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ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR
RANKIN–SELBERG MOTIVES

YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

Abstract. In this article, we study the Beilinson–Bloch–Kato conjecture for motives correspond-
ing to the Rankin–Selberg product of conjugate self-dual automorphic representations, within the
framework of the Gan–Gross–Prasad conjecture. We show that if the central critical value of the
Rankin–Selberg L-function does not vanish, then the Bloch–Kato Selmer group with coefficients
in a favorable field of the corresponding motive vanishes. We also show that if the class in the
Bloch–Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjec-
turally equivalent to the nonvanishing of the central critical first derivative of the Rankin–Selberg
L-function, then the Bloch–Kato Selmer group is of rank one.
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1. Introduction

In this article, we study the Beilinson–Bloch–Kato conjecture for motives corresponding to
the Rankin–Selberg product of conjugate self-dual automorphic representations of GLn(AF ) ×
GLn+1(AF ) for a CM number field F , within the framework of the Gan–Gross–Prasad conjecture
[GGP12] for the pair of unitary groups U(n) × U(n + 1). For the background on the Beilinson–
Bloch–Kato conjecture, which is a generalization of the famous Birch and Swinnerton-Dyer con-
jecture from elliptic curves to higher dimensional algebraic varieties, we refer to the introduction
of [Liu16].

1.1. Main results. Let F/F+ be a totally imaginary quadratic extension of a totally real number
field. We first state one of our main results that is least technical to understand.

Theorem 1.1.1 (Corollary 8.2.5). Let n ≥ 2 be an integer. Let A and A′ be two modular elliptic
curves over F+ such that End(AF ) = End(A′

F
) = Z. Suppose that

(a) AF and A′
F
are not isogenous to each other;

(b) both Symn−1A and SymnA′ are modular; and
(c) [F+ : Q] > 1 if n ≥ 3.

If the (central critical) L-value L(n, Symn−1AF ×SymnA′F ) does not vanish, then the Bloch–Kato
Selmer group

H1
f (F, Symn−1 H1

ét(AF ,Q`)⊗Q` Symn H1
ét(A′F ,Q`)(n))

vanishes for all but finitely many rational primes `.

Remark 1.1.2. The finite set of rational primes ` that are excluded in Theorem 1.1.1 can be
effectively bounded. We now explain the three conditions in Theorem 1.1.1.

(a) is necessary for ` to satisfy (L3) and (L5) in Definition 8.1.1. Otherwise, there might be
no rational primes ` satisfying (L3) and (L5).

(b) is necessary since our approach only applies to Galois representations arising from au-
tomorphic representations. We summarise the current knowledge on the modularity of
symmetric powers of elliptic curves in Remark 8.2.6.

(c) is necessary only for technical reasons. First, we do not know Hypothesis 3.2.9, which
concerns cohomology of unitary Shimura varieties, yet for N ≥ 4 if F+ = Q. Second, we
do not have (an appropriate replacement for) Theorem D.1.3, a result generalizing [CS17],
when F+ = Q since the corresponding Shimura variety is not proper. Indeed, as long as
we have these results as expected, (c) can be lifted.

Theorem 1.1.1 is a special case of a more general result concerning the Bloch–Kato Selmer
groups of Galois representations associated to conjugate self-dual automorphic representations.
To reduce the burden of long and technical terminology in the future, we first introduce the
following definition, which will serve for the entire article.

Definition 1.1.3. We say that a complex representation Π of GLN(AF ) with N ≥ 1 is relevant if
(1) Π is an irreducible cuspidal automorphic representation;
(2) Π ◦ c ' Π∨, where c ∈ Gal(F/F+) is the complex conjugation;
(3) for every archimedean place τ of F , Πτ is isomorphic to the (irreducible) principal se-

ries representation induced by the characters (argN−1, argN−3, . . . , arg3−N , arg1−N), where
arg : C× → C× is the argument character defined by the formula arg(z) := z/

√
zz.

Now we can state our main result in the context of automorphic representations, of which
Theorem 1.1.1 is a special case. Till the end of the next subsection, we will take an integer n ≥ 2,
and denote by n0 and n1 the unique even and odd numbers in {n, n+ 1}, respectively.
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Theorem 1.1.4 (Theorem 8.2.1). Let Π0 and Π1 be relevant representations of GLn0(AF ) and
GLn1(AF ), respectively. Let E ⊆ C be a strong coefficient field of both Π0 and Π1 (Definition
3.2.5). Suppose [F+ : Q] > 1 if n ≥ 3. If L(1

2 ,Π0×Π1) 6= 0, then for all admissible primes λ of E
with respect to (Π0,Π1), the Bloch–Kato Selmer group H1

f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) vanishes. Here,
ρΠα,λ is the Galois representation of F with coefficients in Eλ associated to Πα for α = 0, 1, as
described in Proposition 3.2.4 and Definition 3.2.5.

In fact, Theorem 8.2.1 is slightly stronger than the one stated here.

Remark 1.1.5. The notion of admissible primes appeared in Theorem 1.1.4 is introduced in Defi-
nition 8.1.1, which consists of a long list of assumptions, some of which are rather technical. Here,
we would like to comment on the essence of these assumptions.
(L1) is elementary and excludes only finitely many primes λ.
(L2) is elementary and excludes only finitely many primes λ.
(L3) is expected to hold for every prime λ if and only if the (conjectural) automorphic prod-

uct Π0 � Π1, which is an irreducible admissible representation of GLn(n+1)(AF ), remains
cuspidal.

(L4) is expected to hold for all but finitely many primes λ.
(L5) is basically saying that, under (L4), the image of the pair of residual Galois representations

(ρ̄Π0,λ, ρ̄Π1,λ) contains an element of a particular form. It is expected to hold for all but
finitely many primes λ if the two automorphic representations Π0 and Π1 are not correlated
in some manner. For example, when n = 2, we expect that as long as Π1 is not an
automorphic twist of Sym2 Π0 after any base change, then (L5) holds for all but finitely
many primes λ.

(L6) is a technical assumption that is only used in the argument of an R=T theorem concerning
Galois deformations in Appendix E. It is expected to hold for all but finitely many primes
λ (see Conjecture E.8.1 and Theorem E.8.4).

(L7) is a technical assumption for the vanishing of certain Hecke localized cohomology of unitary
Shimura varieties off middle degree. In fact, when [F+ : Q] > 1, (L7) holds for all but
finitely many primes λ by Corollary D.1.4.

In fact, we have dedicated ourselves to obtaining the following family of abstract examples in
which all but finitely many primes are admissible. Note that neither the following theorem nor
Theorem 1.1.1 implies the other.

Theorem 1.1.6 (Corollary 8.2.3). Let Π0, Π1, and E be as in Theorem 1.1.4. Suppose that
(a) there exists a very special inert prime p of F+ (Definition 3.3.4) such that Π0,p is Steinberg,

and Π1,p is unramified whose Satake parameter contains 1 exactly once1;
(b) for α = 0, 1, there exists a nonarchimedean place wα of F such that Πα,wα is supercuspidal;
(c) [F+ : Q] > 1 if n ≥ 3.

If L(1
2 ,Π0 × Π1) 6= 0, then for all but finitely many primes λ of E, the Bloch–Kato Selmer group

H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) vanishes.

Remark 1.1.7. In (a) of Theorem 1.1.6, if the CM field F is Galois or contains an imaginary
quadratic field, then a very special inert prime of F+ is simply a prime of F+ that is inert in F ,
of degree 1 over Q, whose underlying rational prime is odd and unramified in F .

Now we state our result in the (Selmer) rank 1 case. Let Π0 and Π1 be relevant representations
of GLn0(AF ) and GLn1(AF ), respectively. Let E ⊆ C be a strong coefficient field of both Π0 and Π1

1Note that the Satake parameter of Π1,p has to contain 1 at least once by Definition 1.1.3(2).
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(Definition 3.2.5). Suppose that the global epsilon factor of Π0 × Π1 is −1. Then the Beilinson–
Bloch–Kato conjecture predicts that if L′(1

2 ,Π0 × Π1) 6= 0, then the Bloch–Kato Selmer group
H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) has rank 1. However, what we can prove now is half of this implication.

Namely, for every prime λ of E, we will construct explicitly an element 4λ in (the direct sum of
finitely many copies of) H1

f (F, ρΠ0,λ⊗Eλ ρΠ1,λ(n)) in Subsection 8.3 (more precisely, 4λ is the class
in (8.9)). In fact, by Conjecture 8.3.1 and Beilinson’s conjecture on the injectivity of the `-adic
Abel–Jacobi map, the nonvanishing of 4λ is equivalent to the nonvanishing of L′(1

2 ,Π0 × Π1).
Then our theorem in the rank 1 case reads as follows.

