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STOCHASTIC CONTROL ON NETWORKS: WEAK DPP AND VERIFICATION THEOREM

The purpose of this article is to study a stochastic control problem on a junction, with control at the junction point. The problem of control is formulated in the weak sense, using a relaxed control, namely a control which takes values in the space of probability measures on a compact set. We prove first the compactness of the admissible rules and the dynamic programming principle (DPP). We complete this article by giving a verification Theorem for the value function of the problem, using some recent results on quasi linear non degenerate PDE posed on a junction, with non linear Neumann boundary condition at the junction point. An example is given, where the optimal control at the junction point is solution of a convex quadratic optimization problem with linear constraints.

Introduction

Diffusions on graphs have attracted a lot of intention in the last 20 years. They were introduced in the seminal works of Freidlin and Sheu in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] and Freidlin and Wetzell in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF]. More precisely, given a junction J = I i=1 J i , (σ i , b i ) regular functions from R + to R, and α 1 . . . α I positive constants such that α 1 + • • • + α I = 1, the authors in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] have proved that there exists a continuous Markov process X = (x, i) defined on J . Thereafter in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF], it is shown that there exists a one dimensional Wiener process W defined on a probability space (Ω, F , P), adapted to the natural filtration of X = (x, i), such that the process x satisfies the following stochastic differential equation for a finite time horizon T > 0,

dx(t) = σ i(t) (x(t))dW (t) + b i(t) (x(t))dt + dl(t) , 0 ≤ t ≤ T, (1) 
where l starts from 0 ans satisfies:

l is increasing and, P (

t 0 1 {x(s)>0} dl(s)) 0≤t≤T = 0 = 1. (2) 
1

Moreover, [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] gives the following Itô's formula:

df i(t) (x(t)) = b i(t) (x(t))∂ x f i(t) (x(t)) + 1 2 σ 2 i(t) (x(t))∂ 2 x f i(t) (x(t)) dt + ∂ x f i(t) (x(t))σ i(t) (x(t))dW (t) + I i=1 α i ∂ x f i (0)dl(t), (3) 
for f regular enough. The process l can be interpreted as the local time of the process X at the vertex, whose quadratic approximation is given by:

lim ε→0 E P 1 2ε I j=1 • 0 σ 2 j (0)1 {0≤x(s)≤ε,j(s)=j} ds -l(•) 2 (0,T ) = 0. (4) 
Let us recall that initially introduced by J. Walsh in [START_REF] Walsh | A diffusion with a discontinuous local time[END_REF], the Walsh's Brownian motion is a diffusion process on a set of I rays in R 2 emanating from 0. To each ray J i is associated a weight α i corresponding heuristically to the probability for the process to go in this ray, and on each ray, the process behaves like a Brownian motion. Obviously, due to the irregularities of the trajectories of the Brownian motion, this description is a non-sense.

This process may be described by its excursions measure;

P = I i=1 α i Q i ,
where Q i is the excursion measure of the reflected Brownian motion on the ray J i . Diffusion on graphs generalizes the notion of Walsh's Brownian motion. This object has given rise to an abundant literature on Brownian filtrations, especially by giving a negative answer to the following problem:

-"if a Brownian motion is adapted to some filtration, is this filtration generated by a Brownian motion?" (See for instance [START_REF] Barlow | Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes[END_REF] and [START_REF] Yor | Some aspects of Brownian motion. Part II: Some recent martingale problems[END_REF], Sect. 17, p. 103)

Remark that, strong solutions have been established only for the case I = 2 on the line, where the process is called the skew Brownian motion, and has been studied by several researchers (see for instance [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF], for a summary on the various ways for the construction of the skew Brownian motion).

There are several constructions of Walsh's Brownian motion in terms of resolvents, infinitesimal generators, semigroups, and excursion theory. Recently, in [START_REF] Ichiba | Stochastic integral equations for Walsh semimartingales[END_REF], the authors have given a system of stochastic equations for Walsh's planar semimartingales, unique in distribution. Pathwise uniqueness fails, since that the Walsh's Brownian motion is a process whose filtration cannot be generated by any Brownian motion of any dimension. For this result see the celebrated paper: [START_REF] Tsirel'son | Triple points: From non-Brownian filtration to harmonic measures[END_REF]. Thereafter, a stochastic optimal control/stopping problem of a Walsh's planar semimartingale has been studied in [START_REF] Karatzas | Semimartingales on rays, Walsh diffusions, and related problems of control and stopping[END_REF], but without control at the junction point, since it is assumed that the process is "immediately dispatched along some ray", when it reaches the origin.

In this work, we study a stochastic control problem with control at the junction point.

Since the construction of a strong solution for diffusion of type ( 1) is still a fairly complicated open problem, we use here a weak martingale formulation, and the method of compactification of the controls, as it has been introduced in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF].

Let us mention that the control theory on stratified domains of networks have already been well-studied in the literature, for first order problems, and we refer for instance to [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF], [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi Bellman equations[END_REF], [START_REF] Barles | Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit[END_REF], [START_REF] Ghilli | Junction conditions for finite horizon optimal control problems on multi-domains with continuous and discontinuous solutions[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], and [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF].

In this problem, the method differs a little from what it has been already done in the literature: we add a more general relaxation at the junction point, due to the process l introduced in equation ( 1) and its paths properties. This new method of relaxation is introduced in Section 2.1 where we formulate the stochastic control martingale problem, with control at the junction point. We prove the compactness of the admissible rules in Section 3, and the dynamic programming principle is established in Section 4.

The second main target of this work, is to address a characterization of the value function of this problem of control, in term of non linear parabolic partial differential equations posed on a junction. Due to the process l and the quadratic approximation (4), we will get that the parabolic equation that characterized the value function, has non degenerate viscosity at the junction point x = 0, and satisfies a non linear Neumann and non dynamical boundary condition at x = 0, for example (without cost at the junction point):

F (u(t, 0), ∂ x u(t, 0)) = inf α i ∈[0,1] I , i α i =1 i α i ∂ x u i (t, 0) = 0. (5) 
Until now, the only result of existence and uniqueness of these type of equation has been

given in [START_REF] Ohavi | Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices[END_REF], where the author has shown well-posedness of classical solutions for the following problem:

           ∂ t u i (t, x) -σ i (x, ∂ x u i (t, x))∂ 2 x u i (t, x) + H i (x, ∂ x u i (t, x)) = 0,
for all x > 0, and for all i ∈ {1 . . . I}, F (u(t, 0), ∂ x u(t, 0)) = 0, [START_REF] Fischer | On the moments of the modulus of continuity of Itô processes[END_REF] in suitable Hölder spaces: see Theorem 2.2 for the existence and Theorem 2.4 for the comparison in [START_REF] Ohavi | Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices[END_REF], and thus the uniqueness. The main assumptions are that the equation is uniformly parabolic with smooth coefficients, and the term F = F (u, p) is increasing with respect to p, which is a natural assumption regarding to the set where the controls (α 1 . . . α I ) are valued.

Therefore, in section 5, we will able to state a verification theorem. A simple example of illustration is also given, where we consider Hamiltonians with quadratic growth on each edge. At the junction point, remark first that the solution of the convex optimization problem:

inf α i ∈[0,1] I , i α i =1 i α i ∂ x u i (t, 0) = 0,
is equal to min i∈{1...I} ∂ x u i (t, 0). It means that, heuristically, if no cost appears at the junction point, the optimal strategy is therefore to play at the junction the maximum weight α i on the edge where the gradient ∂ x u i (t, 0) reaches its minimum, at each time we reach the junction point. We will give at the end of Section 5, an example with quadratic Hamiltonians on each edge, and at the junction point we will consider the following quadratic Hamiltonian:

inf α i ∈[0,1] I , i α i =1 i α i ∂ x u i (t, 0) + 1 2 i α 2 i σ i (0) 2 = 0
The optimal control at the junction point is then solution of a quadratic convex optimization problem, under linear constraints. Obvioulsy, this is just a simple example, which can be improved in a more applied sense with another more general cost, since as explained in [START_REF] Nikol'skii | The properties of certain classes of functions of many variables on differentiable manifolds[END_REF], this type of non linear PDE are involved in many applications in physics, chemistry, biology ...

Along this work, we work under the ellipticity assumption, which allows to state the uniqueness of non linear PDE involved for the value function. Moreover, the ellipticity condition is used to prove that the "non-stickiness" assumption satisfied by the process:

E P [ T 0 1 {x(s)=0} ds] = 0,
is closed under the weak convergence of probability measure (see Proposition 3.7). The dynamic programming principle (DPP) can be generated in the degenerate case, as it has been stated in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF], but here we do not focus on this technical point.

The paper is organized as follows. We introduce in Section 2 the stochastic control problem, with control at the junction point and we state our main results. Thereafter, in Section 3, we give a criterium of compactness for the controls at the junction point, and some path estimates to prove at the end of the section the compactness of the admissible rules. Section 4 is dedicated to the proof of the dynamic programming principle (DPP),

where both stability properties of the set of rules by conditioning and concatenation at stopping times are shown. Finally, the last Section 5, is dedicated to the proof of the verification Theorem, with an example of illustration.

Formulation of the stochastic control problem and main results

In this section, we define our stochastic control problem and we state our main results:

the dynamic programming principle (DPP), and the verification Theorem.

2.1. The stochastic control problem at the junction. In this sub section we define the stochastic control problem at the junction, using a weak martingale formulation. We use a classical relaxation on each edge.

Let J be an unbounded junction defined for I ∈ N * edges by:

J = I i=1 J i , with: ∀i ∈ {1 . . . I} J i = [0, +∞), and 
∀(i, j) ∈ {1 . . . I} 2 , i = j, J i ∩ J i = {0}.
The intersection of the (J i ) 1≤i≤I is called the junction point and is denoted by 0. We identify all the points of J by the couples (x, i) (with i ∈ {1 . . . I}, x ∈ |0, +∞)), such that we have: (x, i) ∈ J if and only if x ∈ J i .

For T > 0, the time-space domain J T is defined by:

J T = [0, T ] × J .
In the sequel, C 1,2 b (J T ) is the class of function defined on J T with regularity C 1,2 b ([0, T ] × [0, +∞)) on each edge, namely:

C 1,2 b ([0, T ] × [0, +∞)) := f : J T → R, (t, (x, i)) → f i (t, x), ∀(i, j) ∈ {1 . . . I} 2 , ∀t ∈ (0, T ), f i (t, 0) = f j (t, 0), ∀i ∈ {1 . . . I}, (t, x) → f i (t, x) ∈ C 1,2 b ([0, T ] × [0, +∞)) .
We define in the sequel the controls (generalized actions) on the junction J.

We use the notations introduced in Appendix A, and for the convenience of the reader we recall that, for a giving compact K of R n (n ∈ N * ):

L ∞ mc ([0, T ] × K) := f ∈ L ∞ ([0, T ] × K), k → f (t, k) ∈ C(K), ∀t ∈ [0, T ] .
We denote by M mc ([0, T ] × K) the set consisting of non negative finite measures on

[0, T ] × K, B([0, T ]) ⊗ B(K)
, endowed with the finest topology making continuous the following family of linear forms

(θ f ) f ∈L ∞ mc ([0,T ]×K) , θ f :        M mc ([0, T ] × K) → R ν → ν(f ) = [0,T ]×K f dν .
Let us introduce:

L[0, T ] := l : [0, T ] → R, continuous nondecreasing such that : l(0) = 0 ,
which is the space where the process l(.) introduced in (1) takes its value. Fixing a ∈ (0, 1), we define furthermore the following compact set A 0 of R I by

A 0 := (α i ) ∈ [a, 1] I , I i=1 α i = 1 ,
which is the set where the controls α i at the junction point appearing in the Ito's formula

(3) are valued.

The set of generalized actions at the junction point 0, denoted V ([0, T ] × A 0 ) is defined by:

V ([0, T ] × A 0 ) := ν ∈ M mc ([0, T ] × A 0 ), ∃l ν ∈ L[0, T ], ν [0,T ] (dt) = l ν (dt) , where ν [0,T ] (dt) = A 0 ν(dt, dα 1 , . . . , dα I ).
As a consequence of the disintegration Theorem of a measure, (see for instance [START_REF] Kallenberg | Invariant measures and disintegrations with applications to Palm and related kernels[END_REF]), we will use the following notation for ν ∈ V ([0, T ] × A 0 ):

ν(dt, dα 1 . . . dα I ) = l ν (dt)ν t (dα 1 . . . dα I ),
where ν . is a measurable kernel of mass 1 on (A 0 , B(A 0 )).

