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Abstract

Electronic medical records (EMRs) data are valuable resources for dis-
covery research. They contain detailed phenotypic information on indi-
vidual patients, opening opportunities for simultaneously studying mul-
tiple phenotypes. A useful tool for such simultaneous assessment is the
Phenome-wide association study (PheWAS), which relates a genomic or
biological marker of interest to a wide spectrum of disease phenotypes,
typically defined by the diagnostic billing codes. One challenge arises
when the biomarker of interest is expensive to measure on the entire EMR
cohort. Performing PheWAS based on supervised estimation using only
subjects who have marker measurements may yield limited power. In this
paper, we focus on the setting where the marker is measured on a small
fraction of the patients while a few surrogate markers such as historical
measurements of the biomarker are available on a large number of patients.
We propose an efficient semi-supervised estimation procedure to estimate
the covariance between the biomarker and the billing code, leveraging the
surrogate marker information. We employ surrogate marker values to im-
pute the missing outcome via a two-step semi-non-parametric approach
and demonstrate that our proposed estimator is always more efficient
than the supervised counterpart without requiring the imputation model
to be correct. We illustrate the proposed procedure by assessing the as-
sociation between the C-reactive protein (CRP) and some inflammatory
diseases with an EMR study of inflammatory bowel disease performed
with the Partners HealthCare EMR where CRP was only measured for a
small fraction of the patients due to budget constraints.

Keywords: Electronic medical records data, model mis-specification,
phenome-wide association studies, robustness, semi-supervised estimation
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1 Introduction

Electronic medical records (EMRs) are a database of clinical data from a partic-
ular medical provider. They contain a range of information on patients, includ-
ing demographics, medical history, test results, and billing information. There
have been high hopes that this data-rich resource can be widely used to per-
form observational clinical association studies. One popular tool for performing
discovery research with EMR is the phenome-wide association study (PheWAS)
[1] where one examines the association between a genomic or biological marker
and a wide range of disease phenotypes, typically defined by the International
Classification of Diseases, Ninth Revision (ICD9) billing codes. This method
has been used in several exploratory studies, for example to detect association
between autoantibody positivity and ICD9 codes related to hypertension [2, 3].

When the biomarker of interest is too expensive to be measured on all sub-
jects in the EMR cohort, performing PheWAS may be challenging. For exam-
ple, in an EMR study on how the co-morbidities of inflammatory bowl disease
relate to inflammation conducted at Partner’s Healthcare, the inflammatory
marker, C-reactive Protein (CRP) was only measured on a small, randomly
selected subset of the study participants. Performing PheWAS only on those
with CRP measurements would have limited power. In this paper, we propose
semi-supervised PheWAS methods that enable us to increase the power for
such settings by leveraging additional information on surrogate markers such
as historical measurements of inflammation markers. We are interested in the
semi-supervised setting since the percent of missingness in the CRP measure-
ment is approaching 100%. As such, traditional missing data approaches such
as multiple imputation and inverse probability weighting do not directly apply
here [4, 5]. Multiple imputation relies on creating a distribution for the missing
outcome data and making M repeated draws from this distribution to create
M complete datasets. The M estimators for each dataset are averaged together
to obtain a final estimator; however, in cases where the percent of missingness
is high, the required minimum M needed to accurate inference will be rather
large [6]. This makes multiple imputation a computationally difficult approach
for our setting. Furthermore, simple imputation methods may not be effec-
tive when the imputation model is mis-specified. In this paper, we propose a
semi-supervised estimator of the covariance between CRP and the ICD9 billing
codes via a two-step semi-non-parametric imputation, which is robust to model
mis-specification.

