di = (di1, . . . , d
i
θi) ∈ Rθ

i

, ∀i ∈ I . (1b)

Examples of observed daily chronicles are given for photovoltaic generation
(Figure 1) and energy demand (Figure 2). Our data set is publicly available
at the url https://adrien-le-franc.github.io/home/data.html

2.2 Historical forecasts

On top of observed data, Schneider Electric also provides, every 15 minutes,
historical forecasts ĝit,t+1, . . . , ĝ

i
t,t+96 of photovoltaic profiles and historical fore-

casts d̂it,t+1, . . . , d̂
i
t,t+96 of demand profiles for the next 24 hours, hence giving

vectors for all sites i ∈ I and for all times t ∈ {1, . . . , θi}

ĝit = (ĝit,t+1, . . . , ĝ
i
t,t+96) ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (2a)

d̂it = (d̂it,t+1, . . . , d̂
i
t,t+96) ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (2b)

https://adrien-le-franc.github.io/home/data.html


4 Adrien Le Franc et al.

Fig. 1: Examples of daily
photovoltaic profiles

Fig. 2: Examples of daily
load profiles

hence sequences of historical forecasts for all sites i ∈ I

ĝi = (ĝi1, . . . , ĝ
i
θi) ∈ R96×θi , ∀i ∈ I , (3a)

d̂i = (d̂i1, . . . , d̂
i
θi) ∈ R96×θi , ∀i ∈ I . (3b)

By combining the stream (1) of historical observations with the stream (3)
of historical forecasts, we can thus closely reproduce the information available
to an online microgrid controller operating a real site.

2.3 Illustrating how sites differ in terms of predictability

The dataset covers a large spectrum of situations regarding variability and
predictability. To assess the predictability of the data at a given site i ∈ I, we
first introduce the historical net demand observations

zit = dit − git ∈ R , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (4a)

deduced from (1), and the historical net demand forecasts

ẑit = d̂it − ĝit ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (4b)

deduced from (3). Second, we normalize the historical net demand observations
by

z̃it =
zit − zi

zi − zi
∈ [0, 1] , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (5a)

where
{
zi = max1≤t≤θi{zit} , ∀i ∈ I ,
zi = min1≤t≤θi{zit} , ∀i ∈ I ,

(5b)

and we apply the same transformation to the components ẑit,t+1, . . . , ẑ
i
t,t+96 of

the historical net demand forecasts, yielding

˜̂zit,t+k =
ẑit,t+k − zi

zi − zi
∈ R , ∀k ∈ {1, . . . , 96} , ∀t ∈ {1, . . . , θi} , ∀i ∈ I . (6)
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Thus normalized, predictability can be compared across the pool of sites.
Third, we define the Root Mean Square Error (RMSE) of the site i ∈ I by

RMSE i =

√√√√ 1

96× θi
θi∑
t=1

96∑
k=1

(˜̂zit,t+k − z̃it+k)2 . (7)

The diversity of the forecast error over the pool of 70 sites is exposed
in Figure 3. Here, we ranked sites in increasing order of RMSE. We observe
that the error is quite stable in the wide flat central part of sites distribution,
but for the first 20% (with low forecast error) and for the last 20% (with
high forecast error) of the sites. Thus, our dataset offers a diversified pool of
microgrids which we expect to be a profitable playground for research in the
field of photovoltaic migrogrid management.

Fig. 3: RMSE of the net demand forecast over the pool of 70
sites ranked in increasing order of forecast error

3 The EMSx controller benchmark

Disposing of Schneider Electric’s data, we formulate a benchmark problem for
evaluating generic microgrid controllers (§3.1). Then, we describe the structure
of a controller, and how it is assessed by simulation along a partial chronicle,
in §3.2. In §3.3, we detail a score to assess controllers, and we extend it into a
score to assess a controller design technique in §3.4. Finally, we present in §3.5
the microgrid simulation package EMSx.jl, implemented in the Julia language
and destined to ease the simulation loop.
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3.1 Microgrid control simulation

We consider an electric microgrid composed of a photovoltaic power unit, an
electric load and an energy storage system. We assume that all components of
the microgrid share a single point of connection with the global grid. At this
point, electric power can be imported or exported so as to satisfy the electric
power demand (total load) at all time. We provide a schematic model of such
a system (Figure 4). We outline the mathematical control of a microgrid over
a finite number of discrete time steps t ∈ {0, 1, 2, . . . , T − 1, T}, where unit
steps are spaced by ∆t = 15 minutes.