Theorem 1.1.8 (Theorem 8.3.2). Let Π0 and Π1 be relevant representations of GLn0(AF ) and
GLn1(AF ), respectively. Let E ⊆ C be a strong coefficient field of both Π0 and Π1 (Definition
3.2.5). Suppose [F+ : Q] > 1 if n ≥ 3. For all admissible primes λ of E with respect to (Π0,Π1),
if 4λ 6= 0, then the Bloch–Kato Selmer group H1

f (F, ρΠ0,λ⊗Eλ ρΠ1,λ(n)) is of dimension 1 over Eλ.

In fact, Theorem 8.3.2 is slightly stronger than the one stated here. We also have an analogue
of Theorem 1.1.6 in the rank 1 case, whose statement we omit.

Remark 1.1.9. In both Theorem 1.1.4 and Theorem 1.1.8, the assumption that [F+ : Q] > 1 if
n ≥ 3 can be lifted once Hypothesis 3.2.9 is known for N ≥ 4 when F+ = Q.

1.2. Road map for the article. The very basic idea of bounding Selmer groups as in our
main theorems follows from Kolyvagin [Kol90], namely, we construct a system of torsion Galois
cohomology classes serving as annihilators of (reduction of) Selmer groups. However, our system is
not a generalization of the Euler–Kolyvagin system originally constructed by Kolyvagin. Instead,
our system is constructed via level-raising congruences, which was first introduced by Bertolini and
Darmon in the case of Heegner points in the study of certain Iwasawa main conjecture of elliptic
curves [BD05]. The first example where such level-raising system was used to bound Selmer groups
beyond the Heegner point case was performed by one the us in [Liu16], for the so-called twisted
triple product automorphic motives. In the sequels [Liu19] and [LT], the case of the so-called
cubic triple product automorphic motives was also studied. From this point of view, our current
article is a vast generalization of the previous results mentioned above. We have to point out that,
although the fundamental ideas do not vary too much, the level of difficulty of realizing all the
steps in our current work is tremendously higher than all of the past ones. In fact, in order to
study the arithmetic level-raising for unitary groups of even ranks at least 4, we have to use the
theory of Galois deformations, which seems to be a new application of the latter.

The following is a road map for reading the main part of the article, where we indicate the need
from the five appendices in the parentheses.

§3
(C.3)

// §4
(A.1)

// §5
(A.2, B, C.2)

// §6
(B, C, D.2, E)

��

§2
(E.1)

oo

§8.1 & §8.2
(D.1)

End of the rank 0 case Continue to the rank 1 case
��

§7.1 & §7.2oo

§4
(A.1)

// §7.3
(C.3)

// §8.3
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The proof of Theorem 1.1.8 is based on the proof of Theorem 1.1.4. We may regard the transition
from the rank 0 case to the rank 1 case as an induction step. As seen from the road map, for the
rank 0 case alone, Section 4, Subsection A.1, Subsection 7.3, and, of course, Subsection 8.3 are
not needed. However, we strongly recommend the readers to go through Section 4 even if they
are only interested in the rank 0 case, as Section 4 is an appropriate warm-up for reading Section
5, which is parallel but much more complicated.

In what follows, we explain the main steps in the proof of Theorem 1.1.4. Some of the notations
in the rest of this subsection are ad hoc, only for the purpose of explaining ideas, hence will be
obsolete or differ from the main text.

The initial step (which although will not appear until Subsection 8.2) is to translate the condition
that L(1

2 ,Π0 × Π1) 6= 0 into a more straightforward statement. This is exactly the content of
the global Gan–Gross–Prasad conjecture [GGP12]. In fact, as stated in Lemma 8.2.2, we may
construct a pair of hermitian spaces (V◦n,V◦n+1) over F (with respect to F/F+) in which V◦n is
totally positive definite of rank n, and V◦n+1 = V◦n ⊕ F · 1 where 1 has norm 1. For α = 0, 1,
put Sh(V◦nα) := U(V◦nα)(F+)\U(V◦nα)(A∞F+) as a Shimura (pro-)set. We may further find cuspidal
automorphic representations π0 and π1 contained in the space of locally constant functions on
Sh(V◦n0) and Sh(V◦n1) satisfying BC(π0) ' Π0 and BC(π1) ' Π1, respectively, such that

P(f0, f1) :=
∫

Sh(V◦n)
f0(h)f1(h)dh 6= 0(1.1)

for some f0 ∈ π0 and f1 ∈ π1 valued in OE. Such result was first obtained by one of us [Zha14]
under some local restrictions. Those restrictions are all lifted till very recently through some new
techniques in the study of trace formulae [BPLZZ]. In what follows, we will fix open compact
subgroups of U(V◦n0)(A∞F+) and U(V◦n1)(A∞F+) that fix f0 and f1, respectively, and will carry them
implicitly in the notation.

The next step is to bring the set Sh(V◦nα) into arithmetic geometry so that the period (1.1)
can be related to certain Galois cohomology classes. Now we choose a special inert prime p
of F+ (see Definition 3.3.4) with sufficiently large underlying rational prime p, so that all data
appeared so far are unramified above p. For α = 0, 1, we attach to V◦nα canonically a strictly
semistable scheme Mp(V◦nα) over SpecZp2 of relative dimension nα − 1, whose complex generic
fiber is non-canonically isomorphic to the disjoint union of finitely many Shimura varieties attached
to the nearby hermitian space of V◦nα by changing local components at p and one archimedean
place. Moreover, we can write its special fiber Mp(V◦nα) over SpecFp2 as a union of M◦p(V◦nα)
and M•p(V◦nα), in which M◦p(V◦nα) is geometrically a Pnα−1-fibration over the Shimura set Sh(V◦nα).
However, the reality is much more intricate, as the geometry of the other stratum M•p(V◦nα), which
is rather mysterious, will also involve in the later computation. In fact, one key effort we pay is
to show that only the basic locus of the stratum M•p(V◦nα) will play a role in the computation. For
the basic locus, we show that its normalization is geometrically a fibration over the Shimura set
Sh(V◦nα) (but with a slightly different level structure at p) by certain Deligne–Lusztig varieties of
dimension rα := bnα2 c, introduced in Subsection A.2. The study of various geometric aspects of
the scheme Mp(V◦nα), including its associated Rapoport–Zink spectral sequence and its functorial
behavior from n to n+ 1, will be carried out in Section 5.

The automorphic input will be thrown into the scheme Mp(V◦nα) from the third step, in Section
6, where we study the local Galois cohomology of certain cohomology of Mp(V◦nα) localized at
some Hecke ideals. More precisely, we fix an admissible prime λ of E with respect to (Π0,Π1), and
denote by Oλ and kλ the ring of integers and the residue field of Eλ, respectively. For α = 0, 1,
the Satake parameters of Πα induce a homomorphism φα : Tnα → kλ with kernel mα, where Tnα is
certain abstract spherical Hecke algebra for unitary groups of rank nα. When α = 0 (resp. α = 1),
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we need to study the singular (resp. unramified) part of the local Galois cohomology

H1(Qp2 ,Hnα−1
T (Mp(V◦nα),RΨOλ(rα))mα),(1.2)

where Mp(V◦nα) := Mp(V◦nα)⊗Fp2 Fp, and HT denotes certain invariant part of the étale cohomology
(a subtlety that can be ignored at this moment). The question boils down to the arithmetic level-
raising phenomenon (resp. existence of Tate cycles) when α = 0 (resp. α = 1). However, in both
cases, we have to rely on the recent progress on the Tate conjecture for Shimura varieties achieved
by some of us [XZ]. Now we would like to continue the discussion on the case where α = 0, since
it is more interesting and more involved, and omit the case where α = 1. The first key point is to
figure out the correct condition so that the level-raising phenomenon (namely, from unramified to
mildly ramified at the place p) happens on the cohomology (1.2) in a way that can be understood:
we say that p is a level-raising prime with respect to λ if ` - p(p2 − 1), and the modλ Satake
parameter of Π0,p contains the pair {p, p−1} exactly once and does not contain the pair {−1,−1}.
Suppose that p is such a prime, we show that there is a canonical isomorphism

H1
sing(Qp2 ,Hn0−1

T (Mp(V◦n0),RΨOλ(r0))/m0) ' Oλ[Sh(V◦n0)]/m0(1.3)

of Oλ-modules of finite length. Note that by our condition on p, the right-hand side of (1.3) is
nonvanishing, which implies that the left-hand side is also nonvanishing; in other words, we see
the level-raising phenomenon in Hn0−1

T (Mp(V◦n0),RΨOλ(r0)). The proof of (1.3) is the technical
heart of this article (for example, it uses materials from all of the five appendices). Through
studying the geometry and intersection theory on the special fiber Mp(V◦n0) in Section 5 and
some of the appendices, we can conclude that Oλ[Sh(V◦n0)]/m0 is canonically a subquotient of
H1

sing(Qp2 ,Hn0−1
T (Mp(V◦n0),RΨOλ(r0))/m0). Thus, it remains to show that the two sides of (1.3)

have the same cardinality. For this, we use the theory of Galois deformations. We construct a
global Galois deformation Oλ-algebra Rmix with two quotient algebras Runr and Rram, together
with a natural Runr-module Hunr and a natural Rram-module Hram. They satisfy the following
relation: if we put Rcong := Runr⊗Rmix Rram, which is an Artinian Oλ-algebra, then we have natural
isomorphisms

Hunr ⊗Runr Rcong ' Oλ[Sh(V◦n0)]/m0,

Hram ⊗Rram Rcong ' H1
sing(Qp2 ,Hn0−1

T (Mp(V◦n0),RΨOλ(r0))/m0).

