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Abstract. The purpose of this article is to study a stochastic control problem on a

junction, with control at the junction point. The problem of control is formulated in the

weak sense, using a relaxed control, namely a control which takes values in the space of

probability measures on a compact set. We prove first the compactness of the admissible

rules and the dynamic programming principle (DPP). We complete this article by giving

a verification Theorem for the value function of the problem, using some recent results

on quasi linear non degenerate PDE posed on a junction, with non linear Neumann

boundary condition at the junction point. An example is given, where the optimal

control at the junction point is solution of a convex quadratic optimization problem with

linear constraints.

1. Introduction

Diffusions on graphs have attracted a lot of intention in the last 20 years. They were

introduced in the seminal works of Freidlin and Sheu in [7] and Freidlin and Wetzell in

[8]. More precisely, given a junction J =
⋃I

i=1 Ji, (σi, bi) regular functions from R+ to R,

and α1 . . . αI positive constants such that α1+ · · ·+αI = 1, the authors in [8] have proved

that there exists a continuous Markov process X = (x, i) defined on J . Thereafter in [7],

it is shown that there exists a one dimensional Wiener process W defined on a probability

space (Ω,F ,P), adapted to the natural filtration of X = (x, i), such that the process x

satisfies the following stochastic differential equation for a finite time horizon T > 0,

dx(t) = σi(t)(x(t))dW (t) + bi(t)(x(t))dt + dl(t) , 0 ≤ t ≤ T, (1)

where l starts from 0 ans satisfies:

l is increasing and, P

(

(

∫ t

0

1{x(s)>0}dl(s))0≤t≤T = 0
)

= 1. (2)

1
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Moreover, [7] gives the following Itô’s formula:

dfi(t)(x(t)) =
(

bi(t)(x(t))∂xfi(t)(x(t)) +
1

2
σ2
i(t)(x(t))∂

2
xfi(t)(x(t))

)

dt+

∂xfi(t)(x(t))σi(t)(x(t))dW (t) +
I

∑

i=1

αi∂xfi(0)dl(t), (3)

for f regular enough. The process l can be interpreted as the local time of the process X

at the vertex, whose quadratic approximation is given by:

lim
ε→0

E
P

[
∣

∣

∣

( 1

2ε

I
∑

j=1

∫ ·

0

σ2
j (0)1{0≤x(s)≤ε,j(s)=j}ds

)

− l(·)
∣

∣

∣

2

(0,T )

]

= 0. (4)

Let us recall that initially introduced by J. Walsh in [26], the Walsh’s Brownian motion is

a diffusion process on a set of I rays in R
2 emanating from 0. To each ray Ji is associated

a weight αi corresponding heuristically to the probability for the process to go in this

ray, and on each ray, the process behaves like a Brownian motion. Obviously, due to the

irregularities of the trajectories of the Brownian motion, this description is a non-sense.

This process may be described by its excursions measure;

P =

I
∑

i=1

αiQi,

where Qi is the excursion measure of the reflected Brownian motion on the ray Ji. Diffu-

sion on graphs generalizes the notion of Walsh’s Brownian motion. This object has given

rise to an abundant literature on Brownian filtrations, especially by giving a negative

answer to the following problem:

-"if a Brownian motion is adapted to some filtration, is this filtration generated by a

Brownian motion?” (See for instance [5] and [25], Sect. 17, p. 103)

Remark that, strong solutions have been established only for the case I = 2 on the line,

where the process is called the skew Brownian motion, and has been studied by several

researchers (see for instance [16], for a summary on the various ways for the construction

of the skew Brownian motion).

There are several constructions of Walsh’s Brownian motion in terms of resolvents, infin-

itesimal generators, semigroups, and excursion theory. Recently, in [12], the authors have
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given a system of stochastic equations for Walsh’s planar semimartingales, unique in dis-

tribution. Pathwise uniqueness fails, since that the Walsh’s Brownian motion is a process

whose filtration cannot be generated by any Brownian motion of any dimension. For this

result see the celebrated paper: [24]. Thereafter, a stochastic optimal control/stopping

problem of a Walsh’s planar semimartingale has been studied in [14], but without control

at the junction point, since it is assumed that the process is “immediately dispatched

along some ray”, when it reaches the origin.

In this work, we study a stochastic control problem with control at the junction point.

Since the construction of a strong solution for diffusion of type (1) is still a fairly com-

plicated open problem, we use here a weak martingale formulation, and the method of

compactification of the controls, as it has been introduced in [15].

Let us mention that the control theory on stratified domains of networks have already

been well-studied in the literature, for first order problems, and we refer for instance to

[2], [3], [4], [9],[1], and [21].

In this problem, the method differs a little from what it has been already done in the

literature: we add a more general relaxation at the junction point, due to the process l

introduced in equation (1) and its paths properties. This new method of relaxation is

introduced in Section 2.1 where we formulate the stochastic control martingale problem,

with control at the junction point. We prove the compactness of the admissible rules in

Section 3, and the dynamic programming principle is established in Section 4.

The second main target of this work, is to address a characterization of the value

function of this problem of control, in term of non linear parabolic partial differential

equations posed on a junction. Due to the process l and the quadratic approximation

(4), we will get that the parabolic equation that characterized the value function, has non

degenerate viscosity at the junction point x = 0, and satisfies a non linear Neumann and

non dynamical boundary condition at x = 0, for example (without cost at the junction

point):

F (u(t, 0), ∂xu(t, 0)) = inf
αi∈[0,1]I ,

∑
i αi=1

{

∑

i

αi∂xui(t, 0)
}

= 0. (5)

Until now, the only result of existence and uniqueness of these type of equation has been

given in [19], where the author has shown well-posedness of classical solutions for the
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following problem:























∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x) +Hi(x, ∂xui(t, x)) = 0,

for all x > 0, and for all i ∈ {1 . . . I},

F (u(t, 0), ∂xu(t, 0)) = 0,

(6)

in suitable Hölder spaces: see Theorem 2.2 for the existence and Theorem 2.4 for the

comparison in [19], and thus the uniqueness. The main assumptions are that the equation

is uniformly parabolic with smooth coefficients, and the term F = F (u, p) is increasing

with respect to p, which is a natural assumption regarding to the set where the controls

(α1 . . . αI) are valued.

Therefore, in section 5, we will able to state a verification theorem. A simple example of

illustration is also given, where we consider Hamiltonians with quadratic growth on each

edge. At the junction point, remark first that the solution of the convex optimization

problem:

inf
αi∈[0,1]I ,

∑
i αi=1

{

∑

i

αi∂xui(t, 0)
}

= 0,

is equal to mini∈{1...I} ∂xui(t, 0). It means that, heuristically, if no cost appears at the

junction point, the optimal strategy is therefore to play at the junction the maximum

weight αi on the edge where the gradient ∂xui(t, 0) reaches its minimum, at each time

we reach the junction point. We will give at the end of Section 5, an example with

quadratic Hamiltonians on each edge, and at the junction point we will consider the

following quadratic Hamiltonian:

inf
αi∈[0,1]I ,

∑
i αi=1

{

∑

i

αi∂xui(t, 0) +
1

2

∑

i

α2
iσi(0)

2
}

= 0

The optimal control at the junction point is then solution of a quadratic convex optimiza-

tion problem, under linear constraints. Obvioulsy, this is just a simple example, which can

be improved in a more applied sense with another more general cost, since as explained in

[17], this type of non linear PDE are involved in many applications in physics, chemistry,

biology ...

Along this work, we work under the ellipticity assumption, which allows to state the

uniqueness of non linear PDE involved for the value function. Moreover, the ellipticity
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condition is used to prove that the "non-stickiness" assumption satisfied by the process:

EP [

∫ T

0

1{x(s)=0}ds] = 0,

is closed under the weak convergence of probability measure (see Proposition 3.7). The

dynamic programming principle (DPP) can be generated in the degenerate case, as it has

been stated in [15], but here we do not focus on this technical point.

The paper is organized as follows. We introduce in Section 2 the stochastic control

problem, with control at the junction point and we state our main results. Thereafter, in

Section 3, we give a criterium of compactness for the controls at the junction point, and

some path estimates to prove at the end of the section the compactness of the admissible

rules. Section 4 is dedicated to the proof of the dynamic programming principle (DPP),

where both stability properties of the set of rules by conditioning and concatenation at

stopping times are shown. Finally, the last Section 5, is dedicated to the proof of the

verification Theorem, with an example of illustration.

2. Formulation of the stochastic control problem and main results

In this section, we define our stochastic control problem and we state our main results:

the dynamic programming principle (DPP), and the verification Theorem.

2.1. The stochastic control problem at the junction. In this sub section we define

the stochastic control problem at the junction, using a weak martingale formulation. We

use a classical relaxation on each edge.

Let J be an unbounded junction defined for I ∈ N
∗ edges by:

J =

I
⋃

i=1

Ji, with: ∀i ∈ {1 . . . I} Ji = [0,+∞), and ∀(i, j) ∈ {1 . . . I}2, i 6= j, Ji ∩ Ji = {0}.

The intersection of the (Ji)1≤i≤I is called the junction point and is denoted by 0. We

identify all the points of J by the couples (x, i) (with i ∈ {1 . . . I}, x ∈ |0,+∞)), such

that we have: (x, i) ∈ J if and only if x ∈ Ji.

For T > 0, the time-space domain JT is defined by:

JT = [0, T ]×J .
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In the sequel, C1,2
b (JT ) is the class of function defined on JT with regularity C1,2

b ([0, T ]×

[0,+∞)) on each edge, namely:

C1,2
b ([0, T ]× [0,+∞)) :=

{

f : JT → R, (t, (x, i)) 7→ fi(t, x), ∀(i, j) ∈ {1 . . . I}2, ∀t ∈ (0, T ),

fi(t, 0) = fj(t, 0), ∀i ∈ {1 . . . I}, (t, x) 7→ fi(t, x) ∈ C1,2
b ([0, T ]× [0,+∞))

}

.

We define in the sequel the controls (generalized actions) on the junction J .

We use the notations introduced in Appendix A, and for the convenience of the reader

we recall that, for a giving compact K of Rn (n ∈ N
∗):

L∞
mc([0, T ]×K) :=

{

f ∈ L∞([0, T ]×K), k 7→ f(t, k) ∈ C(K), ∀t ∈ [0, T ]
}

.

We denote by Mmc([0, T ] × K) the set consisting of non negative finite measures on
(

[0, T ]×K,B([0, T ])⊗ B(K)
)

, endowed with the finest topology making continuous the

following family of linear forms (θf )f∈L∞
mc([0,T ]×K),

θf :















Mmc([0, T ]×K) → R

ν 7→ ν(f) =

∫

[0,T ]×K

fdν
.

Let us introduce:

L[0, T ] :=
{

l : [0, T ] → R, continuous nondecreasing such that : l(0) = 0
}

,

which is the space where the process l(.) introduced in (1) takes its value. Fixing a ∈ (0, 1),

we define furthermore the following compact set A0 of RI by

A0 :=
{

(αi) ∈ [a, 1]I ,

I
∑

i=1

αi = 1
}

,

which is the set where the controls αi at the junction point appearing in the Ito’s formula

(3) are valued.

The set of generalized actions at the junction point 0, denoted V ([0, T ]× A0) is defined



STOCHASTIC CONTROL ON NETWORKS: WEAK DPP AND VERIFICATION THEOREM 7

by:

V ([0, T ]×A0) :=
{

ν ∈ Mmc([0, T ]× A0), ∃lν ∈ L[0, T ], ν [0,T ](dt) = lν(dt)
}

,

where ν [0,T ](dt) =

∫

A0

ν(dt, dα1, . . . , dαI).

As a consequence of the disintegration Theorem of a measure, (see for instance [13]), we

will use the following notation for ν ∈ V ([0, T ]× A0):

ν(dt, dα1 . . . dαI) = lν(dt)νt(dα1 . . . dαI),

where ν. is a measurable kernel of mass 1 on (A0,B(A0)).

As explained in the Introduction 1, we will establish a criterion of compactness of V ([0, T ]×

A0), for the weak topology ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]×A0)
)

, in Theorem 3.1 of sec-

tion 4, which will be useful in the proof of the compactness of the admissible rules in

Section 3.

We turn now to define the set of controls, (generalized actions) in each edge Ji. Let

(Ki)1≤i≤I , I compact sets of R.

The set of generalized actions U([0, T ]×Ki) on each edge Ji is defined by:

U([0, T ]×Ki) :=
{

ν ∈ Mmc([0, T ]×Ki), ν [0,T ](dt) =

∫

Ki

ν(dt, dki) = dt
}

.