As explained in the Introduction 1, we will establish a criterion of compactness of

V ([0, T ]× A 0 ), for the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 )
, in Theorem 3.1 of section 4, which will be useful in the proof of the compactness of the admissible rules in Section 3.

We turn now to define the set of controls, (generalized actions) in each edge J i . Let

(K i ) 1≤i≤I , I compact sets of R.
The set of generalized actions U([0, T ] × K i ) on each edge J i is defined by:

U([0, T ] × K i ) := ν ∈ M mc ([0, T ] × K i ), ν [0,T ] (dt) = K i ν(dt, dk i ) = dt .
It is easy to show for each i ∈ {1 . . . i}, that U([0, T ] × K i ) are compact for the weak

topology * σ L ∞ mc ([0, T ] × K i ) ′ , L ∞ mc ([0, T ] × K i )
, and we will use the notation:

for ν ∈ V ([0, T ] × K i ); ν(dt, dk i ) = dtν t (dk i ),
where ν . is a measurable kernel of mass 1 on (K i , B(K i )). Next we will formulate the stochastic problem of control, with control at the junction point. For this we introduce the following data:

∀i ∈ {1 . . . I} :            σ i ∈ L ∞ ([0, +∞) × K i ) b i ∈ L ∞ ([0, +∞) × K i ) h i ∈ C b ([0, +∞) × K i ) ,      h 0 ∈ C b (A 0 ) g ∈ C b (J , R)
, satisfying the following assumptions:

Assumption (H) (i) ∃c > 0, ∀i ∈ {1 . . . I}, ∀(x, k i ) ∈ [0, T ] × [0, +∞) × K i , σ i (x, k i ) ≥ c, (ii) ∃(|b|, |σ|) ∈ (0, +∞) 2 , ∀i ∈ {1 . . . I}, sup (x,k i )∈[0,+∞)×K i |b i (x, k i )| + sup (x,y)∈[0,+∞),x =y,k i ∈K i |b i (x, k i ) -b i (y, k i )| |x -y| ≤ |b|, sup (x,K i )∈[0,+∞)×K i |σ i (x, k i )| + sup (x,y)∈[0,+∞),x =y,k i ∈K i |σ i (x, k i ) -σ i (y, k i )| |x -y| ≤ |σ|.
The canonical space involved in the martingale formulation is the following one:

Φ = C J [0, T ] × I i=1 U([0, T ] × K i ) × V ([0, T ] × A 0 ),
endowed with its Borel σ algebra B(Φ). Here C J ([0, T ]) is the Polish set of continuous maps defined in [0, T ], valued in the junction J, endowed the metric d J [0,T ] defined by

∀ (x(•), i(•)), (y(•), j(•)) ∈ C J ([0, T ]) 2 : d J [0,T ] (x(•), i(•)), (y(•), j(•)) = sup t∈[0,T ] d J (x(t), i(t)), (y(t), j(t)) ,
where:

∀ (x, i), (y, j) ∈ J 2 , d J (x, i), (y, j) =    |x -y| if i = j , x + y if i = j .
The canonical process is then defined on the measurable space (Φ, B(Φ)) by:

X :        [0, T ] × Φ → J × I i=1 U([0, T ] × K i ) × V ([0, T ] × A 0 ) s, Y (•) → X(s, Y (•)) = y(s), j(s) , ν 1 (s) . . . ν I (s), ν 0 (s) ,
where for each i ∈ {1, . . . I}, ν i (s)(dt, dK i ) = 1 [0,s] (t)ν i (dt, dK i ), and ν 0 (s)(dt, dα 1 , . . . , dα I ) =

1 [0,s] (t)ν 0 (dt, dα 1 , . . . , dα I ).
It is easy to check that the process X(s) 0≤s≤T has continuous paths.

We denote in the sequel by (Ψ t ) 0≤t≤T the right continuous filtration generated by this process.

Let t, (x, i) ∈ [0, T ] × J .

We define the set of admissible rules A t, (x, i) , as the set of all the probability measures P (x,i) t defined on the filtered probability space Φ, (Ψ t ) 0≤t≤T satisfying the following conditions:

Conditions (S 0 ) -(i) For each u ≤ t, X(u) = (x, i), ν 1 (t) . . . ν I (t), ν 0 (t) , P (x,i) t a.s.
-(ii) For each s ≥ t,

s t A 0 1 {x(u)>0} ν 0 (s)(du, dα 1 , . . . , dα I ) = s t 1 {x(u)>0} l ν 0 (s) (du) = 0, P (x,i) t a.s.
-(iii) For any f ∈ C 1,2 b (J T ), the following process (M f (s)) 0≤s≤T defined on the filtered probability space (Φ, B(Φ), (Ψ t ) 0≤t≤T , P (x,i) t

) by:

∀s ∈ [t, T ], M f (s) -M f (t) = f (s, X(s)) -f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t f i (u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x f i (u, x(u)) + b i (x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ),
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

, after time t.

Remark 2.1. The fact that A t, (x, i) is non empty, is a consequence of Lemma 2.3 in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF]. More precisely, it is shown that there exists P ∈ A t, (x, i) , with a constant control at the junction point: namely for (a 1 . . . a

I ) ∈ A 0 , ∀s ∈ [0, T ], ∀ν 0 ∈ V ([0, T ] × A 0 ), ν 0 (s)(dt, dα 1 . . . dα I ) = 1 [0,s] (t)δ (a 1 ,...,a I ) (α 1 , . . . , α I ),
then:

A 0 δ (a 1 ,...,a I ) (α 1 , . . . , α I ) = 1, and

I i=1 s t A 0 α i ∂ x f (u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ) = I i=1 s t a i ∂ x f i (u, 0)l ν 0 (s) (du), P a.s.
Finally, we define the following reward function Λ of the stochastic control problem, where h 0 is the cost at the junction point, and the h i are the costs on each edge J i by: Λ :

                 A t, (x, i) → R P (x,i) t → E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(du, dα 1 , . . . , dα I ) + g(X T ) . (7) 
The corresponding value function v is defined by: v : 

       [0, T ] × J → R t, (x, i) → inf P (x,i) t ∈A(t,(x,i)) Λ(P (x,i) t ) . (8) 2 
v i (t, x) = inf P (x,i) t ∈A(t,(x,i)) E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) . (9) 
In the sequel, we state a verification theorem. We use some recent results on uniqueness and solvability, for a class of quasi linear PDE posed on a junction, with non linear Neumann boundary (see Theorem 4.5 in [19]). Our main assumptions are that each hamiltonian on each edge have quadratic growth with respect to the gradient, and the control do not appear in the diffusion terms.

Using the compactness of the sets (K i ) i∈{1...I} and A 0 , we get that there exist:

∀i ∈ {1 . . . I}, k i :=      R + × R → K i , (x, p) → k i (x, p) , α i :=      R I → A 0 , (p 1 , . . . , p I ) → α i (p 1 , . . . , p I )
, such that: We call in the sequel the following functions: the Hamiltonian at the junction point.

∀(x, p) ∈ R + × R, ∀i ∈ {1 . . . I}, inf k i ∈K i {b i (x, k i )p + h i (x, k i )} = b i (x, k i (x, p))p + h i (x, k i (x, p)), ∀(p 1 , . . . , p I ) ∈ R I , inf (α i ) i∈{1...I} ∈A 0 { I i=1 α i p i + h 0 (α 0 , . . . , α I )} = I i=1 α i (
H i (•, •) := R + × R → R, (x, p) → b i (x, k i (x, p))p + h i (x, k i (x, p))
In the sequel, we will make the following assumptions, which are weaker then assumption (H).

Assumption (P)

(i) The diffusions terms (σ i ) i∈{1...I} do not depend on the controls

(k i ) i∈{1...I} : ∀i ∈ {1 . . . I}, ∀(x, k i ) ∈ R + × K i , σ i (x, k i ) = σ i (x),
and the coefficents have the following regularity:

                         σ i ∈ C 1 b (R + , R), i ∈ {1 . . . I}, b i ∈ C 1 b (R + × K i , R), i ∈ {1 . . . I}, h i ∈ C 1 b (R + × K i , R), i ∈ {1 . . . I}, h 0 ∈ C b (A 0 , R), g ∈ C 2 b (J )
.

(ii) The Hamiltonians satisfy:

∀i ∈ {1, . . . , I}, H i ∈ C 1 (R + × R, R).
Remark that using the ellipticty condition on the (α i ) 1≤i≤I : ∀i ∈ {1 . . . I}, 1 ≥ α i ≥ a > 0, it is easy to check first H 0 ∈ C(R I , R). We get easily too, using the boundness of h 0 , and the continuity of H 0 , that H 0 is increasing, and there exists p ∈ R I , such that H 0 (p) = 0, namely assumption (i) b) and c) of Theorem 4.5 in [START_REF] Ohavi | Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices[END_REF] holds true.

(iii) The diffusions terms (σ i ) i∈{1...I} are uniformly elliptic: there exists a constant c > 0, strictly positive such that:

∃c > 0, ∀i ∈ {1 . . . I}, ∀x ∈ R + , c ≤ σ i (x).
(iv) The growth of the Hamiltonians (H i ) i∈1...I on each edge with respect to p is quadratic, namely there exists M 1 > 0 a constant strictly positive such that

∀i ∈ {1 . . . I}, ∀(x, p) ∈ R + × R, |b i (x, k i (x, p))p + h i (x, k i (x, p))| ≤ M 1 (1 + |p|) 2 .
(v) We impose the following restrictions on the growth with respect to p of the derivatives for the Hamiltonians (H i ) i∈1...I on each edge, which are for all i ∈ {1 . . . I}, ∀(x, p) ∈

R + × R: a) |∂ p (b i (x, k i (x, p))p + h i (x, k i (x, p)))| ≤ M 2 (1 + |p|), b) |∂ x (b i (x, k i (x, p))p + h i (x, k i (x, p)))| ≤ M 3 (1 + |p|) 2 ,
where M 2 > 0 and M 3 > 0 are strictly positive constants.

(vi) The terminal condition g satisifies the following compatibility condition:

I i=1 α i (g 1 (0), . . . , g I (0))g i (0) + h 0 (α 1 (g 1 (0), . . . , g I (0)), . . . , α I (g 1 (0), . . . , g I (0))) = 0.
In the sequel, C 0,1

(J T ) ∩ C 1,2 ( • J T ) is the class of function with regularity C 0,1 ([0, T ] × [0, +∞)) ∩ C 1,2 ((0, T ) × (0, +∞))
on each edge, continuous at the junction point. As a consequence Theorem 4.5 in [START_REF] Ohavi | Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices[END_REF] we have:

Theorem 2.

Assume (P). The following quasi linear backward parabolic problem with

Neumann boundary condition at the junction point:

           ∂ t u i (t, x) + 1 2 σ i (x) 2 ∂ 2 x u i (t, x) + H i (x, ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, +∞), H 0 (∂ x u(t, 0)) = 0, if t ∈ (0, T ], ∀i ∈ {1 . . . I}, u i (T, x) = g i (x), if x ∈ [0, +∞), (10) 
is uniquely solvable in the class C 0,1 (J T ) ∩ C 1,2 ( • J T ). Recall that: ∂ x u(t, 0) = (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0)), ∀(i, j) ∈ {1 . . . I} 2 , u i (t, 0) = u j (t, 0), H i (x, ∂ x u i (t, x)) = b i (x, k i (x, ∂ x u i (t, x)))∂ x u i (t, x) + h i (x, k i (x, ∂ x u i (t, x))) = inf k i ∈K i {b i (x, k i )∂ x u i (t, x) + h i (x, k i )}, if (t, x) ∈ (0, T ) × (0, +∞), H 0 (∂ x u(t, 0)) = I i=1 α i (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0)∂ x u i (t, 0) + h 0 (α 1 (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0))) . . . , α I (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0)) = inf (α i ) i∈{1...I} ∈A 0 { I i=1 α i ∂ x u i (t, 0) + h 0 (α 0 , . . . , α I )}, if t ∈ (0, T ].
In the sequel we denote by u the unique solution of [START_REF] Krylov | Controlled Diffusion Processes (Stochastic Modelling and Applied Probability[END_REF]. We have the following verification Theorem.