Semi-supervised methods have been applied to EMR data in the past [7, 8];
however, most of these methods also focus on classification of disease sta-
tus, rather than on estimation or testing [9, 10]. There are no current semi-
supervised methods for estimating covariance, which we can use to test for a
potential association between the outcome variable and a particular disease,
but recently, there has been some literature on semi-supervised estimation of
the mean, which could be potentially be used in the calculation of the covari-
ance. For example, Sokolovska et al. [11] proposed a method for estimating
the conditional density for classification using a weighted likelihood estimator

2



based on the ratio of the densities of the covariates from labeled and unlabeled
data. Kawakita and Kanamori [12] extend Sokolovska et al.’s [11] method to
allow for estimating the conditional mean using an estimate of the density ra-
tio. Unfortunately, these methods require specification of the basis functions
used in the density ratio model and the choice of the basis functions remain
unclear. Additionally, it is unclear how to extend their methods for the estima-
tion of the covariance which involves both first and second moment estimations.
Our two-step approach uses surrogate variables to aid in the imputation of
the missing outcome values. We start with a linear regression to impute the
missing biomarker levels using the ICD9 codes and the surrogate variables as
predictors. In the second step, we use these imputed values to calculate the
individual contribution to the covariance, and then employ a calibration step
via kernel smoothing to increase robustness to the misspecification in the im-
putation model. The remainder of the paper is organized as follows. In Section
2, we formulate a semi-supervised estimator for this covariance and devise a
method to calculate its standard error. In Section 3, we perform a simulation
study to explore our methods and show the results of the simulations, and in
section 4, we apply our method to an example dataset.

2 Methods

In this section, we detail our proposed semi-supervised estimator for the covari-
ance between a biological marker of interest, denoted by Y , and a phenotype
of interest, denoted by G. In EMR settings, examples for Y include inflam-
mation markers such as CRP or autoantibodies such as anti-cyclic citrullinated
peptide; while G could be the total count of ICD9 codes for a specific disease
condition. Due to cost limits, Y is only measured for n patients randomly se-
lected from an EMR cohort of size N , where G is available for all patients,
where we assume that n � N in that limn→∞ n/N = 0 as in a standard semi-
supervised setting. In addition, there are often auxiliary variables, denoted by
S, potentially predictive of Y stored in the EMR for all patients, that we can
use as surrogate variables for Y . For example, if Y is current CRP level, S
could be past history of inflammation markers including CRP and erythrocyte
sedimentation rate (ESR). We do not require past history to be available on all
subjects or assumptions on how S relation to Y . For example, we may encode
availability of the past measurements as one of the surrogate variables since the
availability of such measurements may be predictive of Y . Suppose that the
underlying full data data consists of N independent and identically distributed
(iid) random vectors F = {(Yi, Gi,ST

i )
T, i = 1, ..., N}, while the observable data

is D = L ∪U with

L = {(Yi, Gi,ST

i )
T, i = 1, ..., n}, and U = {(Gi,ST

i )
T, i = n+ 1, ..., N}

as the labeled and unlabeled data, respectively. We assume that Y is missing
completely at random as typically assumed in the semi-supervised setting.
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2.1 Estimation

Our goal is to leverage all available data in D and provide a semi-supervised
estimation of

θ0 = cov(Yi, Gi) = E(ri)

where ri = (Yi − µy)(Gi − µg), µy = E(Yi) and µg = E(Gi). The standard
supervised estimator is:

θ̂SL =
1

n

n∑
i=1

(Yi − µ̂y,SL)(Gi − µ̂g,SSL) =
1

n

n∑
i=1

r̂i

where µ̂y,SL = n−1
∑n
i=1 Yi, r̂i = (Yi−µ̂y,SL)(Gi−µ̂g,SSL), and µ̂g,SSL = N−1

∑N
i=1Gi.

It is well known that θ̂SL is a consistent estimator of θ0 and n
1
2 (θ̂SL−θ0) converges

in distribution to a normal with mean 0 and variance σ2
SL = E{(ri − θ0)2}.