It is easy to show for each i ∈ {1 . . . i}, that U([0, T ] × Ki) are compact for the weak

topology ∗σ
(

L∞
mc([0, T ] ×Ki)

′
, L∞

mc([0, T ] × Ki)
)

, and we will use the notation: for ν ∈

V ([0, T ]×Ki);

ν(dt, dki) = dtνt(dki),

where ν. is a measurable kernel of mass 1 on (Ki,B(Ki)). Next we will formulate the

stochastic problem of control, with control at the junction point. For this we introduce

the following data:

∀i ∈ {1 . . . I} :























σi ∈ L∞([0,+∞)×Ki)

bi ∈ L∞([0,+∞)×Ki)

hi ∈ Cb([0,+∞)×Ki)

,
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









h0 ∈ Cb(A0)

g ∈ Cb(J ,R)
,

satisfying the following assumptions:

Assumption (H)

(i) ∃c > 0, ∀i ∈ {1 . . . I}, ∀(x, ki) ∈ [0, T ]× [0,+∞)×Ki, σi(x, ki) ≥ c,

(ii) ∃(|b|, |σ|) ∈ (0,+∞)2, ∀i ∈ {1 . . . I},

sup
(x,ki)∈[0,+∞)×Ki

|bi(x, ki)|+ sup
(x,y)∈[0,+∞),x 6=y,ki∈Ki

|bi(x, ki)− bi(y, ki)|

|x− y|
≤ |b|,

sup
(x,Ki)∈[0,+∞)×Ki

|σi(x, ki)|+ sup
(x,y)∈[0,+∞),x 6=y,ki∈Ki

|σi(x, ki)− σi(y, ki)|

|x− y|
≤ |σ|.

The canonical space involved in the martingale formulation is the following one:

Φ = CJ [0, T ]×
(

I
∏

i=1

U([0, T ]×Ki)
)

× V ([0, T ]× A0),

endowed with its Borel σ algebra B(Φ). Here CJ ([0, T ]) is the Polish set of continuous

maps defined in [0, T ], valued in the junction J , endowed the metric dJ[0,T ] defined by

∀
(

(x(·), i(·)), (y(·), j(·))
)

∈ CJ ([0, T ])2 :

dJ[0,T ]

(

(x(·), i(·)), (y(·), j(·))
)

= supt∈[0,T ] d
J
(

(x(t), i(t)), (y(t), j(t))
)

,

where:

∀
(

(x, i), (y, j)
)

∈ J 2, dJ
(

(x, i), (y, j)
)

=







|x− y| if i = j ,

x+ y if i 6= j .

The canonical process is then defined on the measurable space (Φ,B(Φ)) by:

X :















[0, T ]× Φ → J ×
(

I
∏

i=1

U([0, T ]×Ki)
)

× V ([0, T ]× A0)

(

s, Y (·)
)

7→
(

X(s, Y (·)) =
( (

y(s), j(s)
)

, ν1(s) . . . νI(s), ν0(s)
)

,

where for each i ∈ {1, . . . I}, νi(s)(dt, dKi) = 1[0,s](t)νi(dt, dKi), and ν0(s)(dt, dα1, . . . , dαI) =

1[0,s](t)ν0(dt, dα1, . . . , dαI).
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It is easy to check that the process
(

X(s)
)

0≤s≤T
has continuous paths.

We denote in the sequel by (Ψt)0≤t≤T the right continuous filtration generated by this

process.

Let
(

t, (x, i)
)

∈ [0, T ]×J .

We define the set of admissible rules A
(

t, (x, i)
)

, as the set of all the probability mea-

sures P
(x,i)
t defined on the filtered probability space

(

Φ, (Ψt)0≤t≤T

)

satisfying the following

conditions:

Conditions (S0)

-(i) For each u ≤ t, X(u) =
(

(x, i), ν1(t) . . . νI(t), ν0(t)
)

, P
(x,i)
t a.s.

-(ii) For each s ≥ t,

∫ s

t

∫

A0

1{x(u)>0}ν0(s)(du, dα1, . . . , dαI) =

∫ s

t

1{x(u)>0}lν0(s)(du) = 0, P
(x,i)
t a.s.

-(iii) For any f ∈ C1,2
b (JT ), the following process (Mf (s))0≤s≤T defined on the filtered

probability space (Φ,B(Φ), (Ψt)0≤t≤T , P
(x,i)
t ) by:

∀s ∈ [t, T ], Mf (s)−Mf (t) = f(s,X(s))− f(t, X(t))−

I
∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂tfi(u, x(u)) +
1

2
σ2
i (x(u), ki)∂

2
xfi(u, x(u)) +

bi(x(u), ki)∂xfi(u, x(u))
)

νi(s)(du, dki)−
I

∑

i=1

∫ s

t

∫

A0

αi∂xfi(u, 0)ν0(s)(du, dα1, . . . , dαI),

is a (Ψs)t≤s≤T continuous martingale under the probability measure P
(x,i)
t , after time t.

Remark 2.1. The fact that A
(

t, (x, i)
)

is non empty, is a consequence of Lemma 2.3 in

[7]. More precisely, it is shown that there exists P ∈ A
(

t, (x, i)
)

, with a constant control

at the junction point: namely for (a1 . . . aI) ∈ A0,

∀s ∈ [0, T ], ∀ν0 ∈ V ([0, T ]× A0), ν0(s)(dt, dα1 . . . dαI) = 1[0,s](t)δ(a1,...,aI )(α1, . . . , αI),
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then:

∫

A0

δ(a1,...,aI)(α1, . . . , αI) = 1, and
I

∑

i=1

∫ s

t

∫

A0

αi∂xf(u, 0)ν0(s)(du, dα1, . . . , dαI) =

I
∑

i=1

∫ s

t

ai∂xfi(u, 0)lν0(s)(du), P a.s.

Finally, we define the following reward function Λ of the stochastic control problem,

where h0 is the cost at the junction point, and the hi are the costs on each edge Ji by:

Λ :



































A
(

t, (x, i)
)

→ R

P
(x,i)
t 7→ E

P
(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki)

+

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(du, dα1, . . . , dαI) + g(XT )
]

.

(7)

The corresponding value function v is defined by:

v :















[0, T ]×J → R

(

t, (x, i)
)

7→ inf
P

(x,i)
t ∈A(t,(x,i))

Λ(P
(x,i)
t )

. (8)

2.2. Main results. In this section, we state the two main results of this work, which are

the dynammic programming principle (DPP) Theorem 2.2 and the verification Theorem

2.4, related to the stochastic control problem with control at the junction point.

Theorem 2.2. Dynamic Programming Principle equation : Assume (H), and let τ be a

(Ψ)t≤s≤T stopping time, we have:

vi(t, x) =

inf
P

(x,i)
t ∈A(t,(x,i))

{

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki)

+

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
] }

. (9)

In the sequel, we state a verification theorem. We use some recent results on uniqueness

and solvability, for a class of quasi linear PDE posed on a junction, with non linear

Neumann boundary (see Theorem 4.5 in [19]). Our main assumptions are that each

hamiltonian on each edge have quadratic growth with respect to the gradient, and the
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control do not appear in the diffusion terms.

Using the compactness of the sets (Ki)i∈{1...I} and A0, we get that there exist:

∀i ∈ {1 . . . I}, ki :=











R+ × R → Ki,

(x, p) 7→ ki(x, p)
, αi :=











R
I → A0,

(p1, . . . , pI) 7→ αi(p1, . . . , pI)
,

such that:

∀(x, p) ∈ R+ × R, ∀i ∈ {1 . . . I},

infki∈Ki
{bi(x, ki)p+ hi(x, ki)} = bi(x, ki(x, p))p+ hi(x, ki(x, p)),

∀(p1, . . . , pI) ∈ R
I ,

inf
(αi)i∈{1...I}∈A0

{
I

∑

i=1

αipi + h0(α0, . . . , αI)} =
I

∑

i=1

αi(p1, . . . , pI)pi + h0(α1(p1, . . . , pI), . . . , αI(p1, . . . , pI)).

We call in the sequel the following functions:

(

Hi(·, ·) := R+ × R → R, (x, p) 7→ bi(x, ki(x, p))p+ hi(x, ki(x, p))
)

i∈{1...I}

the Hamiltonians at each edge i ∈ {1 . . . I}, and

H0(·) := R
I → R, (p1, . . . , pI) 7→

I
∑

i=1

αi(p1, . . . , pI)pi+h0(α1(p1, . . . , pI), . . . , αI(p1, . . . , pI))

the Hamiltonian at the junction point.

In the sequel, we will make the following assumptions, which are weaker then assump-

tion (H).

Assumption (P)

(i) The diffusions terms (σi)i∈{1...I} do not depend on the controls (ki)i∈{1...I}:

∀i ∈ {1 . . . I}, ∀(x, ki) ∈ R+ ×Ki, σi(x, ki) = σi(x),
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and the coefficents have the following regularity:



















































σi ∈ C1
b (R+,R), i ∈ {1 . . . I},

bi ∈ C1
b (R+ ×Ki,R), i ∈ {1 . . . I},

hi ∈ C1
b (R+ ×Ki,R), i ∈ {1 . . . I},

h0 ∈ Cb(A0,R),

g ∈ C2
b (J )

.

(ii) The Hamiltonians satisfy:

∀i ∈ {1, . . . , I}, Hi ∈ C1(R+ × R,R).

Remark that using the ellipticty condition on the (αi)1≤i≤I : ∀i ∈ {1 . . . I}, 1 ≥ αi ≥

a > 0, it is easy to check first H0 ∈ C(RI ,R). We get easily too, using the boundness of

h0, and the continuity of H0, that H0 is increasing, and there exists p ∈ R
I , such that

H0(p) = 0, namely assumption (i) b) and c) of Theorem 4.5 in [19] holds true.

(iii) The diffusions terms (σi)i∈{1...I} are uniformly elliptic: there exists a constant c > 0,

strictly positive such that:

∃c > 0, ∀i ∈ {1 . . . I}, ∀x ∈ R+, c ≤ σi(x).

(iv) The growth of the Hamiltonians (Hi)i∈1...I on each edge with respect to p is quadratic,

namely there exists M1 > 0 a constant strictly positive such that

∀i ∈ {1 . . . I}, ∀(x, p) ∈ R+ × R, |bi(x, ki(x, p))p+ hi(x, ki(x, p))| ≤ M1(1 + |p|)2.

(v) We impose the following restrictions on the growth with respect to p of the derivatives

for the Hamiltonians (Hi)i∈1...I on each edge, which are for all i ∈ {1 . . . I}, ∀(x, p) ∈

R+ × R:

a) |∂p(bi(x, ki(x, p))p+ hi(x, ki(x, p)))| ≤ M2(1 + |p|),

b) |∂x(bi(x, ki(x, p))p+ hi(x, ki(x, p)))| ≤ M3(1 + |p|)2,
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where M2 > 0 and M3 > 0 are strictly positive constants.

(vi) The terminal condition g satisifies the following compatibility condition:

I
∑

i=1

αi(g1(0), . . . , gI(0))gi(0) + h0(α1(g1(0), . . . , gI(0)), . . . , αI(g1(0), . . . , gI(0))) = 0.

In the sequel, C0,1(JT ) ∩ C1,2(
◦

JT ) is the class of function with regularity C0,1([0, T ] ×

[0,+∞)) ∩ C1,2((0, T ) × (0,+∞)) on each edge, continuous at the junction point. As a

consequence Theorem 4.5 in [19] we have:

Theorem 2.3. Assume (P). The following quasi linear backward parabolic problem with

Neumann boundary condition at the junction point:























∂tui(t, x) +
1

2
σi(x)

2∂2
xui(t, x) +Hi(x, ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0,+∞),

H0(∂xu(t, 0)) = 0, if t ∈ (0, T ],

∀i ∈ {1 . . . I}, ui(T, x) = gi(x), if x ∈ [0,+∞),

(10)

is uniquely solvable in the class C0,1(JT ) ∩ C1,2(
◦

JT ). Recall that:

∂xu(t, 0) = (∂xu1(t, 0), . . . , ∂xuI(t, 0)), ∀(i, j) ∈ {1 . . . I}2, ui(t, 0) = uj(t, 0),

Hi(x, ∂xui(t, x)) = bi(x, ki(x, ∂xui(t, x)))∂xui(t, x) + hi(x, ki(x, ∂xui(t, x))) =

infki∈Ki
{bi(x, ki)∂xui(t, x) + hi(x, ki)}, if (t, x) ∈ (0, T )× (0,+∞),

H0(∂xu(t, 0)) =
I

∑

i=1

αi(∂xu1(t, 0), . . . , ∂xuI(t, 0)∂xui(t, 0) +

h0(α1(∂xu1(t, 0), . . . , ∂xuI(t, 0))) . . . , αI(∂xu1(t, 0), . . . , ∂xuI(t, 0))

= inf(αi)i∈{1...I}∈A0
{

I
∑

i=1

αi∂xui(t, 0) + h0(α0, . . . , αI)}, if t ∈ (0, T ].

In the sequel we denote by u the unique solution of (10). We have the following

verification Theorem.

