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Abstract
This work addresses the problem of the reconstruction of the local fields distribution occurring
in heterogeneous linear elastic solids. The constitutive heterogeneities are crystals and cracks.
Through comparisons with FFT computations, it is shown that self-consistent estimates to-
gether with an assumption of normal distribution at the phase scale provide an accurate de-
scription of the elastostatic field histograms in polycrystals without cracks. In the case of inter
and transgranular cracks, full-field FFT simulations indicate that the field histograms present
van Hove singularities. Their natures are determined analytically in the low-density regime, in
the case of an homogeneous medium containing cracks.
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1. Introduction

The probability distribution functions (or field histograms) of the local stress and strain fields
in heterogeneous media are useful to gain insight on a material’s mechanical response. On the
one hand, distribution functions embody the material’s macroscopic (homogenized) response,
as well as statistics on the stress or strain extreme values (distribution tails). On the other hand,
the information contained in probability distribution functions is highly condensed compared to
the medium’s full-field microscopic response. This property may be regarded as an advantage,
since one-dimensional functions are easier to characterize and model than a material’s full-field
response, which requires an explicit description of the geometry.

Various works in micromechanics and in homogenization have investigated the distribution
function of mechanical fields in heterogeneous media. Sevostianov [41] has modeled the distribu-
tion of the peak stresses occurring along the interface of porous inclusions in plane stress, using
a Gumbel (double exponential) law. Idiart et al. [23] considered the fluctuations of mechanical
fields in particulate viscoplastic composites, predicted by homogenization theories. Using FFT
computations, they showed that the field distributions in the matrix are well approximated by
Gaussian distributions in the linear case but strongly deviate from the latter when dealing with
strong nonlinearities such as perfect plasticity. The distribution of elastic fields in polycrystals
is considered in [26].

Probability distribution functions present, in general, Van Hove singularities, named after
the work of Van Hove on the density of states of phonons in crystals [45]. Along Van Hove
singularities, a distribution exhibits discontinuities, sharp peaks (blow-up and cusps) and non-
differentiable points. These singularities occur whenever the field’s spatial gradient vanishes [2,



34], typically extrema or saddle-points. Conversely, regions where the fields blow-up control the
behavior of the distributions at infinity (distribution tails). Van Hove singularities occur in the
probability distribution of the elastic fields in periodic media (see e.g. [50]), as well as in their
electrical response [15]. Giordano [20] determined Van Hove singularities for the electric field
surrounding an insulating crack. The elastic response is dealt with in [21]. The effect of a crack
on the field distributions has also been considered in [16] for dielectric breakdown. The case of
a random dispersion of inclusions has been investigated by Cule & Torquato [15]. Comparing
deterministic and random microstructures, the authors argue that, in random media, Van Hove
singularities are smoothed out by disorder. Stokes flow in random porous media has also been
investigated in [1].

The electrical (or dielectric) response has been considered in other works. Barthelemy and
Orland [8] computed the local field distribution in random dielectric networks. The method
makes use of the Lipmann-Schwinger equation and generalizes the classical self-consistent an-
alytical treatment to field distributions. The method proposed by the authors show that the
field distributions are well captured when taking into account first-neighbor interactions be-
tween bonds, and treating long-range interactions by an effective medium. Pellegrini [37] has
modeled the field distributions in random dielectrics using Gaussian distributions to predict
the response of “weakly nonlinear” media.

The present study aims at investigating up to which extent one may use homogenization
theories to predict not only the mean (and second-order moments) of the fields but also the
entire probability distribution functions of such fields, in linear elastic solids. The effect of a
random dispersion of heterogeneities, made of crystals or cracks are examined. Self-consistent
estimates and analytical results for the field surrounding an isolated crack are employed to
model the elastic field distributions. Fourier-based computations are carried out to assess the
validity of our approach, and to determine the presence of Van Hove singularities in random
media. Furthermore, the asymptotics of the distribution tail are determined for certain stress
components, in specific cases.

This article is organized as follows. The probability distribution functions of elastic fields
occurring in 3D sound polycrystals are considered in Sec. (2). Sec. (3) deals with a homogeneous
body containing an isolated crack, or a population of parallel, or randomly-oriented cracks,
in plane strain, and investigates Van Hove singularities in the field distributions. Numerical
and self-consistent results pertaining to the field histograms of cracked polycrystals in 3D are
presented in Sec. (4).

2. Field histograms in sound polycrystals

2.1. Multivariate distributions of the elastostatic fields

A polycrystal made of elastically anisotropic grains can be considered as a composite material
occupying a domain Ω whose constitutive phase (r) represents a given crystalline orientation.
Linear homogenization theories provide estimates for the intraphase first (i.e. mean) and second-
order moments [12, 27, 38] of the strain field ε(x). For each phase (r), they read

Mr
ε = 〈ε〉(r) and Σr

ε = 〈ε⊗ ε〉(r), ∀r = 1, . . . , N. (1)

The multivariate probability distribution function of the tensorial field ε(x) in phase (r) is
defined as

P r
ε(t) = lim

ζ→0

1

ζ
P {||ε− t|| < ζ} =

1

|Ωr|

∫
Ωr

δ(ε(x)− t) dx, t ∈ S2, (2)

with δ the Dirac delta function, |Ωr| the volume of phase r and S2 the space of symmetric
second-order tensors in R3 equipped with norm || • || = √• : •. The intraphase first and second
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order moments of the strain field can thus be written

Mr
ε =

∫
S2

tP r
ε(t) dt and Σr

ε =

∫
S2

(t⊗ t)P r
ε(t) dt. (3)

The overall distribution of the strain field Pε in domain Ω reads

Pε(t) =
1

|Ω|

∫
Ω

δ(ε(x)− t) dx =
N∑
r=1

fr P
r
ε(t), t ∈ S2, (4)

with fr = |Ωr|/|Ω| the volume fraction of phase (r). Similar definitions hold for the intraphase
stress moments Mr

σ and Σr
σ as well as the stress probability distributions P r

σ and Pσ.
In order to use estimates on Mr

ε and Σr
ε provided by mean-field homogenization models, it is

natural to consider multivariate normal (i.e. Gaussian) distributions for random tensor-valued
variables. However, a symmetric second-order tensor in R3 can also be seen as a vector in R6.
Therefore, the well-known theory of vector-valued normal distributions can advantageously be
used [4, 9, 25]. The probability distribution function for the strain field ε(x) then reads [9]

