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Abstract

The goal of explainable artificial intelligence is to solve
problems in a way that humans can understand how it
does it. However, few approaches have been proposed so
far and some of them lay more emphasis on interpretabil-
ity than on explainability. In this paper, we propose an ap-
proach that is based on learning fuzzy relations and fuzzy
properties. We extract frequent relations from a dataset
to generate an explained decision. Our approach can deal
with different problems, such as classification or anno-
tation. A model was built to perform explained classi-
fication on a toy dataset that we generated. It managed
to correctly classify examples while providing convinc-
ing explanations. A few areas for improvement have been
spotted, such as the need to filter relations and properties
before or while learning them in order to avoid useless
computations.

1 Introduction

Providing an explanation to the outputs provided by Al-
based systems, and in particular machine-learning-based
ones, has become more and more important [1]. Indeed,
the European Union, with the General Data Protection
Regulation [2], introduces a right to explanation that is
going to come into effect in May 2018. Although un-
clear, this right states that a data subject has the right to
“meaningful information about the logic involved” [3].

Besides, many fields directly dealing with human be-
ings, such as healthcare, cannot rely blindly on unex-
plained automatically-generated decisions. For instance,
a computer-aided diagnosis cannot be fully trusted with-
out an explanation that a doctor can understand and check.
The potential explanation should be understandable not
only by the expert of the targeted domain, but also by end-
users.

Most machine learning algorithms are weakly able, or
even unable, to return explained outputs. Many works are
being done in the deep learning community to provide
deep learning algorithms the ability to be interpretable.
While interpretable means that it is possible to identify,
or even quantify like in decision trees, the parameters and
variables that play a role in the decision, explainable has
a stronger meaning. An output is explainable if it is pos-
sible to make an explicit link between the values of the
variables and the impact they have on the output. Al-
though deep learning algorithms are really efficient, they
are not suited to provide a personalized explanation for
each output. Sparse linear models [15] are much more
interpretable and can be also efficient, but they cannot
provide a true explanation. A more explainable solution
relies on rule sets. Rules are convenient for generating ex-
planations. However, they are not able to deal with vague-
ness or uncertainty, which makes them unable to adapt to
variations in data. Fuzzy rules are a suitable way to both
manage vagueness and provide explained outputs. The
fuzzy logic framework allows to manage the inaccuracy



of the input data and also the vagueness of the vocabulary
used to explain outputs. A usual way to generate those
rules is to find out frequent attributes in the dataset that is
being studied and then to combine those attributes to build
reliable rules. Thus, frequent attributes that can easily be
interpreted, such as fuzzy relations and fuzzy properties,
can be used to generate an explanation.

In this paper, we propose an explanation algorithm
based on frequent fuzzy relations and properties. The pur-
pose of our approach is to perform a task, such as classi-
fication or annotation, providing not only an output but
also an explanation that can be useful for understanding
where the output comes from or just for describing the in-
put. Inputs are composed of fuzzy or crisp entities. First,
frequent relations and properties are assessed and learnt
on a training set. Then, they are used to perform a task
that requires explanation.

The remainder of this paper is organized as follows.
Section 2 sets up definitions and results that we need but
are not part of our contribution. Section 3 reviews related
works. Section 4 is devoted to describing our approach.
In section 5, we present an example of explained classi-
fication of images from a toy dataset that we made. We
conclude in section 6.

2 Background

2.1 Rule-based Systems

Rule-based systems are a particular case of expert sys-
tems [22]. Rules offer a structuration of the knowledge
involved in such systems as a IF-THEN pair of condition
and conclusion. The principle is then to fire rules regard-
ing the presence of facts and to observe their conclusions.

These systems differ in terms of formalism used for
knowledge representation (i.e. logic, fuzzy logic, etc.)
and the algorithms which are used to infer new knowl-
edge (i.e. RETE, Mamdani inference, etc.).

Activated rules involve pieces of evidence which can
be reformulated to build an explanation. With the need of
explanation, everyone can observe a renewed interest in
rule-based systems [17].