Theorem 2.4. For any (t, (x, i)) ∈ [0, T ]× J , we have:

ui(t, x) ≤ vi(t, x).
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Moreover, if there exists P
(x,i)

t ∈ A(t, (x.i)) such that (iii) of Condition (S0) is satisfied

with the controls (where δ is the dirac measure):

on each edge Ji:

∀t ∈ [0, T ], νi(t)(dz, dki) = δki(t)(x(t),∂xui(t)(t,x(t)))
(dki)dz, P

(x,i)

t a.s,

and at the junction point:

∀t ∈ [0, T ], ν0(t)(dz, dα1 . . . , dαI) = δ(αi(t)(∂xu1(t,0),...,∂xuI(t,0))))1≤i(t)≤I
(dα1 . . . , dαI)lν0(t)(dz), P

(x,i)

t a.s,

which means that we have:

∀f ∈ C1,2
b (JT ), fi(s)(s, x(s))− fi(t, x)−

∫ s

t

∂tfi(z)(z, x(z))

+
1

2
σ2
i(u)(x(z))∂

2
xfi(z, x(z)) + bi(z)

(

x(z), ki(z)(x(z), ∂xui(z)(z, x(z)))
)

∂xfi(z, x(z))
)

dz

−

∫ s

t

I
∑

i(z)=1

αi(z)(∂xu1(z, 0) . . . ∂xuI(, 0))∂xfi(z)(z, 0)lν0(s)(dz),

is a (Ψs)t≤s≤T continuous martingale under the probability measure P
(x,i)

t , after time t,

then P
(x,i)

t is optimal and we have for any (t, (x, i)) ∈ [0, T ]× J :

vi(t, x) = ui(t, x) = EP
(x,i)
t

[

∫ T

t

hi(z)

(

x(z), ki(z)(x(z), ∂xui(z)(z, x(z)))
)

dz +

∫ T

t

h0

((

αi(z)(∂xu1(z, 0), . . . , ∂xuI(z, 0))
)

{1≤i(z)≤I}

)

lν0(T )(dz) + g(XT )
]

,

3. Compactness of the admissible rule

In this section, we will prove the compactness of the set of admissible rules A
(

t, (x, i)
)

,

for the weak topology.

3.1. A criterium of compactness of the admissible rules at the junction point.

We first start by giving a criterium of compactness of the set of generalized actions

V ([0, T ]× A0) at the junction point, that will be useful in the sequel.
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Theorem 3.1. Let V be a subset of V ([0, T ]× A0). Assume that there exists a constant

C > 0, and a modulus of continuity w ∈ C(R+,R), with w(0) = 0, such that

∀ν ∈ V, lν(T ) ≤ C,

∀ν ∈ V, ∀(t, s) ∈ [0, T ], |lν(t)− lν(s)| ≤ w(|t− s|),

then V is compact for the weak topology ∗σ
(

L∞
mc([0, T ]× A0)

′
, L∞

mc([0, T ]× A0)
)

.

Proof. Since the σ Borel algebra B([0, T ]) of [0, T ] is countably generated, we get from

Proposition A.3, that Mmc([0, T ] × A0) is metrizable, therefore V is metrizable and the

compactness can be proved sequentially.

Let νn be a sequence of V, we know that there exists a sequence lνn of L[0, T ], such that

ν [0,T ]
n (dt) =

∫

A0

νn(dt, dα1 . . . dαI) = lνn(dt).

Using the assumptions satisfied by the sequence lνn , applying Ascoli’s Theorem, we get

that lνn converges uniformly up to a sub sequence to l ∈ C[0, T ], and since L[0, T ] is closed

in C[0, T ] for the uniform convergence, we deduce that l ∈ L[0, T ].

Let us now show that V is relatively compact for ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]×A0)
)

,

and for this we are going to apply Theorem A.4.

We now show that ν
[0,T ]
n and (resp. νA0

n =

∫

[0,T ]

νn(dt, dα1 . . . dαI)) are relatively compact

in Mm([0, T ]) (resp. Mc(A0)), for the weak topologies ∗σ
(

L∞,1([0, T ])
′
, L∞,1([0, T ])

)

,
(

resp. ∗σ
(

C(A0)
′
, C(A0)

))

, where we recall that:

L∞,1([0, T ]) :=
{

f ∈ L∞([0, T ]), ∃B ∈ B([0, T ]), f(t) = 1B(t)
}

,

and Mm([0, T ]), (resp.Mc(A0)), are the set of finite positive finite measures on [0, T ]

(resp. A0), endowed with the finest topology making continuous the following family of

linear forms (θf )f∈L∞([0,T ]), defined by:

θf :















Mm([0, T ]) → R

ν 7→ ν(f) =

∫

[0,T ]

fdν
.
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(

resp. (θf )f∈C(A0)

θf :











Mc(A0) → R

ν 7→ ν(f) =

∫

A0

fdν

)

.

Since ln converges uniformly to l up to a sub sequence nk, it is easy to get that for any

f ∈ L∞,1([0, T ])

∫

[0,T ]

f(t)lνnk
(dt)

k→+∞
−−−−→

nk

∫

[0,T ]

f(t)l(dt),

namely ν
[0,T ]
nk (dt)

∗
⇀ l(dt) for ∗σ

(

L∞,1([0, T ])
′
, L∞,1([0, T ])

)

.

On the other hand, we have

‖νA0
n ‖C(A0)

′ = sup
f∈C(A0),‖f‖≤1

∣

∣

∣

∫

[0,T ]×A0

f(t)νn(dt, dα1 . . . dαI)
∣

∣

∣
≤ ln(T ) ≤ C,

and then we deduce that νA0
n is relatively compact for the weak topology ∗σ(C(A0)

′
, C(A0)).

We deduce finally using Theorem A.4, that νn is relatively compact, and then converges

up to a sub sequence (denoted in the same way by nk) to φ ∈ L∞,1
mc ([0, T ] × A0))

′
, for

∗σ
(

L∞,1
mc ([0, T ]× A0)

′
, L∞,1

mc ([0, T ]× A0)
)

, where:

L∞,1
mc ([0, T ]×A0) :=

{

f ∈ L∞([0, T ]×A0), ∃B ∈ B([0, T ]), g ∈ C(A0), f(·) = 1B(·)g(·)
}

.

We now turn to prove that φ can be represented by an element of ν ∈ Mmc([0, T ]×A0),

namely

∃ν ∈ Mmc([0, T ]×A0), ∀f ∈ L∞,1
mc ([0, T ]× A0),

φ(f) =

∫

[0,T ]×A0

f(t, α1 . . . αI)ν(dt, dα1 . . . dαI).

For this, we use a Riesz representation Theorem, and more precisely we are going to prove

that φ satisfies (i) and (ii) of Theorem A.5.

Let B ∈ B([0, T ]), we have

(t, α1 . . . αI) 7→ 1B ⊗ 1(t, α1 . . . αI) :=











1, if t ∈ B,

0, if t /∈ B,
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belongs to L∞,1([0, T ]× A0), and

νnk
(1B ⊗ 1)

k→+∞
−−−−→ φ(1B ⊗ 1),

νnk
(1B ⊗ 1) = lnk

(B)
k→+∞
−−−−→ l(B).

By uniqueness of the weak limit, we get that φ(1B ⊗ 1) = l(B), and since l ∈ L[0, T ], l

defines a Borel measure on ([0, T ],B([0, T ])), which means that (i) of Theorem A.5 holds

true.

On the other hand, since A0 is compact, we deduce easily that (ii) of Theorem A.5 holds

true.

We deduce then that there exists ν ∈ Mmc([0, T ]×A0), such that:

∀f ∈ L∞,1
mc ([0, T ]×A0), φ(f) =

∫

[0,T ]×A0

f(t, α1 . . . αI)ν(dt, dα1 . . . dαI).

Since φ is a continuous linear form on Span(L∞,1
mc ([0, T ]×A0)), which is dense in L∞

mc([0, T ]×

A0) for the uniform convergence (see Lemma A.6), we deduce that

∀f ∈ L∞
mc([0, T ]× A0), φ(f) =

∫

[0,T ]×A0

f(t, α1 . . . αI)ν(dt, dα1 . . . dαI).

Finally, to complete the proof, it is enough to show that the projection ν [0,T ](dt) is equal

to l(dt). For this we use that, for any B ∈ B([0, T ])

∫

[0,T ]

1B(t)lνnk
(dt)

k→+∞
−−−−→

nk

∫

[0,T ]

1B(t)l(dt),

∫

[0,T ]×A0

1B(t)νn(dt, dα1 . . . dαI)
k→+∞
−−−−→

nk

∫

[0,T ]×A0

1B(t)ν(dt, dα1 . . . dαI).

Using the uniqueness of the weak limit, we get

∀B ∈ B([0, T ]),

∫

[0,T ]

1B(t)l(dt) =

∫

[0,T ]×A0

1B(t)ν(dt, dα1 . . . dαI)

and then

l(dt) =

∫

A0

ν(dt, dα1 . . . dαI),

and that completes the proof. �
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Theorem 3.2. V ([0, T ]×A0) endowed with the weak topology ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]×

A0)
)

is Polish.

Proof. Recall that Mmc([0, T ] × A0) endowed with the weak topology ∗σ
(

L∞
mc([0, T ] ×

A0)
′
, L∞

mc([0, T ]× A0)
)

is separable since:

Mmc([0, T ]×A0) ⊂
⋃

n≥0

{

φ ∈ L∞
mc([0, T ]× A0)

′

, ‖φ‖ ≤ n
}

,

and from Banach-Alaoglu-Bourbaki’s Theorem:

∀n ≥ 0,
{

φ ∈ L∞
mc([0, T ]× A0)

′

, ‖φ‖ ≤ n
}

is compact for ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]× A0)
)

.

As a subset of Mmc([0, T ]×A0), we deduce that V ([0, T ]×A0) is separable for the weak

topology ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]× A0)
)

.

To conclude, let νn(dt, dα1 . . . dαI) := ln(dt)νt,n(dz) a Cauchy sequence of V ([0, T ]×A0),

we have then

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, ∀p ≥ 0, ∀f ∈ L∞
mc([0, T ]× A0),

∣

∣

∣

∫

[0,T ]×A0

f(t, α1 . . . αI)νn+p(dt, dα1 . . . dαI)−

∫

[0,T ]×A0

f(t, α1 . . . αI)νn(dt, dα1 . . . dαI)
∣

∣

∣
≤ ε.

Let s ∈ [0, T ], choosing f(t, α1 . . . αI) = 1[0,s](t), we get that ln is a Cauchy sequence of

L([0, T ]), and then converges uniformly to l ∈ L([0, T ]). Therefore using the converse of

Ascoli’s Theorem, we get that the sequence ln satisfies

∃C > 0, ∀n ≥ 0, ln(T ) ≤ C,

∃w ∈ C([0, T ]), w(0) = 0, ∀n ≥ 0, ∀(t, s) ∈ [0, T ], |ln(t)− ln(s)| ≤ w(|t− s|).

We conclude then using Theorem 3.1, that νn converges to ν ∈ V ([0, T ] × A0) for the

weak topology ∗σ
(

L∞
mc([0, T ]×A0)

′
, L∞

mc([0, T ]×A0)
)

, and that completes the proof. �

3.2. Some estimates and paths properties of the process. This subsection is ded-

icated to give some estimates of the paths of the canonical process X(·), and the time
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spent in the neighborhood of the junction point, which are key points to proof of the

compacity of A(t, (x, i)).

Proposition 3.3. Define the following maps:

ρ :















CJ [0, T ]× V ([0, T ]×A0) → R

(

(x(·), i(·)), ν0
)

7→

∫ T

t

∫

A0

1{x(u)>0}ν0(du, dα1, . . . , dαI)
,

ρ0 :















V ([0, T ]× A0) → R

ν0 7→

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(du, dα1, . . . , dαI)
,

∀i ∈ {1 . . . I} :

ρi :















CJ [0, T ]× U([0, T ]×Ki) → R

(

(x(·), i(·)), νi
)

7→

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(du, dki)
.

Then ρ, (ρi)i∈{1...I} are lower semi continuous and ρ0 is continuous.

Proof. We start by showing that ρ is lower semi continuous, and for this let
(

(xn(·), in(·)),

νn
0 (dt, dα1, . . . , dαI)

)

in CJ [0, T ]×V ([0, T ]×A0) converging to
(

(x(·), i(·)), ν0(dt, dα1 . . . dαI)
)

.

Let p ≥ 0 and φp ∈ C([0,+∞)) a sequence converging from below to x → 1{x>0} in the

pointwise sense, as p → +∞. Since νn(dt, dα1, . . . , dαI)
∗
⇀ ν(dt, dα1, . . . , dαI), we can

find θ ∈ Mmc([0, T ]×A0), such that

∀f ∈ L∞
mc([0, T ]× A0), ∀n ≥ 0,

∫

[0,T ]×A0

|f(u, α1, . . . , αI)|νn(du, dα1, . . . , dαI) ≤

∫

[0,T ]×A0

|f(u, α1, . . . , αI)|θ(du, dα1, . . . , dαI).
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We write then:

∣

∣

∣

∫ T

t

∫

A0

φp(x
n(u))νn

0 (du, dα1, . . . , dαI)−

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI)
∣

∣

∣
≤

∫ T

t

∫

A0

∣

∣

∣
φp(x

n(u))− φp(x(u))
∣

∣

∣
νn
0 (du, dα1, . . . , dαI)

+
∣

∣

∣

∫ T

t

∫

A0

φp(x(u))ν
n
0 (du, dα1, . . . , dαI)−

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI)
∣

∣

∣
≤

∫ T

t

∫

A0

∣

∣

∣
φp(x

n(u))− φp(x(u))
∣

∣

∣
θ(du, dα1, . . . , dαI)

+
∣

∣

∣

∫ T

t

∫

A0

φp(x(u))ν
n
0 (du, dα1, . . . , dαI)−

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI)
∣

∣

∣
.

Therefore we get that

∀p ≥ 0, lim
n→+∞

∫ T

t

∫

A0

φp(x
n(u))νn

0 (du, dα1, . . . , dαI) =

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI).