P r
ε(t) =

1√
|Ar

ε|(2π)6
exp

(
−1

2
(t−Mr

ε)
T · (Ar

ε)
−1 · (t−Mr

ε)

)
, t ∈ V. (5)

with V the vector space in R6. The covariance matrix Ar
ε is defined by

Ar
ε = 〈(ε−Mr

ε)⊗ (ε−Mr
ε)〉(r) = Σr

ε −Mr
ε ⊗Mr

ε (6)

and |Ar
ε| = det(Ar

ε). The inverse of the covariance matrix, which enters (5), is known as the
precision matrix. Theorems available for vector-valued normal distributions [4] allow one to
derive useful properties for the strain field distribution. In particular, any linear combination of
the components of the strain field ε(x) follows a univariate Gaussian intraphase distribution.
Since the constitutive law is linear elastic, it follows that each component of the stress field
σ(x) is also normally-distributed in phase (r).

Let us diagonalize the covariance matrix Ar
ε as:

Ar
ε = Br

ε ·Dr
ε · (Br

ε)
T . (7)

The orthogonal matrix Br
ε is composed by the eigenvectors bri (i = 1, . . . , 6) whereas the

diagonal matrix Dr
ε give the eigenvalues λi of the covariance matrix. Since the field ε follows a

normal intraphase distribution, the eigenvectors bri are independent normal random fields. This
result allows one to obtain statistical realizations of the intraphase strain field by generating
vectors ŷ whose components ŷi (i = 1, . . . , 6) are independent normal random variables with
mean µ = 0 and variance σ2 = 1 (ŷi ∼ N (0, 1)). A particular realization ε̂r of the strain field
in phase (r) reads (see e.g. [25, Chap. 4]):

ε̂r = Mr
ε + Br

ε ·
√

Dr
ε · ŷ. (8)

Using the above, one may compute numerically the distribution of the equivalent von Mises
strain εeq =

√
(2/3) e : e with e the strain deviatoric tensor. More generally, Eqs. (7) and (8)

allows one to compute the distribution of any function of the strain field components.

2.2. Self-consistent estimates

To get a statistical description of the local fields through mean-field homogenization, we adopt
the self-consistent (SC) model which is well suited to describe the overall behavior of cell ma-
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terials [44] and polycrystalline media with moderate contrast [14, 29, 30]. It can be written [47]〈{[
C(x)− C̃

]−1
+ P(C̃)

}−1
〉

= 0 (9)

with C (resp. C̃) the local (resp. effective) elastic tensors and P the Hill microstructural tensor

which depends on C̃ and the spatial distribution of the phases. The elastic properties being
uniform per phase (i.e. crystalline orientation), that is:

C(x) =
N∑
r=1

χr(x) Cr, ∀x ∈ Ω, (10)

with χr(x) the characteristic function of phase (r), relation (9) can be written

N∑
r=1

fr

[
(Cr − C̃)−1 + P(C̃)

]−1
= 0. (11)

At the local scale, the self-consistent scheme provides information about the average fields for
each crystalline orientation. For the strain field, for instance, the mean reads:

Mr
ε = 〈ε〉(r) = (Cr + C∗)−1 :

(
C̃ + C∗

)
: ε. (12)

Besides, due to the quadratic dependence of the elastic energy on the strain field, the intraphase
second moment of the strain field distribution can be obtained from the partial derivatives of
the overall elastic energy ω̃ with respect to the local elastic tensors Cr [12, 27, 38]

Σr
ε = 〈ε⊗ ε〉(r) =

2

fr

∂ω̃

∂Cr
with ω̃ =

1

2
ε : C̃ : ε. (13)

In a general context of anisotropy, the SC estimate of the intraphase second-moment is solution
of a linear system which requires the numerical integration of the Hill microstructural tensor
P and its derivative ∂P/∂C̃ [13, 14].

2.3. FFT-based computations

The distribution of the elastostatic fields in polycrystals can be addressed by considering
unit-cell computations with different microstructure models. We consider the classical Poisson-
Voronoi tessellation [33, 35] and, for comparison, a modified Poisson-Johnson-Mehl partition
of the 3D space, with anisotropic distance functions [17] (see Fig. 1a). The latter has been
optimized to model a TATB (triamino-trinitrobenzene, a molecular triclinic crystal) polycrys-
tal material [3] and in particular contains much more grains with elongated and non-convex
shapes than in the Voronoi tessellation. The TATB crystals are strongly anisotropic. Their elas-
tic behavior displays a general triclinic symmetry [10] which may be approached by transverse
isotropy. In this study, we adopt the approximation of the crystal elastic tensor used in [19].
For simplicity, the crystallographic orientations in the grains are independent and uniformly-
distributed on the sphere, leading to an isotropic effective response.

Numerical computations are carried out using a spectral Fourier method [36, 48] on voxel
grids containing 10243 voxels and about 104 grains for the Voronoi model, and 2563 voxels
and about 200 grains for the Johnson-Mehl model. As an example, we apply a macroscopic
hydrostatic strain, normalized so that 〈εm〉 = 1. The field distributions Pεxx are computed
for three independent realizations of the Johnson-Mehl and Voronoi models (Fig. 1b). The

4



-1 0 1 2 3 4 ε
xx

0

0.2

0.4

0.6

0.8

P
ε

xx

Voronoi

Johnson-Mehl

-1 0 1 2 3
0

0.4

0.8

(a) (b)

Figure 1. (a) Poisson-Johnson-Mehl tesselation of space made of elongated grains (2D cut). (b) Mean over three realizations

of the distribution Pεxx of the strain component εxx in Poisson-Voronoi and Poisson-Johnson-Mehl polycrystals. Inset (bottom-

right): individual distributions, computed in each one of the three realizations.

overall distribution is nearly the same for all three realizations of the Voronoi model, except
for small variations near the maximum εxx ≈ 0.6 of the distribution (Fig. 1b, gray dashed
line). As expected, the Johnson-Mehl model displays much higher variations with respect to
the realizations (Fig. 1, inset). When averaged, however, the distributions for the Voronoi and
Johnson-Mehl models nearly coincide (Fig. 1, solid and dashed lines). This result suggests that
the histograms for the elastic fields are not very sensitive to the grains shape, at least for
moderate anisotropy.