Fig. 4: Schematic microgrid model

Storage dynamics. The storage system is assumed to be a lithium-ion bat-
tery (or a container of aggregated batteries), characterized by the coefficients
(c, l, ρc, ρd) referring respectively to the battery’s capacity (kWh), maximum
load (kW), charge and discharge efficiency coefficients. The dynamics of its
state of charge xt is given by

xt+1 = f(xt, ut) , ∀t ∈ {0, . . . , T − 1} , (8a)

where the dynamics f is given by

f(x, u) = x+
ρc
c
u+ − 1

ρdc
u− , ∀(x, u) ∈ [0, 1]× R , (8b)

with u+ = max(0, u) and u− = max(0,−u) .

Constraints. The decision ut, taken at the beginning of every time inter-
val [t, t + 1[, accounts for the energy charged (ut ≥ 0) or discharged (ut ≤ 0)
during [t, t+ 1[. Combined with the dynamics (8), constraints of the form

ut ∈ U(xt) , ∀t ∈ {0, . . . , T − 1} (9a)
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restrict decisions ut to the admissibility set (related to some of the battery
parameters (c, l, ρc, ρd))

U(x) = {u ∈ R | u ≤ u ≤ u and 0 ≤ f(x, u) ≤ 1} , (9b)

where u = l×∆t and u = −l×∆t are the bounds on the energy that can be
exchanged with the battery during a 15 minutes interval.

Uncertainties and scenarios. For the purpose of defining the management
costs, we introduce the uncertainties

wt = (gt, dt) ∈ R2 , ∀t ∈ {1, . . . , T} (10a)

— which represent a couple of photovoltaic generation gt and of energy de-
mand dt — and we call scenario a sequence

(w1, . . . , wT ) ∈ R2×T (10b)

of uncertainties. As defined, both uncertainties and scenarios are generic vari-
ables, and not necessarily extracted from the historical observations of §2.1.

Costs. We now turn to the management costs. The stage cost during the time
interval [t, t+ 1] is

Lt(ut, wt+1) = p+t · e+t+1 − p
−
t · e−t+1 , ∀t ∈ {0, . . . , T − 1} , (11a)

where
et+1 = dt+1 − gt+1 + ut , ∀t ∈ {0, . . . , T − 1} , (11b)

is the energy exchanged with the grid —which, like the uncertainty (gt+1, dt+1),
materializes at the end of the time interval [t, t+1[, hence the index t+1— and
where (p+t , p

−
t ) is the energy tariff (buying at price p+t and selling at price p−t )

applied during the time interval [t, t+ 1].
Given a scenario (w1, . . . , wT ) and a sequence (u0, . . . , uT−1) of controls,

we obtain the total operating cost

L(u0, . . . , uT−1, w1, . . . , wT ) =

T−1∑
t=0

Lt(ut, wt+1) . (11c)

Eventually, we have introduced a dynamical system with dynamics (8),
constraints (9) and a cost structure (11).

3.2 Microgrid controller

A microgrid controller is a mathematical device that, given some information
at time t, yields a decision ut. We now detail the structure of the controllers
that we will consider. For this purpose, we introduce chronicles and manage-
ment cost.
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Partial chronicles. At the beginning of the time interval [t, t+ 1], we dispose
of all the past observations and past forecasts to make a decision ut. For
practical computational reasons, we have chosen to restrict this information
to the partial observations

(wt, wt−1, . . . , wt−95) ∈ R2×96 , ∀t ∈ {0, . . . , T − 1} (12a)

of uncertainties (10a) over the last 24 hours (hence 96 = 24× 60/15), and to
the partial forecasts

(ŵt,t+1, . . . , ŵt,t+96) =
( ĝt,t+1, . . . , ĝt,t+96

d̂t,t+1, . . . , d̂t,t+96

)
∈ R2×96 , ∀t ∈ {0, . . . , T − 1} ,

(12b)
which represent a prediction of the uncertainties (10a) for the next 24 hours.
Combined together, we obtain the partial observations-forecasts

ht =
( wt, wt−1, . . . , wt−95
ŵt,t+1, . . . , ŵt,t+96

)
∈ H , ∀t ∈ {0, . . . , T − 1} , (12c)

where

H = R2×96 × R2×96 , (12d)

and, stacking them all over the whole time span, we obtain the partial chron-
icle

h = (h0, . . . , hT−1) ∈ HT . (12e)

Controller. A controller φ is a sequence of mappings

φ = (φ0, . . . , φT−1) (13a)

where, for all t ∈ {0, . . . , T − 1}, we have

φt : [0, 1]×H→ R , (13b)
φt(xt, ht) ∈ U(xt) , ∀(xt, ht) ∈ [0, 1]×H , ∀t ∈ {0, . . . , T − 1} , (13c)

where the constraint set U(xt) is defined in (9b).