Finally writing:

∫ T

t

∫

A0

1{xn(u)>0}ν
n
0 (du, dα1, . . . , dαI) ≥

∫ T

t

∫

A0

φp(x
n(u))νn

0 (du, dα1, . . . , dαI),

we get

∀p ≥ 0, lim inf
n→+∞

∫ T

t

∫

A0

1{xn(u)>0}ν
n
0 (du, dα1, . . . , dαI) ≥

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI),

and hence

lim infn→+∞

∫ T

t

∫

A0

1{xn(u)>0}ν
n
0 (du, dα1 . . . dαI) ≥ lim sup

p→+∞

∫ T

t

∫

A0

φp(x(u))ν0(du, dα1, . . . , dαI)

=

∫ T

t

∫

A0

1{x(u)>0}ν0(du, dα1, . . . , dαI).

We conclude then that ρ is lower semi continuous. We use the same arguments to show

that the (ρi)i∈{1...I} are lower semi continuous and ρ0 is continuous. �

In the next Proposition, we characterize the paths of the process x(·), by showing that

its martingale part can be represented by a Brownian integral.
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Proposition 3.4. Let P
(x,i)
t ∈ A

(

t, (x, i)
)

, and f ∈ C1,2
b (JT ), we have:

∀s ∈ [t, T ], d < f(·, X(·) >s =

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂xfi(s, x(s))σi(x(s), ki)
)

2νi,s(s)(dki)
)

ds, P
(x,i)
t a.s.

Moreover there exists a standard one dimensional Brownian motion W (·), (Ψs)t≤s≤T mea-

surable, such that:

∀s ∈ [t, T ], x(s) = x +

I
∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}bi(x(u), ki)νi(s)(du, dki)

+

∫ s

t

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}σi(x(u), ki)
2νi,u(s)(dki)

)
1
2
dW (u)

+ lν0(s)(s), P
(x,i)
t a.s. (11)

Proof. Let g = g(x) ∈ C2
b (R,R), we have using the classical Itô’s formula:

∀s ∈ [t, T ], g ◦ f(s,X(s)) = g ◦ f(s, x) +

∫ s

t

∂xg ◦ f(u,X(u))df(u,X(u))

+
1

2

∫ s

t

∂2
xg ◦ f(u,X(u))d < f(·, X(·)) >u, P

(x,i)
t a.s.

On the other hand we have

∫ s

t

∂xg ◦ f(u,X(u))df(u,X(u)) =
I

∑

i=1

∫

Ki

∫ s

t

1{(

x(u),i(u)

)

∈J∗
i

}∂xg ◦ f(u,X(u))
(

∂tfi(u, x(u))

+
1

2
σ2
i (x(u), ki)∂

2
xfi(u, x(u)) + bi(x(u), ki)∂xfi(u, x(u))

)

νi(s)(du, dki)

+

I
∑

i=1

∫

A0

∫ s

t

αi∂xg ◦ f(u,X(u))∂xfi(u, 0)ν0(s)(du, dα1, . . . , dαI) +

∫ s

t

∂xg ◦ f(u,X(u))dMf(u), P
(x,i)
t a.s
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Using condition (S0) (ii), namely:

∫ s

t

∫

A0

1{x(u)>0}ν0(s)(du, dα1, . . . , dαI) = 0, P
(x,i)
t a.s,

we get:

I
∑

i=1

∫ s

t

∫

A0

∂xg ◦ f(u,X(u))αi∂xfi(u, 0)ν0(s)(du, dα1, . . . , dαI) =

I
∑

i=1

∫ s

t

∫

A0

∂xg ◦ f(u, 0)αi∂xfi(u, 0)ν0(s)(du, dα1, . . . , dαI), P
(x,i)
t a.s.

On the other hand, using that g ◦ f ∈ C1,2
b (JT ), we know that

(

g ◦ f(s,X(s))− g ◦ f(t, X(t))−
I

∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂t(g ◦ fi)(u, x(u))

+
1

2
σ2
i (x(u), ki)∂

2
x(g ◦ fi)(u, x(u)) + bi(x(u), ki)∂x(g ◦ fi)(u, x(u))

)

νi(s)(du, dki)

−
I

∑

i=1

∫ s

t

∫

A0

αi∂x(g ◦ fi)(u, 0)ν0(s)(du, dα1, . . . , dαI)
)

t≤s≤T
,

is a (Ψs)t≤s≤T continuous martingale under the probability measure P
(x,i)
t . Simple com-

putations allows to get that, at each vertex, for all x ∈ J∗
i and for all s ∈ [t, T ]

∂t(g ◦ f)i(s, x) + bi(x, ki)∂x(g ◦ f)i(s, x) +
1

2
σ2
i (x, ki)∂

2
x(g ◦ f)i(s, x) =

∂tfi(s, x)∂xg ◦ fi(s, x) + bi(x, ki)∂xfi(s, x)∂xg ◦ fi(s, x) +

1

2
σ2
i (x, ki)

(

∂2
xfi(s, x)∂xg ◦ fi(s, x) + ∂xfi(s, x)

2∂2
xg ◦ fi(s, x)

)

.

Identifying the martingale and finite variation terms, we get that:

∀s ≥ t, d < f(., X(·) >s =

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂xfi(s, x(s))σi(x(s), ki)
)

2νi,s(s)(dki)
)

ds, P
(x,i)
t a.s.

Considering the special case when f(x) = x, if x ∈ J∗
i , after an argument of localization

with stopping times, and (using the ellipticity assumption (i) (H)), if we set:

∀s ≥ t, W (s) =

∫ s

t

1

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}σi(x(u), ki)
2νi,u(s)(dki)

)
1
2

df(u,X(u)), P
(x,i)
t a.s,
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we get that

d < W (·) >s= ds, P
(x,i)
t a.s.

Therefore using Paul Levy’s Theorem characterization of the Brownian motion, W (·) is

a standard one dimensional Brownian motion, (Ψs)t≤s≤T measurable and that completes

the proof. �

Next, we get upper bounds of the modulus of continuity of both processes x(·) and l(·),

which are useful for the proof of the compactness of the admissible rules A
(

t, (x, i)
)

for

the weak topology.

Proposition 3.5. Let P
(x,i)
t ∈ A

(

t, (x, i)
)

. There exists a constant C, depending only on

the data (T, |b|, |σ|), such that

∀s ∈ [t, T ], E
P

(x,i)
t

[
∣

∣

∣
x(·)2

∣

∣

∣

(t,s)

]

≤ C(1 + x2),

∀s ∈ [t, T ], E
P

(x,i)
t

[
∣

∣

∣
lν0(·)(·)

2
∣

∣

∣

(t,s)

]

≤ C(1 + x2),

E
P

(x,i)
t

[

ω(X(·), θ)2
]

≤ Cθ ln(
2T

θ
),

E
P

(x,i)
t

[

ω(lν0(·)(·), θ)
2

]

≤ Cθ ln(
2T

θ
),

where we have defined the following modulus of continuity

ω(X, θ) = sup
{

dJ (X(s), X(u)), (u, s) ∈ [t, T ], |u− s| ≤ θ, θ ∈ [0, T ]
}

,

ω(l, θ) = sup
{

|l(u)− l(s)|, (u, s) ∈ [t, T ], |u− s| ≤ θ, θ ∈ [0, T ]
}

.

Proof. We define the following map f ∈ C1,2(J T ), by f(x, i) = x2, if x ∈ J∗
i , i ∈ {1 . . . I}.

After an argument of localization with stopping times, and using condition (S0) (iii), we
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get for all s ∈ [t, T ]

1

2

∣

∣

∣
x(s)2 − x2

∣

∣

∣
≤

∣

∣

∣

I
∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

bi(x(u), ki)x(u) + σi(x(u), ki)
)

νi(s)(du, dki)
∣

∣

∣
+ |Mf (s)| ≤

∣

∣

∣

I
∑

i=1

∫ .

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

bi(x(u), ki)x(u) + σi(x(u), ki)
)

νi(·)(du, dki)
∣

∣

∣

(t,s)
+ |Mf (.)|(t,s).

From Burkholder-Davis-Gundy inequality, and Proposition 3.4 we have

E
P

(x,i)
t

[

|Mf (.)|(t,s)
]

=

E
P

(x,i)
t

[
∣

∣

∣

∫ ·

t

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

2x(u)σi(x(u), ki)
)

2νi,u(.)(dKi)
)

1
2
dW (u)

∣

∣

∣

(t,s)

]

≤ 4EP
(x,i)
t

[

∫ s

t

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

2x(u)σi(x(u), ki)
)

2νi,u(s)(dki)
)

du
]

≤ 16maxi∈{1...I} |σi|2 E
P

(x,i)
t

[

∫ s

t

∣

∣

∣
x(·)2

∣

∣

∣

(t,u)
du

]

.

On the other hand it is easy to see that there exists a constant C, depending only on the

data (T, |b|, |σ|), such that:

∣

∣

∣

I
∑

i=1

∫ .

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

bi(x(u), ki)x(u) + σi(x(u), ki)
)

νi(·)(du, dki)
∣

∣

∣

(t,s)

≤ C
(

1 +

∫ s

t

∣

∣

∣
x(·)2

∣

∣

∣

(t,u)
du

)

.

Therefore there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

E
P

(x,i)
t

[
∣

∣

∣
x(·)2

∣

∣

∣

(t,s)
− x2

]

≤ C
(

1 +

∫ s

t

E
P

(x,i)
t

[
∣

∣

∣
x(·)

∣

∣

∣

2

(t,u)
du

] )

.

Applying Gronwall’s Lemma to the following measurable function:

ρ :=











[t, T ] → R

s 7→ E
P

(x,i)
t

[
∣

∣

∣
x(·)2

∣

∣

∣

(t,s)

] ,
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we get that there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

∀s ∈ [t, T ], E
P

(x,i)
t

[
∣

∣

∣
x(·)2

∣

∣

∣

(t,s)

]

≤ C(1 + x2).

On the other hand, using (11), it is easy to see that there exists a constant C, depending

only on the data (T, |b|, |σ|) such that:

∀s ∈ [t, T ], E
P

(x,i)
t

[
∣

∣

∣
lν0(·)(·)

2
∣

∣

∣

(t,s)

]

≤ C(1 + x2).

We turn now to prove the required upper bounds for the modulus of continuity of the

process
(

x(s)
)

t≤s≤T
, and

(

lν0(s)(s)
)

t≤s≤T
. For this end, let ε > 0, we introduce the

following sequence of stopping times:

θε0 = t ; τ ε0 = inf
{

t < u ≤ T ; x(u) = 0
}

; θε1 = inf
{

τ ε0 < u ≤ T ; x(u) = ε
}

. . .

τ εn = inf
{

θεn < u ≤ T ; x(u) = 0
}

; θεn+1 = inf
{

τ εn < u ≤ T ; x(u) = ε
}

,

and for each u ∈ [t, T ]:

θu := inf
{

θn; θεn ≥ u
}

, and θu := sup
{

θn; θεn ≤ u
}

.

Let (u, s) ∈ [t, T ]2 such that s ≤ u, and u − s ≤ θ, θ ∈ (0, T ], we have (assuming that

the process X(·) has reached the junction point between time [s, u], (otherwise inequality

(12) is still available)

dJ (X(u), X(s)) ≤ dJ (X(u), X(θu)) + dJ (X(θu), X(θs)) + dJ (X(θs), X(s)), P
(x,i)
t a.s.

We get therefore for any ε > 0:

ω(X, θ) ≤ 2ω(M̃, θ) + 2ε, P
(x,i)
t a.s, (12)

where we have defined the process
(

M̃(s)
)

t≤s≤T
by

∀s ∈ [t, T ], M̃(s) =
I

∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}bi(x(u), ki)νi(s)(du, dki)

+

∫ s

t

(

I
∑

i=1

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}σi(x(u), ki)
2νi,u(s)(dki)

)
1
2
dW (u), P

(x,i)
t a.s.
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The process
(

M̃(s)
)

t≤s≤T
satisfies assumptions of Theorem 3.1 of [6], therefore we know

that there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

∀ε > 0, E
P

(x,i)
t

[

ω(X(·), θ)2
]

≤ Cθ ln(
2T

θ
) + 2ε,

and then

E
P

(x,i)
t

[

ω(X(·), θ)2
]

≤ Cθ ln(
2T

θ
).

We get the last upper bound for the modulus of continuity of the process
(

lν0(s)(s)
)

t≤s≤T
,

using

∀(u, s) ∈ [t, T ]2, lν0(u)(u)− lν0(s)(s) = x(u)− x(s)− (M̃u − M̃s), P
(x,i)
t a.s.

�

Lemma 3.6. Let P
(x,i)
t ∈ A

(

t, (x, i)
)

, and M > 0. There exists a constant C > 0,

depending only on the data
(

T,M, |b|, |σ|, x
)

, introduced in assumption (H), such that

E
P

(x,i)
t

[

exp(Mx(T ))
]

≤ C. (13)

Proof. We define the following map φ by:

φ :=











[0,+∞) → R

x 7→ exp(Mx)−Mx− 1
.

Let k ≥ 0, we introduce the following stopping time:

θk := inf{s ∈ [t, T ], x(s) ≥ k}.

Hence, using conditions (S0) (iii) with φ and Proposition 3.5, we get

E
P

(x,i)
t

[

exp(Mx(T ∧ θk))
]

= exp(Mx)−Mx+ E
P

(x,i)
t

[

Mx(T ∧ θk)
]

+

E
P

(x,i)
t

[

I
∑

i=1

∫ T∧θk

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

( 1

2
σ2
i (x(u), ki)∂

2
xφ(x(u)) +

bi(x(u), ki)∂xφ(x(u))
)

νi(T ∧ θk)(du, dki)
]

≤ C
(

1 + E
P

(x,i)
t

[

∫ T∧θk

t

exp(Mx(u))du
] )

,
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where C is a constant depending only on
(

T,M, |b|, |σ|, x
)

. Hence sending k → +∞, we

get using monotone convergence’s Theorem and Fubini’s Theorem

E
P

(x,i)
t

[

exp(Mx(T ))
]

≤ C
(

1 +

∫ T

t

E
P

(x,i)
t

[

exp(Mx(u))
]

du
)

.