Theorem 2.4. For any (t, (x, i)) ∈ [0, T ] × J , we have:

u i (t, x) ≤ v i (t, x).
Moreover, if there exists P

(x,i) t ∈ A(t, (x.i)) such that (iii) of Condition (S 0 ) is satisfied
with the controls (where δ is the dirac measure):

on each edge J i :

∀t ∈ [0, T ], ν i (t)(dz, dk i ) = δ k i(t) (x(t),∂xu i(t) (t,x(t))) (dk i )dz, P (x,i) t a.s,
and at the junction point:

∀t ∈ [0, T ], ν 0 (t)(dz, dα 1 . . . , dα I ) = δ (α i(t) (∂xu 1 (t,0),...,∂xu I (t,0)))) 1≤i(t)≤I (dα 1 . . . , dα I )l ν 0 (t) (dz), P (x,i) t a.s,
which means that we have:

∀f ∈ C 1,2 b (J T ), f i(s) (s, x(s)) -f i (t, x) - s t ∂ t f i(z) (z, x(z)) + 1 2 σ 2 i(u) (x(z))∂ 2 x f i (z, x(z)) + b i(z) x(z), k i(z) (x(z), ∂ x u i(z) (z, x(z))) ∂ x f i (z, x(z)) dz - s t I i(z)=1 α i(z) (∂ x u 1 (z, 0) . . . ∂ x u I (, 0))∂ x f i(z) (z, 0)l ν 0 (s) (dz),
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

, after time t,

then P (x,i) t
is optimal and we have for any (t, (x, i)) ∈ [0, T ] × J :

v i (t, x) = u i (t, x) = E P (x,i) t T t h i(z) x(z), k i(z) (x(z), ∂ x u i(z) (z, x(z))) dz + T t h 0 α i(z) (∂ x u 1 (z, 0), . . . , ∂ x u I (z, 0)) {1≤i(z)≤I} l ν 0 (T ) (dz) + g(X T ) ,

Compactness of the admissible rule

In this section, we will prove the compactness of the set of admissible rules A t, (x, i) ,

for the weak topology.

A criterium of compactness of the admissible rules at the junction point.

We first start by giving a criterium of compactness of the set of generalized actions

V ([0, T ] × A 0 ) at the junction point, that will be useful in the sequel.

Theorem 3.1. Let V be a subset of V ([0, T ] × A 0 ). Assume that there exists a constant C > 0, and a modulus of continuity w ∈ C(R + , R), with w(0) = 0, such that

∀ν ∈ V, l ν (T ) ≤ C, ∀ν ∈ V, ∀(t, s) ∈ [0, T ], |l ν (t) -l ν (s)| ≤ w(|t -s|), then V is compact for the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) . Proof. Since the σ Borel algebra B([0, T ]) of [0, T ] is countably generated, we get from Proposition A.3, that M mc ([0, T ] × A 0
) is metrizable, therefore V is metrizable and the compactness can be proved sequentially.

Let ν n be a sequence of V, we know that there exists a sequence l νn of L[0, T ], such that

ν [0,T ] n (dt) = A 0 ν n (dt, dα 1 . . . dα I ) = l νn (dt).
Using the assumptions satisfied by the sequence l νn , applying Ascoli's Theorem, we get that l νn converges uniformly up to a sub sequence to l ∈ C[0, T ], and since

L[0, T ] is closed in C[0, T ] for the uniform convergence, we deduce that l ∈ L[0, T ]. Let us now show that V is relatively compact for * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 )
, and for this we are going to apply Theorem A.4.

We now show that ν [0,T ] n and (resp.

ν A 0 n = [0,T ] ν n (dt, dα 1 . . . dα I )) are relatively compact in M m ([0, T ]) (resp. M c (A 0 )), for the weak topologies * σ L ∞,1 ([0, T ]) ′ , L ∞,1 ([0, T ]) , resp. * σ C(A 0 ) ′ , C(A 0 )
, where we recall that:

L ∞,1 ([0, T ]) := f ∈ L ∞ ([0, T ]), ∃B ∈ B([0, T ]), f (t) = 1 B (t) ,
and M m ([0, T ]), (resp.M c (A 0 )), are the set of finite positive finite measures on [0, T ] (resp. A 0 ), endowed with the finest topology making continuous the following family of linear forms (θ f ) f ∈L ∞ ([0,T ]) , defined by:

θ f :        M m ([0, T ]) → R ν → ν(f ) = [0,T ] f dν . resp. (θ f ) f ∈C(A 0 ) θ f :      M c (A 0 ) → R ν → ν(f ) = A 0 f dν .
Since l n converges uniformly to l up to a sub sequence n k , it is easy to get that for any

f ∈ L ∞,1 ([0, T ]) [0,T ] f (t)l νn k (dt) k→+∞ ----→ n k [0,T ] f (t)l(dt), namely ν [0,T ] n k (dt) * ⇀ l(dt) for * σ L ∞,1 ([0, T ]) ′ , L ∞,1 ([0, T ]) .
On the other hand, we have

ν A 0 n C(A 0 ) ′ = sup f ∈C(A 0 ), f ≤1 [0,T ]×A 0 f (t)ν n (dt, dα 1 . . . dα I ) ≤ l n (T ) ≤ C,
and then we deduce that ν A 0 n is relatively compact for the weak topology * σ(C(A 0 ) ′ , C(A 0 )).

We deduce finally using Theorem A.4, that ν n is relatively compact, and then converges up to a sub sequence (denoted in the same way by

n k ) to φ ∈ L ∞,1 mc ([0, T ] × A 0 )) ′ , for * σ L ∞,1 mc ([0, T ] × A 0 ) ′ , L ∞,1 mc ([0, T ] × A 0 )
, where:

L ∞,1 mc ([0, T ] × A 0 ) := f ∈ L ∞ ([0, T ] × A 0 ), ∃B ∈ B([0, T ]), g ∈ C(A 0 ), f (•) = 1 B (•)g(•)
.

We now turn to prove that φ can be represented by an element of

ν ∈ M mc ([0, T ] × A 0 ), namely ∃ν ∈ M mc ([0, T ] × A 0 ), ∀f ∈ L ∞,1 mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
For this, we use a Riesz representation Theorem, and more precisely we are going to prove that φ satisfies (i) and (ii) of Theorem A.5.

Let B ∈ B([0, T ]), we have

(t, α 1 . . . α I ) → 1 B ⊗ 1(t, α 1 . . . α I ) :=      1, if t ∈ B, 0, if t / ∈ B, belongs to L ∞,1 ([0, T ] × A 0 ), and 
ν n k (1 B ⊗ 1) k→+∞ ----→ φ(1 B ⊗ 1), ν n k (1 B ⊗ 1) = l n k (B) k→+∞ ----→ l(B).
By uniqueness of the weak limit, we get that φ(1 B ⊗ 1) = l(B), and since l ∈ L[0, T ], l defines a Borel measure on ([0, T ], B([0, T ])), which means that (i) of Theorem A.5 holds true.

On the other hand, since A 0 is compact, we deduce easily that (ii) of Theorem A.5 holds true.

We deduce then that there exists ν ∈ M mc ([0, T ] × A 0 ), such that:

∀f ∈ L ∞,1 mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
Since φ is a continuous linear form on

Span(L ∞,1 mc ([0, T ]×A 0 )), which is dense in L ∞ mc ([0, T ]× A 0 ) for the uniform convergence (see Lemma A.6), we deduce that ∀f ∈ L ∞ mc ([0, T ] × A 0 ), φ(f ) = [0,T ]×A 0 f (t, α 1 . . . α I )ν(dt, dα 1 . . . dα I ).
Finally, to complete the proof, it is enough to show that the projection ν [0,T ] (dt) is equal to l(dt). For this we use that, for any B ∈ B([0, T ])

[0,T ] 1 B (t)l νn k (dt) k→+∞ ----→ n k [0,T ] 1 B (t)l(dt), [0,T ]×A 0 1 B (t)ν n (dt, dα 1 . . . dα I ) k→+∞ ----→ n k [0,T ]×A 0 1 B (t)ν(dt, dα 1 . . . dα I ).
Using the uniqueness of the weak limit, we get

∀B ∈ B([0, T ]), [0,T ] 1 B (t)l(dt) = [0,T ]×A 0 1 B (t)ν(dt, dα 1 . . . dα I )
and then

l(dt) = A 0 ν(dt, dα 1 . . . dα I ),
and that completes the proof.

Theorem 3.2. V ([0, T ]×A 0 ) endowed with the weak topology * σ L ∞ mc ([0, T ]×A 0 ) ′ , L ∞ mc ([0, T ]× A 0 ) is Polish. Proof. Recall that M mc ([0, T ] × A 0 ) endowed with the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) is separable since: M mc ([0, T ] × A 0 ) ⊂ n≥0 φ ∈ L ∞ mc ([0, T ] × A 0 ) ′ , φ ≤ n ,
and from Banach-Alaoglu-Bourbaki's Theorem:

∀n ≥ 0, φ ∈ L ∞ mc ([0, T ] × A 0 ) ′ , φ ≤ n is compact for * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) . As a subset of M mc ([0, T ] × A 0 ), we deduce that V ([0, T ] × A 0 ) is separable for the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 ) . To conclude, let ν n (dt, dα 1 . . . dα I ) := l n (dt)ν t,n (dz) a Cauchy sequence of V ([0, T ] × A 0 ), we have then ∀ε > 0, ∃n 0 ∈ N, ∀n ≥ n 0 , ∀p ≥ 0, ∀f ∈ L ∞ mc ([0, T ] × A 0 ), [0,T ]×A 0 f (t, α 1 . . . α I )ν n+p (dt, dα 1 . . . dα I ) - [0,T ]×A 0 f (t, α 1 . . . α I )ν n (dt, dα 1 . . . dα I ) ≤ ε. Let s ∈ [0, T ], choosing f (t, α 1 . . . α I ) = 1 [0,s] (t)
, we get that l n is a Cauchy sequence of L([0, T ]), and then converges uniformly to l ∈ L([0, T ]). Therefore using the converse of Ascoli's Theorem, we get that the sequence l n satisfies

∃C > 0, ∀n ≥ 0, l n (T ) ≤ C, ∃w ∈ C([0, T ]), w(0) = 0, ∀n ≥ 0, ∀(t, s) ∈ [0, T ], |l n (t) -l n (s)| ≤ w(|t -s|).
We conclude then using Theorem 3.1, that

ν n converges to ν ∈ V ([0, T ] × A 0 ) for the weak topology * σ L ∞ mc ([0, T ] × A 0 ) ′ , L ∞ mc ([0, T ] × A 0 )
, and that completes the proof.

3.2. Some estimates and paths properties of the process. This subsection is dedicated to give some estimates of the paths of the canonical process X(•), and the time spent in the neighborhood of the junction point, which are key points to proof of the compacity of A(t, (x, i)).

Proposition 3.3. Define the following maps:

ρ :        C J [0, T ] × V ([0, T ] × A 0 ) → R (x(•), i(•)), ν 0 → T t A 0 1 {x(u)>0} ν 0 (du, dα 1 , . . . , dα I ) , ρ 0 :        V ([0, T ] × A 0 ) → R ν 0 → T t A 0 h 0 (α 1 , . . . , α I )ν 0 (du, dα 1 , . . . , dα I )
, ∀i ∈ {1 . . . I} :

ρ i :        C J [0, T ] × U([0, T ] × K i ) → R (x(•), i(•)), ν i → T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (du, dk i ) .
Then ρ, (ρ i ) i∈{1...I} are lower semi continuous and ρ 0 is continuous.