Thus, we only need to show that Hunr and Hram are both finite free over Runr and Rram, respectively,
of the same rank. The finite-freeness follows from an R=T theorem, proved in Appendix E. It
is worth pointing out that our R=T theorem is over the initial base field F , that is, we do not
take a favourable CM extension of F as people usually do like in [CHT08,Tho12], for example; in
particular, we have to deal with certain ramification at nonsplit places of F+. The comparison of
ranks can be performed over Eλ, which turns out to be an automorphic problem and is solved in
Subsection 6.4 based on Subsection D.2. Therefore, we obtain (1.3). In practice, we also need a
modλm version of (1.3).

The fourth step is to merge the study of (1.2) for n0 and n1 together, to obtain the so-called
first explicit reciprocity law for the Rankin–Selberg product of Galois representations. As an
application, we construct a system of torsion Galois cohomology classes whose image in the singular
part of the local Galois cohomology at p of the product Galois representation is controlled by the
period integral (1.1). This step is sort of routine, once we have enough knowledge on (1.2); it is
completed in Subsection 7.2.

The final step of the proof of Theorem 1.1.4 will be performed in Subsection 8.2, where we use
the system of torsion Galois cohomology classes constructed in the previous step, together with
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some Galois theoretical facts from Section 2, to bound the Selmer group, which is possible due to
the nonvanishing of (1.1).

1.3. Notations and conventions. In this subsection, we setup some common notations and
conventions for the entire article, including appendices, unless otherwise specified. The notations
in the previous two subsections will not be relied on from this moment, and should not be kept
for further reading.

Generalities:
m Denote by N = {0, 1, 2, 3, . . . } the monoid of nonnegative integers.
m We only apply the operation

√
to positive real numbers, which takes values in positive

real numbers as well.
m For a set S, we denote by 1S the characteristic function of S.
m The eigenvalues or generalized eigenvalues of a matrix over a field k are counted with

multiplicity (namely, dimension of the corresponding eigenspace or generalized eigenspace);
in other words, they form a multi-subset of an algebraic extension of k.

m For every rational prime p, we fix an algebraic closure Qp of Qp with the residue field Fp.
For every integer r ≥ 1, we denote by Qpr the subfield of Qp that is an unramified extension
of Qp of degree r, by Zpr its ring of integers, and by Fpr its residue field.

m For a nonarchimedean place v of a number field K, we write ‖v‖ for the cardinality of the
residue field of Kv.

m We use standard notations from the category theory. The category of sets is denoted by Set.
For a category C, we denote by Cop its opposite category, and denote by C/A the category
of morphisms to A for an object A of C. For another category D, we denote by Fun(C,D)
the category of functors from C to D. In particular, we denote by PC := Fun(Cop, Set)
the category of presheaves on C, which contains C as a full subcategory by the Yoneda
embedding. Isomorphisms in a category will be indicated by '.

m All rings (but not algebras) are commutative and unital. For a ring L and an L-algebra
L′, we denote by Mod(L′) the category of left L′-modules.

m If a base ring is not specified in the tensor operation ⊗, then it is Z.
m For a ring L and a set S, denote by L[S] the L-module of L-valued functions on S of finite

support.

Definition 1.3.1. Let K be a subfield of C. We say that an intermediate extension K ⊆ K ′ ⊆ C
is K-normal if K ′/K is finite, and every automorphism in Aut(C/K) stabilizes K ′.

Algebraic geometry:
m We denote by the category of schemes by Sch and its full subcategory of locally Noetherian

schemes by Sch′. For a scheme S (resp. Noetherian scheme S), we denote by Sch/S (resp.
Sch′/S) the category of S-schemes (resp. locally Noetherian S-schemes). If S = SpecR is
affine, we also write Sch/R (resp. Sch′/R) for Sch/S (resp. Sch′/S).

m For a scheme X over an affine scheme SpecR and a commutative R-algebra S, we write
X ⊗R S or even XS for X ×SpecR SpecS.

m For a scheme S in characteristic p for some rational prime p, we denote by σ : S → S the
absolute p-power Frobenius morphism. For a perfect field κ of characteristic p, we denote
by W (κ) its Witt ring, and by abuse of notation, σ : W (κ) → W (κ) the canonical lifting
of the p-power Frobenius map.

m For a scheme S and a locally free OS-module V of finite rank, we denote by P(V) → S
the moduli scheme of quotient line bundles of V over S, known as the projective fibration
associated to V .
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m For a scheme S and (sheaves of) OS-modules F and G, we denote by Hom(F ,G) the
quasi-coherent sheaf of OS-linear homomorphisms from F to G.

m For two positive integers r, s, we denote by Mr,s the scheme of r-by-s matrices, and put
Mr := Mr,r for short; we also denote by GLr ⊆ Mr the subscheme of invertible r-by-r
matrices. Then GL1 is simply the multiplicative group Gm := Z[T, T−1]; but we will
distinguish between GL1 and Gm according to the context.

m For a number field K, a commutative group scheme G → S equipped with an action by
OK over some base scheme S, and an ideal a ⊂ OK , we denote by G[a] the maximal closed
subgroup scheme of G annihilated by all elements in a.

m By a coefficient ring for étale cohomology, we mean either a finite ring, or a finite extension
of Q`, or the ring of integers of a finite extension of Q`. In the latter two cases, we regard
the étale cohomology via suitable `-adic formalism. We say that a coefficient ring L is
n-coprime for a positive integer n if n is invertible in L in the first case, and ` - n in the
latter two cases.

Group theory: Let G and Γ̃ be groups, and Γ a subgroup of Γ̃. Let L be a ring.
m Denote by Γab the maximal abelian quotient of Γ.
m For a homomorphism ρ : Γ → GLr(L) for some r ≥ 1, we denote by ρ∨ : Γ → GLr(L) the

contragredient homomorphism, which is defined by the formula ρ∨(x) = tρ(x)−1 for every
x ∈ Γ.

m For a homomorphism ρ : Γ→ G and an element γ ∈ Γ̃ that normalizes Γ, we let ργ : Γ→ G
be the homomorphism defined by ργ(x) = ρ(γxγ−1) for every x ∈ Γ.

m We say that two homomorphisms ρ1, ρ2 : Γ → G are conjugate if there exists an element
g ∈ G such that ρ1 = g ◦ ρ2 ◦ g−1, that is, ρ1(x) = gρ2(x)g−1 for every x ∈ Γ.

m The L-module L[G] is naturally an L-algebra, namely, the group algebra of G with coeffi-
cients in L.

m Suppose that G is a locally compact and totally disconnected topological group. For an
open compact subgroup K of G, the L-module L[K\G/K] (of bi-K-invariant compactly
supported L-valued functions on G) is naturally an L-algebra, where the algebra structure
is given by the composition of cosets. In particular, the unit element of L[K\G/K] is
always 1K .

m For every integer r ≥ 1, we denote by Jr the standard upper triangular nilpotent Jordan
block 

0 1 0 · · · 0
0 1 · · · 0

. . .
. . .

...
0 1

0


or size r-by-r.

Combinatorics:

Notation 1.3.2. We recall the λ-analogue of binomial coefficients:

[0]λ = 1, [n]λ = λn − 1
λ− 1 , [n]λ! = [n]λ · [n− 1]λ · · · [1]λ,

[
n

m

]
λ

= [n]λ!
[n−m]λ! · [m]λ!
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for integers 0 ≤ m ≤ n. For r ≥ 0 and q ∈ N, we put
dr,q :=

r∑
δ=0

(−1)δ(2δ + 1)qδ(δ+1)
[
2r + 1
r − δ

]
−q
,

d•r,q := 1
q + 1

(
dr,q + (−q)r+1 − 1

q + 1 (q + 1)(q3 + 1) · · · (q2r−1 + 1)
)
.

Ground fields:
m Let c ∈ Aut(C/Q) be the complex conjugation.
m Throughout the article, we fix a subfield F ⊆ C that is a number field and is stable under

c; it is assumed to be a CM field except in Section 2.
m Let F+ ⊆ F be the maximal subfield on which c acts by the identity.
m Let F be the Galois closure of F in C. Put ΓF := Gal(F/F ) and ΓF+ := Gal(F/F+).
m Denote by Σ∞ (resp. Σ+

∞) the set of complex embeddings of F (resp. F+) with τ∞ ∈ Σ∞
(resp. τ∞ ∈ Σ+

∞) the default one. For τ ∈ Σ∞, we denote by τ c the its complex conjugation.
m For every rational prime p, denote by Σ+

p the set of all p-adic places of F+.
m Denote by Σ+

ram the union of Σ+
p for all p ramified in F .

m Denote by ηF/F+ : ΓF+ → {±1} the character associated to the extension F/F+.
m For every prime `, denote by ε` : ΓF+ → Z×` the `-adic cyclotomic character.