In the following, all computations are carried out using the Johnson-Mehl tessellation, dis-
cretized on a volume of 5123 voxels and containing about 1, 250 grains. In the sequel, the full-
field distributions are compared with the mean-field approximation based on the self-consistent
model together with an assumption of intraphase normal distribution.

2.4. Elastic fields distribution: self-consistent estimates vs. FFT results

We evaluate the reconstruction of the fields distribution which is obtained by assuming a
multivariate normal probability distribution within each phase (r) (r = 1, . . . , N). Each distri-
bution is characterized by the intraphase mean and variance which are estimated with the SC
model. These “mean-field” distributions are compared with reference FFT results for isotropic
TATB-like polycrystals made of grains with hexagonal symmetry (transversely isotropic elastic
behavior). The implicit SC equation (11) is solved by considering an isotropic distribution of
the phases (i.e. spherical inclusion for the ancillary Eshelby inclusion problem) and a set of
crystalline orientations. To approximate an isotropic crystallographic texture (i.e. uniform ori-
entation distribution function), the space of orientations has been discretized by considering a
division of the standard triangle, for hexagonal crystal symmetry, in equal area domains [39].
The isotropic texture is represented by a set of 2160 crystalline orientations (i.e phases) with
equal volume fractions. Our numerical results on the overall bulk and shear moduli agree with
the analytical result of the SC estimate for isotropic polycrystals made of hexagonal grains [11].

The probability distribution functions Pε and Pσ, for field components and invariant quan-
tities, have been computed for macroscopic hydrostatic 〈εm〉 = 1, shear 〈εxy〉 = 0.5 and uniaxial
〈εxx〉 = 1 strain loadings. The comparisons with the FFT computations show an overall good
agreement with a correct description of the distributions asymmetry (Fig. 2). These results on
linear elastic polycrystalline aggregates are consistent with those reported for linear viscous
two-phase particulate composites [23].
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Figure 2. (a,c,e) Probability distribution function Pε for the mean and equivalent strains (εm, εeq) and strain components

(εxx, εxy), (b,d,f) Probability distribution function Pσ for the mean and equivalent stress (σm, σeq) and stress components

(σxx, σxy). Blue solid line (gray line in printed versions): Self-consistent estimate; Black solid line: FFT computation. (a,b)

Overall hydrostatic loading with 〈εm〉 = 1. (c,d) Shear loading with 〈εxy〉 = 0.5 (e,f) Uniaxial strain loading with 〈εxx〉 = 1.

3. Field distributions in cracked media: homogeneous body under plane strain

This section focuses on the elastic field distributions in a homogeneous body containing cracks
and subjected to plane strain. In Subsection 3.1, a model problem made of an isolated crack
or a population of randomly-oriented non-interacting cracks is investigated analytically. Em-
phasis is put on Van Hove singularities and a methodology is proposed to reconstruct the field
distributions in the case of a population of interacting cracks. In subsection 3.2, the method’s
predictions are compared to FFT-based computations.

6



θ1
θθ2

r2 r1r

a a

y

x

Figure 3. Coordinate systems around a crack (hashed area), in plane strain.

3.1. Van Hove singularities

As previously stated, Van Hove singularities are non-differentiable points in the probability
distribution function P (t) of a spatial field. These singularities are contributions of regions
where the spatial gradient of the field vanishes. The type of singularity depends on the eigen-
values of the Hessian (second-order spatial derivatives) matrix being of the same or opposite
signs [34]. For a field in 2D space, a saddle-point generates a logarithmic singularity of the type
P (t) ∼ − log |t − t0| where t0 is the value of the field at the saddle-point. In 2D again, a local
extremum generates a finite jump in P (t) at t = t0, where t0 is the field extremal value. In
3D, saddle-points and local extrema induce powerlaw singularities with exponent 1/2, therefore
the probability distribution P (t) remains finite while its derivative is unbounded. “Extended”
Van Hove singularities [2] may in addition occur if the Hessian matrix has one or more zero
eigenvalues. In 2D, blow-ups of the probability distribution function as a powerlaw of exponent
−1/2 [2] or −1/3 [50] have been reported.

3.1.1. Isolated crack

We now examine histograms for the stress field surrounding an isolated crack. Vector and tensor
components refer to a Cartesian coordinates system (ex, ey, ez). The crack is modeled as an
infinitely-thin cylinder of equation |x| < a, y = 0, that is, its length is 2a and its axis is parallel
to ez (see Fig. 3). The crack is subjected to plane strain in the (ex, ey) plane (i.e. εiz ≡ 0, i = x,
y, z) and to remote biaxial stress loading, resulting in σxx = σyy = σk > 0, σxy = 0 where
σ = 〈σ〉Ω is the mean of the stress field over a very large domain Ω surrounding the crack.

In the vicinity of the crack tips, the stress components σij become singular [46]. In the
three polar coordinate systems (r, θ), (r1, θ1) and (r2, θ2) the stress around an isolated crack
is expressed as [43]:

σxx
yy

=
σkr√
r1r2

[
cos

(
θ − θ1 + θ2

2

)
∓ a2

r1r2
sin θ sin

3

2
(θ1 + θ2)

]
, (14a)

σxy =
σkra

2

(r1r2)3/2
sin θ cos

3

2
(θ1 + θ2). (14b)

Variables r1,2 and r denote the distances to the crack tips and to the mid-point along the crack,
respectively, and θ1,2, θ are resp. the angles formed between the x-axis and the line joining the
crack tips and the mid-point along the crack (see Fig. 3). The stress intensity factor “seen” by
the crack is σk/

√
2πa [43]. Maps of the three stress components are shown in Figs. (4a-c).