In this article, we chose to use fuzzy logic because
fuzzy rules look closer to natural language than other for-
malisms and can thus facilitate the generation of human-

readable explanations.

2.2 Fuzzy Relations

A crisp relation represents either the presence or the ab-
sence of an interconnectedness between the elements of
two or more sets (i.e association, interaction, etc.).

Zadeh generalized this concept to take into account var-
ious degrees of strength of relation [24] which can be rep-
resented by membership grades in a fuzzy relation.

More formally, a fuzzy relation is a fuzzy set defined
on the Cartesian product of crisp sets X; x Xs,..., X,
in which tuples (x1,...,x,) will have varying degrees
of membership within the relation. Such a relation is
denoted R(x1,...,x,) and is included in or equal to
X1 X Xg,...,Xn.

Several papers can be found in the literature about
fuzzy relations on various domains. In the spatial domain,
[6] describes the relative positions of fuzzy geometrical
region. Online temporal relations have been introduced in
[9, 25] between vague time periods or fuzzy events. Re-
garding spatio-temporal relations, Le Yaouanc et al. [10]
proposed relations for assessing if and how an object is
spatially evolving in a given time span. The use of such
relations change fuzzy rules into so-called fuzzy relational
rules.

2.3 Fuzzy Relational Rules

A fuzzy relational rule [13, 23] is a fuzzy rule that contain
a fuzzy relation in its antecedents, such as:

IF Xy is Ay Ao A Xy is Ap AL N (X5, X5) is Ry) }
7,k
THEN Y is B

where X1,...,X,, are the antecedent variables defined
on the universes Uy,...,U,, Y is the consequent vari-
able defined on the universe V, A1, ..., A,, B are fuzzy
subsets and for each k Ry, is a fuzzy relation defined on
U; x U;. \is a t-norm.

While the evaluation of the rule is complex in the gen-
eral case, it is simple when inputs are just singletons. For
such inputs (z7, ..., z)), the strength of the rule is

F(y) = Ai(e]) A~ A An(z) AL\ Bi(af,25)} A Bly) (1)
1,7,k



3 Related Works

In this section we briefly introduce the related work about
rule learning, then more specifically about fuzzy relations
and properties learning.

3.1 Learning Rules

The set of rules is obviously the key point of the perfor-
mances of rule-based systems. However, interviews of
experts and the formalization of their knowledge are of-
ten the difficult and tedious part of the work. This justifies
the enthusiasm of researchers for rule learning, especially
since the availability of large amounts of data.

Rule learning or rule induction is an area of machine
learning which consists in extracting a set of formal rules
from observations. These set of rules may represent a full
model of the data or local patterns in the data [26]. Tech-
niques vary regarding the formalism and the goal of the
rules but always consider observations described by at-
tributes and eventually a target variable. Nowadays, rule
learning is also used in data mining.

The two most known approaches are the induction of
association rules and decision trees. Association rules are
typically used for product associations (i.e. market basket
analysis). Several successful approaches rely on frequent
itemsets mining [27] by browsing a lattice. Decision trees
are often built with a greedy partitioning algorithm based
on a splitting criteria, classically the entropy of subsets
obtained by partitioning regarding a selected attribute.

More recently, Evans and Grefenstette [29] propose a
differentiable inductive logic framework to learn explana-
tory rules from noisy data.

These various algorithms has been ported to fuzzy
logic, like fuzzy a-priori algorithm [31], fuzzy decision
trees [30]. In these algorithms, fuzzy logic brings its sup-
port to deal withthe vagueness of knowledge and the un-
certainty of the decision. The difficulty with rule learning
in fuzzy logic relies on the fact that both linguistic vari-
ables and rules have to been inducted from data.

In this paper, we pay a special attention to fuzzy rela-
tions and properties learning.