For every place v of F+, we
m put Fv := F ⊗F+ F+

v ; and define δ(v) to be 1 (resp. 2) if v splits (resp. does not split) in F ;
m fix an algebraic closure F+

v of F+
v containing F ; and put ΓF+

v
:= Gal(F+

v /F
+
v ) as a subgroup

of ΓF+ ;
m for a homomorphism r from ΓF+ to another group, denote by rv the restriction of r to the

subgroup ΓF+
v
.

For every nonarchimedean place w of F , we
m identify the Galois group ΓFw with ΓF+

v
∩ΓF (resp. c(ΓF+

v
∩ΓF )c), where v is the underlying

place of F+, if the embedding F ↪→ F+
v induces (resp. does not induce) the place w;

m let IFw ⊆ ΓFw be the inertia subgroup;
m let κw be the residue field of Fw, and identify its Galois group Γκw with ΓFw/IFw ;
m denote by φw ∈ ΓFw a lifting of the arithmetic Frobenius element in Γκw .

Definition 1.3.3. We say that two subsets Σ+
1 and Σ+

2 of nonarchimedean places of F+ are
strongly disjoint if there is no rational prime underlying places from both sets.
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2. Galois cohomology and Selmer groups

In this section, we make the Galois theoretical preparation for the proof of the main theorems.
Most discussions in this section are generalizations from [Liu16,Liu19]. The material of this section
will not be used until Section 6. In Subsection 2.1, we collect some lemmas on `-adic modules
with certain group actions. In Subsection 2.2, we study local Galois cohomology. In Subsection
2.3, we perform the discussion that is typical for Kolyvagin’s type of argument. The Selmer group
and its variant will be introduced in Subsection 2.4. In Subsection 2.5, we study localization of
Selmer groups. In Subsection 2.6, we study an example related to the Rankin–Selberg product.

We will start from a more general setup in order to make the discussion applicable to the
orthogonal case as well, which may be studied in the future. Thus, we fix a subfield F ⊆ C that
is a number field, not necessarily CM.

We fix an odd rational prime ` that is unramified in F , and consider a finite extension Eλ/Q`,
with the ring of integers Oλ and the maximal ideal λ of Oλ. Recall that ε` : ΓF+ → Z×` is the
`-adic cyclotomic character.

2.1. Preliminaries on adic modules. Let Γ be a profinite group and L a commutative topo-
logical Z`-algebra.

Notation 2.1.1. We denote by Mod(Γ, L) the category of finitely generated L-modules equipped
with a continuous action of Γ, and by Mod(Γ, L)tor (resp. Mod(Γ, L)fr) the full subcategory of
Mod(Γ, L) consisting of those whose underlying L-module is torsion (resp. free).

For the rest of this subsection, we further assume that Γ is a topologically finitely generated
abelian group and L is Noetherian.

Definition 2.1.2. We say that an L[Γ]-module M is weakly semisimple if
(1) M is an object of Mod(Γ, L); and
(2) the natural map MΓ →MΓ is an isomorphism.

Lemma 2.1.3. Let M be an L[Γ]-module that is an object of Mod(Γ, L). Then
(1) MΓ = 0 implies MΓ = 0;
(2) M is weakly semisimple if and only if (M/MΓ)Γ = 0.

Proof. For (1), for every maximal ideal m of L, let m′ be the maximal ideal of L[[Γ]] topologically
generated by m and Γ. AsMΓ = 0, we haveM⊗L[Γ] (L[[Γ]]/m′) = 0 henceMm′ = 0 by Nakayama’s
lemma since L[[Γ]] is Noetherian. Thus, we have (MΓ)m = (MΓ)m′ = 0, which implies MΓ = 0.

For (2), consider the short exact sequence 0 → MΓ → M → M/MΓ → 0. Suppose that
M is weakly semisimple. Then the natural map (MΓ)Γ → MΓ is an isomorphism. Thus, we
have (M/MΓ)Γ = 0. Conversely, suppose (M/MΓ)Γ = 0. Then we have H1(Γ,M/MΓ) = 0, and
H0(Γ,M/MΓ) = 0 by (1). From the exact sequence

H0(Γ,M/MΓ)→ H1(Γ,MΓ)→ H1(Γ,M)→ H1(Γ,M/MΓ),

we know that natural map MΓ →MΓ, which coincides with H1(Γ,MΓ)→ H1(Γ,M) is an isomor-
phism.

The lemma is proved. �

Lemma 2.1.4. We have
(1) A finite direct sum of weakly semisimple L[Γ]-modules is weakly semisimple.
(2) A subquotient L[Γ]-module of a weakly semisimple L[Γ]-module is weakly semisimple.
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Proof. Part (1) is obvious.
For (2), we take a weakly semisimple L[Γ]-moduleM . By Lemma 2.1.3(2), we have (M/MΓ)Γ =

0.
Let N be an L[Γ]-submodule of M . Since L is Noetherian, N is an object of Mod(Γ, L).

As NΓ = N ∩ MΓ, we have an inclusion N/NΓ ↪→ M/MΓ. Since (M/NMΓ)Γ = 0, we have
H0(Γ,M/NMΓ) = 0 by Lemma 2.1.3(1), which implies (N/NΓ)Γ = 0. By Lemma 2.1.3(2) again,
we know that N is weakly semisimple.

Let N be a quotient L[Γ]-module of M . Then we have a quotient map M/MΓ → N/NΓ. Thus,
we have (N/NΓ)Γ = 0. By Lemma 2.1.3(2) again, we know that N is weakly semisimple.

Part (2) is proved. �

Lemma 2.1.5. Let M be an Oλ[Γ]-module that is an object of Mod(Γ, Oλ)fr. Suppose that M ⊗Oλ
Oλ/λ is weakly semisimple, and dimEλ(M ⊗Oλ Eλ)Γ ≥ dimOλ/λ(M ⊗OλOλ/λ)Γ. Then M is weakly
semisimple as well, and dimEλ(M ⊗Oλ Eλ)Γ = dimOλ/λ(M ⊗Oλ Oλ/λ)Γ.

Proof. Since M is a finitely generated free Oλ-module, both MΓ and M/MΓ are finitely generated
free Oλ-modules. In particular, the map MΓ⊗Oλ Oλ/λ→ (M ⊗Oλ Oλ/λ)Γ is injective. As we have

dimOλ/λM
Γ ⊗Oλ Oλ/λ = rankOλMΓ = dimEλ(M ⊗Oλ Eλ)Γ,

the map MΓ ⊗Oλ Oλ/λ→ (M ⊗Oλ Oλ/λ)Γ is an isomorphism. Thus, we have

dimEλ(M ⊗Oλ Eλ)Γ = dimOλ/λ(M ⊗Oλ Oλ/λ)Γ

and
(M/MΓ)⊗Oλ Oλ/λ ' (M ⊗Oλ Oλ/λ)/(M ⊗Oλ Oλ/λ)Γ.

As M ⊗Oλ Oλ/λ is weakly semisimple, we have ((M/MΓ) ⊗Oλ Oλ/λ)Γ = 0 by Lemma 2.1.3(2).
By Nakayama’s lemma, we have (M/MΓ)Γ = 0, which implies that M is weakly semisimple by
Lemma 2.1.3(2). The lemma is proved. �

To end this subsection, we record the following definition which slightly generalizes [Liu16,
Definition 5.1], which will be used in later sections.

Definition 2.1.6. Consider an Oλ-module M and an element x ∈ M . We define the exponent
and the order of x to be

expλ(x,M) := min{d ∈ Z≥0 ∪ {∞} | λdx = 0},
ordλ(x,M) := sup{d ∈ Z≥0 | x ∈ λdM} ∈ Z≥0 ∪ {∞},

respectively.

2.2. Local Galois cohomology. In this subsection, we study Galois cohomology locally at nonar-
chimedean places of F . Let w be a nonarchimedean place of F .

Notation 2.2.1. For a commutative topological Z`-algebra L and ? ∈ { , tor, fr}, we
(1) put Mod(Fw, L)? := Mod(ΓFw , L)?;
(2) denote by �(j) : Mod(Fw, L)? → Mod(Fw, L)? the functor of j-th Tate twist for j ∈ Z; and
(3) denote by �∨ : Mod(Fw, L)op

? → Mod(Fw, L)? the functor sending M to HomL(M,L).
We also denote

�Q : Mod(Fw, Oλ)→ Mod(Fw, Eλ)
the base change functor sending M to M ⊗Oλ Eλ, and

�∗ : Mod(Fw, Oλ)op → Mod(Fw, Oλ)
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the Eλ-Pontryagin duality functor sending M to HomOλ(M,Eλ/Oλ). For every pair m,m′ ∈
{1, 2, . . . ,∞} with m′ ≥ m, we have a “reduction modulo λm” functor

�̄(m) := �⊗Oλ Oλ/λ
m : Mod(Fw, Oλ/λ

m′)→ Mod(Fw, Oλ/λ
m).