Consider now the probability distribution Pij(σk; t) of σij = t, computed within a region
Ωk. We assume that Ωk is a circular domain with radius D and surface fraction f = πD2/S
and seek for the behavior of Pij(σk; t) when t = 0, or t = ±∞. Set θ1 = π − dθ1 and θ2 = dθ2
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(a) σxx [0; 4]

(b) σyy [0; 4]

(c) σxy [−2; 1]

Figure 4. Maps of the stress components σij around an isolated crack with σk = 1 GPa (Eqs. 14), in a domain 2a > x > 0,

y > 0 (see Fig. 3). Annotated regions enclosed by contour lines determine the behavior of Pij(t) as t→ 0, ±∞. Regions A, A1,

A2, A3: t→ 0. Region B: t→∞. Region C: t→ −∞. To highlight the field patterns, values lower than a minimum and higher

than a maximum are thresholded out (see legend, units are GPa). Lowest values are shown in blue and highest values in yellow

(dark and light gray resp. in printed version). Intermediate values in green and orange in the online version.

and expand (14) in the limit dθ1 → 0, dθ2 → 0. One obtains:

σyy = σk
1 + 4(x/a)2

[1− (x/a)2]7/2

(y
a

)3
+O(y5). (15)

When t is small, the region where 0 < σyy < t is accordingly delimited by the curves of equation:

y = ±a
[
1− (x/a)2

]7/6
[1 + 4(x/a)2]1/3

t1/3

σ
1/3
k

, −a < x < a (16)

(region A, Fig. 4b). Integrating the above function leads to the extended Van Hove singularity:

P{σyy(x) < t; x ∈ Ωk} =
4a2t1/3

σ
1/3
k |Ωi|

∫ 1

0

du(1− u2)7/6

(1 + 4u2)1/3
+O(t) ≈ 0.701

a2t1/3

D2σ
1/3
k

, (17a)

Pyy(σk; t) ≈ 0.234
a2

D2σ
1/3
k t2/3

h(t), t→ 0, (17b)

where h(•) = max(sign(•), 0) denotes the Heaviside function.
Component σxx vanishes along the crack lips (region A, Fig. 4a), and its probability distri-

8



bution function Pxx presents a jump at t = 0:

σxx =
2σk

[1− (x/a)2]3/2
y

a
+O(y2), Pxx(σk; t) =

3a2

8D2σk
h(t), t→ 0. (18)

Component σxy is zero along the two lines y = 0, x = 0 (regions A1 and A3, Fig. 4c) and along
four curves starting from the crack tip at angles θ1 = ±π/3, θ2 = ±2π/3 (region A2, Fig. 4c).
The gradient of the field σxy is zero along the segment y = 0, −a < x < a (region A1), and
is non-zero in regions A2 and A3. The contributions to Pxy(t) (t � 1) of regions A2 and A3

are accordingly finite, so that only the contribution of region A1 matters. A Taylor expansion
provides in the right-upper quadrant x > 0, y > 0:

σxy = − 3σkx/a(y/a)2

[1− (x/a)2]5/2
, Pxy = − a

2Γ(−3/4)Γ(9/4)

2
√

3D2π3/2
√
σk|t|

≈ 0.2839a2

D2
√
σk|t|

, t→ 0, (19)

where Γ(•) is the extended factorial function, or Gamma function.
The tails of the distributions are now derived using the asymptotic near-tip expansions [43]

(see regions B and C in Figs. 4a-c):

σxx
yy

=
σk
√
a√

2r1
cos

θ1

2

(
1∓ sin

θ1

2
sin

3θ1

2

)
, σxy =

σk
√
a√

2r1
sin

θ1

2
cos

θ1

2
cos

3θ1

2
. (20)

We solve the three equations σij = t for t→ ±∞ and obtain r1 as a function of θ1 and t. The
probability distributions Pxx(σk; t) and Pyy(σk; t) are obtained by integration of−(4/πD2)r1∂tr1

over θ1 in the range [−π;π]. The distribution Pxy(σk; t) is derived by integration of the same
quantity over the domain [−π;−π/3] ∪ [0;π/3] (when t → ∞, see region B, Fig. 4c) and
[−π/3; 0] ∪ [π/3;π] (when t → −∞, see region C, Fig. 4c). This yields, to leading order-term
in t:

Pxx(σk; t) ∼
177a2σ4

k

512D2t5
, t→ +∞, (21a)

Pyy(σk; t) ∼
1089a2σ4

k

512D2t5
, t→ +∞, (21b)

Pxy(σk; t) ∼
9a2σ4

k

1024D2|t|5 , t→ ±∞. (21c)

The various probability distribution functions P ij(t) = Pij(σk = 1; t), computed numerically
from (14) on grids of 50002 voxels, are shown in Fig. (5a). They present Van Hove singularities
not only at t = 0, ±∞ but also at various finite values of t. For reasons that will be clear later
on, we do not investigate the later.

3.1.2. Randomly-oriented non-interacting cracks

Assume now that the material is made up of widely-separated cracks with uniformly-distributed
orientations in the (ex, ey) plane. Apply as previously a biaxial remote stress σxx = σyy = σk >
0, σxy = 0 in plane strain. Consider a crack oriented along a direction 0 ≤ β ≤ π with respect

to the x-axis. The stress components σβij are obtained by a rotation of angle β in the plane (ex,

ey) of the stress tensor given in (14). For instance σβxx reads:

σβxx = σxx cos2 β + σyy sin2 β − σxy sin(2β). (22)
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Figure 5. (a) Probability distribution functions P ij(t) for the stress component σij around an isolated crack of length a, in a

disk-shaped domain of radius D centered around the crack. (b) Probability distribution functions P
∗
ij(t) for the stress component

σij around a set of isolated cracks of length a with uniform orientations, in disk-shaped domains of radius D centered around

each crack.

The stress component σβxx vanishes along the crack tips and a Taylor expansion provides:

σβxx = 2 cos2 βσk(y/a)/[1− (x/a)2]3/2, y → 0, −a < x < a. (23)

Accordingly, the corresponding distribution presents a jump and:

P β
xx(σk; t = 0) ≈ 3a2

8D2σk cos2 β
h(t), t→ 0. (24)

The above equation reduces to (18) in the special case β = 0. The jump in (24) also blows up
when β = π/2, at which point P β

xx develops the singularity given in (17b).
Consider now the p.d.f. P ∗xx(σk; t) = 〈P β

xx(σk; t)〉β of the stress fields surrounding cracks with
stress factor σk, averaged over all orientations β. The smallest values of σk are concentrated
in a region near the crack tips. Furthermore, the size of this region is much more important
for cracks oriented with an angle β ≈ π/2. Let us first examine the contribution of the values
located along the line x = 0. Set r = y, θ = π/2, θ1 + θ2 = π, r1 = r2 in (14) and (22). We
obtain:

σβxx(0, y) =
σky

(
a2 cos(2β) + a2 + y2

)
(a2 + y2)3/2

. (25)

We solve σβxx = t for β and determine the interval β ∈ [β1(y, t);π/2] that contributes to values

of σβxx in the range [0; t]. This interval is not empty whenever y < ymax = at1/3/

√
σ

2/3
k − t2/3.