Proof. We start by showing that ρ is lower semi continuous, and for this let (x n (•), i n (•)),

ν n 0 (dt, dα 1 , . . . , dα I ) in C J [0, T ]×V ([0, T ]×A 0 ) converging to (x(•), i(•)
), ν 0 (dt, dα 1 . . . dα I ) . Let p ≥ 0 and φ p ∈ C([0, +∞)) a sequence converging from below to x → 1 {x>0} in the pointwise sense, as p → +∞. Since ν n (dt, dα 1 , . . . , dα I ) * ⇀ ν(dt, dα 1 , . . . , dα I ), we can

find θ ∈ M mc ([0, T ] × A 0 ), such that ∀f ∈ L ∞ mc ([0, T ] × A 0 ), ∀n ≥ 0, [0,T ]×A 0 |f (u, α 1 , . . . , α I )|ν n (du, dα 1 , . . . , dα I ) ≤ [0,T ]×A 0 |f (u, α 1 , . . . , α I )|θ(du, dα 1 , . . . , dα I ).
We write then:

T t A 0 φ p (x n (u))ν n 0 (du, dα 1 , . . . , dα I ) - T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ) ≤ T t A 0 φ p (x n (u)) -φ p (x(u)) ν n 0 (du, dα 1 , . . . , dα I ) + T t A 0 φ p (x(u))ν n 0 (du, dα 1 , . . . , dα I ) - T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ) ≤ T t A 0 φ p (x n (u)) -φ p (x(u)) θ(du, dα 1 , . . . , dα I ) + T t A 0 φ p (x(u))ν n 0 (du, dα 1 , . . . , dα I ) - T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ) .
Therefore we get that

∀p ≥ 0, lim n→+∞ T t A 0 φ p (x n (u))ν n 0 (du, dα 1 , . . . , dα I ) = T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ).
Finally writing:

T t A 0 1 {x n (u)>0} ν n 0 (du, dα 1 , . . . , dα I ) ≥ T t A 0 φ p (x n (u))ν n 0 (du, dα 1 , . . . , dα I ), we get ∀p ≥ 0, lim inf n→+∞ T t A 0 1 {x n (u)>0} ν n 0 (du, dα 1 , . . . , dα I ) ≥ T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ),
and hence

lim inf n→+∞ T t A 0 1 {x n (u)>0} ν n 0 (du, dα 1 . . . dα I ) ≥ lim sup p→+∞ T t A 0 φ p (x(u))ν 0 (du, dα 1 , . . . , dα I ) = T t A 0 1 {x(u)>0} ν 0 (du, dα 1 , . . . , dα I ).
We conclude then that ρ is lower semi continuous. We use the same arguments to show that the (ρ i ) i∈{1...I} are lower semi continuous and ρ 0 is continuous.

In the next Proposition, we characterize the paths of the process x(•), by showing that its martingale part can be represented by a Brownian integral.

Proposition 3.4. Let P (x,i) t ∈ A t, (x, i) , and f ∈ C 1,2 b (J T ), we have:

∀s ∈ [t, T ], d < f (•, X(•) > s = I i=1 K i 1 x(u),i(u) ∈J * i ∂ x f i (s, x(s))σ i (x(s), k i ) 2 ν i,s (s)(dk i ) ds, P (x,i) t a.s.
Moreover there exists a standard one dimensional Brownian motion W (•), (Ψ s ) t≤s≤T measurable, such that:

∀s ∈ [t, T ], x(s) = x + I i=1 s t K i 1 x(u),i(u) ∈J * i b i (x(u), k i )ν i (s)(du, dk i ) + s t I i=1 K i 1 x(u),i(u) ∈J * i σ i (x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 dW (u) + l ν 0 (s) (s), P (x,i) t a.s. (11) 
Proof. Let g = g(x) ∈ C 2 b (R, R), we have using the classical Itô's formula:

∀s ∈ [t, T ], g • f (s, X(s)) = g • f (s, x) + s t ∂ x g • f (u, X(u))df (u, X(u)) + 1 2 s t ∂ 2 x g • f (u, X(u))d < f (•, X(•)) > u , P (x,i) t a.s.
On the other hand we have

s t ∂ x g • f (u, X(u))df (u, X(u)) = I i=1 K i s t 1 x(u),i(u) ∈J * i ∂ x g • f (u, X(u)) ∂ t f i (u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x f i (u, x(u)) + b i (x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) + I i=1 A 0 s t α i ∂ x g • f (u, X(u))∂ x f i (u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ) + s t ∂ x g • f (u, X(u))dM f (u), P (x,i) t a.s
Using condition (S 0 ) (ii), namely:

s t A 0 1 {x(u)>0} ν 0 (s)(du, dα 1 , . . . , dα I ) = 0, P (x,i) t
a.s, we get:

I i=1 s t A 0 ∂ x g • f (u, X(u))α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ) = I i=1 s t A 0 ∂ x g • f (u, 0)α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ), P (x,i) t a.s.
On the other hand, using that g

• f ∈ C 1,2 b (J T ), we know that g • f (s, X(s)) -g • f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t (g • f i )(u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x (g • f i )(u, x(u)) + b i (x(u), k i )∂ x (g • f i )(u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x (g • f i )(u, 0)ν 0 (s)(du, dα 1 , . . . , dα I ) t≤s≤T ,
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

. Simple computations allows to get that, at each vertex, for all x ∈ J * i and for all s ∈ [t, T ]

∂ t (g • f ) i (s, x) + b i (x, k i )∂ x (g • f ) i (s, x) + 1 2 σ 2 i (x, k i )∂ 2 x (g • f ) i (s, x) = ∂ t f i (s, x)∂ x g • f i (s, x) + b i (x, k i )∂ x f i (s, x)∂ x g • f i (s, x) + 1 2 σ 2 i (x, k i ) ∂ 2 x f i (s, x)∂ x g • f i (s, x) + ∂ x f i (s, x) 2 ∂ 2 x g • f i (s, x) .
Identifying the martingale and finite variation terms, we get that:

∀s ≥ t, d < f (., X(•) > s = I i=1 K i 1 x(u),i(u) ∈J * i ∂ x f i (s, x(s))σ i (x(s), k i ) 2 ν i,s (s)(dk i ) ds, P (x,i) t a.s.
Considering the special case when f (x) = x, if x ∈ J * i , after an argument of localization with stopping times, and (using the ellipticity assumption (i) (H)), if we set:

∀s ≥ t, W (s) = s t 1 I i=1 K i 1 x(u),i(u) ∈J * i σ i (x(u), k i ) 2 ν i,u (s)(dk i ) 1 2
df (u, X(u)), P 

∀s ∈ [t, T ], E P (x,i) t x(•) 2 (t,s) ≤ C(1 + x 2 ), ∀s ∈ [t, T ], E P (x,i) t l ν 0 (•) (•) 2 (t,s) ≤ C(1 + x 2 ), E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ
),

E P (x,i) t ω(l ν 0 (•) (•), θ) 2 ≤ Cθ ln( 2T θ ),
where we have defined the following modulus of continuity

ω(X, θ) = sup d J (X(s), X(u)), (u, s) ∈ [t, T ], |u -s| ≤ θ, θ ∈ [0, T ] , ω(l, θ) = sup |l(u) -l(s)|, (u, s) ∈ [t, T ], |u -s| ≤ θ, θ ∈ [0, T ] .
Proof. We define the following map

f ∈ C 1,2 (J T ), by f (x, i) = x 2 , if x ∈ J * i , i ∈ {1 . . . I}.
After an argument of localization with stopping times, and using condition (S 0 ) (iii), we get for all s ∈ [t, T ]

1 2 x(s) 2 -x 2 ≤ I i=1 s t K i 1 x(u),i(u) ∈J * i b i (x(u), k i )x(u) + σ i (x(u), k i ) ν i (s)(du, dk i ) + |M f (s)| ≤ I i=1 . t K i 1 x(u),i(u) ∈J * i b i (x(u), k i )x(u) + σ i (x(u), k i ) ν i (•)(du, dk i ) (t,s) + |M f (.)| (t,s) .
From Burkholder-Davis-Gundy inequality, and Proposition 3.4 we have

E P (x,i) t |M f (.)| (t,s) = E P (x,i) t • t I i=1 K i 1 x(u),i(u) ∈J * i 2x(u)σ i (x(u), k i ) 2 ν i,u (.)(dK i ) 1 2 dW (u) (t,s) ≤ 4E P (x,i) t s t I i=1 K i 1 x(u),i(u) ∈J * i 2x(u)σ i (x(u), k i ) 2 ν i,u (s)(dk i ) du ≤ 16 max i∈{1...I} |σ i | 2 E P (x,i) t s t x(•) 2 (t,u)
du .

On the other hand it is easy to see that there exists a constant C, depending only on the data (T, |b|, |σ|), such that:

I i=1 . t K i 1 x(u),i(u) ∈J * i b i (x(u), k i )x(u) + σ i (x(u), k i ) ν i (•)(du, dk i ) (t,s) ≤ C 1 + s t x(•) 2 (t,u) du .
Therefore there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

E P (x,i) t x(•) 2 (t,s) -x 2 ≤ C 1 + s t E P (x,i) t x(•) 2 (t,u)
du .

Applying Gronwall's Lemma to the following measurable function:

ρ :=      [t, T ] → R s → E P (x,i) t x(•) 2 (t,s)
, we get that there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

∀s ∈ [t, T ], E P (x,i) t x(•) 2 (t,s) ≤ C(1 + x 2 ).
On the other hand, using [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF], it is easy to see that there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

∀s ∈ [t, T ], E P (x,i) t l ν 0 (•) (•) 2 (t,s) ≤ C(1 + x 2 ).
We turn now to prove the required upper bounds for the modulus of continuity of the process x(s) t≤s≤T , and l ν 0 (s) (s)

t≤s≤T . For this end, let ε > 0, we introduce the following sequence of stopping times:

θ ε 0 = t ; τ ε 0 = inf t < u ≤ T ; x(u) = 0 ; θ ε 1 = inf τ ε 0 < u ≤ T ; x(u) = ε . . . τ ε n = inf θ ε n < u ≤ T ; x(u) = 0 ; θ ε n+1 = inf τ ε n < u ≤ T ; x(u) = ε ,
and for each u ∈ [t, T ]:

θ u := inf θ n ; θ ε n ≥ u , and 
θ u := sup θ n ; θ ε n ≤ u .
Let (u, s) ∈ [t, T ] 2 such that s ≤ u, and us ≤ θ, θ ∈ (0, T ], we have (assuming that the process X(•) has reached the junction point between time [s, u], (otherwise inequality [START_REF] Ichiba | Stochastic integral equations for Walsh semimartingales[END_REF] is still available)

d J (X(u), X(s)) ≤ d J (X(u), X(θ u )) + d J (X(θ u ), X(θ s )) + d J (X(θ s ), X(s)), P (x,i) t a.s.
We get therefore for any ε > 0:

ω(X, θ) ≤ 2ω( M, θ) + 2ε, P (x,i) t a.s, ( 12 
)
where we have defined the process M(s)

t≤s≤T by ∀s ∈ [t, T ], M (s) = I i=1 s t K i 1 x(u),i(u) ∈J * i b i (x(u), k i )ν i (s)(du, dk i ) + s t I i=1 K i 1 x(u),i(u) ∈J * i σ i (x(u), k i ) 2 ν i,u (s)(dk i ) 1 2 dW (u), P (x,i) t a.s.
The process M (s)

t≤s≤T satisfies assumptions of Theorem 3.1 of [START_REF] Fischer | On the moments of the modulus of continuity of Itô processes[END_REF], therefore we know that there exists a constant C, depending only on the data (T, |b|, |σ|) such that:

∀ε > 0, E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ ) + 2ε,
and then

E P (x,i) t ω(X(•), θ) 2 ≤ Cθ ln( 2T θ ).
We get the last upper bound for the modulus of continuity of the process l ν 0 (s) (s) t≤s≤T , using

∀(u, s) ∈ [t, T ] 2 , l ν 0 (u) (u) -l ν 0 (s) (s) = x(u) -x(s) -( Mu -Ms ), P (x,i) t
a.s.

Lemma 3.6. Let P (x,i) t ∈ A t, (x, i) , and M > 0. There exists a constant C > 0, depending only on the data T, M, |b|, |σ|, x , introduced in assumption (H), such that

E P (x,i) t exp(Mx(T )) ≤ C. (13) 
Proof. We define the following map φ by:

φ :=      [0, +∞) → R x → exp(Mx) -Mx -1 .
Let k ≥ 0, we introduce the following stopping time:

θ k := inf{s ∈ [t, T ], x(s) ≥ k}.
Hence, using conditions (S 0 ) (iii) with φ and Proposition 3.5, we get

E P (x,i) t exp(Mx(T ∧ θ k )) = exp(Mx) -Mx + E P (x,i) t Mx(T ∧ θ k ) + E P (x,i) t I i=1 T ∧θ k t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (x(u), k i )∂ 2 x φ(x(u)) + b i (x(u), k i )∂ x φ(x(u)) ν i (T ∧ θ k )(du, dk i ) ≤ C 1 + E P (x,i) t T ∧θ k t exp(Mx(u))du ,
where C is a constant depending only on T, M, |b|, |σ|, x . Hence sending k → +∞, we get using monotone convergence's Theorem and Fubini's Theorem

E P (x,i) t exp(Mx(T )) ≤ C 1 + T t E P (x,i) t exp(Mx(u)) du .
We conclude finally using Gronwall's Lemma to the following measurable map

ρ :=      [t, T ] → R s → E P (x,i) t exp(Mx(s))
.