We usually write �̄ for �̄(1).

Recall that for every object R ∈ Mod(Fw, Oλ), we have a local Tate pairing

〈 , 〉w : H1(Fw,R)× H1(Fw,R∗(1)) ∪−→ H2(Fw, Eλ/Oλ) ' Eλ/Oλ,(2.1)

which we will study in the following.
First, we study the case where ` is invertible in κw.

Definition 2.2.2. For every object R in either Mod(Fw, Eλ) or Mod(Fw, Oλ), we put

H1
sing(Fw,R) := H1(IFw ,R)Γκw ;

and denote by H1
f (Fw,R) the kernel of the canonical map

∂w : H1(Fw,R)→ H1
sing(Fw,R),

called the finite part of H1(Fw,R).

By the inflation-restriction exact sequence (see, for example, [Liu19, Lemma 2.6]), we know that
∂w is surjective, and H1

f (Fw,R) is canonically isomorphic to H1(κw,RIFw ).

Lemma 2.2.3. For R ∈ Mod(Fw, Oλ)tor, the finite parts H1
f (Fw,R) and H1

f (Fw,R∗(1)) are the
exact annihilators of each other under the local Tate pairing 〈 , 〉w (2.1).

Proof. This is well-known. In fact, the cup product of H1
f (Fw,R) and H1

f (Fw,R∗(1)) factors through
H2(κw,RIFw ⊗ R∗(1)IFw ), which is the zero group. The lemma then follows from an easy compu-
tation of length and the fact that the pairing 〈 , 〉w is perfect. �

Second, we study the case that κw has characteristic `. In particular, Fw is a finite unramified
extension of Q`. Denote by �0 : Mod(Fw, Oλ)→ Mod(Fw,Z`) the obvious forgetful functor.

Definition 2.2.4. Let a ≤ b be two integers.
(1) For an object R ∈ Mod(Fw,Z`)tor, we say that R is crystalline with Hodge–Tate weights

in [a, b] if R = R′′/R′ where R′ ⊆ R′′ are two ΓFw-stable Z`-lattices in a crystalline Q`-
representation of ΓFw with Hodge–Tate weights in [a, b].

(2) For an object R ∈ Mod(Fw,Z`), we say that R is crystalline with Hodge–Tate weights in
[a, b] if R/`mR is a torsion crystalline module with Hodge–Tate weights in [a, b] for every
integer m ≥ 1.

(3) For an object R ∈ Mod(Fw, Oλ), we say that R is crystalline with Hodge–Tate weights in
[a, b] if R0 is.

Definition 2.2.5. For an object R ∈ Mod(Fw, Oλ) that is crystalline with Hodge–Tate weights
in [a, b], we define H1

f (Fw,R) to be the subset of H1(Fw,R) = H1(Fw,R0) consisting of elements s
represented by an extension

0→ R0 → Rs → Z` → 0
in the category Mod(Fw,Z`) such that Rs is crystalline with Hodge–Tate weights in [a, b].

It follows that H1
f (Fw,R) is an Oλ-submodule of H1(Fw,R).
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Lemma 2.2.6. Suppose that the integers a, b satisfy a ≤ −1, b ≥ 0, and b − a ≤ `−2
2 . Then for

every R ∈ Mod(Fw, Oλ)tor that is crystalline with Hodge–Tate weights in [a, b], the restriction of
the local Tate pairing 〈 , 〉w (2.1) to H1

f (Fw,R) × H1
f (Fw,R∗(1)) takes values in d−1

λ /Oλ, where
dλ ⊆ Oλ is the different ideal of Eλ/Q`.

Proof. We have a canonical map Tr: (R∗)0 → (R0)∗ in the category Mod(Fw,Z`) induced by
the trace map TrEλ/Q` , which induces a map H1(Fw,R∗(1)) → H1(Fw, (R0)∗(1)) under which
the image of H1

f (Fw,R∗(1)) is contained in H1
f (Fw, (R0)∗(1)). Take elements x ∈ H1

f (Fw,R) and
y ∈ H1

f (Fw,R∗(1)). Then we have for every a ∈ Oλ,
TrEλ/Q`(a〈x, y〉w) = TrEλ/Q`〈ax, y〉w = 〈ax,Tr(y)〉w ∈ Q`/Z`.

However, 〈ax,Tr(y)〉w = 0 by [Niz93, Proposition 6.2]. The lemma follows. �

2.3. Some Galois-theoretical lemmas. In this subsection, we generalize some lemmas from
[Liu16]. For a finite set Σ of places of F , we denote by ΓF,Σ the Galois group of the maximal
subextension of F/F that is unramified outside Σ.

Notation 2.3.1. For a commutative topological Z`-algebra L and ? ∈ { , tor, fr}, we put
Mod(F,L)? := lim−→

Σ
Mod(ΓF,Σ, L)?,

where the colimit is taken over all finite sets Σ of places of F with inflation as transition functors.
We have functors �(j), �∨, �Q, �∗, and �̄(m) similar to those in Notation 2.2.1. For an object
R ∈ Mod(F,L) and i ∈ Z, we put

Hi(F,R) := lim−→
Σ

Hi(ΓF,Σ,R).

Moreover, for every place w of F , we have the restriction functor Mod(F,L) → Mod(Fw, L); and
denote

locw : Hi(F,R)→ Hi(Fw,R)
the localization map.

Definition 2.3.2 ([Liu16, Definition 5.1]). Let G be a profinite group. For an object R ∈
Mod(G,Oλ)tor, we define its reducibility depth to be the smallest integer rR ≥ 0 such that

(1) if R′ is a G-stable Oλ-submodule that is not contained in λR, then R′ contains λrRR;
(2) for every positive integer m, the group EndOλ[G](R̄(m))/Oλ · id is annihilated by λrR .

Note that if R/λR is absolutely irreducible, then rR = 0.

Lemma 2.3.3. Let R ∈ Mod(F,Oλ) be an object such that RQ is absolutely irreducible. Then
there exists an integer rR depending on R only, such that R̄(m) has reducibility depth at most rR
for every positive integer m.

Proof. The same argument in [Liu16, Lemma 5.2] apply to our case as well, with Z/pn replaced
by Oλ/λ

m. �

Now we fix a positive integer m. Consider an object R ∈ Mod(F,Oλ/λ
m)fr. We denote by

ρ : ΓF → GL(R) the associated homomorphism. Let Fρ/F be the Galois extension fixed by the
kernel of ρ, and G := Gal(Fρ/F ) the image of ρ. we have the restriction map

Resρ : H1(F,R)→ H1(Fρ,R)G = HomG(Γab
Fρ ,R),(2.2)

where Γab
Fρ

:= Gal(F ab
ρ /Fρ) with F ab

ρ ⊆ F the maximal abelian extension of Fρ, which is equipped
with the natural conjugation action by G = Gal(Fρ/F ).
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Lemma 2.3.4. Suppose that either one of the following two assumptions holds:
(a) the image of ΓF in GL(R̄) contains a nontrivial scalar element;
(b) dimOλ/λ R̄ ≤ min{ `+1

2 , ` − 3}, R̄ is a semisimple Oλ/λ[ΓF ]-module, and moreover
HomOλ/λ[ΓF ](End(R̄), R̄) = 0.

Then the map Resρ (2.2) is injective.

Proof. By the inflation-restriction exact sequence, it suffices to show that H1(G,R) = 0.
In the situation (a), it follows that G contains a nontrivial scalar element of order coprime to

`. Then by the same argument in [Gro91, Proposition 9.1], we have H1(G,R) = 0.
Now we consider the situation (b). We prove by induction that H1(G, R̄(i)) = 0 for 1 ≤ i ≤ m.

Suppose H1(G, R̄(j)) = 0 for 1 ≤ j ≤ i < m. By the short exact sequence

0→ R̄(i+1) ⊗Oλ/λi+1 λi/λi+1 → R̄(i+1) → R̄(i) → 0

ofOλ[G]-modules, in which R̄(i+1)⊗Oλ/λi+1λi/λi+1 is isomorphic to R̄, we know that H1(G, R̄(i+1)) =
0. Therefore, it remains to check the initial step that H1(G, R̄) = 0.