The region of interest, where the r.h.s. of (24) blows up, is y ≈ ymax (as also confirmed by
Eq. 16), therefore we make use of the variable change y = y′t1/3 in the following integral and
obtain to leading-order in t:∫ ymax(t)

0

dy [π/2− β1(y, t)] ∝ at2/3

σ
2/3
k

, t→ 0+. (26)

Accordingly, the contribution of the line x = 0 to P ∗xx scales as ∼ t−1/3. The analytical compu-
tation of the contribution of the entire domain Ω proves cumbersome and we resort to numerical
computations. The distribution P β

xx is computed by discretization of the field σβxx on a grid of
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10, 0002 pixels, and P ∗xx is computed by averaging over 100 regularly-spaced values of the angle
β. A fit of the numerical data, gives, with excellent agreement over two decades (see Fig. 6a):

P ∗xx(σk; t) ∼ 0.44
a2σ

1/3
k

D2
t−0.33, t→ 0+, (27)

which suggests an extended Van Hove singularity P ∗xx = P ∗yy ∼ t−1/3, as hinted by (26). This is
a less singular behavior at the origin than that of the probability distribution Pyy obtained for
parallel cracks (Eq. 17b), which blows up as ∼ t−2/3.

Regarding component σxy, numerical computations also provide the following fit:

P ∗xy(σk; t) ≈ −0.91
a2

D2
log
|t|
σk
, t→ 0, (28)

with good agreement ranging over two and a half decades (see Fig. 6b). A powerlaw with small
exponent P ∗xy ∼ t−0.1 instead of a logarithm can not be ruled out (Fig. 6b, inset) but appears
less consistent with the data available. The logarithmic blow-up (28) is a weaker singularity
than that obtained for the traction components σxx or σyy (Eq. 27).
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Figure 6. Numerical fit of the probability distribution functions P
∗
xx, in log-log plot (a) and P

∗
xy , in semi-log plot (b) for

components σxx and σxy , in media with randomly-oriented cracks. Solid line in (a): fit (27); in (b): fit (28), up to a constant

term. Inset in (b): log-log plot of the data with fit P
∗
xy = 5.5(a/D)2(t/σk)−0.1.

Finally, the behavior at t = ±∞ is computed analytically in the same manner as in Sec. 3.1.1.
We obtain, the x- and y-axis being statistically equivalent directions:

P ∗xx
yy

(σk; t) ∼
585a2σ4

k

512D2t5
, t→ +∞, (29a)

P ∗xy(σk; t) ∼
9a2σ4

k

1024D2|t|5 , t→ ±∞. (29b)

Observe that the prefactor for P ∗xx (or P ∗yy) lies in-between that of Pxx and Pyy, while it is
unchanged for the shear component xy (Eq. 21c).

The probability distribution functions P
∗
ij(t), are shown in Fig. (5b). They are computed

numerically from (14) and (22) on grids of 50002 voxels. The parameter β is discretized along
200 values. Note that, as for the distribution functions P ij , they present Van Hove singularities
at finite values of t, not investigated in the present work.
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3.1.3. Parallel and randomly-oriented interacting cracks

Consider now a population of interacting identical cracks, either parallel to one another or
randomly-oriented. To take into account crack interactions, we assume that the overall dis-
tribution of the stress field around the cracks is the same as that of a set of isolated cracks
subjected to random stress intensity factors, with a probability law for the stress intensity fac-
tors to be determined. As in the previous sections, the material is subjected to plane strain
and in-plane biaxial stress loading. The cracks density is monitored by the non-dimensional
parameter η = Nc/Sa

2 where S = |Ω| is the surface area of the domain Ω and Nc the number
of cracks within the domain.

Consider a particular component σij in a domain Ωk containing a crack with remote stress
σk, and with field distribution Pij . Clearly:

Pij(σk; t) =
1

|σk|
P ij

(
t

σk

)
, (30)

where P ij(t) = Pij(1; t) is the distribution obtained when taking σk = 1. For a continuous
distribution q(s) of stress intensity factors in domains Ωk (k = 1, ..., Nc) with Nc very large,
the probability distribution of σij over Ω, is given by the convolution product:

P̃ij(t) =

∫ +∞

−∞
ds
q(s)

|s| P ij

(
t

s

)
=

∫ +∞

−∞
du
P ij(u)

|u| q

(
t

u

)
,

∫ ∞
−∞

ds q(s) = 1. (31)

We also denote P̃ ∗ij(t) the orientation-averaged distribution P̃ij(t), equal to:

P̃ ∗ij(t) =

∫ +∞

−∞
ds
q∗(s)

|s| P
∗
ij

(
t

s

)
,

∫ ∞
−∞

ds q∗(s) = 1, (32)

where P
∗
ij(t) = P ∗ij(σk = 1; t). The fields moments (n = 1, 2, ...) read:

〈tn〉P̃ij
= 〈tn〉P ij

〈tn〉q, 〈tn〉P̃∗
ij

= 〈tn〉P∗
ij
〈tn〉q∗ . (33)

In principle, these formula can be used to reconstruct q knowing P̃ij and P ij , under some
conditions [42]. In practice, the problem is ill-posed and efficient numerical algorithms must be
implemented [24]. In the present situation, our knowledge of the two moments in (33) leads to
the natural assumption that q and q∗ are Gaussian kernels:

q(s) =
1√
2πvq

exp

(
−(s− µq)2

2vq

)
, q∗(s) =

1√
2πv∗q

exp

(
−(s− µ∗q)2

2v∗q

)
, (34)

where we assume µq > 0, µ∗q > 0. In doing so, we smooth out singularities that may be present

in distributions P ij and P
∗
ij except possibly at t = 0 and t = +∞, which are fixed under

the transformation t 7→ t/s. We emphasize that other choices are possible. Kushch et al. [28],
notably, modeled the distribution of stress intensity factors in similar heterogeneous media
using a Gumbel (double exponential) law.