To derive a semi-supervised estimator leveraging U , we propose a two-step
procedure. In step I, we fit a working linear model

E(Yi − µy | Si, Gi) = βTWi, (1)

where Wi is some basis expansions of Si and Gi that include both 1 and Gi.
For example, Wi may include 1, Si, Gi, as well as the interaction between Si
and Gi. Let

β̂ =

(
n∑
i=1

WiW
T

i

)−1 n∑
i=1

Wi(Yi − µ̂y,SL)

be the ordinary least square estimator of β. Regardless of the adequacy of the
linear model (1), β̂ is a consistent estimator of β̄, the solution to E{Wi(Yi −
µy − βTWi)} = 0. Based on this model, we predict the unobserved ri as

R̂i = β̂
T

X̂i, where X̂i = Wi(Gi − µ̂g,SSL), where µ̂g,SSL = N−1
N∑
i=1

Gi.

If the linear model (1) is correctly specified, R̂i is a consistent estimator of
E(ri |Wi) and hence

θ̂par

SSL = N−1
N∑
i=1

R̂i

consistently estimates θ0. When (1) is potentially mis-specified, we show in

Appendix A that maxi |R̂i −Ri| → 0 in probability, and therefore θ̂par
SSL remains

a consistent estimator of θ0 provided that Wi includes 1 and Gi, where Ri =
β̄

T
Wi(Gi−µg). In addition, n

1
2 (θ̂par

SSL−θ0) converges in distribution to a normal
random variable with mean 0 and variance (σpar

SSL)2 = E{(ri −Ri)2}.
Despite its robustness, θ̂par

SSL may not be very efficient under model mis-
specification. To further improve efficiency, in step II, we propose to calibrate
the conditional mean E(ri | Ri) via a one-dimensional smoothing and use the
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calibrated estimate to construct our semi-supervised estimator. Specifically, our
calibrated semi-supervised estimator of θ0 is

θ̂SSL = N−1
N∑
i=1

m̂(β̂
T

X̂i, β̂) =

∫
m̂(x, β̂)dP̂(x, β̂),

where P̂(x,β) = N−1
∑N
i=1 I(βTX̂i ≤ x),

m̂(x,β) =

∑n
i=1Kh(βTX̂i − x)r̂i∑n
i=1Kh(βTX̂i − x)

,

Kh(x) = h−1K(x/h), K(·) is a smooth kernel density function, h = O(n−ν)

is the bandwidth with ν ∈ (1/4, 1/2). Although the estimation of θ̂SSL uses
Gi in the imputation step, we show in Appendix A that the design of our
imputation guarantees the consistency of θ̂SSL for θ0 regardless of the adequacy
of the imputation model. The inclusion of Gi in the imputation can in fact be
viewed as a calibration step to ensure that any covariance between the imputed
outcome and G is reflecting the covariance between Y and G. When θ0 = 0,
θ̂SSL also fluctuates around 0 as also confirmed by simulation results. Since
kernel smoothing introduces some bias to the estimate in finite samples, we add
an additional bias correction term to θ̂SSL and propose our final bias corrected
semi-supervised estimator as

θ̂BC

SSL = θ̂SSL −

{
n−1

n∑
i=1

m̂(β̂
T

X̂i, β̂)− θ̂SL

}
.

To improve smoothing performance, we may also consider transformed scores.
For example, we may find its percentile using the unlabeled data and smooth
over the percentiles. For ease of presentation, we omit the transformation.

2.2 Inference

We show in Appendix B that θ̂BC
SSL is consistent and n

1
2 (θ̂BC

SSL − θ0) is asymptoti-
cally normal with mean 0 and variance

σ2
SSL = E[{ri − E(ri | Ri)}2] = E{var(ri | Ri)}.

It is straightforward to see that σ2
SSL < σ2

SL provided that Wi is predictive

of Yi. Comparing to the model based estimator θ̂par
SSL, we note that when the

parametric model of E(Yi − µg | Si, Gi) = βTWi holds, Ri = E(ri | Ri) and

hence the θ̂par
SSL is asymptotically equivalent to the calibrated estimator θ̂SSL.

Under model mis-specification, we may have P{E(ri | Ri) 6= Ri} > 0 in which
case (σpar

SSL)2 = E{(ri −Ri)2} > σ2
SSL.