We conclude finally using Gronwall’s Lemma to the following measurable map

ρ :=











[t, T ] → R

s 7→ E
P

(x,i)
t

[

exp(Mx(s))
]

.

�

We state in the sequel a central estimate of the time spending by the process at the

junction point. The following estimate, will be a key point to show that A(t, (x, i))

is closed for the weak topology. The main assumption used is the ellipticity condition

σi ≥ c > 0, and will allows to state that the process does not spend time around the

junction point.

Proposition 3.7. Let P
(x,i)
t ∈ A

(

t, (x, i)
)

. There exists a constant C > 0, depending

only on the data
(

T, |b|, |σ|, c, x
)

, introduced in assumption (H), such that:

∀ε > 0, E
P

(x,i)
t

[

∫ T

t

1{x(s)<ε}ds
]

≤ Cε. (14)

Proof. Let ε > 0, and βε ∈ C([0,+∞),R+) satisfying:

∀x ≥ 2ε, βε(x) = 0, ∀x ≥ 0, 1{x<ε} ≤ βε(x) ≤ 1. (15)

We define uε ∈ C2([0,+∞)) as the unique solution of the following ordinary second order

differential equation























∂2
xu

ε(x)−M∂xu
ε(x) = 2βε(x)/c2, if x ∈ (0,+∞),

∂xu
ε(0) = 0,

uε(0) = 0.

(16)
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where c is the constant of ellipticty defined in assumption (H)(i), and M is given by:

M =
|b|
1
2
c2
.

The solution is:

uε(x) =

∫ x

0

exp
(

Mz
)

∫ z

0

2βε(u)

c2
exp(−Mu)dudz.

By the assumption on βε, and assumption (H), we get:

∀x ≥ 0, 0 ≤ ∂xu
ε(x) ≤ 4ε/c2 exp(Mx), 0 ≤ uε(x) ≤

4ε

Mc2
(exp(Mx)− 1). (17)

Hence applying condition (S0) (iii) (with f = uε, after an argument of localization with

stopping times), we get using (15), (16) and (17):

E
P

(x,i)
t

[

uε(x(T ))− uε(x)
]

=

E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

( 1

2
σ2
i (x(u), ki)∂

2
xu

ε(x(u)) +

bi(x(u), ki)∂xu
ε(x(u))

)

νi(T )(du, dki)
]

=

= E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

1

2
σ2
i (x(u), ki)

(

∂2
xu

ε(x(u)) +

bi(x(u), ki)
1
2
σ2
i (x(u), ki)

∂xu
ε(x(u))

)

νi(T )(du, dki)
]

≥

E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

1

2
σ2
i (x(u), ki)

(

∂2
xu

ε(x(u))−M∂xu
ε(x(u))

)

νi(T )(du, dki)
]

≥ E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

1

2
c2
(

2βε(x(u))/c2)
)

νi(T )(du, dki)
]

≥ E
P

(x,i)
t

[

∫ T

t

βε(x(u))du
]

≥ E
P

(x,i)
t

[

∫ T

0

1{x(u)≤ε}du
]

.

Hence we get using (17):

E
P

(x,i)
t

[

∫ T

t

1{x(s)<ε}ds
]

≤
4ε

Mc2
E
P

(x,i)
t

[

exp(Mx(T ))− 1
]

.

We conclude using Lemma 3.6. �
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3.3. Proof of the compactness of the admissible rules. We are able now to prove

the main result of this section, namely the compactness of A
(

t, (x, i)
)

.

Theorem 3.8. The set of probability measures A
(

t, (x, i)
)

, endowed with the weak topol-

ogy is non empty, convex and compact. Moreover, the value function v(·, ·) attains its

minimum. Finally the set of optimal rules is non empty convex and compact.

Proof. We recall that the fact that A
(

t, (x, i)
)

is non empty is a consequence of Remark

2.1. Let us show first that A
(

t, (x, i)
)

is precompact for the weak topology.

It is enough to show that all the following projections

{

P
(x,i)
t |CJ [0,T ], P

(x,i)
t ∈ A

(

t, (x, i)
) }

,
( {

P
(x,i)
t |U([0,T ]×Ki), P

(x,i)
t ∈ A

(

t, (x, i)
) } )

i∈{1,...I}
,

{

P
(x,i)
t |V ([0,T ]×A0), P

(x,i)
t ∈ A

(

t, (x, i)
) }

,

are precompact. The precompactness of
{

P
(x,i)
t |CJ [0,T ], P

(x,i)
t ∈ A

(

t, (x, i)
) }

is a

consequence of the upper bounds obtained in Proposition 3.5, and Ascoli’s Theorem.

We focus on the precompactness of
{

P
(x,i)
t |V ([0,T ]×A0), P

(x,i)
t ∈ A

(

t, (x, i)
) }

. Let

ε > 0. It follows from Proposition 3.5, that there exists a constant C > 0, depending only

on the data (T, |b|, |σ|) such that

E
P

(x,i)
t

[
∣

∣

∣
lν0(·)(·)

2
∣

∣

∣

(t,T )

]

≤ C(1 + x2),

∀θ ∈ (0, T ], E
P

(x,i)
t

[

ω(lν0(·)(·), θ)
2

]

≤ Cθ ln(
2T

θ
).

Let us set:

Kε :=
{

ν0 ∈ V ([0, T ]× A0), lν0(T ) ≤
2

√

2C(1 + x2)

ε
, ∀θ ∈ (0, T ] : w(lν0, θ) ≤

2

√

2Cθ ln(2T
θ
)

ε

}

.

Using Proposition 3.1, we know that Kε is compact for the weak topology ∗σ
(

L∞
mc([0, T ]×

A0)
′
, L∞

mc([0, T ]× A0)
)

. Moreover, using Tchebychev’s inequality, we get that

P
(x,i)
t |V ([0,T ]×A0)

( (

ν0(s)
)

t≤s≤T
/∈ Kε

)

≤ ε,
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and that proves the precompactness of
{

P
(x,i)
t |V ([0,T ]×A0), P

(x,i)
t ∈ A

(

t, (x, i)
) }

. Fi-

nally, knowing that all (U([0, T ]×Ki)1≤i≤I are compact, we can show that
( {

P
(x,i)
t |U([0,T ]×Ki), P

(x,i)
t ∈

A
(

t, (x, i)
) } )

i∈{1,...I}
are precompact.

We turn now to prove that A
(

t, (x, i)
)

is closed, and for this let P
(x,i)
t,n ∈ A

(

t, (x, i)
)

converging weakly to P
(x,i)
t . We are going to show that P

(x,i)
t satisfies condition (S0).

Let fp ∈ Cb(Φ, R), uniformly bounded in p, converging to 1(X(u)0≤u≤t=((x,i),ν1(t)...νI(t),ν0(t)) in

the pointwise sense, and from above. We have:

∀p ≥ 0, E
P

(x,i)
t

[

fp(X(·))
]

= lim
n→+∞

E
P

(x,i)
t,n

[

fp(X(·))
]

≥

lim
n→+∞

E
P

(x,i)
t,n

[

1(X(u)0≤u≤t=((x,i),ν1(t)...νI(t),ν0(t))

]

= 1 .

Therefore we get:

lim
p→+∞

E
P

(x,i)
t

[

fp(X(·))
]

= 1,

and using Lebesgue’s Theorem we have:

E
P

(x,i)
t

[

1(X(u)0≤u≤t=((x,i),ν1(t)...νI(t),ν0(t))

]

= 1,

which means that (i) of conditions (S0) holds true.

Recall that from Proposition 3.3, the following map:

ρ :















CJ [0, T ]× V ([0, T ]×A0) → R

(

(x(·), i(·)
)

, ν0) 7→

∫ T

t

∫

A0

1{x(u)>0}ν0(du, dα1 . . . dαI)

is lower semi continuous. Consequently, the following set O defined by

O :=
{ (

(x(·), i(·)), ν0
)

∈ CJ [0, T ]× V ([0, T ]×A0),

∫ T

t

∫

A0

1{x(u)>0}ν0(du, dα1 . . . dαI) > 0
}

,

is open in CJ [0, T ]× V ([0, T ]×A0). We get then:

P
(x,i)
t

(

O
)

≤ lim inf
n→+∞

P
(x,i)
t,n

(

O
)

= 0,
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which means that (ii) of condition (S0) holds true.

Now let us show that (iii) of condition (S0) holds true. Remark first that:

∀ε > 0, sup
n≥0

E
P

(x,i)
t,n

[

∫ T

t

1{x(s)<ε}ds
]

≤ Cε,

where C is a constant independent of ε. On the other the following map:

θ :=











A
(

t, (x, i)
)

→ R

P
(x,i)
t 7→ E

P
(x,i)
t

[

∫ T

t

1{x(s)<ε}ds
]

,

is lower semi continuous for the weak topology. We get then:

E
P

(x,i)
t

[

∫ T

t

1{x(s)<ε}ds
]

≤ lim inf
n→+∞

E
P

(x,i)
t,n

[

∫ T

t

1{x(s)<ε}ds
]

≤ Cε,

which means:

E
P

(x,i)
t

[

∫ T

t

1{x(s)=0}ds
]

= 0.

To prove (iii) of condition (S0), let q ∈ Cb(Φ,R), Ψs measurable, and f ∈ C1,2
b (JT ). Using

that:

E
P

(x,i)
t,n

[

∫ T

t

1{x(s)=0}ds
]

= E
P

(x,i)
t

[

∫ T

t

1{x(s)=0}ds
]

= 0,

we have:

0 = E
P

(x,i)
t,n

[

q(Mf (t)−Mf (s))
]

n→+∞
−−−−→ E

P
(x,i)
t

[

q(Mf (t)−Mf (s))
]

.

Therefore the process

(

Mf (s)−Mf (t) = f(s,X(s))− f(t, X(t))−
I

∑

i=1

∫ s

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂tfi(u, x(u))

+
1

2
σ2
i (x(u), ki)∂

2
xfi(u, x(u)) + bi(x(u), ki)∂xfi(u, x(u))

)

νi(s)(du, dki)

−
I

∑

i=1

∫ s

t

∫

A0

αi∂xfi(u, 0)ν0(s)(du, dα1 . . . dαI)
)

t≤s≤T
,

is a (Ψs)t≤s≤T continuous martingale under the probability measure P
(x,i)
t , after time t,

and that finally proves that A
(

t, (x, i)
)

is closed for the weak topology.
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We end the proof by showing that the value function v(·, ·) attains its minimum, and the

set of optimal rules is convex and compact. Using Proposition 3.3, it is easy to check that

the reward function Λ

Λ :



































A
(

t, (x, i)
)

→ R

P
(x,i)
t 7→ E

P
(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

u,x(u),i(u)

)

∈J∗
i

}hi(u, x(u), ki)νi(T )(du, dki)

+

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

,

is lower semi continuous for the weak topology. Therefore the value function v(·, ·) attains

its minimum on the compact set A
(

t, (x, i)
)

. Finally, the fact that the set of optimal

rules is convex and compact, is a consequence of the compactness of A
(

t, (x, i)
)

, the lower

semi continuity of Λ, and the linearity of P
(x,i)
t 7→ Λ(P

(x,i)
t ). �

4. Dynamic Programming Principle

The following section is dedicated to the proof of the dynamic programming principle

(DPP), Theorem 2.2. Both stability of the set A
(

t, (x, i)
)

by conditioning and concate-

nation are proved.

We state first some propositions and a lemma of measurable selection, which will be useful

in the sequel.

Proposition 4.1. The following map:










[0, T ]× J → P(Φ,ΨT )

(t, (x, i)) 7→ A
(

t, (x, i)
)

(18)

(where P(Φ,ΨT ) is the set of probability measures defined on Φ, is upper semi continuous.

Proof. We endow P(Φ,ΨT ) with the Haussdorf metric defined over all its compact sets.

Since we have shown that A
(

t, (x, i)
)

is compact for the weak topology, we follow then

the same arguments of the proof of Proposition 5.10 in [15]. �
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Therefore as a consequence of the Proposition 4.1, Proposition 3.3 and Theorem 5.11

in [15], the value function defined in (8):

v :=











[0, T ]× J → R

(t, (x, i)) 7→ vi(t, x)
,

is lower semi continuous.

Proposition 4.2. (see for instance Corollary 5.4 in [15]). Let G,H be two separable

metric spaces. Let w a lower semi continuous real function on G × H and h 7→ Kh a

measurable map from H into comp(G), (the set of compacts sets of G, endowed with the

Haussdorf metric). Then

-the map : v(h) := inf
{

w(g, h), g ∈ Kh

}

is a Borel function and h 7→ Mh :=
{

g, v(h) =

w(h, g), g ∈ Kh

}

is a measurable map of H into comp(G).

-for each probability measure P on H:

∫

v(h)dP (h) =

∫

inf
{

w(g, h), g ∈ Kh

}

dP (h)

= inf
{

∫

w(β(h), h)dP (h), β : H → G, measurable, β(h) ∈ Kh

}

.