Let us examine the possible Van Hove singularities of P̃ij and P̃ ∗ij as t→ ±∞. Using Eqs. (21)
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we obtain:

P̃xx
yy

(t) ∼ pxx
yy
|t|−5

∫ ∞
0

ds s4q(sign(t)s), t→ ±∞, (35a)

P̃xy(t) ∼ pxy|t|−5

∫ ∞
0

ds s4 [q(s) + q(−s)] , t→ ±∞, (35b)

pxx =
177a2

512D2
, pyy =

1089a2

512D2
, pxy =

9a2

1024D2
, (35c)

where pijt
−5 is the asymptotic behavior of P ij(t) as t → ∞ provided by Eqs. (21). The same

relations are obtained for P̃ ∗ij with prefactors pij given by (29a) instead. Note that P̃xx, P̃yy,

P̃ ∗xx and P̃ ∗yy possess distribution tails as t→ −∞, unlike distributions P xx and P yy. The tails
are asymmetric: the prefactor at t = −∞ is lower than that obtained in the t = +∞ limit.

The behavior of P̃yy as t→ 0 is determined as:

P̃yy(t) ∼ p′yy|t|−ν
∫ ∞

0

ds sν−1q(sign(t)s), t→ 0±, (36)

where p′yyt
−ν (ν = 2/3) is the asymptotic behavior of P yy as t→ 0+ (see Eq. 17b). The behavior

of P̃ ∗xx = P̃ ∗yy as t → 0 is obtained by taking ν = 0.33 and by replacing prefactor p′yy by that

provided by Eq. (27). The behavior of P̃xy as t→ 0 is obtained as:

P̃xy(t) ∼ p′xy|t|−1/2

∫ ∞
0

ds s−1/2 [q(s) + q(−s)] , t→ 0. (37)

where p′xyt
−1/2 is the asymptotic behavior of P xy given in (19).

We finally consider distribution P̃xx which takes a finite value when t = 0+ and is zero when
t < 0 (18). The integral in (32) is splitted into two intervals [0; t/t0] and [t/t0;∞]. Assuming
0 < t� t0 � 1: ∫ t/t0

0

ds

s
q

(
t

s

)
P xx(s) ≈ −q(t0)P xx(0) log(t0), (38a)∫ ∞

t/t0

ds

s
q

(
t

s

)
P xx(s) ≈ −q(t0)P xx(0) log

t

t0
. (38b)

A similar behavior is obtained when t→ 0− so that:

P̃xx(t) ∼ −q(0)P xx(0
+) log |t|, t→ 0±. (39)

This singularity, a logarithmic blow-up, is generated by regions around cracks subjected to
nearly zero remote stress, consistently with (32). Notice that P xx displays a finite jump at

t = 0 (Eq. 18), unlike P̃xx. A similar treatment, carried out on distribution P
∗
xy (Eq. 28), leads

to:

P̃ ∗xy(t) ∼
q(0)

2
log2 |t|, t→ 0±. (40)

Again, the nature of the singularity is different from the logarithmic blow-up found for P
∗
xy

in (28).

The Van Hove singularities at t = 0 and t = ±∞ of the distribution functions P ij , P̃ij , P
∗
ij

and P̃ ∗ij are summarized in Tab. (1). As previously noted, the singularities of P̃ij are different
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σij P ij P̃ij P
∗
ij P̃ ∗ij

t = 0±
σxx h(t) − log |t|

h(t)|t|−0.33 h•(t)|t|−0.33

σyy h(t)|t|−2/3 h•(t)|t|−2/3

σxy |t|−1/2 |t|−1/2 − log |t| log2 |t|

t = ±∞ σxx, σyy h(t)|t|−5 h•(t)|t|−5 h(t)|t|−5 h•(t)|t|−5

σxy |t|−5

Table 1. Van Hove singularities of the probability distribution functions of the stress components σij in the non-interacting

model of parallel (P ij) or randomly-oriented (P
∗
ij) cracks, and in the respective interacting models (P̃ij and P̃∗ij). Constant

prefactors (that do not depend of t) are omitted for clarity. The term h•(t) designates a function with a finite jump at t = 0,

of the type b+ b′h(t) with b, b′ > 0.

from that of P ij . For instance P̃yy develops powerlaw singularities when t → 0− or t → −∞,

contrarily to P yy which has support on [0;∞[. Likewise, P̃xx develops a logarithmic singularity

when t → 0−, contrarily to P xx. Also, as will be seen later on, distributions P̃ij(t) and P̃ ∗ij(t)
do not present singularities at finite (non-zero) values of t.

3.2. FFT-based computations

3.2.1. Reconstruction of the overall stress distribution vs. FFT data

We compute numerically the stress distributions occurring in the solid phase of a 2D Boolean
set [40] of cracks subjected to plane strain. The cracks are parallel to one another. Again, we
use the FFT scheme with “backward-forward” finite difference [49], appropriate to the presence
of discretized cracks [18], and computations are carried out on two independent realizations of
the Boolean model, discretized on a 20482-pixels grid. We follow [18] and discretize the cracks
as thin rectangles of width w = 1.5 voxel. In all computations hereafter, the overall applied
stress is by convention equal to 1 GPa so that 〈σxx〉 = 〈σyy〉 = 1. The cracks have a finite
thickness, therefore the mean of the stress field in the solid phase is slightly above 1 GPa.

The probability distribution function P̃xx(t) is compared with FFT results in Fig. (7a). The
first and second moments of the distribution of the stress intensity factor q, used to compute
P̃xx(t), are adjusted so that the moments of P̃xx(t) fit the corresponding FFT data (see 33).
The values of a and D are chosen so that the crack density parameter η is the same in the FFT
computations and in each domain Ωk, i.e.

η =
Nca

2

S
=

a2

πD2
, (41)

where Nc = 60 is the number of cracks in FFT computations, S = 20482 is the surface of the
unit cell, a = 25 pixels, and so η ≈ 0.035, D ≈ 75 pixels. It is emphasized that FFT numerical
results have been used, in the present work, to tailor the first and second-order moments of
P̃xx. In principle, however, such moments could be determined using self-consistent estimates.
For a cracked body in plane strain, these estimates, which include the case of an anisotropic
embedding medium, have been derived analytically by Nemat-Nasser & Horri [22].