Let Gi ⊆ G be the kernel of the composite homomorphism G → GL(R) → GL(R̄(i)) for
1 ≤ i ≤ m, so we obtain a filtration 0 = Gm ⊆ Gm−1 ⊆ G1 ⊆ G of normal subgroups of
G. We prove by induction that H1(G/Gi, R̄) = 0. For i = 1, since R̄ is a faithful semisimple
Oλ/λ[G/G1]-module, G/G1 has no nontrivial normal `-subgroup. As dimOλ/λ R̄ ≤ `− 3, we have
H1(G/G1, R̄) = 0 by [Gur99, Theorem A]. Suppose H1(G/Gj, R̄) = 0 for 1 ≤ j ≤ i < m. By the
inflation-restriction exact sequence

0→ H1(G/Gi, R̄)→ H1(G/Gi+1, R̄)→ HomG(Gi/Gi+1, R̄),

it suffices to show that HomG(Gi/Gi+1, R̄) = 0, or equivalently, HomOλ/λ[G](Gi/Gi+1⊗Oλ/λ, R̄) =
0. Note that Gi/Gi+1 is an F`[G]-submodule of End(R̄), hence (Gi/Gi+1)⊗ Oλ/λ is an Oλ/λ[G]-
submodule of End(R̄) ⊗ (Oλ/λ) ' End(R̄)d, where d := [Oλ/λ : F`] is the degree. Since R̄ is a
semisimpleOλ/λ[G]-module and 2 dimOλ/λ R̄ < `+2, by [Ser94, Corollaire 1], we know that End(R̄)
is a semisimple Oλ/λ[G]-module. In particular, we have HomOλ/λ[G](Gi/Gi+1 ⊗ Oλ/λ, R̄) = 0 as
HomG(End(R̄), R̄) = 0.

The lemma is proved. �

Remark 2.3.5. In Lemma 2.3.4, assumption (a) is well-known to deduce the injectivity, and in fact
the surjectivity as well, for the map Resρ; this is the assumption in all previous works concerning
Selmer groups of elliptic curves or their products and symmetric powers. However, for reduction of
general automorphic Galois representations, assumption (a) is very hard to verify. Thus, we find
an alternative, namely, assumption (b) for the injectivity of Resρ; it looks much more complicated
than (a), nevertheless can be achieved under certain mild conditions; see Corollary 8.2.3.

The map Resρ (2.2) induces an Oλ-linear pairing

[ , ] : H1(F,R)× Γab
Fρ → R,

such that the action of G on Γab
Fρ is compatible with that on R. Let S be a finitely generated Oλ/λ

m-
submodule of H1(F,R), and let FS/Fρ be the finite abelian extension such that Gal(F ab

ρ /FS) is
the subgroup of Γab

Fρ consisting of γ satisfying [s, γ] = 0 for every s ∈ S. As in [Liu16, Section 5.1],
we introduce a sequence f that is given by f(0) = 1, f(1) = 1, f(2) = 4, f(r + 1) = 2(f(r) + 1) for
r ≥ 2.
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Lemma 2.3.6. Let the notation be as above. Suppose that either one of the two assumptions in
Lemma 2.3.4 is satisfied. Then the induced pairing

[ , ] : S ×Gal(FS/Fρ)→ R
induces an injective map θS : Gal(FS/Fρ)→ HomOλ(S,R) of abelian groups that is compatible with
G-actions. Moreover, if S is a free Oλ/λ

m−m′-module of rank rS for some integer 0 ≤ m′ ≤ m,
then the Oλ-submodule of HomOλ(S,R) generated by the image of θS contains λf(rS)rR HomOλ(S,R),
where rR ≤ m is the reducibility depth of R.

Proof. The same argument in [Liu16, Lemma 5.4] apply to our case as well, with Z/pn replaced
by Oλ/λ

m−m′ . Note that the proof only uses the injectivity, not the surjectivity, of the map Resρ
(2.2). �

2.4. Reduction of Selmer groups. We recall the following definition of the Bloch–Kato Selmer
group from [BK90].

Definition 2.4.1 (Bloch–Kato Selmer group). For an object R ∈ Mod(F,Eλ), we define the
Bloch–Kato Selmer group H1

f (F,R) of R to be the Eλ-subspace of H1(F,R) consisting of elements
s such that

(1) locw(s) ∈ H1
f (Fw,R) (Definition 2.2.2) for every nonarchimedean place w of F ; and

(2) locw(s) ∈ H1
f (Fw,R) := ker (H1(Fw,R)→ H1(Fw,R ⊗Q` Bcris)) for every place w above `,

where Bcris is Fontaine’s crystalline period ring for Q`.

Definition 2.4.2. Consider an object R ∈ Mod(F,Oλ)fr.
(1) We define the (integral) Bloch–Kato Selmer group H1

f (F,R) of R to be inverse image of
H1
f (F,RQ) under the obvious map H1(F,R)→ H1(F,RQ).

(2) For m ∈ {1, 2, . . . ,∞}, we define H1
f,R(F, R̄(m)) to be the image of H1

f (F,R) under the
obvious map H1(F,R)→ H1(F, R̄(m)).

Lemma 2.4.3. Consider an object R ∈ Mod(F,Oλ)fr. Suppose that we are in one of the two
following cases

(1) w is a nonarchimedean place of F not above ` at which R is unramified.
(2) w is a place of F above ` at which RQ is crystalline with Hodge–Tate weights in [a, b] with

a ≤ 0 ≤ b and b− a ≤ `− 2.
Then for every positive integer m, we have

locw(H1
f,R(F, R̄(m))) ⊆ H1

f (Fw, R̄(m)).(2.3)

Proof. For (1), as R is unramified at v, the natural map
H1(IFw ,R) = Hom(IFw ,R)→ H1(IFw ,RQ) = Hom(IFw ,RQ)

is injective. We deduce from the following map of exact sequences

0 // H1
f (Fw,R)

��

// H1(Fw,R)

��

// H1
sing(Fw,R)

� _

��

// 0

0 // H1
f (Fw,RQ) // H1(Fw,RQ) // H1

sing(Fw,RQ) // 0

that H1
f (Fw,R) consists of exactly the elements of H1(Fw,R) whose image in H1(Fw,RQ) belongs

to H1
f (Fw,RQ). From this, we conclude that locw sends H1

f (F,R) into H1
f (Fw,R). Moreover, it is

clear that the image of H1
f (Fw,R) under the reduction map H1(Fw,R)→ H1(Fw, R̄(m)) is contained
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in H1
f (Fw, R̄(m)). (In fact, the image is exactly equal to H1

f (Fw, R̄(m)).) The desired inclusion (2.3)
follows from this by the definition of H1

f,R(F, R̄(m)).
For (2), by the main result of [Liu07], H1

f (Fw,R) is exactly the preimage of H1
f (Fw,RQ) via

the natural map H1(Fw,R) → H1(Fw,RQ). It is clear then from the definition that the image of
H1
f (Fw,R) in H1(Fw, R̄(m)) lies in H1

f (Fw, R̄(m)). �

We recall the notion of purity for a local Galois representation.

Definition 2.4.4. Let w be a nonarchimedean place of F not above `. Consider an object
R ∈ Mod(Fw, Eλ). Let WD(R) be the attached Weil–Deligne representation, and grn WD(R) be
the n-th graded piece of the monodromy filtration on WD(R). For µ ∈ Z, we say that R is pure
of weight µ if grn WD(R) is pure of weight µ + n for each n, that is, the eigenvalues of φw on
grn WD(R) are Weil ‖w‖−(µ+n)-numbers.

From now to the end of this section, we suppose that the complex conjugation c restricts to an
automorphism of F (of order at most two). We adopt the notation concerning ground fields in
Subsection 1.3; in particular, we put F+ := F c=1. We also have a functor

�c : Mod(F,L)→ Mod(F,L)
induced by the conjugation by c.

Lemma 2.4.5. For every object R ∈ Mod(F,Eλ), the functor �c induces an isomorphism
H1
f (F,R) ' H1

f (F,Rc)
of Selmer groups.

Proof. Regard elements in H1(F,�) as extensions. Then applying �c to extensions induces maps
H1(F,R)→ H1(F,Rc), H1(F,Rc)→ H1(F,R)

which are inverse to each other. It is clear that conditions (1) and (2) in Definition 2.4.1 are
preserved under such maps. The lemma follows. �

Proposition 2.4.6. Let R be an object in Mod(F,Oλ)fr satisfying Rc
Q ' R∨Q(1) and such that

RQ is pure of weight −1 at every nonarchimedean place w of F not above `. Take a finite set
Σ of places of F . Then there exists a positive integer mΣ, depending on R and Σ, such that for
every free Oλ-submodule S of H1

f (F,R) that is saturated in H1
f (F,R)/H1

f (F,R)tor and every integer
m > mΣ, we have:

(1) S(m), the image of S in H1
f,R(F, R̄(m)), is a free Oλ/λ

m-module of the same rank as S;
(2) locw(λmΣS(m)) = 0 for every nonarchimedean place w ∈ Σ not above `.

Proof. Part (1) follows from the same argument for [Liu16, Lemma 5.9].
For (2), we look at the map

loc∞`Σ : H1
f,R(F, R̄(m))→

⊕
w∈Σ,w-∞`

H1(Fw, R̄(m)).