Management cost of a controller along a partial chronicle on a given site. All
dynamics (8), constraints (9) and cost structure (11) depend on parameters
relative to a site. Therefore, on a given site i ∈ I, we denote by f i the dynamics
of the battery in (8) and by U i the constraint set in (9b), as they depend on
the local parameters (ci, l

i
, ρic, ρ

i
d). We also denote by Lit the stage cost in (11a)

— as it depends on the energy tariff (p+,it , p−,it ) which could possibly be local
— and by Li the total operating cost in (11c), as it depends on dynamics f i,
constraint set U i and stage costs Lit.

Besides battery parameters and energy tariffs, sites differ from each others
in their historical data. For instance, the RMSE of the historical forecasts
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(Figure 3) is diversified across the pool of sites. Therefore, controllers in (13)
may differ accordingly. This is why we denote by φi a controller for the site
i ∈ I.

The application of a controller φi in (13) along a partial chronicle h ∈ HT
in (12e) yields the management cost

J i(φi, h) =

T−1∑
t=0

Lit(ut, wt+1) , (14a)

where, for all t ∈ {0, . . . , T − 1}, the sequence (u0, . . . , uT−1) of controls is
given by

x0 = 0 , (14b)

xt+1 = f i(xt, ut) , (14c)

ut = φit(xt, ht) . (14d)

The management cost J i(φi, h) will serve the assessment of the controller φi
in §3.3.

3.3 Designing and assessing a controller on a given site

We consider a given site i ∈ I. We outline how to design and we detail how to
assess a controller φi as in (13).

Data partitioning. We have split the data base in periods of one week ranging
from Monday 00:00 to Sunday 23:45, each week containing thus T = 672 = 7×
24×4 time steps. With this, the data base is now organized in chronicles Di ⊂
HT , elements of the set HT , where H has been defined in (12).

Then, we partition the chronicles in the data set Di in two disjoint subsets,
Ci for calibration (training, in-sample) and Si for simulation (testing, out-of-
sample):

Ci ∪ Si = Di ⊂ HT , Ci ∩ Si = ∅ . (15)

For the EMSx benchmark, we select randomly 40% of the weeks for simulation
and let the other 60% be available for calibration.

Calibration data. The calibration data in Ci is available for the design of mi-
crogrid controllers as in (13). The design can resort from any sort of technique
(see examples in §4.1 and in §4.2 below).

Simulation data. On top of the weekly periods, every simulation chronicle
in Si is augmented with the data of the Sunday before the period starts, fol-
lowing our definition (12e), so that, when simulating a microgrid controller,
24 hours of past history data is always available to the decision-maker. Simu-
lation chronicles serve for testing only; as such, they cannot be employed for
the design of a controller.
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Parameters. Additionally, we dispose of the battery parameters ci, l
i
, ρic, ρ

i
d,

whose dimension we designed with Schneider Electric. For computing the
management cost in (14), we use the energy tariff and time of use (p+t , p

−
t ),

in e/kWh, from the French electricity provider Électricité de France (EDF);
it is the same for all sites. At the beginning of any simulation, we assume the
battery to be empty (i.e. x0 = 0), and we do not impose any final cost.

Lower bound for the management cost. For any controller φi as in (13) and any
partial chronicle h ∈ HT in (12e), the management cost J i(φi, h) in (14) always
has the so-called “anticipative” lower bound J i(h), computed as the minimum
of (14a) under the same constraints, initial state (14b) and dynamics (14c),
but where the last constraint ut = φit(xt, ht) in (14d) is now enlarged as
ut = ψit(xt, h), for all t ∈ {0, . . . , T − 1}, for any ψit : [0, 1]×HT . This gives a
lower bound, because the minimization is done over such “anticipative” control
laws ψit : [0, 1]×HT , which encompass any controller φi as in (13). Therefore,
we easily get that, for any controller φi as in (13),

J i(h) ≤ J i(φi, h) , ∀h ∈ Si (16)

Performance score. With the battery parameters and energy tariff, and a given
site controller φi as in (13), the simulator in (14) yields as many management
costs J i(φi, h) as there are chronicles h in the simulation chronicles Si. Because
the volume of energy production and consumption is variable from one site to
another, raw management costs J i(φi, h) are not suitable for a global perfor-
mance analysis if we want to assess not only a given controller, but a controller
design technique (see examples in §4.1 and in §4.2, and see §3.4 below).

Therefore, we normalize the average management cost of controller φi over
chronicles h ∈ Si. For this normalization, the lower bound is furnished by
taking the average of the lower bound J i(h) in (16). For the upper bound,
we chose the average management cost of a dummy management policy that
does not use the battery, i.e. a dummy controller φd such that φdt = 0, for
t ∈ {0, . . . , T − 1}. The performance score (of a single controller φi) is

Gi(φi) =

1
|Si|
∑
h∈Si J i(φd, h)− J i(φi, h)

1
|Si|
∑
h∈Si J i(φd, h)− J i(h)

=

∑
h∈Si J i(φd, h)− J i(φi, h)∑
h∈Si J i(φd, h)− J i(h)

.