We state in the sequel a central estimate of the time spending by the process at the junction point. The following estimate, will be a key point to show that A(t, (x, i))

is closed for the weak topology. The main assumption used is the ellipticity condition σ i ≥ c > 0, and will allows to state that the process does not spend time around the junction point.

Proposition 3.7. Let P (x,i) t ∈ A t, (x, i) . There exists a constant C > 0, depending only on the data T, |b|, |σ|, c, x , introduced in assumption (H), such that:

∀ε > 0, E P (x,i) t T t 1 {x(s)<ε} ds ≤ Cε. (14) 
Proof. Let ε > 0, and

β ε ∈ C([0, +∞), R + ) satisfying: ∀x ≥ 2ε, β ε (x) = 0, ∀x ≥ 0, 1 {x<ε} ≤ β ε (x) ≤ 1. (15) 
We define u ε ∈ C 2 ([0, +∞)) as the unique solution of the following ordinary second order differential equation

           ∂ 2 x u ε (x) -M∂ x u ε (x) = 2β ε (x)/c 2 , if x ∈ (0, +∞), ∂ x u ε (0) = 0, u ε (0) = 0. ( 16 
)
where c is the constant of ellipticty defined in assumption (H)(i), and M is given by:

M = |b| 1 2 c 2 .
The solution is:

u ε (x) = x 0 exp Mz z 0 2β ε (u) c 2 exp(-Mu)dudz.
By the assumption on β ε , and assumption (H), we get:

∀x ≥ 0, 0 ≤ ∂ x u ε (x) ≤ 4ε/c 2 exp(Mx), 0 ≤ u ε (x) ≤ 4ε Mc 2 (exp(Mx) -1). (17) 
Hence applying condition (S 0 ) (iii) (with f = u ε , after an argument of localization with stopping times), we get using ( 15), ( 16) and ( 17):

E P (x,i) t u ε (x(T )) -u ε (x) = E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (x(u), k i )∂ 2 x u ε (x(u)) + b i (x(u), k i )∂ x u ε (x(u)) ν i (T )(du, dk i ) = = E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (x(u), k i ) ∂ 2 x u ε (x(u)) + b i (x(u), k i ) 1 2 σ 2 i (x(u), k i ) ∂ x u ε (x(u)) ν i (T )(du, dk i ) ≥ E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 σ 2 i (x(u), k i ) ∂ 2 x u ε (x(u)) -M∂ x u ε (x(u)) ν i (T )(du, dk i ) ≥ E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i 1 2 c 2 2β ε (x(u))/c 2 ) ν i (T )(du, dk i ) ≥ E P (x,i) t T t β ε (x(u))du ≥ E P (x,i) t T 0 1 {x(u)≤ε} du .
Hence we get using ( 17):

E P (x,i) t T t 1 {x(s)<ε} ds ≤ 4ε Mc 2 E P (x,i) t exp(Mx(T )) -1 .
We conclude using Lemma 3.6.

3.3.

Proof of the compactness of the admissible rules. We are able now to prove the main result of this section, namely the compactness of A t, (x, i) .

Theorem 3.8. The set of probability measures A t, (x, i) , endowed with the weak topology is non empty, convex and compact. Moreover, the value function v(•, •) attains its minimum. Finally the set of optimal rules is non empty convex and compact.

Proof. We recall that the fact that A t, (x, i) is non empty is a consequence of Remark 2.1. Let us show first that A t, (x, i) is precompact for the weak topology.

It is enough to show that all the following projections

P (x,i) t | C J [0,T ] , P (x,i) t ∈ A t, (x, i) , P (x,i) t | U ([0,T ]×K i ) , P (x,i) t ∈ A t, (x, i) i∈{1,...I} , P (x,i) t | V ([0,T ]×A 0 ) , P (x,i) t ∈ A t, (x, i) ,
are precompact. The precompactness of P

(x,i) t | C J [0,T ] , P (x,i) t ∈ A t, (x, i) is a
consequence of the upper bounds obtained in Proposition 3.5, and Ascoli's Theorem.

We focus on the precompactness of P 

E P (x,i) t l ν 0 (•) (•) 2 (t,T ) ≤ C(1 + x 2 ), ∀θ ∈ (0, T ], E P (x,i) t ω(l ν 0 (•) (•), θ) 2 ≤ Cθ ln( 2T θ ).
Let us set:

K ε := ν 0 ∈ V ([0, T ] × A 0 ), l ν 0 (T ) ≤ 2 2C(1 + x 2 ) ε , ∀θ ∈ (0, T ] : w(l ν 0 , θ) ≤ 2 2Cθ ln( 2T θ ) ε .
Using Proposition 3.1, we know that K ε is compact for the weak topology

* σ L ∞ mc ([0, T ]× A 0 ) ′ , L ∞ mc ([0, T ] × A 0 )
. Moreover, using Tchebychev's inequality, we get that

P (x,i) t | V ([0,T ]×A 0 ) ν 0 (s) t≤s≤T / ∈ K ε ≤ ε,
and that proves the precompactness of P . We are going to show that P (x,i) t satisfies condition (S 0 ).

(x,i) t | V ([0,T ]×A 0 ) , P (x,i) t ∈ A t,
Let f p ∈ C b (Φ, R), uniformly bounded in p, converging to 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) in the pointwise sense, and from above. We have:

∀p ≥ 0, E P (x,i) t f p (X(•)) = lim n→+∞ E P (x,i) t,n f p (X(•)) ≥ lim n→+∞ E P (x,i) t,n 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) = 1 .
Therefore we get:

lim p→+∞ E P (x,i) t f p (X(•)) = 1,
and using Lebesgue's Theorem we have:

E P (x,i) t 1 (X(u) 0≤u≤t =((x,i),ν 1 (t)...ν I (t),ν 0 (t)) = 1,
which means that (i) of conditions (S 0 ) holds true.

Recall that from Proposition 3.3, the following map:

ρ :        C J [0, T ] × V ([0, T ] × A 0 ) → R (x(•), i(•) , ν 0 ) → T t A 0 1 {x(u)>0} ν 0 (du, dα 1 . . . dα I )
is lower semi continuous. Consequently, the following set O defined by

O := (x(•), i(•)), ν 0 ∈ C J [0, T ] × V ([0, T ] × A 0 ), T t A 0 1 {x(u)>0} ν 0 (du, dα 1 . . . dα I ) > 0 , is open in C J [0, T ] × V ([0, T ] × A 0 ).
We get then:

P (x,i) t O ≤ lim inf n→+∞ P (x,i) t,n O = 0,
which means that (ii) of condition (S 0 ) holds true. Now let us show that (iii) of condition (S 0 ) holds true. Remark first that:

∀ε > 0, sup n≥0 E P (x,i) t,n T t 1 {x(s)<ε} ds ≤ Cε,
where C is a constant independent of ε. On the other the following map:

θ :=      A t, (x, i) → R P (x,i) t → E P (x,i) t T t 1 {x(s)<ε} ds ,
is lower semi continuous for the weak topology. We get then:

E P (x,i) t T t 1 {x(s)<ε} ds ≤ lim inf n→+∞ E P (x,i) t,n T t 1 {x(s)<ε} ds ≤ Cε,
which means:

E P (x,i) t T t 1 {x(s)=0} ds = 0.
To prove (iii) of condition (S 0 ), let q ∈ C b (Φ, R), Ψ s measurable, and f ∈ C 1,2 b (J T ). Using that:

E P (x,i) t,n T t 1 {x(s)=0} ds = E P (x,i) t T t 1 {x(s)=0} ds = 0,
we have:

0 = E P (x,i) t,n q(M f (t) -M f (s)) n→+∞ ----→ E P (x,i) t q(M f (t) -M f (s)) .
Therefore the process

M f (s) -M f (t) = f (s, X(s)) -f (t, X(t)) - I i=1 s t K i 1 x(u),i(u) ∈J * i ∂ t f i (u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x f i (u, x(u)) + b i (x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - I i=1 s t A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) t≤s≤T ,
is a (Ψ s ) t≤s≤T continuous martingale under the probability measure P (x,i) t

, after time t, and that finally proves that A t, (x, i) is closed for the weak topology.

We end the proof by showing that the value function v(•, •) attains its minimum, and the set of optimal rules is convex and compact. Using Proposition 3.3, it is easy to check that the reward function Λ Λ :

                 A t, (x, i) → R P (x,i) t → E P (x,i) t I i=1 T t K i 1 u,x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) ,
is lower semi continuous for the weak topology. Therefore the value function v(•, •) attains its minimum on the compact set A t, (x, i) . Finally, the fact that the set of optimal rules is convex and compact, is a consequence of the compactness of A t, (x, i) , the lower semi continuity of Λ, and the linearity of

P (x,i) t → Λ(P (x,i) t
).

Dynamic Programming Principle

The following section is dedicated to the proof of the dynamic programming principle (DPP), Theorem 2.2. Both stability of the set A t, (x, i) by conditioning and concatenation are proved.

We state first some propositions and a lemma of measurable selection, which will be useful in the sequel.

Proposition 4.1. The following map:

     [0, T ] × J → P(Φ, Ψ T ) (t, (x, i)) → A t, (x, i) (18) 
(where P(Φ, Ψ T ) is the set of probability measures defined on Φ, is upper semi continuous.

Proof. We endow P(Φ, Ψ T ) with the Haussdorf metric defined over all its compact sets.

Since we have shown that A t, (x, i) is compact for the weak topology, we follow then the same arguments of the proof of Proposition 5.10 in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF].

Therefore as a consequence of the Proposition 4.1, Proposition 3.3 and Theorem 5.11 in [START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF], the value function defined in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF]: 

v :=      [0, T ] × J → R (t, (x, i)) → v i (t,
:= g, v(h) = w(h, g), g ∈ K h is a measurable map of H into comp(G).
-for each probability measure P on H:

v(h)dP (h) = inf w(g, h), g ∈ K h dP (h) = inf w(β(h), h)dP (h), β : H → G, measurable, β(h) ∈ K h .
Proposition 4.3. Let τ a (Ψ t ) 0≤t≤T a stopping time, then:

Ψ τ = σ X(s ∧ τ ), s ≤ T ,
and Ψ τ is countably generated.

Proof. Recall that

Ψ τ = B ∈ Ψ T , B ∩ {τ ≤ t} ∈ Ψ t , ∀t ∈ [0, T ] ,
and the space where is defined our canonical process X(•),

Φ = C J [0, T ] × I i=1 U([0, T ] × K i ) × V ([0, T ] × A 0 ), is Polish.
We can use then the same arguments of the proof of Lemma 1.3.3 in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], to get the result.

In the sequel, we state a useful proposition, to prove both stability of the set A t, (x, i) by conditioning and concatenation. For the convenience of the reader, we do not sketch the proof since it uses the same arguments of Lemma 6.1.1 in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF] for and Theorem 6.1.2 in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]. 

∀Y ∈ Φ, Q Y X(τ (Y ), •) = X(τ (Y ), Y ) = 1.
Then:

a) there exists a unique transition probability kernel from (Φ, Ψ τ ) to (Φ, Ψ T ) denoted by

(Π Y ⊗ τ (Y ) Q Y ) Y ∈Φ , such that: ∀Y ∈ Φ, Π Y ⊗ τ (Y ) Q Y X(s, •) = X(τ (Y ), Y ) , ∀s ∈ [0, τ (Y )] = 1, ∀A ∈ σ(X(s ∨ τ ), 0 ≤ s ≤ T ), Π Y ⊗ τ (Y ) Q Y (A) = Q Y (A).
b) Moreover, if P is a probability measure on (Φ, Ψ T ), then there exists a unique probability measure on (Φ, Ψ T ), denoted by P ⊗ τ Q such that:

(i) the restriction of P ⊗ τ Q with respect to Ψ τ is equal to P , (ii) a r.c.p.d (regular conditional probability distribution) of

P ⊗ τ Q with respect to Ψ τ is equal to (Π Y ⊗ τ (Y ) Q Y ) Y ∈Φ .
We start first by showing the stability of the set A t, (x, i) by conditioning.