To estimate the variance for θ̂SSL, we may estimate σ2
SSL empirically as

n−1
∑n
i=1{r̂i − m̂(β̂

T

X̂i, β̂)}2.
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3 Simulation results

We conducted a simulation study to assess the finite sample performance of our
semi-supervised estimation procedures and also compare the semi-supervised
estimators to θ̂SL. Throughout, Gi was generated from the log of 1 plus a
negative binomial(3, 0.9) to mimic the number of ICD9 codes. We then generate
(Vi,U

T
i )

T
4×1 from a multivariate normal distribution with mean βGi14×1 and

covariance matrix 0.7+0.3I4×4, where β is chosen to be 0 leading to θ0 = 0 and
0.3 to reflect a modest association. We consider two scenarios for generating Si
and Yi:

Mlin : Yi = Vi, Si = Ui,

Mnlin : Yi = Vi + βG2
i − βGi, Si = Ui − βG2

i

For both settings, we let Wi = (1, Gi,S
T
i ,SiGi)

T when fitting the imputation
model. We let N = 60000 and consider labeled data sizes of n = 200, 400,
and 600. The bandwidth h was chosen as τ̂ × n−0.3, where τ̂ is the empirical
standard deviation of π̃i, the percentile of scores. For each configuration, we
summarize results using 1000 datasets.

In Table 3, we summarize results for θ̂SL, θ̂par
SSL and θ̂BC

SSL along with their bias,
mean squared error (MSE), and relative efficiency (RE) of the semi-supervised
estimators compared to the supervised estimator. All estimators have negligi-
ble biases regardless of the adequacy of the fitted parametric model although
the bias of the parametric imputation based semi-supervised estimator θ̂par

SSL

has slightly larger biases. Consistent with our theoretical results, the semi-
supervised estimators θ̂par

SSL and θ̂BC
SSL are substantially more efficient than the

supervised estimator θ̂SL, with relative efficiency ranging from about 2.1 to 5.2.
Under Mlin, θ̂par

SSL are θ̂BC
SSL have near identical MSEs, which is expected since

they are asymptotically equivalent. Under Mnlin, the fitted linear model is mis-
specified and hence we would expect θ̂BC

SSL to be more efficient than θ̂par
SSL. This is

indeed reflected in the simulation results - the efficiency of θ̂BC
SSL relative to θ̂par

SSL

is around 1.5. We also investigated the performance of our interval estimation
based on the asymptotic variance. We calculated the coverage of θ0 from the
estimated 95% CIs. As shown in Figure 1, the empirical coverage probabilities
are close to their nominal level. We note that the parametric imputation is
somewhat unstable under model mis-specifications in small samples, resulting
CIs that slightly under cover when n = 200.

4 Application to an EMR Study of Inflamma-
tion for Inflammatory Bowel Disease

We applied the proposed method to investigate potential associations between
an inflammatory marker and co-morbidities among patients suffering from In-
flammatory Bowel Disease (IBD). The two main types of IBD are Crohn’s dis-
ease, which causes inflammation in the digestive tract, and ulcerative colitis,
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Mlin: θ0 = 0 Mlin: θ0 = 0.188 Mnlin: θ0 = 0.907
n 200 400 600 200 400 600 200 400 600

θ̂SL Bias -0.075 -0.207 -0.254 -0.156 -0.315 -0.321 -0.372 -0.632 -0.562
MSE 0.299 0.157 0.102 0.348 0.180 0.118 1.032 0.540 0.356

θ̂par
SSL Bias 0.020 -0.052 -0.076 0.029 -0.054 -0.074 1.198 0.608 0.330

MSE 0.128 0.065 0.043 0.128 0.065 0.043 0.327 0.154 0.104
RE 2.345 2.423 2.347 2.713 2.774 2.714 3.154 3.497 3.423

θ̂BC
SSL Bias 0.012 -0.034 -0.067 -0.094 -0.097 -0.099 -0.482 -0.350 -0.266

MSE 0.140 0.072 0.047 0.149 0.076 0.049 0.223 0.104 0.069
RE 2.140 2.167 2.167 2.343 2.374 2.392 4.623 5.187 5.147

Table 1: Bias (×100), MSE (×100), and relative efficiency (RE) of of the semi-

supervised estimators compared to the supervised estimator for θ̂SL, θ̂par
SSL and