For every w - ∞`, since RQ is of pure weight of −1 at w, Rc
Q and R∨Q(1) are of pure weight

of −1 at w as well. Thus, we have H0(Fw,RQ) = 0 and H2(Fw,RQ) ' H0(Fw,R∨Q(1))∨ = 0,
hence H1(Fw,RQ) = 0 by the Euler characteristic formula (see also the proof of [Nek07, Proposi-
tion 4.2.2(1)]). Thus, H1(Fw,R) is annihilated by λmw for some integer mw ≥ 0. We may enlarge
mw so that λmw also annihilates H2(Fw,R)tor. Then it follows that H1(Fw, R̄(m)) is annihilated by
λ2mw . Now if we put mΣ := max{2mw | w ∈ Σ, w - ∞`}, then (2) follows. This completes the
proof of the proposition. �
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To end this subsection, we recall the extension along j-polarization. This has been introduced in
[CHT08, Section 1] when [F : F+] = 2. We introduce the group scheme GN . When [F : F+] = 1,
it is just GLN ×GL1. When [F : F+] = 2, it is the one in Notation E.1.1.

Definition 2.4.7. For a commutative topological Z`-algebra L, an integer j, and an object R in
Mod(F,L), a j-polarization of R is an isomorphism

Ξ: Rc ∼−→ R∨(j)
in Mod(F,L), such that Ξc,∨(j) = µΞ · (−1)j+1 · Ξ for some µΞ ∈ {±1}. We say that R is
j-polarizable if there exists a j-polarization.

Construction 2.4.8. Let R be a nonzero object in Mod(F,L)fr with the associated continuous
homomorphism ρ : ΓF → GL(R), equipped with a j-polarization Ξ: Rc ∼−→ R∨(j). Choose an
isomorphism R ' L⊕N of the underlying L-modules for a unique integer N ≥ 1.

(1) When [F : F+] = 1, we let
ρ+ : ΓF+ → GN(L)

be the continuous homomorphism sending g ∈ ΓF+ = ΓF to (ρ(g), εj`(g)).
(2) When [F : F+] = 2, the j-polarization Ξ gives rise to an element B ∈ GLN(L) as in Lemma

E.1.3(2) for the pair (ρ, ηµΞ
F/F+ε

j
`). We let
ρ+ : ΓF → GN(L)

be the continuous homomorphism given in Lemma E.1.3(2).
In both cases, we call ρ+ an extension of ρ, which depends on the choice of a basis of R.

2.5. Localization of Selmer groups. In this subsection, we study the behavior of Selmer groups
under localization maps.

Notation 2.5.1. We take a nonzero object R ∈ Mod(F,Oλ)fr with the associated homomorphism
ρ : ΓF → GL(R), together with a j-polarization Ξ: Rc ∼−→ R∨(j). We fix an isomorphism R ' O⊕Nλ .
Let

ρ+ : ΓF+ → GN(Oλ)
be the extension of ρ from Construction 2.4.8. For every integer m ≥ 1, we have the induced
homomorphisms

ρ̄(m) : ΓF → GL(R̄(m)) ' GLN(Oλ/λ
m),

ρ̄
(m)
+ : ΓF+ → GN(Oλ/λ

m),
and we omit the superscript (m) when m = 1.

We denote by F (m) := Fρ̄(m) and F (m)
+ the subfields of F fixed by ker ρ̄(m) and ker ρ̄(m)

+ , respec-
tively. In particular, we have F ⊆ F (m) ⊆ F

(m)
+ ⊆ F (m)(ζ`m).

Notation 2.5.2. For a positive integer m and an element γ ∈ (GLN(Oλ/λ
m) × (Oλ/λ

m)×)c ⊆
GN(Oλ/λ

m), we denote by hγ ∈ GLN(Oλ/λ
m) the first component of γ[F :F+] ∈ GLN(Oλ/λ

m) ×
(Oλ/λ

m)×.

Now we fix a positive integerm and an element γ ∈ (GLN(Oλ/λ
m)×(Oλ/λ

m)×)c ⊆ GN(Oλ/λ
m).

The following definition is essentially [Liu16, Definition 5.6].

Definition 2.5.3. We say that a place w(m)
+ of F (m)

+ is γ-associated if it is coprime to∞`, unrami-
fied over F+, unramified in FS, and such that its Frobenius substitution in Gal(F (m)

+ /F+) ' im ρ̄
(m)
+

coincides with γ.



ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR RANKIN–SELBERG MOTIVES 19

Consider a finitely generated Oλ-submodule S of H1
f,R(F, R̄(m)). We have the finite abelian

extension FS/F (m) from Subsection 2.3. Suppose that either one of the two assumptions in Lemma
2.3.4 is satisfied. Then by Lemma 2.3.6, we have an injective map

θS : Gal(FS/F (m))→ HomOλ(S, R̄(m))

of abelian groups, equivariant under the action of Gal(F (m)/F ). Take a γ-associated place w(m)
+

of F (m)
+ , and denote by its underlying places of F (m) and F by w(m) and w, respectively. Since

FS/F
(m) is abelian, w(m) has a well-defined Frobenius substitution Ψw(m) ∈ Gal(FS/F (m)). Denote

by GS,γ the subset of Gal(FS/F (m)) of elements Ψw(m) for all γ-associated places w(m)
+ .

On the other hand, as φw acts on R̄(m) by hγ, we have an isomorphism

H1
f (Fw, R̄(m)) = H1(κw, R̄(m)) ' R̄(m)/(hγ − 1)R̄(m)(2.4)

that sends a 1-cocycle on Γκw to its image of φw. By Lemma 2.4.3 and the fact that the underlying
place of F+ of w(m)

+ is inert in F , we have the localization map

locw : H1
f,R(F, R̄(m))→ H1

f (Fw, R̄(m)).

From (2.4), we know that locw(s)(Ψw(m)) is a well-defined element in (R̄(m))hγ for every s ∈ S.

Lemma 2.5.4. Suppose that either one of the two assumptions in Lemma 2.3.4 is satisfied.
(1) If w(m)

+ is a γ-associated place of F (m)
+ , then we have θS(Ψw(m))(s) = locw(s)(Ψw(m)) for

every s ∈ S.
(2) Suppose γ ∈ im ρ̄

(m)
+ , and that the order of hγ is coprime to `. Then we have

GS,γ = θ−1
S Hom(S, (R̄(m))hγ ).

Proof. The same arguments in [Liu16, Lemma 5.7 and Lemma 5.8] apply to the current case as
well with Q replaced by F . �

By Lemma 2.5.4, for every r ∈ N, we have a map

θrS,γ : Gr
S,γ → HomOλ(S, ((R̄(m))hγ )⊕r)

of abelian groups induced by θS.

Proposition 2.5.5. We make the following assumptions:
(1) RQ is absolutely irreducible;
(2) either one of the two assumptions in Lemma 2.3.4 is satisfied;
(3) the order of hγ is coprime to `; γ belongs to im ρ̄

(m)
+ ;

(4) (R̄(m))hγ is free over Oλ/λ
m of rank rγ for some rγ ∈ N; and

(5) S is a free Oλ/λ
m−m0-module of rank rS for some m0 ∈ N and rS ∈ N.

Then there exists an element (Ψ1, . . . ,ΨrγrS) ∈ GrγrS
S,γ such that the image of the homomorphism

θ
rγrS
S,γ (Ψ1, . . . ,ΨrγrS) contains λm0+f(rS)rR((R̄(m))hγ )⊕rS , where rR and f(rS) are the integers appear-
ing in Lemma 2.3.3 and Lemma 2.3.6, respectively.

Proof. By Lemma 2.3.3 and Lemma 2.3.6, the Oλ-submodule generated by the image of θS contains
λf(rS)rR HomOλ(S, R̄(m)). Since hγ has order coprime to `, HomOλ(S, (R̄(m))hγ ) is a direct summand
of HomOλ(S, R̄(m)). It follows from Lemma 2.5.4(2) that the Oλ-submodule generated by θS(GS,γ)
contains λf(rS)rR HomOλ(S, (R̄(m))hγ ). As (R̄(m))hγ is free Oλ/λ

m-module of rank rγ and S is a free
Oλ/λ

m−m0-module of rank rS, the proposition follows immediately. �
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Definition 2.5.6. Let the notation be as in Proposition 2.5.5. We say that an rγrS-tuple
(Ψ1, . . . ,ΨrγrS) ∈ GrγrS

S,γ is (S, γ)-abundant if the image of the homomorphism θ
rγrS
S,γ (Ψ1, . . . ,ΨrγrS)

contains λm0+f(rS)rR((R̄(m))hγ )⊕rS .
Remark 2.5.7. In the applications later, we will use Proposition 2.5.5 with rγ = 1 and rS ∈ {1, 2}.
2.6. A Rankin–Selberg example. In this subsection, we discuss an example that is related to
the Rankin–Selberg motives, which will be considered later. We take objects Rα ∈ Mod(F,Oλ)fr
for α = 0, 1 of rank nα > 0 with the associated homomorphism ρα : ΓF → GL(Rα), together with
a (1− α)-polarization Ξα : Rc

α
∼−→ R∨α(1− α). We fix isomorphisms Rα ' O⊕nαλ for α = 0, 1.