3.2 Learning Fuzzy Relations and Proper-
ties

Neural networks have been used to learn fuzzy rules. Cia-
ramella ef al. [11] proposed a fuzzy relational neural net-
work architecture to learn rules relying on fuzzy relations.
These relations are built during the learning phase. As a
consequence, a linguistic interpretation of these relations
is difficult to obtain. That means this kind of model is not
well-suited for generating explanations. Gonzalez et al.
[12] presented an algorithm for learning fuzzy relational
rules [13]. It relies on a genetic algorithm to learn fuzzy
relational rules that are suitable for interpretability. As
there are many possible fuzzy relations, the search space
is big. In order to curb the search space complexity, two
filter phases are performed. The first one consists in keep-
ing only the relations that are considered relevant by an
expert relatively to the problem that is being addressed.
The second phase consists in pruning the set of relations
that can be learnt using a measure of information. This
measure quantifies how much information a fuzzy rela-
tion provides regarding the goal.

4 Proposed Approach

In this section, we present our proposed approach, a new
way of generating explained outputs. We first describe
the global goal of our approach in Section 4.1. Then, in
Section 4.2, we detail this approach that consists in ex-
tracting the frequent fuzzy relations and properties from
inputs. In Section 4.3, we go into further detail on how
frequent fuzzy relations and properties are extracted be-
fore describing how explained outputs are generated in
Section 4.4.

4.1 Goal

Our goal is to make our approach able to solve a prob-
lem while providing an explanation to the solution of this
problem. How relevant this explanation is depends on the
frequent fuzzy relations and properties that have been ex-
tracted. That means that the original set of fuzzy relations
and properties from which the frequent ones are extracted
has to be constructed wisely. A poor choice of relations
could lead to irrelevant explanations. That means that



the relevancy of outputs depends on how expressive the
model is.

Several works have been done about the expressivity,
or expressive power, of a language. Baader [19] gave a
formal definition of the expressive power of knowledge
representation languages. While this definition enables to
compare the expressive power of two different knowledge
representation languages', it does not define formally the
expressive power of one knowledge representation lan-
guage. Raghu et al. [21] proposed an approach to mea-
sure the expressive power of neural networks. They de-
fine the expressivity as the influence of the architecture of
a neural network over the resulting functions it computes.
That is why, in the following, we define the expressivity
in a way that is more suited to the formalism we work in.

The inputs we deal with are composed of entities. They
are objects or part of objects. They can be either crisp or
fuzzy. For example, those can be fuzzy objects in an im-
age or words in a text. We also handle fuzzy relations and
properties. We will use them to characterise entities and
the relations between them. Let R be the set of all the
relations we work with. Let P be the set of all the prop-
erties as well. The expressivity £ of the kind of model
we propose can then be defined as the set of all possible
combinations of relations from R and properties from P.
All these combinations of relations and properties are po-
tential explanations for a model.

Let us assume in the following that relations and prop-
erties are chosen by an expert. That dismisses the possi-
bility that explanations are irrelevant because some rela-
tions and properties are not available and cannot be learnt.
Explanations are a combination of relations and properties
applied to entities. They are included in £. Theoretically,
the more expressive a model is, the more relevant expla-
nations could be. However, it also depends on how well
relevant relations and properties are learnt. A very ex-
pressive model may not lead to relevant explanations if
the learning process is not efficient. Also, the expressivity
of a model built with our approach is limited by the num-
ber of relations and properties that can be represented by
a fuzzy relation or a fuzzy set. Besides, the sizes of R, P
and E have an impact on how long the learning phase is.

I'This definition states that two knowledge representation languages
have the same expressive power if and only if one language can be ex-
pressed by the other and vice versa.

Step 1:
Assessing relations and
properties on the training set

3 ¥

Step 2:
Extracting
. frequent
G i Stepl 3 d output relations and
enerating explained outputs properties

. .
Output: ¢

1) Class: the class of this example is...
2) Explanation: The disk is below the square,...

Figure 1: Schema representing the workflow. There are
three different steps. Here, the output the classification of
the input image and its explanation.