θ̂BC
SSL.

which causes inflammation and ulcers in the colon and rectum [13]. In response
to inflammation in the body, the liver releases C-reactive protein (CRP) into the
bloodstream, so higher CRP levels are an indication of inflammation in the body
[14]. The goal of our analysis is to examine whether inflammation (quantified
by CRP levels) is related to comorbidities for IBD patients using a de-identified
EMR crimson cohort of 2,048 patients from the Massachusetts General Hospital
and Brigham and Women’s Hospital of the Partner’s Healthcare Systems. The
IBD EMR cohort originally consists of 11,001 patients who were identified as
having IBD via a phenotyping algorithm as described in [15]. The longitudi-
nally collected EMR data of these patients, between late 1990’s to 2014, were
available for analysis. Out of the 11,001 patients, 2,048 contributed blood for
research and we only consider the blood cohort as the full cohort due to the
discrepancy between patients who contributed blood versus those who did not.

To quantify the current level of inflammation, 97 patients were randomly se-
lected from the IBD crimson cohort to have their CRP measured in 2015. The
co-morbidities are quantified by the number of PheWAS codes associated with
each disease condition of interest, which is available for all subjects. In addi-
tion, 1,686 patients have previously measured CRP and/or ESR levels recorded,
which we use to construct S. Note that in addition to the previous levels of CRP
and ESR, the fact that no such measurements exist for certain patients is po-
tentially predictive of the current CRP level. We thus create S to include the
average levels of CRP and ESR for those who have such information, the miss-
ing indicators, as well as other predictors including age, gender and race. For
our analysis, we let Y be the current log CRP level and G be the x→ log(x+1)
transformed PheWAS code for each disease of interest. We considered several
disease conditions that are previously reported as being associated with inflam-
mation or being a comorbiditiy of IBD including atherosclerosis, celiac disease,
disorders of the biliary tract (not including cholelithiasis)1, heart disease, hy-
pertention, irritable bowel syndrome, mycardial infarction, pulmonary embolism
and rheumatoid arthritis. The point estimators and 95% CIs for θ̂SL and θ̂BC

SSL are
shown in Figure 2. The results suggest that the supervised and semi-supervised
estimates are reasonably consistent with each other in value, while the 95% CIs
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Figure 2: Supervised and Semi-supervised estimates of the covariance for select
PheWAS codes, along with the 95% CIs

for the semi-supervised method is always smaller than the supervised method,
as we expect. For example, for heart disease, the covariance is estimated as
0.158 with 95% CI [0.003,0.313] based on θ̂SL; as 0.168 with 95% CI [0.033,

0.303] based on θ̂BC
SSL. In the cases of myocardial infarction and disorders of the

biliary tract, a Z-test based on θ̂BC
SSL would reject the null hypothesis, whereas a

Z-test based on θ̂SL would not.
The above analysis uses a log-transformed phecode count as the outcome,

which inherently depends on the patient’s healthcare utilization. As a sensitivity
analysis, we also account for the healthcare utilization using the total number of
ICD9 codes, H, and defined a normalized disease phenotype as x→ logit( x+1

H+1 ).
As shown in Figure 3, we observe similar patterns for disease phenotypes that
are associated with CRP. A Z-test based on θ̂BC

SSL would reject the null hypothesis
for myocardial infarction and disorders of the biliary tract, where a Z-test based
on θ̂SL would not. Additionally, we see that the null hypothesis would be rejected
for atherosclerosis using θ̂BC

SSL, but not for θ̂SL.