Proposition 4.3. Let τ a (Ψt)0≤t≤T a stopping time, then:

Ψτ = σ
(

X(s ∧ τ), s ≤ T
)

,

and Ψτ is countably generated.

Proof. Recall that

Ψτ =
{

B ∈ ΨT , B ∩ {τ ≤ t} ∈ Ψt, ∀t ∈ [0, T ]
}

,

and the space where is defined our canonical process X(·),

Φ = CJ [0, T ]×
(

I
∏

i=1

U([0, T ]×Ki)
)

× V ([0, T ]× A0),

is Polish.

We can use then the same arguments of the proof of Lemma 1.3.3 in [23], to get the result.

�
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In the sequel, we state a useful proposition, to prove both stability of the set A
(

t, (x, i)
)

by conditioning and concatenation. For the convenience of the reader, we do not sketch

the proof since it uses the same arguments of Lemma 6.1.1 in [23] for and Theorem 6.1.2

in [23].

Proposition 4.4. Let τ is a (Ψs)t≤s≤T stopping time and (QY )Y ∈Φ, a transition proba-

bility kernel from (Φ,Ψτ ) to (Φ,ΨT ) satisfying:

∀Y ∈ Φ, QY

(

X(τ(Y ), ·) = X(τ(Y ), Y )
)

= 1.

Then:

a) there exists a unique transition probability kernel from (Φ,Ψτ ) to (Φ,ΨT ) denoted by

(ΠY ⊗τ(Y ) QY )Y ∈Φ, such that:

∀Y ∈ Φ, ΠY ⊗τ(Y ) QY

(

X(s, ·) = X(τ(Y ), Y ) , ∀s ∈ [0, τ(Y )]
)

= 1,

∀A ∈ σ(X(s ∨ τ), 0 ≤ s ≤ T ), ΠY ⊗τ(Y ) QY (A) = QY (A).

b) Moreover, if P is a probability measure on (Φ,ΨT ), then there exists a unique probability

measure on (Φ,ΨT ), denoted by P ⊗τ Q such that:

(i) the restriction of P ⊗τ Q with respect to Ψτ is equal to P ,

(ii) a r.c.p.d (regular conditional probability distribution) of P ⊗τ Q with respect to Ψτ is

equal to (ΠY ⊗τ(Y ) QY )Y ∈Φ.

We start first by showing the stability of the set A
(

t, (x, i)
)

by conditioning.

Proposition 4.5. A
(

t, (x, i)
)

is stable under conditioning, with the following meaning:

Let P
(x,i)
t ∈ A

(

t, (x, i)
)

, and τ a (Ψs)t≤s≤T stopping time, then there exists a probability

kernel from (Φ,Ψτ ) to (Φ,ΨT ) denoted by (P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ, such that:

-there exists N ⊂ ΨT , with P
(x,i)
t (N) = 0 and

∀Y (·) ∈ Φ \N, P
(xτ (Y ),iτ (Y ))
τ(Y ) ∈ A

(

τ, (xτ (Y (·)), iτ(Y (·))
)

,

-for all f : Φ → R, σ(X(s∨τ), 0 ≤ s ≤ T ) measurable: EP
(x,i)
t [f |Ψτ ] = EP

(xτ ,iτ )
τ [f ], P

(x,i)
t

a.s.
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Proof. Let τ be a (Ψs)t≤s≤T stopping time, and let P
(x,i)
t ∈ A

(

t, (x, i)
)

. Using Proposition

4.3, we get from Theorem 1.3.4 of [23], that there exist a r.c.p.d of P
(x,i)
t respectively to

the sub algebra

Ψτ = σ
(

X(s ∧ τ), 0 ≤ s ≤ T
)

,

that we denote (P
(xτ (Y ),iτ (Y ))

τ(Y ) )Y ∈Φ, which satisfies:

∀Y ∈ Φ, P
(xτ(Y ),iτ(Y ))

τ(Y )

(

X(τ(Y ), ·) = X(τ(Y ), Y )
)

= 1.

Let Y ∈ Φ, we are going to use the notations of Proposition 4.4 a), setting:

P
(xτ(Y ),iτ(Y ))

τ(Y ) = ΠY ⊗τ(Y ) P
(xτ(Y ),iτ(Y ))

τ(Y ) .

First remark that it is easy to get, for all f : Φ → R, σ(X(s∨ τ), 0 ≤ s ≤ T ) measurable:

EP
(x,i)
t [f |Ψτ ] = EP

(xτ ,iτ )
τ [f ], P

(x,i)
t a.s.

Now let us show that P
(xτ ,iτ )
τ ∈ A

(

τ, (xτ , iτ )
)

, namely P
(xτ ,iτ )
τ satisfies the conditions

(S0), P
(x,i)
t almost surely.

Using the definition of (ΠY ⊗τ(Y ) P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ, we get that (i) of condition (S0) holds

true, namely:

∀Y ∈ Φ, P
(xτ(Y ),iτ(Y ))

τ(Y )

(

X(s, ·) = X(τ(Y ), Y ), ∀s ∈ [0, τ(Y (·))]
)

= 1.



36 ISAAC OHAVI

Using one more time the properties of (ΠY (·)⊗τ(Y ) P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ, stated in Proposition

4.4 a), we have:

0 = E
P

(x,i)
t

[

1
{

∫ T

τ

1{x(u)>0}lν0(T )(du) = 0
}

]

= E
P

(x,i)
t

[

E
P

(xτ(·),iτ(·))

τ(·)

[

1
{

∫ T

τ

1{x(u)>0}lν0(T )(du) = 0
}

] ]

= E
P

(x,i)
t

[

E
Π·⊗τ(·)P

(xτ(·),iτ(·))

τ(·)

[

1
{

∫ T

τ

1{x(u)>0}lν0(T )(du) = 0
}

] ]

= E
P

(x,i)
t

[

E
Π·⊗τ(·)P

(xτ(·),iτ(·))

τ(·)

[

1
{

∫ τ(·)

τ

1{x(u)>0}lν0(T )(du) +

∫ T

τ(·)

1{x(u)>0}lν0(T )(du) = 0
}

] ]

= E
P

(x,i)
t

[

E
Π·⊗τ(·)P

(xτ(·),iτ(·))

τ(·)

[

1
{

∫ T

τ(·)

1{x(u)>0}lν0(T )(du) = 0
}

] ]

.

We get that there exists E ⊂ ΨT , with P
(x,i)
t (E) = 0

∀Y (·) ∈ Φ \ E , P
(xτ(Y ),iτ(Y ))

τ(Y )

(

∫ T

τ(Y (·))

1{x(u))>0}lν0(T )(du) = 0
)

= 0,

and (ii) of condition (S0) holds true. Finally, let f ∈ C1,2
b (JT ). Using Theorem 1.2.10 of

[23], we have that:

(

Mf (s) := f(s,X(s))− f(τ,X(τ))−
I

∑

i=1

∫ s

τ

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}

(

∂tfi(u, x(u))

+
1

2
σ2
i (x(u), ki)∂

2
xfi(u, x(u)) + bi(x(u), ki)∂xfi(u, x(u))

)

νi(s)(du, dki)

−

∫ s

τ

∫

A0

αi∂xfi(u, 0)ν0(s)(du, dα1 . . . dαI)
)

τ≤s≤T
,

is a (Ψs)τ≤s≤T continuous martingale under the probability measure (P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ,

after the stopping time τ , and then under the probability measure (P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ,

since the two last measures are equal for the measurable events after time τ . However the

martingale property holds true ∀Y (·) ∈ Φ\N (f) where N (f) is a negligible set depending

on f , (namely N (f) ⊂ ΨT and P
(x,i)
t (N (f)) = 0).
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Assume then first that f ∈ C1,2
0 (JT ): the class of continuous functions defined on [0, T ]×J ,

having a regularity of class C1,2([0, T ]× [0,+∞)) on each edge, and vanishing at each edge

at +∞. We get then that C1,2
0 (JT ) is separable with the following norm ‖·‖C1,2

0 (JT ), defined

by:

∀f ∈ C1,2
0 (JT ), ‖f‖C1,2

0 (JT ) =
∑

1≤i≤I

‖fi‖C1,2([0,T ]×[0,+∞)),

with : ‖fi‖C1,2(JT ) = sup(t,x)∈[0,T ]×[0,+∞) |fi(t, x)|+ sup(t,x)∈[0,T ]×[0,+∞) |∂tfi(t, x)|+

sup(t,x)∈[0,T ]×[0,+∞) |∂xfi(t, x)|+ sup(t,x)∈[0,T ]×[0,+∞) |∂
2
xfi(t, x)|.

Hence, let fn a sequence of C1,2
0 (JT ), dense in C1,2

0 (JT ), we set:

N =
⋃

n≥0

N (fn).

Thereafter, using that following functional:

κ :=















































C1,2
0 (JT ) → R

f 7→
(

f(s,X(s))−
I

∑

i=1

∫ s

τ

∫

Ki

1{(

x(u),i(u)

)

∈Ji

}

(

∂tfi(u, x(u))

+
1

2
σ2
i (x(u), ki)∂

2
xfi(u, x(u)) + bi(x(u), ki)∂xfi(u, x(u))

)

νi(s)(du, dki)

−

∫ s

τ

∫

A0

αi∂xfi(u, 0)ν0(s)(du, dα1 . . . dαI)
)

0≤s≤T
,

is continuous for any:

( (

x(·), i(·)
)

, ν1 . . . νI , ν0

)

∈ CJ [0, T ]×
(

I
∏

i=1

U([0, T ]×Ki)
)

× V ([0, T ]× A0),

it is easy to check using Lebesgue’s Theorem that (Mf (s))τ≤s≤T is a (Ψs)τ≤s≤T continuous

martingale under the probability measure (P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ, after the stopping time τ ,

∀Y (·) ∈ Φ \ N , using once again that from Lemma 3.7:

E
P

(xτ ,iτ )
τ

[

∫ T

τ

1{x(s)=0}ds
]

= 0, P
(x,i)
t a.s.

To conclude, let n ≥ 0, f ∈ C1,2
b (JT ), and fn ∈ C1,2

0 (JT ) a sequence converging in the

pointwise sense to f , and equal to f on each edge Ji ∩ [0, n].

Let then θ a (Ψs)τ≤s≤T stopping time after time τ , using Proposition 3.5, Tchebychev’s
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inequality and assumption (H), it is easy to get that there exists a constant C > 0

independent of n such that:

∣

∣

∣
E
Π·⊗τP

(xτ ,iτ )
τ

[

Mfn(s)1{x(s)≥n}

]
∣

∣

∣
≤

C

n2
, P

(x,i)
t a.s. (19)

We write then:

E
P

(xτ ,iτ )
τ

[

Mfn(s)
∣

∣

∣
Ψθ

]

= E
P

(xτ ,iτ )
τ

[

Mfn(s)1{x(s)≤n}

∣

∣

∣
Ψθ

]

+

E
P

(xτ ,iτ )
τ

[

Mfn(s)1{x(s)≥n}

∣

∣

∣
Ψθ

]

= Mfn(θ), P
(x,i)
t a.s,

and we conclude using Lebesgue’s Theorem and (19), setting:

N = N ∪ E .

�

The second step is to prove the stability by concatenation.

Proposition 4.6. A
(

t, (x, i)
)

is stable under concatenation with the following meaning:

let P
(x,i)
t ∈ A

(

t, (x, i)
)

and τ a (Ψs)t≤s≤T stopping time. Let P
(xτ ,iτ )
τ ∈ A

(

τ, (xτ , iτ )
)

,

such that:

∀A ∈ ΨT , P (xτ ,iτ )
τ (A) :=











Φ 7→ [0, 1]

Y → P
(xτ (Y ),iτ (Y ))
τ(Y ) (A)

,

is ΨT/B([0, 1]) measurable.

Then P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ ∈ A

(

t, (x, i)
)

, (where P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ is introduced in Proposition

4.4 b).)

Proof. We are going to prove that P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ satisfies the conditions (S0).

Since P
(x,i)
t ∈ A

(

t, (x, i)
)

, P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ is equal to and P

(x,i)
t on (Φ,Ψτ ), we obtain

that condition (i) of (S0) holds true.
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On the other hand we have:

E
P

(x,i)
t ⊗τP

(xτ ,iτ )
τ

[

∫ T

t

1{x(u)>0}lν0(T )(du)
]

=

E
P

(x,i)
t ⊗τP

(xτ ,iτ )
τ

[

∫ τ

t

1{x(u)>0}lν0(T )(du)
]

+ E
P

(x,i)
t ⊗τP

(xτ ,iτ )
τ

[

∫ T

τ

1{x(u)>0}lν0(T )(du)
]

=

E
P

(x,i)
t

[

∫ τ

t

1{x(u)>0}lν0(T )(du)
]

+ E
P

(x,i)
t ⊗τP

(xτ ,iτ )
τ

[

E
Π·⊗τ(·)P

(xτ(·),iτ(·))

τ(·)

[

∫ T

τ

1{x(u)>0}lν0(T )(du)
] ]

.

First we remark that since P
(x,i)
t ∈ A

(

t, (x, i)
)

:

E
P

(x,i)
t

[

∫ τ

t

1{x(u)>0}lν0(T )(du)
]

= 0.