Proposition 4.5. A t, (x, i) is stable under conditioning, with the following meaning:

Let P (x,i) t ∈ A t, (x, i)
, and τ a (Ψ s ) t≤s≤T stopping time, then there exists a probability kernel from (Φ, Ψ τ ) to (Φ, Ψ T ) denoted by (P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , such that:

-there exists N ⊂ Ψ T , with P (x,i) t

(N) = 0 and

∀Y (•) ∈ Φ \ N, P (xτ (Y ),iτ (Y )) τ (Y ) ∈ A τ, (x τ (Y (•)), i τ (Y (•)) , -for all f : Φ → R, σ(X(s ∨ τ ), 0 ≤ s ≤ T ) measurable: E P (x,i) t [f |Ψ τ ] = E P (xτ ,iτ ) τ [f ], P (x,i) t a.s. 
Proof. Let τ be a (Ψ s ) t≤s≤T stopping time, and let P (x,i) t ∈ A t, (x, i) . Using Proposition 4.3, we get from Theorem 1.3.4 of [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], that there exist a r.c.p.d of P (x,i) t respectively to the sub algebra

Ψ τ = σ X(s ∧ τ ), 0 ≤ s ≤ T ,
that we denote (P

(xτ (Y ),iτ (Y )) τ (Y )
) Y ∈Φ , which satisfies:

∀Y ∈ Φ, P (x τ (Y ) ,i τ (Y ) ) τ (Y ) X(τ (Y ), •) = X(τ (Y ), Y ) = 1.
Let Y ∈ Φ, we are going to use the notations of Proposition 4.4 a), setting:

P (x τ (Y ) ,i τ (Y ) ) τ (Y ) = Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y )
.

First remark that it is easy to get, for all f : Φ → R, σ(X(s ∨ τ ), 0 ≤ s ≤ T ) measurable:

E P (x,i) t [f |Ψ τ ] = E P (xτ ,iτ ) τ [f ], P (x,i) t a.s. Now let us show that P (xτ ,iτ ) τ ∈ A τ, (x τ , i τ ) , namely P (xτ ,iτ ) τ
satisfies the conditions

(S 0 ), P (x,i) t almost surely. 
Using the definition of (Π Y ⊗ τ (Y ) P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , we get that (i) of condition (S 0 ) holds true, namely:

∀Y ∈ Φ, P (x τ (Y ) ,i τ (Y ) ) τ (Y ) X(s, •) = X(τ (Y ), Y ), ∀s ∈ [0, τ (Y (•))] = 1.
Using one more time the properties of (Π Y (•) ⊗ τ (Y ) P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , stated in Proposition 4.4 a), we have:

0 = E P (x,i) t 1 T τ 1 {x(u)>0} l ν 0 (T ) (du) = 0 = E P (x,i) t E P (x τ (•) ,i τ (•) ) τ (•) 1 T τ 1 {x(u)>0} l ν 0 (T ) (du) = 0 = E P (x,i) t E Π•⊗ τ (•) P (x τ (•) ,i τ (•) ) τ (•) 1 T τ 1 {x(u)>0} l ν 0 (T ) (du) = 0 = E P (x,i) t E Π•⊗ τ (•) P (x τ (•) ,i τ (•) ) τ (•) 1 τ (•) τ 1 {x(u)>0} l ν 0 (T ) (du) + T τ (•) 1 {x(u)>0} l ν 0 (T ) (du) = 0 = E P (x,i) t E Π•⊗ τ (•) P (x τ (•) ,i τ (•) ) τ (•) 1 T τ (•) 1 {x(u)>0} l ν 0 (T ) (du) = 0 .
We get that there exists E ⊂ Ψ T , with P

(x,i) t (E) = 0 ∀Y (•) ∈ Φ \ E, P (x τ (Y ) ,i τ (Y ) ) τ (Y ) T τ (Y (•))
1 {x(u))>0} l ν 0 (T ) (du) = 0 = 0, and (ii) of condition (S 0 ) holds true. Finally, let f ∈ C 1,2 b (J T ). Using Theorem 1.2.10 of [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], we have that:

M f (s) := f (s, X(s)) -f (τ, X(τ )) - I i=1 s τ K i 1 x(u),i(u) ∈J * i ∂ t f i (u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x f i (u, x(u)) + b i (x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - s τ A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) τ ≤s≤T
, is a (Ψ s ) τ ≤s≤T continuous martingale under the probability measure (P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , after the stopping time τ , and then under the probability measure (P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , since the two last measures are equal for the measurable events after time τ . However the martingale property holds true ∀Y (•) ∈ Φ\N (f ) where N (f ) is a negligible set depending on f , (namely N (f ) ⊂ Ψ T and P

(x,i) t (N (f )) = 0).
Assume then first that f ∈ C 1,2 0 (J T ): the class of continuous functions defined on [0, T ]×J , having a regularity of class C 1,2 ([0, T ] × [0, +∞)) on each edge, and vanishing at each edge at +∞. We get then that C 1,2 0 (J T ) is separable with the following norm • C 1,2 0 (J T ) , defined by:

∀f ∈ C 1,2 0 (J T ), f C 1,2 0 (J T ) = 1≤i≤I f i C 1,2 ([0,T ]×[0,+∞)) ,
with :

f i C 1,2 (J T ) = sup (t,x)∈[0,T ]×[0,+∞) |f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ t f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ x f i (t, x)| + sup (t,x)∈[0,T ]×[0,+∞) |∂ 2 x f i (t, x)|.
Hence, let f n a sequence of C 1,2 0 (J T ), dense in C 1,2 0 (J T ), we set:

N = n≥0 N (f n ).
Thereafter, using that following functional:

κ :=                        C 1,2 0 (J T ) → R f → f (s, X(s)) - I i=1 s τ K i 1 x(u),i(u) ∈J i ∂ t f i (u, x(u)) + 1 2 σ 2 i (x(u), k i )∂ 2 x f i (u, x(u)) + b i (x(u), k i )∂ x f i (u, x(u)) ν i (s)(du, dk i ) - s τ A 0 α i ∂ x f i (u, 0)ν 0 (s)(du, dα 1 . . . dα I ) 0≤s≤T ,
is continuous for any:

x(•), i(•) , ν 1 . . . ν I , ν 0 ∈ C J [0, T ] × I i=1 U([0, T ] × K i ) × V ([0, T ] × A 0 ),
it is easy to check using Lebesgue's Theorem that (M f (s)) τ ≤s≤T is a (Ψ s ) τ ≤s≤T continuous martingale under the probability measure (P

(x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ , after the stopping time τ , ∀Y (•) ∈ Φ \ N , using once again that from Lemma 3.7:

E P (xτ ,iτ ) τ T τ 1 {x(s)=0} ds = 0, P (x,i) t a.s.
To conclude, let n ≥ 0, f ∈ C 1,2 b (J T ), and f n ∈ C 1,2 0 (J T ) a sequence converging in the pointwise sense to f , and equal to f on each edge

J i ∩ [0, n].
Let then θ a (Ψ s ) τ ≤s≤T stopping time after time τ , using Proposition 3.5, Tchebychev's inequality and assumption (H), it is easy to get that there exists a constant C > 0 independent of n such that:

E Π•⊗τ P (xτ ,iτ ) τ M fn (s)1 {x(s)≥n} ≤ C n 2 , P (x,i) t a.s. (19) 
We write then:

E P (xτ ,iτ ) τ M fn (s) Ψ θ = E P (xτ ,iτ ) τ M fn (s)1 {x(s)≤n} Ψ θ + E P (xτ ,iτ ) τ M fn (s)1 {x(s)≥n} Ψ θ = M fn (θ), P (x,i) t
a.s, and we conclude using Lebesgue's Theorem and ( 19), setting:

N = N ∪ E.
The second step is to prove the stability by concatenation.

Proposition 4.6. A t, (x, i) is stable under concatenation with the following meaning:

let P (x,i) t ∈ A t, (x, i) and τ a (Ψ s ) t≤s≤T stopping time. Let P (xτ ,iτ ) τ ∈ A τ, (x τ , i τ ) ,
such that:

∀A ∈ Ψ T , P (xτ ,iτ ) τ (A) :=      Φ → [0, 1] Y → P (xτ (Y ),iτ (Y )) τ (Y ) (A) , is Ψ T /B([0, 1]) measurable. Then P (x,i) t ⊗ τ P (xτ ,iτ ) τ ∈ A t, (x, i) , (where P (x,i) t ⊗ 
τ P (xτ ,iτ ) τ is introduced in Proposition 4.4 b).)
Proof. We are going to prove that P

(x,i) t ⊗ τ P (xτ ,iτ ) τ
satisfies the conditions (S 0 ).

Since P (x,i) t ∈ A t, (x, i) , P (x,i) t ⊗ τ P (xτ ,iτ ) τ
is equal to and P (x,i) t on (Φ, Ψ τ ), we obtain that condition (i) of (S 0 ) holds true.

On the other hand we have:

E P (x,i) t ⊗τ P (xτ ,iτ ) τ T t 1 {x(u)>0} l ν 0 (T )(du) = E P (x,i) t ⊗τ P (xτ ,iτ ) τ τ t 1 {x(u)>0} l ν 0 (T )(du) + E P (x,i) t ⊗τ P (xτ ,iτ ) τ T τ 1 {x(u)>0} l ν 0 (T )(du) = E P (x,i) t τ t 1 {x(u)>0} l ν 0 (T )(du) + E P (x,i) t ⊗τ P (xτ ,iτ ) τ E Π•⊗ τ (•) P (x τ (•) ,i τ (•) ) τ (•) T τ 1 {x(u)>0} l ν 0 (T )(du) .
First we remark that since P (x,i) t ∈ A t, (x, i) :

E P (x,i) t τ t 1 {x(u)>0} l ν 0 (T )(du) = 0.
Using Proposition 4.4 a), and that P (xτ ,iτ ) τ ∈ A τ, (x τ , i τ ) , we get that:

E Π⊗τ P (xτ ,iτ ) τ T τ 1 {x(u)>0} l ν 0 (T )(du) = E P (xτ ,iτ ) τ T τ 1 {x(u)>0} l ν 0 (T )(du) = 0, P (x,i) t ⊗ τ P (xτ ,iτ ) τ a.s,
namely (ii) of (S 0 ) holds true. We finish with the martingale conditions (iii) of (S 0 ). For this, we can use once again as in the proof of Proposition 4.5, the reverse of Theorem 1.2.10 of [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], Lemma 3.7, and the argument of separability of C 1,2 0 (J T ), as soon as we have that there exists N f ⊂ Ψ T with P (x,i) t

⊗ τ P (xτ ,iτ ) τ (N f ) = 0, such that: ∀Y ∈ Φ \ N f , M f (s) -M f (s ∧ τ (Y )), (Ψ s ) t≤s≤T , Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) t≤s≤T is a martingale. For this, since (Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y )
) Y ∈Φ is a r.c.p.d. of P (x,i) t

⊗ τ P (xτ ,iτ ) τ
|Ψ τ ), we get that:

∃N f ⊂ Ψ T , P (x,i) t ⊗ τ P (xτ ,iτ ) τ (N f ) = 0, ∀Y ∈ Φ \ N f , ∀(s, u) ∈ [t, T ], u ≤ s, E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [M f (s) -M f (s ∧ τ (Y ))|Ψ u ] = E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥τ (Y )} |Ψ u ] = E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥u≥τ (Y )} |Ψ u ] + E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥τ (Y )≥u} |Ψ u ] = E P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥u≥τ (Y )} |Ψ u ] + E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥τ (Y )≥u} |Ψ u ] = M f (u) -M f (u ∧ τ (Y )) + E Π Y ⊗ τ (Y ) P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [E P (x τ (Y ) ,i τ (Y ) ) τ (Y ) [(M f (s) -M f (s ∧ τ (Y )))1 {s≥τ (Y )≥u} |Ψ τ ]Ψ u ] = M f (u) -M f (u ∧ τ (Y )).
We can conclude that (iii) conditions of (S 0 ) holds true and that completes the proof. Now we have the necessary tools in order prove the main result of this Section, namely the dynamic programming principle (DPP).