1This corresponds to PheWAS code 576, as described in Denny et al.[1]
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5 Discussion

Our semi-supervised estimate of the covariance is able to improve the supervised
estimator by incorporating information from the large number of unlabeled pa-
tients with available ICD9 codes as well as surrogate variables including past
measurements of biomarkers. Simulation results show that our proposed esti-
mator is consistent and more efficient than the supervised estimate, which is
confirmed by the results from an EMR study. Additionally, the results indicate
that our estimator is consistent regardless of the adequacy of the working model.

Our proposed covariance estimator, along with its standard error estimate,
can be used to perform tests of association between the ICD9 codes and outcome
of interest, for example, a Z-test. The gain in efficiency of our method over
the supervised method would increase the power of association tests. Further
increases in power to detect association could be achieved by selecting a portion
of the labeled data to be patients with extreme values of surrogate variables.
Our method can also be easily extended to account for such extreme phenotype
sampling for the labeled data, by adding weights to the estimator that are
inversely proportional to the probability of being selected.

Appendix

In this appendix, we will establish properties of our estimator θ̂SSL. Through-
out, we assume that W, which includes G as an element, is bounded with
CWW = E(WWT) positive definite and the joint density of Y and W is twice
continuously differentiable. Furthermore, we assume that β̄ is an interior point
of a compact set Ω. Let Xi = Wi(Gi−µg), Ri = β̄

T
Xi, P(x,β) = P (βTX ≤ x),

Ṗ(x,β) = ∂P(x,β)/∂x, and m(x,β) = E(ri | βTXi = x). Since P̂(x,β) is es-
timated using the entire dataset, it follows from standard empirical processes
theory (Pollard, 1990) that

sup
x,β∈Ω

∣∣∣Ĝ(x,β)
∣∣∣ = Op(1), where Ĝ(x,β) = N

1
2 {P̂(x,β)− P(x,β)} (2)

Appendix A

To establish the consistency of θ̂par
SSL and θ̂SSL, we first note that ‖β̂ − β̄‖ =

Op(n
− 1

2 ),

max
1≤i≤N

‖X̂i −Xi‖ = Op(N
− 1

2 ), and max ‖R̂i −Ri‖ = Op(n
− 1

2 ).

Furthermore, since W includes 1 and G,

0 = E(Yi − µy) = E(β̄
T
Wi), and E((Yi − µy)Gi) = E(β̄

T
WiGi).

It follows that

E(Ri) = E(β̄
T
WiGi) = E((Yi − µy)Gi) = E(ri)
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and hence |θ̂par
SSL − θ0| ≤ max1≤i≤N |R̂i − Ri| + |N−1

∑N
i=1Ri − θ0| → 0 in

probability. It follows from a Taylor series expansion that

n
1
2 (θ̂par

SSL−θ0) = n−
1
2

n∑
i=1

(C−1
WWCWG)T

{
(Wi − µW )(Yi − µy)−Wiβ̄

T
Wi

}
+op(1)

where CWG = E{Wi(Gi−µg)} and µW = E(Wi). Since W includes 1 andG, it
is straightforward to see thatGi−µg = (C−1

WWCWG)TWi and (C−1
WWCWG)TµW =

0. It follows that

n
1
2 (θ̂par

SSL − θ0) = n−
1
2

n∑
i=1

(ri −Ri) + op(1),

which converges in distribution to a normal with mean zero and variance (σpar
SSL)2 =

E{(ri −Ri)2}.

Appendix B

To derive asymptotic properties for θ̂SSL, we first write θ̂SSL − θ0 = ŴSSL(β̂),

with ŴSSL(β) = θ̂SSL(β)− θ0(β) and our next goal is to show that

ŴSSL(β̂)− ŴSSL(β̄) ≡ Ê1 + Ê2 + Ê3 + Ê4 = op(n
− 1

2 ).

where θ0(β) =
∫
m(x,β)dP(x,β) = E{E(ri | βTXi)} = E(ri) = θ0,

Ê1 =

∫
{Ŵm(x, β̂)− Ŵm(x, β̄)}dP̂(x, β̂), Ŵm(x,β) = m̂(x,β)−m(x,β)

Ê2 = N−
1
2

∫
{m(x, β̂)−m(x, β̄)}dG(x, β̂),

Ê3 = N−
1
2

∫
m̂(x, β̄)d{Ĝ(x, β̂)− Ĝ(x, β̄)},

Ê4 =

∫
Ŵm(x, β̄)d{P(x, β̂)− P(x, β̄)}.