(17)
This score Gi(φi) can be interpreted as the gain of introducing an energy
storage system controlled by φi for the site i and the time span {0, 1, . . . , T}
(one week) considered, relatively to the maximum expected cost saving of
1
|Si|
∑
h∈Si J i(φd, h)− J i(h). It permits an immediate interpretation for prac-

titioners interested in deploying controllers on real microgrids. The higher the
score, the higher the gain allowed by the controller φi. Beware that, with this
normalization, if a controller φi performs worse than the dummy controller
φd, it will receive a negative score.
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3.4 Assessing a controller design technique

Controller design technique. In addition to assessing a given controller, we
also aim at assessing a design technique for controllers. We provide examples
of design techniques in §4.1 and in §4.2. In particular, when the same design
technique is used across all sites, we will consider a collection

{
φi
}
i∈I of con-

trollers derived from the application of a single design technique, but adapted
to each site i ∈ I.

Performance score of a collection of controllers. For a given collection
{
φi
}
i∈I

of controllers, one per site, we average the performance score (17) over sites,
yielding the performance score (of a collection

{
φi
}
i∈I of controllers)

G
( {
φi
}
i∈I

)
=

1

|I|
∑
i∈I

Gi(φi) . (18)

When the controllers φi in the collection
{
φi
}
i∈I have been designed by the

same technique, the score G
( {
φi
}
i∈I

)
in (18) is a proxy to measure the per-

formance of a controller design technique over a large range of situations, both
in time of the year and in type of microgrid. It permits an immediate interpre-
tation for practitioners interested in deploying a technique to design ontrollers
on real microgrids. The higher the score, the higher the gain allowed by the
technique.

3.5 The EMSx.jl package

In order to ease the simulation loop for computing the management cost (14) —
which has to be repeated on several testing periods, sampled from all sites, for
a various collection of controllers — we developed EMSx.jl, a microgrid simu-
lation package implemented in the Julia language. With the help of EMSx.jl,
it is easy to implement a large range of controllers, as defined in §3.2, and to
apply them on Schneider Electric’s dataset described in Sect. 2.

Given a site i ∈ I, a controller φi in (13) and a partial chronicle h ∈ HT
in (12e) (in practice, h ∈ Si, the simulation chronicles in (15)), the EMSx.jl
software returns the sequence of states of charge of the battery, controls and
stagewise costs, and, above all, the management cost J i(φi, h) in (14) and the
corresponding computing time.

Figure 5 illustrates how a dummy controller φdt = 0, t ∈ {0, . . . , T −
1} can be implemented and tested in a few lines of code. First, we define
a new type for our controller, named DummyController, as a subtype of
AbstractController, a built-in type of EMSx.jl (line 3). Then, we implement
the specialized expression (in Julia jargon, method) of the compute_control
function for the new DummyController type (line 5). In the given example, the
expression is trivial as the method always returns zero, but indeed more com-
plex ones could be implemented and could use the information object given
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in the input arguments of the function. The information object contains all
the data available to a controller as in (13). Eventually, we create an instance
of a DummyController (line 8) and launch the simulation over all simulation
chronicles (line 10) passing the created instance as argument. Battery param-
eters (c, l, ρc, ρd) (referred to as metadata, line 13) and energy tariff (p+, p−)
(line 12) can be changed by the user to run a custom simulation. The code
of EMSx.jl and more illustrative controller examples are publicly available at
https://github.com/adrien-le-franc/EMSx.jl.

� �
1 using EMSx
2
3 mutable struct DummyController <: EMSx.AbstractController end
4
5 EMSx.compute_control(controller::DummyController,
6 information::EMSx.Information) = 0.
7
8 const controller = DummyController()
9

10 EMSx.simulate_sites(controller,
11 "home/xxx/path_to_save_folder",
12 "home/xxx/path_to_price",
13 "home/xxx/path_to_metadata",
14 "home/xxx/path_to_simulation_data")� �
Fig. 5: Example of the implementation and simulation of a controller with the
EMSx.jl package

All in all, our benchmark includes a simulation algorithm packaged in the
EMSx.jl software, a set of simulation chronicles and parameters, and a score for
measuring controllers performance. All of these components are made publicly
available in order to encourage the testing of various controllers on the EMSx
benchmark. Now, we turn to an example of use of the EMSx.jl software.

4 Numerical experiments

To illustrate how we can use the EMSx controller benchmark of Sect. 3, we
present several controllers and provide their scores. These controllers φ all
have the same structure: for any step t ∈ {0, . . . , T−1}, the quantity φt(xt, ht)
in (13) is not given by an analytical formula, but as the solution of a (reference)
optimization problem. Controller design techniques differ according to the na-
ture of this latter problem, which is solved at every step t ∈ {0, . . . , T−1}, that
is, online (“on the fly”) as a function of the current available quantities (xt, ht).
A comprehensive overview of such techniques and algorithms is given in [1].