Using Proposition 4.4 a), and that P
(xτ ,iτ )
τ ∈ A

(

τ, (xτ , iτ )
)

, we get that:

E
Π⊗τP

(xτ ,iτ )
τ

[

∫ T

τ

1{x(u)>0}lν0(T )(du)
]

= E
P

(xτ ,iτ )
τ

[

∫ T

τ

1{x(u)>0}lν0(T )(du)
]

= 0, P
(x,i)
t ⊗τP

(xτ ,iτ )
τ a.s,

namely (ii) of (S0) holds true. We finish with the martingale conditions (iii) of (S0). For

this, we can use once again as in the proof of Proposition 4.5, the reverse of Theorem

1.2.10 of [23], Lemma 3.7, and the argument of separability of C1,2
0 (JT ), as soon as we

have that there exists Nf ⊂ ΨT with P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ (Nf ) = 0, such that:

∀Y ∈ Φ \Nf ,
(

Mf (s)−Mf (s ∧ τ(Y )), (Ψs)t≤s≤T ,ΠY ⊗τ(Y ) P
(xτ(Y ),iτ(Y ))

τ(Y )

)

t≤s≤T
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is a martingale. For this, since (ΠY ⊗τ(Y ) P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ is a r.c.p.d. of
(

P
(x,i)
t ⊗τ

P
(xτ ,iτ )
τ |Ψτ ), we get that:

∃Nf ⊂ ΨT , P
(x,i)
t ⊗τ P

(xτ ,iτ )
τ (Nf ) = 0, ∀Y ∈ Φ \Nf , ∀(s, u) ∈ [t, T ], u ≤ s,

EΠY ⊗τ(Y )P
(xτ(Y ),iτ(Y ))

τ(Y ) [Mf (s)−Mf (s ∧ τ(Y ))|Ψu]

= E
ΠY ⊗τ(Y )P

(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥τ(Y )}|Ψu]

= EΠY ⊗τ(Y )P
(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥u≥τ(Y )}|Ψu] +

E
ΠY ⊗τ(Y )P

(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥τ(Y )≥u}|Ψu]

= EP
(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥u≥τ(Y )}|Ψu] +

E
ΠY ⊗τ(Y )P

(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥τ(Y )≥u}|Ψu]

= Mf (u)−Mf (u ∧ τ(Y )) +

E
ΠY ⊗τ(Y )P

(xτ(Y ),iτ(Y ))

τ(Y ) [E
P

(xτ(Y ),iτ(Y ))

τ(Y ) [(Mf (s)−Mf (s ∧ τ(Y )))1{s≥τ(Y )≥u}|Ψτ ]Ψu]

= Mf (u)−Mf (u ∧ τ(Y )).

We can conclude that (iii) conditions of (S0) holds true and that completes the proof. �

Now we have the necessary tools in order prove the main result of this Section, namely

the dynamic programming principle (DPP).

4.1. Proof of Theorem 2.2.

Proof. Let τ be a (Ψs)t≤s≤T stopping time, and P
(x,i)
t ∈ A

(

t, (x, i)
)

, we have:

E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki) +

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

=

E
P

(x,i)
t

[

E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki) +

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
∣

∣

∣
Ψτ

] ]

.
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Using Proposition 4.5, namely the stability by conditioning, we know that there exists a

transition probability kernel from (Φ,Ψτ ) to (Φ,ΨT ), denoted by (P
(xτ(Y ),iτ(Y ))

τ(Y ) )Y ∈Φ, such

that P
(xτ ,iτ )
τ ∈ A

(

τ, (xτ , iτ )
)

, P
(x,i)
t a.s, and for all f : Φ → R, σ(X(s ∨ τ), 0 ≤ s ≤ T )

measurable: EP
(x,i)
t [f |Ψτ ] = EP

(xτ ,iτ )
τ [f ], P

(x,i)
t a.s. We get therefore:

E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki) +

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

= E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) +

E
P

(xτ ,iτ )
τ

[

I
∑

i=1

∫ T

τ

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki) +

∫ T

τ

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
] ]

≥ E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
]

.

Taking the infinimum over all the P
(x,i)
t ∈ A

(

t, (x, i)
)

, we get then the following first

inequality:

vi(t, x) ≥

inf
P

(x,i)
t ∈A(t,(x,i))

{

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki)

+

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
] }

.

Let P
(x,i)
t ∈ A

(

t, (x, i)
)

. We focus now on the reverse inequality. For this we will use

Proposition 4.2, with:

H = (Φ,ΨT ), G = P(Φ,ΨT ), K : H → comp(G), Y → KY = A
(

τ(Y ), (xτ(Y )), iτ(Y ))
)

,
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and

w :



































P(Φ,ΦT )× (Φ,ΦT )) → R

(

P, Y
)

7→ E
P
[

I
∑

i=1

∫ T

t

∫

Ki

1{(

y(u),j(u)

)

∈J∗
i

}hi(y(u), Ki)νi(T )(du, dki)+

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(YT )
]

,

From Proposition 3.3, we get that w is lower semi continuous. On the other hand, we

know from Theorem 3.8, that for each Y ∈ Φ, KY = A
(

τ(Y ), (xτ(Y )), iτ(Y ))
)

is compact

for the weak topology. We get then that:

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
]

=

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI)
]

+

inf
{

E
P

(x,i)
t

[

E
P

(xτ ,iτ )
τ

[

I
∑

i=1

∫ T

τ

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(u, x(u), ki)νi(T )(du, dki) +

∫ T

τ

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
] ]

,

Y 7→ P
x(τ(Y )),i(τ(Y ))
τ(Y ) measurable, P

x(τ(Y )),i(τ(Y ))
τ(Y ) ∈ A

(

τ(Y ), (x(τ(Y )), i(τ(Y ))
) }

= inf
{

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI)
]

+

E
P

(x,i)
t

[

E
P

(xτ ,iτ )
τ

[

I
∑

i=1

∫ T

τ

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(u, x(u), ki)νi(T )(du, dki) +

∫ T

τ

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
] ]

,

Y 7→ P
x(τ(Y )),i(τ(Y ))
τ(Y ) measurable, P

x(τ(Y )),i(τ(Y ))
τ(Y ) ∈ A

(

τ(Y ), (x(τ(Y )), i(τ(Y ))
) }

.
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Using now the we the properties of the concatenated probability P
(x,i)
t ⊕τ P

(xτ ,iτ )
τ intro-

duced in Proposition 4.6, we get:

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
]

=

= inf
{

E
P

(x,i)
t ⊕τP

(xτ ,iτ )
τ

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki)

+

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) +
I

∑

i=1

∫ T

τ

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki)

+

∫ T

τ

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

,

Y 7→ P
x(τ(Y )),i(τ(Y ))
τ(Y ) measurable, P

x(τ(Y )),i(τ(Y ))
τ(Y ) ∈ A

(

τ(Y ), (x(τ(Y )), i(τ(Y ))
) }

= inf
{

E
P

(x,i)
t ⊕τP

(xτ ,iτ )
τ

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki)

+

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

,

Y 7→ P
x(τ(Y )),i(τ(Y ))
τ(Y ) measurable, P

x(τ(Y )),i(τ(Y ))
τ(Y ) ∈ A

(

τ(Y ), (x(τ(Y )), i(τ(Y ))
) }

.

Or since P
(x,i)
t ⊕τ P

(xτ ,iτ )
τ ∈ A

(

t, (x, i)
)

, we have then:

inf
{

E
P

(x,i)
t ⊕τP

(xτ ,iτ )
τ

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(T )(du, dki)

+

∫ T

t

∫

A0

h0(α1 . . . αI)ν0(T )(du, dα1 . . . dαI) + g(XT )
]

,

Y 7→ P
x(τ(Y )),i(τ(Y ))
τ(Y ) measurable, P

x(τ(Y )),i(τ(Y ))
τ(Y ) ∈ A

(

τ(Y ), (x(τ(Y )), i(τ(Y ))
) }

,

≥ vi(t, x),
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which means therefore:

E
P

(x,i)
t

[

I
∑

i=1

∫ τ

t

∫

Ki

1{(

x(u),i(u)

)

∈J∗
i

}hi(x(u), ki)νi(τ)(du, dki) +

∫ τ

t

∫

A0

h0(α1 . . . αI)ν0(τ)(du, dα1 . . . dαI) + viτ (τ, xτ )
]

≥ vi(t, x).

Taking the infimum over all the P
(x,i)
t ∈ A

(

t, (x, i)
)

, we conclude for the reverse inequality,

and that completes the proof. �

5. Verification Theorem and an example of illustration

Proof of Theorem 2.4.

Proof. Fix (t, (x, i)) ∈ [0, T ]× J and P
(x,i)
t ∈ A(t, (x.i)). We start first by claiming that

the unique solution of (10) u satisfies the Itô’s formula: namely there exists a standard

one dimensional Brownian motion W (·), (Ψs)t≤s≤T measurable such that:

∀s ∈ [t, T ], ui(s)(s, x(s))− ui(t, x) =

I
∑

i=1

∫ s

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}

(

∂tui(z, x(z))

+
1

2
σ2
i (x(z))∂

2
xui(z, x(z)) + bi(x(z), ki)∂xui(z, x(z))

)

νi(s)(dz, dki)

+

∫ s

t

∂xui(z)(z, x(z))σi(z)(x(z))dW (z) +
I

∑

i=1

∫ s

t

∫

A0

αi∂xui(z, 0)ν0(s)(dz, dα1 . . . dαI), P
(x,i)
t a.s. (20)

even if u ∈ C0,1
b (JT )∩C1,2

b (
◦

JT ). Recall that the existence of W (·) is a straight consequence

of Proposition 3.4.

For the convenience of the reader, we do not give all the details that lead to the

proof of (20), since they are very classical. The main idea is to regularize each function

(t, x) 7→ ui(t, x) on each edge i ∈ {1 . . . I} by convolution on the domain [0, T ]× [0,+∞)

with the same kernel ρn independent of i ∈ {1 . . . I}. Therefore the regularize sequence

un
i : (t, x) 7→ (ui ⋆ ρ

n)(t, x) is in the class C1,2
b (JT ) satisfies (20), and we have:

∃M > 0, maxi∈{1...I} supn≥0 ||∂tun
i (t, x)||[0,T ]×[0,+∞) + ||∂2

xu
n
i (t, x)||[0,T ]×[0,+∞) ≤ M,

∀i ∈ {1 . . . I}, ui,n
n→+∞
−−−−→ ui, in C0,1([0, T ]× [0, R]), ∀R > 0,

ui,n
n→+∞
−−−−→ ui, in C1,2([ε, T − ε]× [r, R]), ∀r > 0, R > 0, r < R, ε > 0.
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The main idea is to argue by localization for x large and to use that the process does

not spend time around the junction point, namely we know from Proposition 3.7, that we

have:
∫ T

0

1{x(s)=0}ds = 0, P
(x,i)
t a.s.

Passing to the limit up to a sub sequence, we then obtain (20) for u.

Let us prove now that ∀(t, (x, i)) ∈ [0, T ]× J :

ui(t, x) ≤ vi(t, x).
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We set s = T . Using (20) and that u is solution of (10), we obtain:

−ui(t, x) = −g(XT ) +
I

∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}

(

∂tui(z, x(z))

+
1

2
σ2
i (x(z))∂

2
xui(z, x(z)) + bi(x(z), ki)∂xui(z, x(z)) + hi(x(z), ki)∂xui(z, x(z))

)

νi(T )(dz, dki)

−
I

∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(T )(dz, dki) +

∫ T

t

∂xui(z)(z, x(z))σi(z)(x(z))dW (z)

+
I

∑

i=1

∫ T

t

∫

A0

αi∂xui(z, 0)ν0(T )(dz, dα1 . . . dαI) +

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI)

−

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI)

≥ −g(XT ) +
I

∑

i=1

∫ T

t

1{(

x(z),i(z)

)

∈J∗
i

}

(

∂tui(z, x(z))

+
1

2
σ2
i (x(z))∂

2
xui(z, x(z)) + inf

ki∈Ki

{

bi(x(z), ki)∂xui(z, x(z)) + hi(x(z), ki)∂xui(z, x(z))
)

dz

−
I

∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(s)(dz, dki) +

∫ T

t

∂xui(z)(z, x(z))σi(x(z))dW (z)

+

∫ T

t

inf
(αi)1≤i≤I∈A0

{

I
∑

i=1

αi∂xui(z, 0) + h0(α1, . . . , αI)
}

lν0(T )(dz)

−

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI)

≥ −g(XT )−
I

∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(T )(dz, dki) +

+

∫ T

t

∂xui(z)(z, x(z))σi(z)(x(z))dW (z)−

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI), P
(x,i)
t a.s.

Taking the expectation, we obtain then that:

ui(t, x) ≤ EP
(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(T )(dz, dki)

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI) + g(XT )
]

.
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and finally taking the infimum over all the P
(x,i)
t ∈ A(t, (x.i)), we have that:

ui(t, x) ≤ vi(t, x).

To conclude, assume now that there exists P
(x,i)

t ∈ A(t, (x.i)) such that (iii) of Condition

(S0) is satisfied with the controls:

on each edge Ji:

∀t ∈ [0, T ], νi(t)(dz, dki) = δki(t)(x(t),∂xui(t)(t,x(t)))
(dki)dz, P

(x,i)

t a.s,

and at the junction point:

∀t ∈ [0, T ], ν0(t)(dz, dα1 . . . , dαI) = δ(αi(t)(∂xu1(t,0),...,∂xuI(t,0))))1≤i(t)≤I
(dα1, . . . , dαI)lν0(t)(dz), P

(x,i)

t a.s,

We obtain using the same arguments above that:

ui(t, x) = EP
(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(T )(dz, dki)

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1 . . . dαI) + g(XT )
]

≤ vi(t, x).