To bound Ê1, we note that

sup
x,β
|m̂(x,β) + b̂(x,β)− m̃(x,β)| = op(n

− 1
2 ),

where b̂(x,β) = (µ̂y − µy)µg(x,β), µg(x,β) = E(Gi | βTXi = x)− µg, and

m̃(x,β) =

∑n
i=1Kh(βTXi − x)ri∑n
i=1Kh(βTXi − x)

.
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Let W̃m(x,β) = m̃(x,β)−m(x,β). It then follows from the convergence of (2),

the smoothness of µg(x,β) and the root-n convergence of β̂ that

Ê1 ≤ op(n−
1
2 )

∣∣∣∣∫ {W̃m(x, β̂)− W̃m(x, β̄)}dP̂(x, β̂)

∣∣∣∣
+ |µ̂y − µy|

∣∣∣∣∫ {µg(x, β̂)− µg(x, β̄)}dP̂(x, β̂)

∣∣∣∣
≤ op(n−

1
2 ) +

∣∣∣∣∫ {W̃m(x, β̂)− W̃m(x, β̄)}dP(x, β̂)

∣∣∣∣
To bound the last term above, we next aim to show that

sup
x,β

∣∣∣∣∂m̃(x,β)

∂β
− ∂m(x,β)

∂β

∣∣∣∣ = op(1). (3)

To this end, we first note that for q = 0, 1,

êq(x) = n−1
n∑
i=1

Kh(βTXi − x)rqi − E{Kh(βTXi − x)rqi }

=

∫
rqKh(s− x)d{P̂β(s, r)− Pβ(s, r)}

where P̂β(s, r) = n−1
∑n
i=1 I(βTXi ≤ s, ri ≤ r) and Pβ(s, r) = P (βTXi ≤

s, ri ≤ r). From the strong approximation result of Tusnády [16], there exists a
Gaussian process GPn(s, r;β) such that

sup
s,β

∥∥∥n 1
2 {P̂β(s, r)− Pβ(s, r)} −GPn

(s, r;β)
∥∥∥ = O{n− 1

2 log(n)2}, almost surely.

It follows that

êq(x) = n−
1
2

∫
rqKh(s−x)dGPn

(s, r;β)+O{(nh)−1 log(n)2} = o[{n− 1
2 +(nh)−1}nε]

In the last step above, we used the fact that supx,β ‖
∫
rqKh(s−x)dGPn

(s, r;β)‖ =
o(nε) for any ε > 0 [17]. Therefore, we have

sup
β,x

∣∣∣∣∣n−1
n∑
i=1

Kh(βTXi − x)rqi − E(rqi | β
TXi = x)Ṗ(x,β)

∣∣∣∣∣ = o[{n− 1
2 +(nh)−1}nε+h2]

for any ε > 0. Similarly, for any ε > 0 and l = 1, ..., p,

n−1
n∑
i=1

K̇h(βTXi − x)rqiXli − E{K̇h(βTXi − x)rqiXli}

= n−1/2

∫
zKh(s− x)dG

H
(q)
ln

(s, z;β) +O{h−1n−2/3 log(n)d̃} = o(nε−1/2h−1)
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whereH
(q)
l (s, z;β) = P (βTXi ≤ s, rqiXli ≤ z), Ĥ(q)

l (s, z;β) = n−1
∑n
i=1 I(βTXi ≤

s, rqiXli ≤ z), and GHn
(s, z;β) is a Gaussian process such that almost surely:

sup
s,z,β

∥∥∥n 1
2 {Ĥ(q)

l (s, z;β)−H(q)
l (s, z;β)} −G

H
(q)
ln

(s, z;β)
∥∥∥ = O(n−1/6 log(n)d̃).