In §4.1, we present a class of so-called lookahead methods where the ref-
erence optimization problem is multistage open-loop. In contrast, in §4.2, we

https://github.com/adrien-le-franc/EMSx.jl
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present a class of so-called cost-to-go methods where the reference optimiza-
tion problem, solved online, is one-stage but depends on cost-to-go functions
that are computed offline. In §4.3, we comment the results obtained when
applying the controllers above on the EMSx controller benchmark.

4.1 Controllers obtained by lookahead computation methods

In lookahead methods, one solves, for every step t ∈ {0, . . . , T −1}, a reference
multistage (“looking ahead” from the current step t) optimization problem
which is open-loop, be it deterministic (MPC) or stochastic (OLFC). Stochas-
tic (scenario-based) lookahead methods are limited by the exponential growth
of the computing time with respect to the number of scenarios.

4.1.1 Model Predictive Control

The Model Predictive Control (MPC) method is one of the most famous looka-
head techniques [1, Vol.1, §6.1]. The MPC method mainly exploits the forecast
data. It yields a controller φMPC

t = (φMPC
0 , . . . , φMPC

T−1) by solving a sequence of
multistage deterministic optimization problems over a fixed1 horizon H (in
the numerical application, H = 96)

u?t ∈ argmin
ut

min
(ut+1,...,ut+H−1)

t+H−1∑
s=t

Ls(us, ŵt,s+1) ,

xs+1 = f(xs, us) , ∀s ∈ {t, . . . , t+H − 1} ,
us ∈ U(xs) , ∀s ∈ {t, . . . , t+H − 1} ,

φMPC
t (xt, ht) = u?t ,

(19)
where only the first value u?t of an optimal sequence (u?t , u

?
t+1, . . . , u

?
t+H−1) is

kept.
When used in simulation, only the simulation (testing) chronicles in Si in

the partition (15) are used in (19), and not the calibration (training) chronicles
in Ci; moreover, only a subvector (of available forecasted values) of the whole
vector (12) of partial observations-forecasts is used, namely (ŵt,t+1, . . . , ŵt,t+H−1)

Due to the mathematical expressions for the dynamics (8), the constraints (9)
and the cost function (11), the multistage deterministic optimization prob-
lem (19) formulates here as a Linear Program.

4.1.2 Open Loop Feedback Control

The Open Loop Feedback Control method belongs to the family of online looka-
head methods and its approach is similar to MPC, but for a stochastic com-
ponent. It yields a controller φOLFC

t = (φOLFC
0 , . . . , φOLFC

T−1 ) by a sequence of

1 When the horizon extends further than the period, we truncate the lookahead window
to min(H,T − t+ 1).
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multistage open-loop stochastic optimization problems over a fixed2 horizon H
(in the numerical application, H = 96)

u? ∈ argmin
ut

min
(ut+1,...,ut+H−1)

∑
σ∈S

πσt

( t+H−1∑
s=t

Ls(us, w
σ
t,s+1)

)
,

xs+1 = f(xs, us) , ∀s ∈ {t, . . . , t+H − 1} ,
us ∈ U(xs) , ∀s ∈ {t, . . . , t+H − 1} ,

φOLFC
t (xt, ht) = u?t .

(20)
The optimization problem (20) is open-loop because the sequence of controls
(ut+1, . . . , ut+H−1) in the (second) min is not indexed by the scenarios σ ∈ S.
Only the first value u?t of an optimal sequence (u?t , u

?
t+1, . . . , u

?
t+H−1) is kept.

The optimization problem (20) is stochastic because of the scenarios (wσt,t+1,
. . . , wσt,t+96)σ∈S, together with their probabilities (πσt )σ∈S. These scenarios and
their probabilities are built from two sources: on the one hand, from the sub-
vector (ŵt,t+1, . . . , ŵt,t+H−1) of available forecasted values given in the whole
vector (12) of partial observations-forecasts in the simulation (testing) chron-
icles in Si in (15); on the other hand, from partial observations-forecasts in
the calibration (training) chronicles in Ci in (15), from which we calibrate a
scenario generation model. In the forcoming numerical experiments in §4.3, we
generate scenarios by modeling the deviations from the net demand 24-hours-
forecast as a Markov chain. We detail our scenario generation method in §A.1.
In numerical implementations, the number of samples used varies between 10,
50 or 100 scenarios.

4.2 Controllers obtained by cost-to-go computation methods

In cost-to-go methods, one solves online, for every step t ∈ {0, . . . , T − 1},
a reference single stage stochastic optimization problem, which itself depends
on cost-to-go functions, computed offline. These functions are called cost-to-
go because, ideally, they map any state of the system to the optimal, over
closed-loop strategies, expected future cost from a given time step to the final
horizon. The Stochastic Dynamic Programming method is the most famous of
cost-to-go computation techniques [1]. Cost-to-go methods are limited by the
exponential growth of the computing time with respect to the dimension of
the state space.