A similar procedure is used in the random case. Consider the low crack-density regime
η � 1. Eq. (33) gives the first and second-moments of q∗, given that of P̃ ∗ij . The latter are

provided by FFT computations, carried out on a 81922 pixels grid. We use a = 25 pixels,
Nc = 20, D = 129 and η = 0.011. The mean and second-order moments of P̃ ∗yy, given by FFT
computations, are 1.0007 and 1.0279 resp. and the mean and variances of q are 1.0103 and
3 10−4 resp. Results are shown in Fig. (7b).

The method however breaks down when η is larger than about 0.05, at which point (33)
predicts a negative variance for q, so that this constraint can not be satisfied anymore. Indeed,
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Figure 7. Probability distribution functions P̃yy(t) and P̃∗yy(t) (a and b, resp., solid black lines) for the stress component

σyy , in a matrix containing a set of (a) parallel and (b) randomly-oriented cracks, in plane strain. Comparison with FFT

results (online: solid blue and green lines, printed version: gray lines) obtained on two random realizations, and to a Gaussian

distribution (solid line marked G). Fig. (b), inset: enlargement in the region P̃∗yy(t) < 0.5.

our method assumes that all cracks are loaded in mode-I. In random media, in reality, the
regions in which cracks are embedded are subjected to varying loadings, combining several
modes. Furthermore, in the present method, the distribution q entering (33) does not depend on
the stress component considered, hence, one can not simultaneously satisfy all set of constraints
on the first and second moments of the stress components. Taking into account other modes
would, in theory, provide additional degrees of freedom, at the expense of a more analytically-
involved treatment.
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Figure 8. Probability distribution functions P∗,FFTyy and P∗,FFTxy for the stress components σyy (a) and σxy (b) in randomly-

oriented cracks, in log-log plot, as predicted by FFT computations. Solid and dotted lines: powerlaw fit (42) and (43) in the

domains |t| � 1 and t� 1.

3.2.2. Van Hove singularities

We now focus on the singularities of the probability distribution functions P ∗,FFTij , predicted by
numerical FFT computations. All computations are carried out on two independent realizations
of a Boolean model of cracks, discretized on a 81922 pixel grid containing Nc = 200 cracks.
To highlight possible Van Hove singularities, we choose a crack density equal to η = 0.12 with
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a = 25 pixels. The following powerlaw behavior is observed. When t→ ±∞:

P ∗,FFTxx,yy ≈ |t|−5 ×
{

1.8, t→ +∞,

0.03, t→ −∞,
(42a)

P ∗,FFTxy ≈ 0.02|t|−5, t→ ±∞ (42b)

(see Figs. 8a-b). When t→ 0:

P ∗,FFTxx,yy ≈
{

0.19t−0.18, t→ 0+,

0.074|t|−0.33, t→ 0−.
(43)

Fits (43) should be taken with care as the two powerlaw regimes are observed on two decades
only, or less (see Fig. 8a). The behavior of P ∗,FFTxy as t→ 0 is not provided here, as FFT results
are inconclusive.
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Figure 9. (a) Log-log plot of the probability distribution function P∗,FFTyy for the stress components σyy in media with

randomly-oriented cracks, as predicted by FFT computations. Dots: FFT data for η = 0.01, 0.12 and 0.6. Dashed lines:

powerlaws ∼ t−1/3 (see text). (b) Comparison between the probability distribution functions PFFTyy , P∗,FFTyy , predicted by

FFT (dots) and models P̃yy and P̃∗yy (solid lines), in log-log plot.

FFT data for the distribution P ∗,FFTxx,yy are shown in Fig. (9) for varying values of the crack

density parameter η. For η = 0.01, the data is consistent with the prediction P̃ ∗yy(t) ∼ |t|−0.33

(Tab. 1) in the region t ' 0 (see dashed green lines with slope −1/3).
Fig. (9b) shows, in log-log scale, the distribution functions PFFT

yy and P ∗,FFTyy for the stress
component σyy in media with parallel (η = 0.035) and randomly-oriented (η = 0.01) cracks, as

computed by FFT (colored dots). This data is compared to the estimates P̃yy and P̃ ∗yy given by
Eq. (31) (solid lines). The Van Hove powerlaw singularities for the distribution tails (t → ∞)
and near zero (t→ 0+) are accurately reproduced. Dashed green lines are powerlaw fits of the

FFT data with exponent −1/3 and −2/3. When t < 0 however, estimates P̃yy and P̃ ∗yy greatly

underestimate the true distributions PFFT
yy (t) and P ∗,FFTyy (t). Indeed, for negative values of t,

the distributions P̃yy and P̃ ∗yy fall outside of the graph in Fig. (9b) and are not represented. But
again, the present approach does not take into account mixed-mode loadings and all cracks are
supposed open so that high negative values of the stress components are presumably induced
by regions around crack tips subjected to compression or mixed-mode loadings, which are not
taken into account in the present approach.
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(a) (b) (c)

Figure 10. (a) Polycrystal model JM-I with integranular cracks. (b) Model JM-T with transgranular cracks. Cracks orientation

uncorrelated to the crystal symmetry axis. (c) Model JM-TW with “weak-plane” transgranular cracks. Cracks oriented parallel

to the basal plane in each crystal.

4. Field distributions in cracked polycrystals

This section is concerned with various models of cracked polycrystals based on the Johnson-
Mehl model and introduced in [19]. The first one is a polycrystal with intergranular cracks,
denoted JM-I and represented in Fig. (10a). Three transgranular cracks models are also con-
sidered. In the first one, denoted (JM-T), crystals and cracks orientations are uncorrelated and
uniformly-distributed on the sphere (Fig. 10b). In the other two transgranular crack models,
the cracks orientation are correlated to the crystal directions. In the “weak-plane” transgranu-
lar model, denoted (JM-TW), cracks are oriented parallel to the crystal basal plane (Fig. 10c).
In the stiff-plane model, denoted (JM-TS), the cracks are oriented perpendicular to the basal
plane. Finally, for comparison purposes, we also consider a homogeneous body containing cracks,
denoted (JM-IB), obtained by replacing the grains in model (JM-I) by a homogeneous isotropic
medium with the same elastic properties as those of the sound polycrystal. The density of
cracks is fixed to η = 0.24 in all models.