4.2 Overview

In this section, we detail the steps that make up our ap-
proach. As stated in the previous section, the goal of a
model built with our approach is to return an explained
output to a specific problem. In order to achieve this task,
relevant fuzzy relations and properties are inferred from a
training set by extracting the most frequent ones. Then,
they are used to perform a given task. As all relevant re-
lations and properties have a linguistic interpretation, the
ones that are used to perform the task are also used to
generate an explanation.

Let us assume that an expert sets the relations and prop-
erties that may be of interest. Given the entities in the data
that are used, the expressivity £ of the model we want to
build is known. The workflow, represented on Fig. 1, is
the following:



1. Assessing every relations and properties from £ on
the training set. That means that n-ary relations are
computed for each possible n-tuple of entities and
properties are computed for each entity. Those are
the features that are computed for each example. De-
pending on the size of &, this step may take a long
time;

2. Extracting frequent relations and properties from £
based on the results of the previous step. The al-
gorithm that we use for performing this task is de-
scribed in the next section;

3. Generating explained outputs using frequent rela-
tions and properties computed in the previous step.

As stated in [12], another filter might be needed addition-
ally to the filtering performed by the expert. Indeed, £
might be too big which can make step 1 long. Moreover,
fuzzy entities may not exist in the original raw dataset,
so an additional step might be needed at the beginning of
the workflow to compute them. In step 2, how frequent
we would like relations and properties to be is not set
automatically. This parameter, called minimum support
threshold and defined in the next section, has an impact
on the final result. For instance, if this parameter is set
too high, then a risk exists that no relation or property is
extracted.

4.3 Extracting Frequent Fuzzy Relations
and Properties

In order to find relevant fuzzy relations and properties, our
approach relies on mining frequent relations and proper-
ties from the training set. To do that, we use a frequent
itemset mining algorithm. Given that the examples from
one class of data should share some relations and proper-
ties, there should be a correlation between those data.

At the end of step 1 in the workflow that we presented
in the previous section, we get a fuzzy formal context
[14]. A relational database with fuzzy values can be repre-
sented as a fuzzy formal context by a triplet (O, A, R). O
is a finite set of objects, .4 is a finite set of attributes and R
is a binary fuzzy relation defined as R : O x A — [0, 1].
Here, O is the set of examples in the dataset and A is the
set of relations and properties that have been computed
for each example and each entity in step 1. Forany o € O

and any a € A, R(o,a) is the value of the relation or
property a assessed on example o.

Here, a frequent set of attributes means that the sup-
port? of this set is larger than a minimum support thresh-
old that has to be specified by a human user.

A closure operator is defined on this fuzzy formal con-
text. It takes a set of attributes as argument. What this op-
erator returns can be interpreted as the set of attributes that
are shared by all the objects that include all the attributes
from the argument of the operator. A set of attributes is
said to be closed if and only if it is equal to its closure.

The frequent itemset mining algorithm [20] we use
goes through two phases. First, it looks for every frequent
closed set of attributes. Then, frequent set of attributes
can be derived from all closed set of attributes.

The efficiency of this algorithm relies on how corre-
lated data are. If they are highly correlated, then the num-
ber of frequent closed set of attributes is usually much
smaller than the number of frequent set of attributes,
which makes the search faster. Data from the same dataset
or the same class usually share some relations and prop-
erties. The features computed in step 1 of the workflow
should then be highly correlated. That is why such a fre-
quent itemset mining algorithm is well suited to our ap-
proach.

4.4 Explanation Generation and Evalua-
tion

Once frequent relations and properties have been ex-
tracted, explanations have to be generated. Depending on
the value we set for the minimum support threshold in
the previous step, some extracted relations might not be
so relevant and our model could overfit the data. Ideally,
a few relations and properties would be extracted when
the value of the minimum support threshold is equal to
1. However, that is not realistic to expect this to happen.
That is why we have to set this value carefully.
Furthermore, assessing how good an explanation is is
very important. One solution is asking one or several ex-
perts to do it. We could then have an overall assessment of
the model. Nevertheless, this solution may be very time-

2This the number of occurrences of this set of attributes out of all the
objects in the fuzzy formal context.



consuming depending on the number of examples to as-
sess.