4.2.1 Stochastic Dynamic Programming

Stochastic Dynamic Programming is a stochastic method but, to the difference
with OLFC, it is closed-loop.

2 See Footnote 1.
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– In the offline phase of the SDP algorithm, one computes a sequence of
so-called value functions (Vt)t=0,1,...,T−1,T by the Bellman (or dynamic
programming) equation, backward for t ∈ {0, . . . , T − 1},

VT (x) = 0 , (21a)

Vt(x) = min
u∈U(x)

∑
σ∈Soff

πoff,σ
t+1

(
Lt(u,w

off,σ
t+1 ) + Vt+1

(
f(x, u)

))
. (21b)

– In the online phase of the SDP algorithm, one computes
u?t ∈ argmin

ut

∑
σ∈Son

πon,σ
t+1

(
Lt(u,w

on,σ
t+1 ) + Vt+1

(
f(x, u)

))
φSDP
t (xt, ht) = u?t .

(22)

The optimization problem (21)–(22) is stochastic because of the scenarios
(woff,σ

t+1 )σ∈Soff , together with their probabilities (πoff,σ
t+1 )σ∈Soff , and of the scenar-

ios (won,σ
t+1 )σ∈Son , together with their probabilities (πon,σ

t+1 )σ∈Son .
The scenarios indexed by σ ∈ Soff , and their probabilities, are built exclu-

sively from partial observations-forecasts in the calibration (training) chroni-
cles in Ci, in (15). The scenarios indexed by σ ∈ Son, and their probabilities,
could additionally integrate partial observations-forecasts in the simulation
(testing) chronicles in Si in (15). The reader will find details of our scenario
generation method in §A.2.

The optimization problem (21)–(22) is closed-loop because, under proper
assumptions, it provides the optimal solution to the followingmultistage stochas-
tic optimization problem (where the minimum is over closed-loop strategies ψ)

min
ψ

E
[ T−1∑
t=0

Lt(Ut,Wt+1)
]
,

Xt+1 = f(Xt,Ut) , ∀t ∈ {0, . . . , T − 1} ,
X0 = x0 ,

Ut = ψ(W0, . . . ,Wt) , ∀t ∈ {0, . . . , T − 1} ,
Ut ∈ U(Xt) , ∀t ∈ {0, . . . , T − 1} .

(23)

Problem (23) is optimally solved by the Bellman equation (21) in the case
where the random variables 3 (W0, . . . ,WT ) (noise process) are stagewise
independent [1, 5].

4.2.2 SDP-AR

To account for possible stagewise dependence in the uncertainties (noise pro-
cess in (23)), one can extend the state space with the observations of the ith
net demand lags zt−i = dt−i − gt−i, i = 1, . . . , k. This gives the new elements

3 Capital bold letters denote random variables.
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of a model like in §3.1 wih new state x̃t, new dynamics f̃t, new stage cost L̃t
as follows, for all t ∈ {0, . . . , T − 1}:

x̃t = (xt, zt, . . . , zt−k+1) ∈ [0, 1]× Rk , (24a)

x̃t+1 = f̃t(x̃, ut, εt+1) , (24b)

f̃t(x̃t, ut, εt+1) =

( f(xt, ut)∑
j=0,...,k−1 α

j
tzt−j + βt + εt+1

zt, . . . , zt−k+2

)
, (24c)

L̃t(x̃t, ut, εt+1) = Lt(ut,
∑

j=0,...,k−1

αjtzt−j + βt + εt+1) , (24d)

where the coefficients α0
t , . . . , α

k−1
t and the additive terms βt are the elements

of an auto-regressive model of order k (noted AR(k))

Zt+1 =
∑

j=0,...,k−1

αjtZt−j + βt + εt+1 , ∀t ∈ {0, . . . , T − 1} .

for the net demand process Z. When the error process ε is assumed to be
stagewise independent, the following algorithm provides an optimal solution
to the multistage stochastic optimization problem (23).

– In the offline phase of the SDP-AR algorithm, one computes a sequence
of new value functions (Ṽt)t=0,...,T , backward for t ∈ {0, . . . , T − 1}, by

ṼT (x̃) = 0 ,

Ṽt(x̃) = min
u∈U(x)

∑
σ∈Soff

πoff,σ
t+1

(
L̃t(x̃t, u, ε

off,σ
t+1 ) + Ṽt+1

(
f̃t(x̃t, u, ε

off,σ
t+1 )

)) (25a)

– In the online phase of the SDP-AR algorithm, one computes
u?t ∈ argmin

ut

∑
σ∈Son

πon,σ
t+1

(
L̃t(x̃t, u, ε

on,σ
t+1 ) + Ṽt+1

(
f̃t(x̃t, u, ε

on,σ
t+1 )

))
φSDP-AR
t (xt, ht) = u?t .