The existence of the Gaussian process is ensured by the results of Massart [18].
Furthermore, by the standard Taylor series expansion for the bias term, we have

sup
β,x

∥∥∥∥∥n−1
n∑
i=1

K̇h(βTXi − x)rqiXi −
∂E(rqiXi | βTXi = x)

∂β
Ṗ(x,β)

∥∥∥∥∥ = o(nε−1/2h−1+h)

for any ε > 0. It follows that

sup
x,β

∣∣∣∣∂m̃(x,β)

∂β
− ∂m(x,β)

∂β

∣∣∣∣ = O(nε−1/2h−1 + h) = op(1)

for any ε > 0 provided that h = O(n−ν) for ν ∈ [1/5, 1/2). This, together

with the root-n convergence of β̂ and (3) implies that Ê1 = op(n
− 1

2 ). Since

n/N → 0, it is straightforward to see that |Ê2| + |Ê3| = op(n
− 1

2 ). From the

uniform convergence of m̃(x,β) and (3) and the root-n convergence of β̂, we

have Ê4 = op(n
− 1

2 ). It follows that ŴSSL(β̂)−ŴSSL(β̄) = op(n
− 1

2 ) and therefore

n
1
2 (θ̂SSL − θ0) = n

1
2 ŴSSL(β̄) + op(1) = n

1
2 {θ̂SSL(β̄)− θ0}+ op(1).

Next, the consistency of θ̂SSL(β̄) =
∫
m̂(x, β̄)dP̂(x, β̄) follows directly from

the uniform consistency of m̂(x, β̄) and P̂(x, β̄). To derive the asymptotic dis-

tribution of n
1
2 ŴSSL(β̄), we write n

1
2 ŴSSL(β̄) = I1 + I2 + I3, where I1 =

(n/N)1/2
∫
m(x, β̄)dĜ(x, β̄),

I2 = (n/N)
1
2

∫
{m̂(x, β̄)−m(x, β̄)}dĜ(x, β̄), and

I3 = n
1
2

∫
{m̂(x, β̄)−m(x, β̄)}dP(x, β̄).

Since Ĝ(x, β̄) converges weakly to a zero-mean Gaussian process and n/N → 0,
we have I1 = op(1). The term I2 can be shown as op(1) following Lemma A.1
of Chakrabortty and Cai [19]. We then write

I3 = n
1
2

∫
{m̃(x, β̄)−m(x, β̄)}dP(x, β̄)− n 1

2 (µ̂y − µy)

∫
µg(x, β̄)dP(x, β̄)

= n−
1
2

n∑
i=1

∫
Kh(β̄

T
Xi − x){ri −m(x, β̄)}dx+ op(1)

= n−
1
2

n∑
i=1

{ri −m(β̄
T
Xi, β̄)}+ op(1) = n−

1
2

n∑
i=1

{ri − E(ri | Ri)}+ op(1)
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It then follows that n
1
2 (θ̂SSL − θ0) converges in distribution to a normal with

mean 0 and variance σ2
SSL = E{var(ri | β̄

T
Xi)}.

For the bias corrected estimator, following similar arguments as given above,
we have

θ̂SSL − θ̂BC

SSL =

∫
{m̂(x, β̄)−m(x, β̄)}dP(x, β̄) + n−1

n∑
i=1

{
m(β̄

T
Xi, β̄)− ri)

}
+ op(n

− 1
2 )

= op(n
− 1

2 ),

where P̃(x,β) = n−1
∑n
i=1 I(βTXi). Thus, θ̂BC

SSL is asymptotically equivalent to

θ̂SSL and thus n
1
2 (θ̂BC

SSL−θ0) also converges in distribution to a normal with mean
0 and variance σ2

SSL.
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