S Example and Experiments

This section is devoted to detail the workflow of our ap-
proach on an example of explained classification. Sec-
tion 5.1 describes the problem of explained classifica-
tion. After presenting the dataset in section 5.2 and the
relations and properties that were used for solving this
problem in section 5.3, we depict the expressivity of the
model that is build in this example in section 5.4. Then,
the workflow is detailed step by step in section 5.5. Fi-
nally, experiments and their analysis are presented in sec-
tion 5.6.

5.1 Explained Classification

Classification is a well-known problem in the field of Al,
and especially in machine learning. It consists in recog-
nizing to which class a new input belongs. Supervised
learning algorithms are used to solve it. They train a
model on a training set which is composed of data that
include their class, or label, and some other features that
are the actual input to a classifier.

Explained classification is a specific type of classifica-
tion. When a classifier is fed with an unknown input, it
should return the class of this input but also an explana-
tion stating why this input belongs to this particular class.
There are several ways to solve such a problem. One
could think about building a training set of examples con-
taining their class but also an explanation for why they
belong to their class. While this solution may be very ef-
ficient, building such a training set would be extremely
time-consuming and would require an expert to explain
all these examples. Another solution, the one we propose
with our approach, is to rely on symbolic learning and use
the learnt symbols for classifying unknown examples and
providing an explanation. The symbols to learn are the
relations and properties applied to the entities present in
the inputs of the training set. As we wrote in the previous
section, the fuzzy relations and properties we use are se-
lected by an expert that can be a human being or an ontol-
ogy for example. This task is much less time-consuming

than providing an explanation for every example of the
training set.

5.2 Dataset

We made our own dataset for illustrating this example.
This is a dataset of images that contains each three fuzzy
shapes: a square, a disk and an ellipse. These shapes are
the entities that will be handled in this example. As we
do not know initially which entity has a specific shape,
those are handled as objects. Images from this dataset
are divided into four classes. The difference between the
classes is the spatial distribution of the fuzzy shapes. The
shapes in each image of the same class are similarly spa-
tially distributed. Examples from each class are shown in
Fig. 2. The dimensions and the fuzziness of each shape
in each image vary independently of the class. Each class
contains 166 images and so the whole dataset is composed
of 664 examples.

According to the way this dataset has been built, the

a) Class 1 b) Class 2
c) Class 3 d) Class 4

Figure 2: Examples from each class of the dataset used in
the example of explained classification in section 5.



expected explanation for justifying why a new image be-
longs to a particular class should mention the relative po-
sition of fuzzy objects to each other and/or the absolute
position of each shape in images. The relative distance
between each shape also vary independently of the class,
so it should not be a part of the explanation.

5.3 Interpretable Fuzzy Relations and

Properties
5.3.1 Fuzzy Relations

The spatial domain has benefited from numerous studies
over the last decade. Schockaert ef al. [4] introduced a
fuzzy region connection calculus framework inspired by
the region connection calculus [5]. This framework in-
cludes fuzzy topological relations such as the degree of
equality or the degree of overlapping between two fuzzy
regions. Isabelle Bloch [6] proposed many fuzzy spatial
relations and properties. She proposed set operations such
as the degree of intersection between two fuzzy sets and
geometric properties like the volume and the perimeter of
a fuzzy set. She also proposed a relation that assesses the
directional relative position between objects using fuzzy
mathematical morphology. Vanegas Orozco [7] worked
on geometrical relations such as the parallelism and the
alignment between fuzzy regions. Clément et al. [16]
proposed new fuzzy spatial relations representing objects
imbricated in each other. Colliot et al. [8] studied the
symmetry of fuzzy objects and proposed a measure that
defines the degree of symmetry of an object with respect
to a given plane.

Nevertheless, to keep this example comprehensible, we
limited the relations that are used in this example to di-
rectional relations. We use particularly four of them: fo
the left of, above, to the right of and below. These fuzzy
directional relations come from fuzzy mathematical mor-

phology [6].