The distributions of the equivalent strain εeq, mean strain εm and shear strain εxy are
shown in Figs. (11a-f), for hydrostatic strain loading 〈εm〉 = 1 and shear strain 〈εxy〉 = 0.5.
Solid lines represent polycrystals with transgranular cracks. Dashed lines refer to the integran-
ular model (JM-I) and homogeneous cracked medium (JM-IB). Overall, the field distributions
differ significantly depending on the microstructure. In models with transgranular cracks, the
correlation between the cracks orientation and the grains basal plane has a strong effect on the
field distribution εm, for hydrostatic strain loading (Figs. 11c).

All field distributions exhibit a singularity, or accumulation point at ε = 0. For the von
Mises equivalent deviatoric part εeq, a local peak appears near ε = 0, in all models, whereas
the distributions for εeq and εxy blow up at ε = 0. The peak appears to be more important for
model with intergranular cracks than for models with transgranular cracks.

The decay of the distribution tails for the strain component εxx is shown in Fig. (12),
for various models subjected to hydrostatic loading. The transgranular model (JM-T) and
intergranular model (JM-I) as well as a sound polycrystal model, with Johnson-Mehl (JM) or
Voronoi (V) tessellation are considered. Models (JM-T) and (JM-I) exhibit powerlaw decays
Pεxx(t) ∼ t−ν as t → ∞ with ν ≈ 4.7 ≈ 5. This exponent is close to that obtained in plane
strain (Sec. 3). As shown by Fig. (12), the distribution of the field εxx decays at a much faster
rate in sound polycrystal models (brown and orange curves) than in cracked polycrystal models
(red and green curves). For Johnson-Mehl and Voronoi sound polycrystals, the rate of decay for
the distribution Pεxx(t) as t→∞ is close to that of a powerlaw. The exponent of the powerlaw
is about −8. It varies greatly with the realization of the model (not shown) but is nevertheless
much lower than −5. In any case, such powerlaw decay may result from the blow-up of the
elastic fields at multimaterial corners, which has been studied, notably, in plane strain and
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Figure 11. Histograms of the strain field components εeq (a,b), εm (c,d), εxy (e,f) in various cracked media, subjected

to hydrostatic strain loading (a,c,e) or shear (b,d,f). JM-I: Polycrystal with intergranular cracks. JM-T: transgranular cracks.

JM-TW: “weak-plane” transgranular cracks. JM-TS: “stiff-plane” transgranular cracks. JM-IB: homogeneous cracked body.

Embedded graphs: strain distribution in the region ε ≈ 0.
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plane stress problems [5–7, 31, 32]. The powerlaw decay is not predicted by the self-consistent
method described in Sec. (2), which assumes a Gaussian intraphase field distribution (dashed
blue line, Fig. 12).
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Figure 13. Distribution of stress components σxx, σeq and σxy in a polycrystal with transgranular cracks oriented along basal

planes (model “TW”). Solid lines: self-consistent estimates; dashed lines: FFT computations. (a): Hydrostatic strain loading.

(b) Shear strain loading.

We close this section by further considerations regarding a particular model, the one con-
taining weak-plane transgranular cracks (JM-TW). We make use of a self-consistent estimate,
proposed in [19] for this model, which assumes separation of scales between the cracks and
grains. In this method, the elastic moduli of each grain is weakened by the presence of micro-
cracks. Thus, the same methodology as proposed in Sec. (2) may be applied to model (JM-TW),
provided that the grains are replaced by weakened grains. Our results for the distribution of the
stress components σeq, σxx and σxy are shown in Fig. (13) and compared to FFT predictions.
As previously, hydrostatic or shear loading is applied, and the FFT histograms are computed
in the matrix only, as for the strain. In FFT computations, Van Hove singularities appear at
σ = 0. As expected, the reconstruction making use of the self-consistent estimates are unable
to reproduce such singularities.
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5. Conclusion

To investigate how one may use homogenization theories to predict the field probability dis-
tribution functions in linear elastic solids, the present contribution has examined two model
problems in mechanics, that of a polycrystal and that of cracked media. Two different meth-
ods have been followed, based on an ansatz for the field distributions in grains or in regions
surrounding a crack. Our main results are as follows.

The probability distribution function of the local elastic fields in sound polycrystals, with
highly anisotropic grains and Johnson-Mehl or Voronoi tessellation microstructures, is accu-
rately predicted by the self-consistent model and an hypothesis of multivariate Gaussian distri-
bution of the intraphase strain and stress fields, except for the distribution tails. The method
is not sufficient, however, when dealing with media containing cracks. The elastic fields in this
case exhibit extended Van Hove singularities at ε = 0 or σ = 0, even when the cracks are
randomly-distributed and randomly-oriented.

For the model problem of a homogeneous body containing a population of cracks and
subjected to plane strain, in particular, the probability distribution for the stress field exhibits
a powerlaw decay ∼ |σij |−5 as σij → ±∞, resulting from the singularity of the elastic field at
the crack tip. A method has been proposed to reconstruct the probability distribution function
of the stress fields, based on the assumption that the field surrounding each crack is governed
by a stress intensity factor which follows a Gaussian probability distribution. The method gives
accurate predictions for the probability distribution when the density of cracks is small, except
for negative field values. Finally, numerical Fourier-based computations carried out in cracked
media in 2D and 3D suggest a powerlaw decay ∼ |σij |−5. In 3D cracked polycrystals, FFT data
confirm the existence of Van Hove singularities at σij = 0.
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gratefully acknowledged. The authors thank J.-B. Gasnier for helping with the data in Fig. (11).
F.W. thanks D. Leguillon for letting him know about references [31] and [32] and Y.-P. Pellegrini
for helpful discussions.

References

[1] B. Abdallah, F. Willot, and D. Jeulin. Stokes flow through a Boolean model of spheres: Representative
volume element. Transport in Porous Media, 109(3):711–726, 2015.

[2] AA Abrikosov, JC Campuzano, and K Gofron. Experimentally observed extended saddle point sin-
gularity in the energy spectrum of YBa2Cu3O6.9 and YBa2Cu4O8 and some of the consequences.
Physica C: Superconductivity, 214(1-2):73–79, 1993.

[3] A. Ambos, F. Willot, D. Jeulin, and H. Trumel. Numerical modeling of the thermal expansion of an
energetic material. International Journal of Solids and Structures, 60–61:125–139, 2015.

[4] T. W. Anderson. An introduction to multivariate statistical analysis, volume 2. Wiley, New York,
1958.
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