(26)

4.3 Results

We now comment the results obtained when applying the controller design
techniques introduced in §4.1 and in §4.2 to the EMSx benchmark. Numerical
experiments were run on an Intel Core Processor of 2.5 GHz with 22 Go RAM.
We used the LP solver CPLEX 12.9 for MPC, OLFC and to compute the lower
bounds J i(h) , h ∈ Si , i ∈ I in (16).
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4.3.1 Cost performance

Results of Table 1 show that lookahead methods (MPC, OLFC) obtain much
lower scores on the EMSx benchmark than SDP -based methods. Whereas
MPC uses a single scenario (the forecast), OLFC uses multiple scenarios; this
helps OLFC improving the average gain of MPC from 48.7% to 51.3%. As
expected, increasing the number of scenarios from 10 to 50 improves the score
of OLFC. However, the performance remains stagnant when pushing up to
100 scenarios, with a slight decrease of OLFC-100 to 51.0%. We expect that
the improvement between MPC and OLFC should be sensitive to the sce-
nario generation method employed. With our method, the progress of OLFC
is modest regarding the performance of a plain SDP controller which yields
gains jumping to 69.1%. The results of SDP can be improved up to 79.4% in
the SDP-AR formulation. However, We observe that the gain from extending
the lags of an AR(1) model to an AR(2) model is almost null.

Table 1: Scores (second column) G
( {
φi
}
i∈I

)
in (18) and time performances

(third and fourth column) for collections
{
φi
}
i∈I of controllers φi designed

with techniques (first column) from §4.1 and §4.2 on the EMSx benchmark

Average score Offline time
(seconds)

Online time
(seconds)

MPC 0.487 0.00 9.82 10−4

OLFC-10 0.506 0.00 1.14 10−2

OLFC-50 0.513 0.00 8.62 10−2

OLFC-100 0.510 0.00 1.87 10−1

SDP 0.691 2.67 3.09 10−4

SDP-AR(1) 0.794 38.1 4.44 10−4

SDP-AR(2) 0.795 468 5.55 10−4

Upper bound 1.0 - -

In Figure 6, we display the average score per site Gi(φi) in (17) for con-
trollers φi designed with MPC, SDP and SDP-AR (1) techniques, together
with the maximum expected gain 1

|Si|
∑
h∈Si J i(φd, h) − J i(h). We provide

this latter value to reveal the order of magnitude of the effective gains allowed
by the insertion of a battery controlled by one of the benchmarked method on
the pool of sites. The OLFC technique is omitted to preserve the readability
of Figure 6, given that its performance appears as a slight improvement on
MPC. Regarding controller design techniques, SDP-AR (1) outperforms MPC
for all sites and scores higher than SDP for 69 of the 70 sites. Looking closer
at the per period performance, for our total pool of 2474 testing weeks, SDP-
AR (1) returns higher gains for 96% of the periods against MPC and for 90%
of the periods against SDP . As for SDP , it achieves better average scores
than MPC on all sites, and returns higher gains on 88% of the test periods.
Figure 6 highlights the dominance of the cost-to-go methods. We observe that
MPC lags behind other methods for almost all sites, and that the score gap
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can be significant on a few outlying sites. The underperformance of MPC on
these sites explains the score gaps of Table 1.

In particular, one site stands out in Figure 6 as the worst MPC perfor-
mance with a negative score of -28.0%, meaning that MPC performs worst on
average than the dummy controller φd. Interestingly, this site also stands out
in Figure 3 as the most stochastic site of the pool, with a RMSE of 0.176. In
comparison with MPC, SDP scores 18.4% and SDP-AR (1) scores 56.6% on
this site. These results highlight the resilience of the cost-to-go methods for
the management of a microgrid in a highly stochastic context.

Fig. 6: Average score Gi(φi) per sites i ∈ I of controller design techniques
MPC, SDP and SDP-AR (1) (right Y -axis) and maximum expected gain
1
|Si|
∑
h∈Si J i(φd, h) − J i(h) (left Y -axis). Sites are ranked in increasing or-

der of maximum expected gain along the X-axis.

4.3.2 Computing time performance

Table 1 also reports average computing time performances.

Online time. We report the online time as the computing time required to
yield a single control ut. With this definition, lookahead methods require a
longer online computing time for they call a LP solver at each time step; MPC
achieves online computing time of the same order of magnitude as SDP -
based methods; OLFC is much slower. As expected, the more we add sample
scenarios, the longer the OLFC computing time. We observe that improving
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the amount of scenarios from 50 to 100 doubles the online time while not
returning higher gains, which discredits OLFC-100.