5.3.2 Fuzzy Properties

The properties are shape-related. There is one property
for assessing how close or far to a disk a shape is, another
one for assessing how close or far to a square a shape is
and a third one for assessing how close or far to an ellipse
a shape is. We call them is disk, is square and is ellipse.

Chanussot er al. [18] presented a way to extend to
fuzzy shapes the shape signature based on the distance
of boundary points to the shape centroid. We use this sig-
nature to build our three properties.

Let .S be the signature of an entity. The property is disk
is defined as:

_ ; <
1sDisk(S) = {1 A fA<

0 otherwise

@

. _ max(S)—min(S)
with A = ()

The properties is square and is ellipse are defined dif-
ferently from is disk. They both return the absolute value
of the correlation coefficient between S and the signature
of a reference shape. These reference shapes are a perfect
square and a perfect ellipse for is square and is ellipse
respectively.

5.4 Expressivity

In this example, we have 4 different spatial relations and
3 different properties. The spatial relations are binary re-
lations. They link two entities with each other whereas
properties are just applied to one entity. As there are 3
different entities in the inputs from our dataset, the total
number of applied relations and properties is equal to 33.
Fig. 3d shows an example of one of these 33 applied rela-
tions and properties. It handles one spatial relation, o the
right of, and two entities, ellipse and disk.

The expressivity of our model is limited because the
number of possible combinations and the computation
time quickly increase with the number of relations and
properties.

5.5 Workflow

In this section, the example allows us to go into further de-
tail regarding the workflow that is presented in section 4.2.
For the sake of clarity, we refer to each entity in the in-
puts by their shape. However, the model does not know
what the shape of an entity is until shape properties are
assessed.

5.5.1 Step1

During this step, all the relations and properties selected
by the expert are assessed on the entities of each exam-



ple in the training set. Fig. 3 shows an example of how
we assess the relation ellipse to the right of disk. In this
relation, the disk is the reference. That is why we first
have to extract the disk from the input in Fig. 3a. We get
the image shown in Fig. 3b. Then, we compute the fuzzy
landscape corresponding to fo the right of disk. It is rep-
resented in Fig. 3c. We are now able to assess the relation
ellipse to the right of disk that is displayed in Fig. 3d. In
order to do so, we compute the degree of intersection [6]
between the fuzzy set corresponding to fo the right of disk
and the fuzzy set corresponding to the ellipse. To assess
square to the right of disk, we would perform the same
operation using the fuzzy set corresponding to the square
instead of the one corresponding to the ellipse. We repeat
this process for each relation and each entity to assess all
the relations our model can express.

Relations such as fo the right of disk, shown in Fig.3c,
take time to compute. Thus, it is important to avoid com-

(a) Input

(b) Disk

(c) To the right of disk Ellipse to the right

(d)
of disk

Figure 3: Example of how an input is used to compute a
specific relation. Here, the goal is to compute the relation
ellipse to the right of disk.

puting any useless relation in this step.

5.5.2 Step2

Now, we would like to extract the most relevant relations
and properties among the ones that have been assessed in
step 1. In order to perform this task, we split the training
set into 4 subsets. Each subset corresponds to one class.
The idea is that one class of images probably has a lot
of correlated data, so we can take advantage of this using
the frequent itemset mining algorithm that we presented
in section 4.3. We apply this algorithm for each subset.
Thus, we obtain a set of relevant relations and properties
for each class.

The results of this step depends on the the value of the
minimum support threshold. If it is too low, we may get
many irrelevant relations, and if it is too high, we may get
no relations or very few.