4.1. Proof of Theorem 2.2.

Proof. Let τ be a (Ψ s ) t≤s≤T stopping time, and P (x,i) t ∈ A t, (x, i) , we have:

E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) = E P (x,i) t E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) Ψ τ .
Using Proposition 4.5, namely the stability by conditioning, we know that there exists a transition probability kernel from (Φ, Ψ τ ) to (Φ, Ψ T ), denoted by (P

(x τ (Y ) ,i τ (Y ) ) τ (Y ) ) Y ∈Φ , such that P (xτ ,iτ ) τ ∈ A τ, (x τ , i τ ) , P (x,i) t
a.s, and for all f : Φ → R, σ(X(s ∨ τ ), 0 ≤ s ≤ T )

measurable:

E P (x,i) t [f |Ψ τ ] = E P (xτ ,iτ ) τ [f ], P (x,i) t
a.s. We get therefore:

E P (x,i) t I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) = E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + E P (xτ ,iτ ) τ I i=1 T τ K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T τ A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) ≥ E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) .
Taking the infinimum over all the P (x,i) t ∈ A t, (x, i) , we get then the following first inequality:

v i (t, x) ≥ inf P (x,i) t ∈A(t,(x,i)) E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) . Let P (x,i) t
∈ A t, (x, i) . We focus now on the reverse inequality. For this we will use Proposition 4.2, with:

H = (Φ, Ψ T ), G = P(Φ, Ψ T ), K : H → comp(G), Y → K Y = A τ (Y ), (x τ (Y )) , i τ (Y ) ) , and 
w :                  P(Φ, Φ T ) × (Φ, Φ T )) → R P, Y → E P I i=1 T t K i 1 y(u),j(u) ∈J * i h i (y(u), K i )ν i (T )(du, dk i )+ T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(Y T )
, From Proposition 3.3, we get that w is lower semi continuous. On the other hand, we know from Theorem 3.8, that for each

Y ∈ Φ, K Y = A τ (Y ), (x τ (Y )) , i τ (Y ) ) is compact
for the weak topology. We get then that:

E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) = E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + inf E P (x,i) t E P (xτ ,iτ ) τ I i=1 T τ K i 1 x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + T τ A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Y → P x(τ (Y )),i(τ (Y )) τ (Y ) measurable, P x(τ (Y )),i(τ (Y )) τ (Y ) ∈ A τ (Y ), (x(τ (Y )), i(τ (Y )) = inf E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + E P (x,i) t E P (xτ ,iτ ) τ I i=1 T τ K i 1 x(u),i(u) ∈J * i h i (u, x(u), k i )ν i (T )(du, dk i ) + T τ A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Y → P x(τ (Y )),i(τ (Y )) τ (Y ) measurable, P x(τ (Y )),i(τ (Y )) τ (Y ) ∈ A τ (Y ), (x(τ (Y )), i(τ (Y ))
.

Using now the we the properties of the concatenated probability P (x,i) t

⊕ τ P (xτ ,iτ ) τ intro-
duced in Proposition 4.6, we get:

E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) = = inf E P (x,i) t ⊕τ P (xτ ,iτ ) τ I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + I i=1 T τ K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T τ A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Y → P x(τ (Y )),i(τ (Y )) τ (Y ) measurable, P x(τ (Y )),i(τ (Y )) τ (Y ) ∈ A τ (Y ), (x(τ (Y )), i(τ (Y )) = inf E P (x,i) t ⊕τ P (xτ ,iτ ) τ I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Y → P x(τ (Y )),i(τ (Y )) τ (Y ) measurable, P x(τ (Y )),i(τ (Y )) τ (Y )
∈ A τ (Y ), (x(τ (Y )), i(τ (Y )) .

Or since P (x,i) t ⊕ τ P (xτ ,iτ ) τ ∈ A t, (x, i) , we have then:

inf E P (x,i) t ⊕τ P (xτ ,iτ ) τ I i=1 T t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 . . . α I )ν 0 (T )(du, dα 1 . . . dα I ) + g(X T ) , Y → P x(τ (Y )),i(τ (Y )) τ (Y ) measurable, P x(τ (Y )),i(τ (Y )) τ (Y ) ∈ A τ (Y ), (x(τ (Y )), i(τ (Y )) , ≥ v i (t, x),
which means therefore:

E P (x,i) t I i=1 τ t K i 1 x(u),i(u) ∈J * i h i (x(u), k i )ν i (τ )(du, dk i ) + τ t A 0 h 0 (α 1 . . . α I )ν 0 (τ )(du, dα 1 . . . dα I ) + v iτ (τ, x τ ) ≥ v i (t, x).
Taking the infimum over all the P (x,i) t ∈ A t, (x, i) , we conclude for the reverse inequality, and that completes the proof.

Verification Theorem and an example of illustration

Proof of Theorem 2.4.

Proof. Fix (t, (x, i)) ∈ [0, T ] × J and P (x,i) t

∈ A(t, (x.i)). We start first by claiming that the unique solution of (10) u satisfies the Itô's formula: namely there exists a standard one dimensional Brownian motion W (•), (Ψ s ) t≤s≤T measurable such that:

∀s ∈ [t, T ], u i(s) (s, x(s)) -u i (t, x) = I i=1 s t K i 1 x(z),i(z) ∈J * i ∂ t u i (z, x(z)) + 1 2 σ 2 i (x(z))∂ 2 x u i (z, x(z)) + b i (x(z), k i )∂ x u i (z, x(z)) ν i (s)(dz, dk i ) + s t ∂ x u i(z) (z, x(z))σ i(z) (x(z))dW (z) + I i=1 s t A 0 α i ∂ x u i (z, 0)ν 0 (s)(dz, dα 1 . . . dα I ), P (x,i) t a.s. ( 20 
) even if u ∈ C 0,1 b (J T ) ∩C 1,2 b ( • J T ). Recall that the existence of W (•) is a straight consequence of Proposition 3.4.
For the convenience of the reader, we do not give all the details that lead to the proof of ( 20), since they are very classical. The main idea is to regularize each function

(t, x) → u i (t, x) on each edge i ∈ {1 . . . I} by convolution on the domain [0, T ] × [0, +∞)
with the same kernel ρ n independent of i ∈ {1 . . . I}. Therefore the regularize sequence 20), and we have:

u n i : (t, x) → (u i ⋆ ρ n )(t, x) is in the class C 1,2 b (J T ) satisfies (
∃M > 0, max i∈{1...I} sup n≥0 ||∂ t u n i (t, x)|| [0,T ]×[0,+∞) + ||∂ 2 x u n i (t, x)|| [0,T ]×[0,+∞) ≤ M, ∀i ∈ {1 . . . I}, u i,n n→+∞ ----→ u i , in C 0,1 ([0, T ] × [0, R]), ∀R > 0, u i,n n→+∞ ----→ u i , in C 1,2 ([ε, T -ε] × [r, R]), ∀r > 0, R > 0, r < R, ε > 0.
The main idea is to argue by localization for x large and to use that the process does not spend time around the junction point, namely we know from Proposition 3.7, that we have:

T 0 1 {x(s)=0} ds = 0, P (x,i) t a.s.

Passing to the limit up to a sub sequence, we then obtain (20) for u.

Let us prove now that ∀(t, (x, i)) ∈ [0, T ] × J :

u i (t, x) ≤ v i (t, x).
We set s = T . Using [START_REF] Ohavi | Weak diffusion on junctions, with random local time dependent probabilies of transition[END_REF] and that u is solution of (10), we obtain:

-u i (t, x) = -g(X T ) + I i=1 T t K i 1 x(z),i(z) ∈J * i ∂ t u i (z, x(z)) + 1 2 σ 2 i (x(z))∂ 2 x u i (z, x(z)) + b i (x(z), k i )∂ x u i (z, x(z)) + h i (x(z), k i )∂ x u i (z, x(z)) ν i (T )(dz, dk i ) - I i=1 T t K i 1 x(z),i(z) ∈J * i h i (x(z), k i )ν i (T )(dz, dk i ) + T t ∂ x u i(z) (z, x(z))σ i(z) (x(z))dW (z) + I i=1 T t A 0 α i ∂ x u i (z, 0)ν 0 (T )(dz, dα 1 . . . dα I ) + T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ) - T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ) ≥ -g(X T ) + I i=1 T t 1 x(z),i(z) ∈J * i ∂ t u i (z, x(z)) + 1 2 σ 2 i (x(z))∂ 2 x u i (z, x(z)) + inf k i ∈K i b i (x(z), k i )∂ x u i (z, x(z)) + h i (x(z), k i )∂ x u i (z, x(z)) dz - I i=1 T t K i 1 x(z),i(z) ∈J * i h i (x(z), k i )ν i (s)(dz, dk i ) + T t ∂ x u i(z) (z, x(z))σ i (x(z))dW (z) + T t inf (α i ) 1≤i≤I ∈A 0 I i=1 α i ∂ x u i (z, 0) + h 0 (α 1 , . . . , α I ) l ν 0 (T ) (dz) - T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ) ≥ -g(X T ) - I i=1 T t K i 1 x(z),i(z) ∈J * i h i (x(z), k i )ν i (T )(dz, dk i ) + + T t ∂ x u i(z) (z, x(z))σ i(z) (x(z))dW (z) - T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ), P (x,i) t a.s.
Taking the expectation, we obtain then that:

u i (t, x) ≤ E P (x,i) t I i=1 T t K i 1 x(z),i(z) ∈J * i h i (x(z), k i )ν i (T )(dz, dk i ) T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ) + g(X T ) .
and finally taking the infimum over all the P (x,i) t ∈ A(t, (x.i)), we have that:

u i (t, x) ≤ v i (t, x).
To conclude, assume now that there exists P (x,i) t ∈ A(t, (x.i)) such that (iii) of Condition (S 0 ) is satisfied with the controls:

on each edge J i : We obtain using the same arguments above that:

∀t ∈ [0, T ], ν i (t)(dz, dk i ) = δ k i(t) (x(
u i (t, x) = E P (x,i) t I i=1 T t K i 1 x(z),i(z) ∈J * i h i (x(z), k i )ν i (T )(dz, dk i ) T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 . . . dα I ) + g(X T ) ≤ v i (t, x).
We conclude that P (x,i) t

is optimal and we have for any (t, (x, i)) ∈ [0, T ] × J :

v i (t, x) = u i (t, x) = E P (x,i) t T t h i(z) x(z), k i(z) (x(z), ∂ x u i(z) (z, x(z))) dz + T t h 0 α i(z) (∂ x u 1 (z, 0), . . . , ∂ x u I (z, 0)) {1≤i(z)≤I} l ν 0 (T ) (dz) + g(X T ) ,
which completes the proof.

Remark 5.1. On the existence of the optimal measure P (x,i) t

:

A natural question that arises is to get the existence of the optimal measure P (x,i) t which appears in the Theorem of verification 2.4. We remark first, that this measure exists if the controls are piecewise continuous. More precisely using the property of stability by concatenation stated in Proposition 4.6, and the theorem of existence with constant control in Lemma 2.3 in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF], it is easy to check that such a measure exists.

Naturally, once can construct a sequence of approximation P (x,i),n t

, with piecewise constant controls, and use an argument of tension to get the convergence to the required optimal measure P (x,i) t

. The main estimates are given in Section 3.

To not surcharge this work, and for an easier reading, we do not sketch the proof of the existence of P (x,i) t

, but we will do it in a upcoming work [START_REF] Ohavi | Weak diffusion on junctions, with random local time dependent probabilies of transition[END_REF], with more general controls at the junction point, depending on the local time. For this new type of diffusion, the definition of the operator and the uniqueness in distribution, will be the main interesting mathematical problems.

We finish this work by giving an example of illustration. As explained in introduction, at the junction point we consider the following cost:

∀(α 1 , . . . , α I ) ∈ A 0 , h 0 (α 1 , . . . α I ) = 1 2 i∈{1...I}

α 2 i σ i (0) 2 .
Therefore we obtain the following Hamiltonian at the junction point:

inf α i ∈[a,1] I , i α i =1 i α i ∂ x u i (t, 0) + 1 2 i α 2 i σ i (0) 2 = 0.
The coefficients (α i(t) (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0))) 1≤i(t)≤I of the optimal control at the junction point:

∀t ∈ [0, T ], ν 0 (t)(dz, dα 1 . . . , dα I ) = δ (α i(t) (∂xu 1 (t,0),...,∂xu I (t,0))) 1≤i(t)≤I (dα 1 . . . , dα I )l ν 0 (t) (dz), P (x,i) t a.s, are then solution of a quadratic convex optimization problem, with linear constraints, under the optimal measure P (x,i) t

.