We conclude that P
(x,i)

t is optimal and we have for any (t, (x, i)) ∈ [0, T ]× J :

vi(t, x) = ui(t, x) = EP
(x,i)
t

[

∫ T

t

hi(z)

(

x(z), ki(z)(x(z), ∂xui(z)(z, x(z)))
)

dz +

∫ T

t

h0

((

αi(z)(∂xu1(z, 0), . . . , ∂xuI(z, 0))
)

{1≤i(z)≤I}

)

lν0(T )(dz) + g(XT )
]

,

which completes the proof. �

Remark 5.1. On the existence of the optimal measure P
(x,i)

t :

A natural question that arises is to get the existence of the optimal measure P
(x,i)

t which

appears in the Theorem of verification 2.4. We remark first, that this measure exists

if the controls are piecewise continuous. More precisely using the property of stability by

concatenation stated in Proposition 4.6, and the theorem of existence with constant control

in Lemma 2.3 in [7], it is easy to check that such a measure exists.

Naturally, once can construct a sequence of approximation P
(x,i),n

t , with piecewise constant

controls, and use an argument of tension to get the convergence to the required optimal
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measure P
(x,i)

t . The main estimates are given in Section 3.

To not surcharge this work, and for an easier reading, we do not sketch the proof of the

existence of P
(x,i)

t , but we will do it in a upcoming work [20], with more general controls

at the junction point, depending on the local time. For this new type of diffusion, the

definition of the operator and the uniqueness in distribution, will be the main interesting

mathematical problems.

We finish this work by giving an example of illustration. As explained in introduction,

at the junction point we consider the following cost:

∀(α1, . . . , αI) ∈ A0, h0(α1, . . . αI) =
1

2

∑

i∈{1...I}

α2
iσi(0)

2.

Therefore we obtain the following Hamiltonian at the junction point:

inf
αi∈[a,1]I ,

∑
i αi=1

{

∑

i

αi∂xui(t, 0) +
1

2

∑

i

α2
iσi(0)

2
}

= 0.

The coefficients (αi(t)(∂xu1(t, 0), . . . , ∂xuI(t, 0)))1≤i(t)≤I of the optimal control at the junc-

tion point:

∀t ∈ [0, T ], ν0(t)(dz, dα1 . . . , dαI) = δ(αi(t)(∂xu1(t,0),...,∂xuI(t,0)))1≤i(t)≤I
(dα1 . . . , dαI)lν0(t)(dz), P

(x,i)

t a.s,

are then solution of a quadratic convex optimization problem, with linear constraints,

under the optimal measure P
(x,i)

t .

This type of problem of optimization on the simplex, were introduced in the seminal paper

of Harry Markowitz [18]. Thereafter many interest have been devolpped in literature for

solving this kind of problem, developing several algorithms (interior point, active set,

augmented Lagrangian,...) in the theory of quadratic programming.

Fix a terminal condition g ∈ C2
b (J ) satisifying the following compatibility condition:

inf
αi∈[a,1]I ,

∑
i αi=1

{

∑

i

αigi(0) +
1

2

∑

i

α2
iσi(0)

2
}

= 0.

For each i ∈ {1 . . . I}, fix θi > 0 and (γi, λi, ρi) ∈ R
3. We consider on each edge the

following Hamiltonians:

∀(x, p) ∈ [0,+∞)× R, Hi(x, p) = −
1

2θi
[p2 sin(x)2 + 2λip sin(x) + λ2

i ] + γi sin(x) + ρi.
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From Theorem 2.3, we know that the following quasi linear backward parabolic problem

with Neumann boundary condition at the junction:























∂tui(t, x) +
1

2
σi(x)

2∂2
xui(t, x) +Hi(x, ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0,+∞),

H0(∂xu(t, 0)) = 0, if t ∈ (0, T ],

∀i ∈ {1 . . . I}, ui(T, x) = gi(x), if x ∈ [0,+∞),

(21)

is uniquely solvable in the class C0,1(JT ) ∩ C1,2(
◦

JT ).

Moreover, the estimates of sup(t,x)∈[0,T ]×[0,+∞) |∂xui(t, x)| given in Lemma 4.1 and 4.2 of

[19], allows to state that there exists a stritly positive constant Ci = Ci(||g||C2
b
(J ), ||σ||C2

b
(J ), c, θi, λi, γi, ρi)

such that:

∀i ∈ {1 . . . I}, sup
(t,x)∈[0,T ]×[0,+∞)

|∂xui(t, x)| ≤ Ci.

Hence as soon as we fixe κi > 0 such that:

κi ≥
Ci + λi

2θi
,

we get that:

∀(t, x) ∈ (0, T ]× [0,+∞), Hi(x, ∂xui(t, x)) =

−
1

2θi
[∂xui(t, x)

2 sin(x)2 + 2λi∂xui(t, x) sin(x) + λ2
i ] + γi sin(x) + ρi =

infki∈[−κi,κi]

{

∂xui(t, x)ki sin(x) + θik
2
i + γi sin(x) + λiki + ρi

}

.

Therefore regarding to Theorem 2.4 and Remark 5.1, if we set:

∀i ∈ {1 . . . I}, bi(x) = ki sin(x), hi(x, ki) = θik
2
i + γi sin(x) + λik + ρi, Ki = [−κi, κi],

∀(α1, . . . , αI) ∈ A0, h0(α1, . . . αI) =
1

2

∑

i∈{1...I}

α2
iσi(0)

2,

we will get that the value function v is equal to the solution of (21), and is given by:

vi(t, x) = E
P

(x,i)
t

[

I
∑

i=1

∫ T

t

∫

Ki

1{(

x(z),i(z)

)

∈J∗
i

}hi(x(z), ki)νi(T )(du, dki)

+

∫ T

t

∫

A0

h0(α1, . . . , αI)ν0(T )(dz, dα1, . . . , dαI) + g(XT )
]

,
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where P
(x,i)

t ∈ A(t, (x.i)) is the optimal measure, with the controls:

on each edge Ji:

∀t ∈ [0, T ], νi(t)(dz, dki) = δ
−

∂xui(t,x) sin(x)+λi
2θi

(dki)dz, P
(x,i)

t a.s,

and at the junction point:

∀t ∈ [0, T ], ν0(t)(dz, dα1 . . . , dαI) = δ(αi(t)(∂xu1(t,0),...,∂xuI(t,0))))1≤i(t)≤I
(dα1 . . . , dαI)lν0(t)(dz), P

(x,i)

t a.s,

where the vector (αi(t)(∂xu1(t, 0), . . . , ∂xuI(t, 0))) solves the following quadratic problem

with linear constraints:

inf
αi∈[a,1]I ,

∑
i αi=1

{

∑

i

αi∂xui(t, 0) +
1

2

∑

i

α2
iσi(0)

2
}

= 0.

Appendix A. Some analysis tools

We recall here some definitions and functional analysis tools. Let























(X, T ) be a topological space and Σ a σ algebra on X,

(E, E) be a measurable space,

(F, d) be a Polish space, endowed with its metric d, and B(F ) its Borel algebra.

Definition A.1. (E, E) is said to be countably generated, if there exists a countable base

generating E . Namely there exists a sequence On of E , such that E = σ(On, n ∈ N).

Since F is Polish, the measurable space (F,B(F )) is countably generated, (see for

instance Proposition 3.1 in [22]).

Definition A.2. Let P be a measure on (X,Σ). We say that P is regular if for any

measurable subset B ∈ Σ

P (B) = sup
{

P (K), K closed,K ∈ Σ, K ⊂ B
}

= inf
{

P (O), O open,O ∈ Σ, B ⊂ O
}

.

We recall that any Borel probability measure, or in other terms any probability mea-

sure on a metric space endowed with its σ-Borel algebra, is regular. (see for instance

Proposition 2.3 in [22]).

We denote by :
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-L∞(E) the set consisting of all measurable real bounded maps on (E, E).

-C(F ), (resp. Cu(F )), are the set of continuous (resp. uniformly continuous) bounded

functions on F .

-L∞(E×F ) is the set of measurable bounded real functions defined on
(

E×F, E⊗B(F )
)

.

-M(E) the set consisting of non negative finite measures on (E, E).

-M(F ) the set consisting of non negative finite measures on (F,B(F )).

-M(E × F ) the set consisting of non negative finite measures on
(

E × F, E ⊗ B(F )
)

.

We set furthermore

L∞
mc(E × F ) :=

{

f ∈ L∞(E × F ), x 7→ f(s, x) ∈ C(F ), ∀s ∈ E
}

,

L∞,1
mc (E × F ) :=

{

f ∈ L∞
mc(E × F ), ∃A ∈ E , g ∈ Cu(F ), f(x, z) = 1A(x)g(z).

}

,

L∞,2
mc (E × F )) :=

{

f ∈ L∞
mc(E × F ), ∃(An) a partition of E ,

and a sequence (gn) of ∈ Cu(F ), f(x, z) =
∑

n

1An
(x)gn(z).

}

.

On the other hand M(E) (resp. M(F ), M(E×F )) are denoted by Mm(E), (resp.Mc(F ),

Mmc(E × F )) when they are endowed with the finest topology making continuous the

following family of linear forms (θf )f∈L∞(E), defined by

θf :











M(E) → R

ν 7→ ν(f) =

∫

E

fdν
.

(resp. (θf)f∈C(F )

θf :











M(F ) → R

ν 7→ ν(f) =

∫

E

fdν
,

(θf )f∈L∞
mc(E×F ),

θf :











M(E × F ) → R

ν 7→ ν(f) =

∫

E×F

fdν
.)

We identify Mmc(E×F ) (resp. Mm(E), Mc(F )), as subsets of the dual spaces L∞
mc(E×

F )
′
(resp. L∞

m (E)
′
, C(F )

′
), endowed with the weak topologies ∗σ

(

L∞
mc(E × F )

′
, L∞

mc(E ×
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F )
)

(resp. ∗σ
(

L∞
m (E)

′
, L∞

m (E)
)

, ∗σ
(

C(F )
′
, C(F )

)

).

We recall that a sequence νn of L∞
mc(E × F )

′
(resp. L∞

m (E)
′
, C(F )

′
), converges to ν ∈

L∞
mc(E × F )

′
, (resp. L∞

m (E)
′
, C(F )

′
) for the weak topology ∗, and we denote νn

∗
⇀ ν, if

and only if

∀f ∈ L∞
mc(E × F ), νn(f)

n→+∞
−−−−→ ν(f),

(

resp. ∀f ∈ L∞
m (E), νn(f)

n→+∞
−−−−→ ν(f), ∀f ∈ C(F ), νn(f)

n→+∞
−−−−→ ν(f)

)

.

For any ν ∈ M(E × F ), we denote by νE (resp. νF ), the marginal of ν on E (resp. on

F ), defined by

νE(dx) =

∫

z∈F

ν(dz), νF (dz) =

∫

x∈E

ν(dx).

Proposition A.3. Suppose that E is countably generated, then Mmc(E×F ) is metrizable.

(See for instance Proposition 2.10 in [11].)

Theorem A.4. Let N be a subset of Mmc(E × F ). Then N is relatively compact if and

only if

(i)
{

νF , ν ∈ N
}

is relatively compact in Mm(E),

(ii)
{

νE , ν ∈ N
}

is relatively compact in Mc(F ).

(See for instance Proposition 2.10 in [11].)

Theorem A.5. Let φ be a positive linear form defined on the vectorial space generated

by L∞,1
mc (E × F ) satisfying

(i)










E → R

A 7→ φ(1A ⊗ 1)

is a measure on (E, E), where we define for each (x, z) ∈ E × F , 1A ⊗ 1(x, z) = 1, if

x ∈ A and 1A ⊗ 1(x, z) = 0, if x /∈ A.

(ii) for each ε > 0, there exist a compact set Kε of F such that φ(1) − φ(1 ⊗ f) ≤ ε,

for any f ∈ Cu(F ), satisfying 1Kε
≤ f ≤ 1, where we define for each (x, z) ∈ E × F ,

1(x, z) = 1, and 1⊗ f(x, z) = f(z).
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Then there exists ν ∈ Mmc(E × F ) such that

∀f ∈ L∞,1
mc (E × F ), φ(f) =

∫

E×F

fdν.

(See for instance Theorem 2.6 in [11]).

Lemma A.6. Let K be a compact set of F , and f ∈ L∞
mc(E × F ). Then there exist

a sequence fn of L∞,2
mc (E × F ) converging to f uniformly on E × K. (See for instance

Lemma 2.5 in [11]).

Definition A.7. Let (x = (x1, . . . xI), y = (y1 . . . yI)) ∈ R
2I , we say that

x ≤ y, if ∀i ∈ {1 . . . I}, xi ≤ yi,

and

x < y, if x ≤ y, and there exists j ∈ {1 . . . I}, xj < yj.

We say that F ∈ C(RI ,R) is increasing if

∀(x, y) ∈ R
I , if x ≤ y, then F (x) ≤ F (y),

strictly increasing if

∀(x, y) ∈ R
I , if x < y, then F (x) < F (y).
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