5,53 Step3

For each class, there is a subset of relevant relations and
properties. We can built fuzzy relational rules based on
this subset. We already know that the consequent of those
rules is the class. The antecedent should be different from
one class to another. Still, two classes might share com-
mon relevant relations and properties. While that may not
be an issue, we can dismiss it by removing from all the
subsets the intersection of two, three or four of these sub-
sets. Then, as all our relations and properties are linguis-
tically interpretable, we can identify the class of an un-
known input and provide an explanation for this decision.
As there are several sets of frequent relations and proper-
ties, there are several possible output. The class is decided
by the maximum degree of membership to a class that has
been computed using all the rules that were generated.

We wrote in section 4.4 that evaluating the relevancy
of an explanation is tricky. Although it is still an ongoing
issue, a few measures like the number of relations and
properties in the antecedent or the value of their support
can help to decide whether or not an explanation meets
the requirements or not.



5.6 Experiments and Analysis

For these experiments, 65% of the examples from each
class are part of the training set. Other examples com-
pose the test set. Several values of the minimum support
threshold have been tested. The results we present in this
section have been obtained when it is equal to 0.75. The
dataset being simple, the expressivity of our model is suf-
ficient to class every example of the test perfectly. How-
ever, our main point of interest is the relevancy of the ex-
planation that are generated.

First, Fig. 4 shows an example of classification. We can
see that the most obvious relations are used for explaining
the output. Moreover, one can notice that he relations disk
is below square and square is above disk express the same
thing. That seems obvious that if one of these two rela-
tions is used, the other one will be too. However, that is
not the case for ellipse is on the right of square for ex-
ample. There is no relation square is on the left of ellipse
in the explanation. That is due to the way these relations
are computed. Indeed, when we use fuzzy mathematical
morphology, The fuzzy landscape we get depends on the
shape of the reference object. So, for instance, on the right
of square is not exactly the same as on the right of ellipse.
That is why there are slight differences that can impact
the relations and properties involved in the antecedent of
the rule.

Fig. 5 shows that rules extracted for class 1 are much
better when classifying examples from class 1 than when
classifying examples from other classes. That was ex-
pected. Besides, we can notice that an antecedent whose
size is equal to 9 leads on average to the same result as an
antecedent whose size is equal to 6. This behavior is in-
teresting because there is usually a trade-off between per-
formance and ability to explain. Long antecedents lead to
an explanation that is too long and short antecedents do
not bring enough information. On this dataset, there is a
range of size for which the user can get a longer expla-
nation without harming the performance of the classifier.
Furthermore, the lower the value of the minimum support
threshold, the longer the antecedents. So being able to
set this threshold to the right value is important in dealing
with the trade-off between performance and explainabil-

1ty.

IF object A is disk And object B is square And square is
above disk And disk is below square And ellipse is on
the right of square And ellipse is on the right of disk
THEN class is class 1

Figure 4: Example of a rule generated for class 1. That
enables us to generate an explanation to the classification.
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Number of relations/properties involved in the antecedent

—e— Class 1 average predictions
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Figure 5: Evolution of the average degree of membership
to class 1 with the number of relations/properties involved
in the antecedent of the rule. The rules that are used here
are the ones that have been extracted for class 1.



6 Conclusion

In this paper, we proposed an approach for building a
model which contributes to an explainable Al based on
learning relevant relations and properties in a dataset. To
do so, we assess on a training set the relations and proper-
ties that have been selected by an expert. Then, the most
interesting ones are extracted by using a frequent itemset
mining algorithm. Several kinds of model can be built
with this approach, such as a classifier as we showed in a
detailed example.

This example has been applied on a toy dataset that we
made. We focused on assessing the ability of our model to
explain outputs. Results were encouraging as we showed
that the model could generate plausible explanation. We
also noticed that the trade-off between efficiency and ex-
plainability was not so sharp.

Several points still need to be studied. Building a very
expressive model is very time-consuming due to the com-
putation of every relation and property. We need to find
a way to avoid useless computations by filtering some re-
lations before or while assessing them. Moreover, a well-
known issue in explainable Al is the assessment of ex-
planations. There is no convenient way to do it at the
moment. Also, being able to find the right value for the
minimum support threshold is important for tending to-
ward more efficiency or more explainability. Those are
the areas that need to be investigated.
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