Offline time. Concerning the offline time, we report the average CPU time for
computing value functions for cost-to-go methods. The complexity of SDP is
well known for growing exponentially with the state space, which is well illus-
trated by our results. Given the low improvement of gain from SDP-AR (1)
to SDP-AR (2), the offline time of the latter methods is dissuasive.

5 Conclusion

We have introduced the data and the key components of EMSx, an Energy
Management System benchmark to compare electric microgrid controllers,
hence controller design techniques. The dataset provided by Schneider Elec-
tric ensures a diversified pool of realistic microgrids with photovoltaic power
integration. Besides, we make our simulation code accessible in the EMSx.jl
package which is able to welcome various sorts of control algorithms. All com-
ponents of the benchmark are publicly available, so that other researchers
willing to test controllers on EMSx may reproduce experiments easily.

Regarding our numerical results, we have exhibited a gap between cost-
to-go methods and lookahead methods. The SDP-AR (1) controller design
technique stands out as the best trade-off between cost optimality and com-
puting time performance. However, there is a range of possible improvements
to explore. Among interesting directions, other scenario generation techniques
could be tested to see how does the OLFC controller react. Beyond plain score
improvements, enriching contributions could arise from the reduction of the
computing time, or from changing the performance metrics (for instance with
the use of risk measures), and from further comparative analysis of methods,
especially to better explain the gap between lookahead and cost-to-go methods.
We are also looking forward to controllers inspired from other research fields
than multistage deterministic or stochastic optimization, including heuristics,
robust optimization and reinforcement learning.
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A Scenario generation

A.1 Generation of scenarios for the Open Loop Feedback Control algorithm

Our scenario generation method is inspired by [16,17], which address such generation for so-
called day-ahead energy management problems. We use a simplified model for tractable
generation adapted to dynamical control. Since uncertainties wt = (gt, dt) are directly
plugged in the cost (11a) as the net demand zt = dt − gt, we compress the generation
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of scenarios (wσt,t+1, . . . , w
σ
t,t+96) ∈ R2×96 in (20) to the generation of net demand scenarios

(zσt,t+1, . . . , z
σ
t,t+96) ∈ R96. Following the original methods, we choose day part separators

to reduce the 96 dimensional vector to a few skeleton points for scenario construction (in-
termediate values are linearly interpolated). We choose to concentrate on the forecast error
at t+15 minutes, t+1 hour, t+2 hours, t+4 hours, t+12 hours and t+24 hours, so that our
model only samples values (zσt,t+1, z

σ
t,t+4, z

σ
t,t+8, z

σ
t,t+16, z

σ
t,t+48z

σ
t,t+96). We select 10 rele-

vant values of the net demand error at each separator j ∈ {1, 4, 8, 16, 48, 96} by applying the
K-means algorithm [6, §13] on the historical error zit+j − ẑit,t+j , combining the historical
observations (1) and forecasts (3) of the calibration data of the site i ∈ I considered. Then,
we compute 10×10 transition matrices for the error between consecutive separators. With
this model, we are able to sample net demand scenarios (zσt,t+1, . . . , z

σ
t,t+96) given a single

value forecast and to compute their probabilities πσt . Separate probability distributions of
the initial error at t+1 are calibrated depending on the time of the day, and on whether
the initial time step t corresponds to a week day or a weekend day. We alleviate computing
costs by reusing transition matrices regardless of the initial value of t. However we calibrate
separate matrices for week days and weekend days. Figure 7 provides examples of scenarios
generated with our method.

Fig. 7: Example of scenarios generated from a 24 hours net demand forecast

A.2 Generation of scenarios for the SDP and SDP-AR algorithms

For SDPmethods, we choose to discretize each dimension of the state space in 10 val-
ues, whereas the control space is restricted to 20 values and the noise space to 10 values.
Since uncertainties wt = (gt, dt) are directly plugged in the cost (11a) as the net demand
zt = dt − gt, we compress the calibration of the distributions of (W1, . . . ,WT ) to the cali-
bration of the distributions of (Z1, . . . ,ZT ). We use the K-means algorithm to fit discrete
probabilities πoff,σ

t+1 , π
on,σ
t+1 on the historical observations (gi, di) (1) of the calibration data of

the site i ∈ I considered. These discrete distributions serve the computation of expectations
in (21)–(22). While we could leverage the data available on the fly in the online phase, we
use the same probability distributions in the offline phase and in the online phase. Separate
distributions (of Zt) are calibrated depending on the time of the day and on whether the
time step t+1 corresponds to a week day or a weekend day. We compute one value function
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per site for the horizon of one week. In the SDP-AR formulation, we calibrate the AR(k)
models using least square regression and calibrate distributions of the residual error (εt)
with the same approach as for Zt.
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