This type of problem of optimization on the simplex, were introduced in the seminal paper of Harry Markowitz [START_REF] Markowitz | The optimization of a quadratic function subject to linear constraints[END_REF]. Thereafter many interest have been devolpped in literature for solving this kind of problem, developing several algorithms (interior point, active set, augmented Lagrangian,...) in the theory of quadratic programming.

Fix a terminal condition g ∈ C 2 b (J ) satisifying the following compatibility condition:

inf α i ∈[a,1] I , i α i =1 i α i g i (0) + 1 2 i α 2 i σ i (0) 2 = 0.
For each i ∈ {1 . . . I}, fix θ i > 0 and (γ i , λ i , ρ i ) ∈ R 3 . We consider on each edge the following Hamiltonians:

∀(x, p) ∈ [0, +∞) × R, H i (x, p) = -1 2θ i [p 2 sin(x) 2 + 2λ i p sin(x) + λ 2 i ] + γ i sin(x) + ρ i .

From Theorem 2.3, we know that the following quasi linear backward parabolic problem with Neumann boundary condition at the junction:

           ∂ t u i (t, x) + 1 2 σ i (x) 2 ∂ 2
x u i (t, x) + H i (x, ∂ x u i (t, x)) = 0, if (t, x) ∈ (0, T ) × (0, +∞), H 0 (∂ x u(t, 0)) = 0, if t ∈ (0, T ],

∀i ∈ {1 . . . I}, u i (T, x) = g i (x), if x ∈ [0, +∞),

is uniquely solvable in the class C 0,1 (J T ) ∩ C 

|∂ x u i (t, x)| ≤ C i .
Hence as soon as we fixe κ i > 0 such that:

κ i ≥ C i + λ i 2θ i ,
we get that: 

∀(t,
(x) = k i sin(x), h i (x, k i ) = θ i k 2 i + γ i sin(x) + λ i k + ρ i , K i = [-κ i , κ i ],
∀(α 1 , . . . , α I ) ∈ A 0 , h 0 (α 1 , . . . α I ) = 1 2 i∈{1...I}

α 2 i σ i (0) 2 ,
we will get that the value function v is equal to the solution of [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF], and is given by: v i (t, x) = E P (x,i) -C(F ), (resp. C u (F )), are the set of continuous (resp. uniformly continuous) bounded functions on F .

-L ∞ (E ×F ) is the set of measurable bounded real functions defined on E ×F, E ⊗B(F ) .

-M(E) the set consisting of non negative finite measures on (E, E).

-M(F ) the set consisting of non negative finite measures on (F, B(F )).

-M(E × F ) the set consisting of non negative finite measures on E × F, E ⊗ B(F ) .

We set furthermore 

L ∞ mc (E × F ) := f ∈ L ∞ (E × F ), x → f (s, x) ∈ C(F ), ∀s ∈ E , L ∞,1 mc (E × F ) := f ∈ L ∞ mc (E × F ), ∃A ∈ E, g ∈ C u (F ), f (x, z) = 1 A (x)g(z). , L ∞,2 mc (E × F )) := f ∈ L ∞ mc (E × F ), ∃(A n ) a partition of E,
θ f :      M(F ) → R ν → ν(f ) = E f dν , (θ f ) f ∈L ∞ mc (E×F ) , θ f :      M(E × F ) → R ν → ν(f ) = E×F f dν .)
We identify M mc (E × F ) (resp. M m (E), M c (F )), as subsets of the dual spaces L ∞ mc (E × F ) ′ (resp. L ∞ m (E) ′ , C(F ) ′ ), endowed with the weak topologies * σ

L ∞ mc (E × F ) ′ , L ∞ mc (E × F ) (resp. * σ L ∞ m (E) ′ , L ∞ m (E) , * σ C(F ) ′ , C(F ) ).
We recall that a sequence ν n of L ∞ mc (E × F ) (See for instance Proposition 2.10 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF].)

′ (resp. L ∞ m (E) ′ , C(F ) ′ ), converges to ν ∈ L ∞ mc (E × F ) ′ , (
Theorem A.5. Let φ be a positive linear form defined on the vectorial space generated by L ∞,1 mc (E × F ) satisfying (i)

     E → R A → φ(1 A ⊗ 1)
is a measure on (E, E), where we define for each (x, z) ∈ E × F , 1 A ⊗ 1(x, z) = 1, if

x ∈ A and 1 A ⊗ 1(x, z) = 0, if x / ∈ A.

(ii) for each ε > 0, there exist a compact set K ε of F such that φ(1)φ(1 ⊗ f ) ≤ ε, for any f ∈ C u (F ), satisfying 1 Kε ≤ f ≤ 1, where we define for each (x, z) ∈ E × F , 1(x, z) = 1, and 1 ⊗ f (x, z) = f (z).

  i∈{1...I} the Hamiltonians at each edge i ∈ {1 . . . I}, and H 0 (•) := R I → R, (p 1 , . . . , p I ) → I i=1 α i (p 1 , . . . , p I )p i +h 0 (α 1 (p 1 , . . . , p I ), . . . , α I (p 1 , . . . , p I ))

0 .

 0 It follows from Proposition 3.5, that there exists a constant C > 0, depending only on the data (T, |b|, |σ|) such that

Proposition 4 . 4 .

 44 Let τ is a (Ψ s ) t≤s≤T stopping time and (Q Y ) Y ∈Φ , a transition probability kernel from (Φ, Ψ τ ) to (Φ, Ψ T ) satisfying:

1 x

 1 (z),i(z) ∈J * i h i (x(z), k i )ν i (T )(du, dk i ) + T t A 0 h 0 (α 1 , . . . , α I )ν 0 (T )(dz, dα 1 , . . . , dα I ) + g(X T ) ,-L ∞ (E) the set consisting of all measurable real bounded maps on (E, E).

1

 1 and a sequence(g n ) of ∈ C u (F ), f (x, z) = n An (x)g n (z). . On the other hand M(E) (resp. M(F ), M(E×F )) are denoted by M m (E), (resp.M c (F ), M mc (E × F ))when they are endowed with the finest topology making continuous the following family of linear forms (θ f ) f ∈L ∞ (E) , defined byθ f : (θ f ) f ∈C(F )

  resp. L ∞ m (E) ′ , C(F ) ′ ) for the weak topology * , and we denote ν n * ⇀ ν, if and only if∀f ∈ L ∞ mc (E × F ), ν n (f ) n→+∞ ----→ ν(f ), resp. ∀f ∈ L ∞ m (E), ν n (f ) n→+∞ ----→ ν(f ), ∀f ∈ C(F ), ν n (f ) n→+∞ ----→ ν(f ) .For any ν ∈ M(E × F ), we denote by ν E (resp. ν F ), the marginal of ν on E (resp. on F ), defined byν E (dx) = z∈F ν(dz), ν F (dz) = x∈E ν(dx).Proposition A.3. Suppose that E is countably generated, then M mc (E×F ) is metrizable.(See for instance Proposition 2.10 in[START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF].)Theorem A.4. Let N be a subset of M mc (E × F ). Then N is relatively compact if and only if (i) ν F , ν ∈ N is relatively compact in M m (E),(ii) ν E , ν ∈ N is relatively compact in M c (F ).

  p 1 , . . . , p I )p i + h 0 (α 1 (p 1 , . . . , p I ), . . . , α I (p 1 , . . . , p I )).

  Therefore using Paul Levy's Theorem characterization of the Brownian motion, W (•) is a standard one dimensional Brownian motion, (Ψ s ) t≤s≤T measurable and that completes the proof.Next, we get upper bounds of the modulus of continuity of both processes x(•) and l(•), which are useful for the proof of the compactness of the admissible rules A t, (x, i) for the weak topology.

	we get that		
		d < W (•) > s = ds, P	(x,i) t	a.s.
	Proposition 3.5. Let P	(x,i) t	
				(x,i) t	a.s,

∈ A t, (x, i) . There exists a constant C, depending only on the data (T, |b|, |σ|), such that

  Proposition 4.2. (see for instance Corollary 5.4 in[START_REF] Karoui | Compactification methods in the control of degenerate diffusions : existence of an optimal control[END_REF]). Let G, H be two separable metric spaces. Let w a lower semi continuous real function on G × H and h → K h a measurable map from H into comp(G), (the set of compacts sets of G, endowed with the

	,
	x)
	is lower semi continuous.

Haussdorf metric). Then

-the map : v(h) := inf w(g, h), g ∈ K h is a Borel function and h → M h

  t),∂xu i(t) (t,x(t))) (dk i )dz, P

	(x,i) t	a.s,
	and at the junction point:	
		(x,i) t	a.s,

∀t ∈ [0, T ], ν 0 (t)(dz, dα 1 . . . , dα I ) = δ (α i(t) (∂xu 1 (t,0),...,∂xu I (t,0)))) 1≤i(t)≤I (dα 1 , . . . , dα I )l ν 0 (t) (dz), P

  1,2 ( Moreover, the estimates of sup (t,x)∈[0,T ]×[0,+∞) |∂ x u i (t, x)| given in Lemma 4.1 and 4.2 of[START_REF] Ohavi | Quasi linear parabolic pde posed on a network with non linear Neumann boundary condition at vertices[END_REF], allows to state that there exists a stritly positive constantC i = C i (||g|| C 2 b (J ) , ||σ|| C 2 b (J ) , c, θ i , λ i , γ i , ρ i ) such that: ∀i ∈ {1 . . . I}, sup

• J T ). (t,x)∈[0,T ]×[0,+∞)

  [∂ x u i (t, x) 2 sin(x) 2 + 2λ i ∂ x u i (t, x) sin(x) + λ 2 i ] + γ i sin(x) + ρ i = inf k i ∈[-κ i ,κ i ] ∂ x u i (t, x)k i sin(x) + θ i k 2 i + γ i sin(x) + λ i k i + ρ i .Therefore regarding to Theorem 2.4 and Remark 5.1, if we set: ∀i ∈ {1 . . . I}, b i

	-	1 2θ i

x) ∈ (0, T ] × [0, +∞), H i (x, ∂ x u i (t, x)) =

where P (x,i) t ∈ A(t, (x.i)) is the optimal measure, with the controls: on each edge J i : ∀t ∈ [0, T ], ν i (t)(dz, dk i ) = δ -∂xu i (t,x) sin(x)+λ i 2θ i (dk i )dz, P (x,i) t a.s, and at the junction point:

∀t ∈ [0, T ], ν 0 (t)(dz, dα 1 . . . , dα I ) = δ (α i(t) (∂xu 1 (t,0),...,∂xu I (t,0)))) 1≤i(t)≤I (dα 1 . . . , dα I )l ν 0 (t) (dz), P (x,i) t a.s, where the vector (α i(t) (∂ x u 1 (t, 0), . . . , ∂ x u I (t, 0))) solves the following quadratic problem with linear constraints:

Appendix A. Some analysis tools

We recall here some definitions and functional analysis tools. Let

(X, T ) be a topological space and Σ a σ algebra on X, (E, E) be a measurable space, (F, d) be a Polish space, endowed with its metric d, and B(F ) its Borel algebra.

Definition A.1. (E, E) is said to be countably generated, if there exists a countable base generating E. Namely there exists a sequence

Since F is Polish, the measurable space (F, B(F )) is countably generated, (see for instance Proposition 3.1 in [START_REF] Preston | Some Notes on Standard Borel and Related Spaces[END_REF]).

Definition A.2. Let P be a measure on (X, Σ). We say that P is regular if for any measurable subset B ∈ Σ

We recall that any Borel probability measure, or in other terms any probability measure on a metric space endowed with its σ-Borel algebra, is regular. (see for instance Proposition 2.3 in [START_REF] Preston | Some Notes on Standard Borel and Related Spaces[END_REF]).

We denote by :

(See for instance Theorem 2.6 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF]).

Lemma A.6. Let K be a compact set of F , and f ∈ L ∞ mc (E × F ). Then there exist a sequence f n of L ∞,2 mc (E × F ) converging to f uniformly on E × K. (See for instance Lemma 2.5 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF]).

Definition A.7. Let (x = (x 1 , . . . x I ), y = (y 1 . . . y I )) ∈ R 2I , we say that x ≤ y, if ∀i ∈ {1 . . . I}, x i ≤ y i , and x < y, if x ≤ y, and there exists j ∈ {1 . . . I}, x j < y j .

We say that F ∈ C(R I , R) is increasing if ∀(x, y) ∈ R I , if x ≤ y, then F (x) ≤ F (y), strictly increasing if ∀(x, y) ∈ R I , if x < y, then F (x) < F (y).