We assume that n0 = 2r0 is even and n1 = 2r1+1 is odd. Put R := R0⊗OλR1; ρ := ρ0⊗ρ1 : ΓF →
GL(R); and Ξ := Ξ0 ⊗ Ξ1 : Rc ∼−→ R∨(1) which is a 1-polarization of R.

For a homomorphism ρ from ΓF and a place w of F , we write ρw for the restriction of ρ to
the subgroup ΓFw . Moreover, for clarity, we denote by ε̄(m)

` : ΓF+ → (Oλ/λ
m)× the reduction of ε`

modulo λm for a positive integer m, and put ε̄` := ε̄
(1)
` for simplicity.

Lemma 2.6.1. Let the notation be as above. Take a totally real F+-normal intermediate extension
F+ ⊆ F ′ ⊆ C (Definition 1.3.1) and a polynomial P(T ) ∈ Z[T ]. The following three statements
are equivalent:

(1) There exists a nonarchimedean place v of F+ inert in F (under the unique place w of F )
and splits completely in F ′ such that
(a) ` does not divide ‖v‖P(‖v‖);
(b) both ρ̄0,w and ρ̄1,w are unramified and semisimple;
(c) the trivial character appears in each of ρ̄0,w, ρ̄1,w, and ρ̄w with multiplicity one;
(d) if [F : F+] = 2, then the unramified character sending φw to −1 does not appear in

ρ̄0,w;
(e) if [F : F+] = 2, then the unramified character sending φw to −‖v‖ does not appear in

ρ̄1,w.
(2) For every positive integer m, the image of the restriction of the homomorphism

(ρ̄(m)
0+ , ρ̄

(m)
1+ , ε̄

(m)
` ) : ΓF+ → Gn0(Oλ/λ

m)× Gn1(Oλ/λ
m)× (Oλ/λ

m)×

(see Notation 2.5.1 for the notation) to Gal(F/F ′) contains an element (γ0, γ1, ξ) satisfying
(a) P(ξ) is invertible in Oλ/λ

m;
(b) for α = 0, 1, γα belongs to (GLnα(Oλ/λ

m)× (Oλ/λ
m)×)c with order coprime to `;

(c) the kernels of hγ0 − 1, hγ1 − 1, and hγ0 ⊗ hγ1 − 1 (Notation 2.5.2) are all free over
Oλ/λ

m of rank 1;
(d) if [F : F+] = 2, then hγ0 does not have an eigenvalue that is equal to −1 in Oλ/λ;
(e) if [F : F+] = 2, then hγ1 does not have an eigenvalue that is equal to −ξ in Oλ/λ.

(3) Part (2) holds for m = 1.
Proof. For a nonarchimedean place v of F+, we choose an arithmetic Frobenius element φv in ΓF+

v
.

First, we show that (1) implies (3). Let v be such a place in (1). Then (the conjugacy class
of) φv belongs to (the normal subgroup) Gal(F/F ′) as v splits completely in F ′. Let (γ0, γ1, ξ) be
the image of φv under the homomorphism (ρ̄0+, ρ̄1+, ε̄`), which is well-defined by (1b). Then (2a)
follows from (1a); (2b) follows from the fact that v is inert in F and (1b); (2c) follows from (1c);
(2d) follows from (1d); and (2e) follows from (1e).

Second, we show that (3) implies (2). Suppose that (γ0, γ1, ξ) is an element in the image
of (ρ̄0+, ρ̄1+, ε̄`)|Gal(F/F ′) satisfying (2a)–(2e). For every given positive integer m, take an element
(γ′0, γ′1, ξ′) in the image of (ρ̄(m)

0+ , ρ̄
(m)
1+ , ε̄

(m)
` )|Gal(F/F ′) whose reduction is (γ0, γ1, ξ). Then after raising

sufficiently large `-power, (γ′0, γ′1, ξ′) will satisfy (2a)–(2e).
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Last, we show that (2) implies (1). Take an element (γ0, γ1, ξ) is an element in the image of
(ρ̄0+, ρ̄1+, ε̄`)|Gal(F/F ′) satisfying (2a)–(2d). By the Chebotarev density theorem, we can find a
nonarchimedean place v of F+ coprime to `, unramified in F , and splits completely in F ′, such
that (ρ̄0+, ρ̄1+, ε̄`) is unramified at v and sends φv to (γ0, γ1, ξ). Then v is inert in F by (2b).
Moreover, (1a) follows from (2a); (1b) follows from (2b); (1c) follows from (2c); (1d) follows from
(2d); and (1e) follows from (2e).

The lemma is proved. �

Lemma 2.6.2. Take a positive integer m. Let v be a nonarchimedean place of F+ coprime to
` and inert in F , such that the homomorphism (ρ̄(m)

0+ , ρ̄
(m)
1+ , ε̄

(m)
` ) is unramified at v and sends an

arithmetic Frobenius element in ΓF+
v
to an element (γ0, γ1, ξ) satisfying (2a)–(2c) in Lemma 2.6.1.

Then all of H1
f (Fw, ρ̄

(m)
0 ), H1

f (Fw, ρ̄
(m)
1 ), and H1

f (Fw, ρ̄(m)) are free Oλ/λ
m-modules of rank 1, where

w is the place of F above v.

Proof. We only consider H1
f (Fw, ρ̄(m)); and the other two cases are similar. By (2b), we may write

ρ̄(m)
w '⊕N

i=1 ρ
′
i where each ρ′i is residually irreducible. By (2c), we know that the trivial represen-

tation appears in {ρ′i}Ni=1 exactly once, say ρ′1. Moreover, for i > 1, the residual representation of
ρ′i is not trivial, hence we have H1

f (Fw, ρ′i) = 0. Therefore, we have

H1
f (Fw, ρ̄(m)) ' H1

f (Fw, ρ′1) = H1
f (Fw, Oλ/λ

m)
which is a free Oλ/λ

m-module of rank 1. �

In the remaining part, we discuss an example in the Rankin–Selberg case using elliptic curves.
Let A0 and A1 be two elliptic curves over F+. For a rational prime ` (that is odd and unramified
in F ), we put

Rα := (Symnα−1
Z` H1

ét(AαF ,Z`))(rα)
as a Z`[ΓF ]-module for α = 0, 1. Then Rα is an object in Mod(F,Z`)fr of rank nα with a canonical
(1− α)-polarization Ξα : Rc

α
∼−→ R∨α(1− α). Put R := R0 ⊗Z` R1 and Ξ := Ξ0 ⊗ Ξ1 as above.

Proposition 2.6.3. Suppose that A0F and A1F are not isogenous to each other and End(A0F ) =
End(A1F ) = Z. Take a totally real F+-normal intermediate extension F+ ⊆ F ′ ⊆ C and a
polynomial P(T ) ∈ Z[T ]. Then for sufficiently large `, we have that

(1) the image of ρ̄ : ΓF → GL(R ⊗ F`) contains a nontrivial scalar element;
(2) all of ρ̄0, ρ̄1, and ρ̄0 ⊗ ρ̄1 are absolutely irreducible; and
(3) Lemma 2.6.1(3) holds for F ′, P(T ), and the coefficient field F`.

Proof. For α = 0, 1 and every `, we have the homomorphism
ρ̄Aα,` : ΓF → GL(H1

ét(AαF ,F`)) ' GL2(F`).
Then we have ρ̄α = (Symn0−1 ρ̄Aα,`)(rα) for α = 0, 1. By our assumption on A0F and A1F , and
[Ser72, Théorème 6], for sufficiently large `, the image of the homomorphism

(ρ̄A0,`, ρ̄A1,`, ε̄`) : ΓF → GL2(F`)×GL2(F`)× F×`
consists exactly of the elements (g0, g1, ξ) satisfying det g0 = det g1 = ξ−1. Then both (1) and (2)
follow immediately.

For (3), take an element g ∈ ΓF such that its image under (ρ̄A0,`, ρ̄A1,`, ε̄`) is in the conjugate
class of ((

a 0
0 1

)
,

(
ab 0
0 b−1

)
, a−1

)
for a, b ∈ F×` satisfying
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m P(a−1) 6= 0,
m (a2i(ab2)2j)[F ′:F+] 6= 1 for (i, j) ∈ {r0, r0 − 1, . . . , 1 − r0} × {r1, r1 − 1, . . . ,−r1} except for

(0, 0),
m (a2i−1)[F ′:F+] 6= −1 for i ∈ {r0, r0 − 1, . . . , 1− r0}, and
m (a(ab2)2j)[F ′:F+] 6= −1 for j ∈ {r1, r1 − 1, . . . ,−r1}.

Such pair (a, b) always exists for sufficiently large `. Then it is straightforward to check that
the image g[F ′:F+]c under (ρ̄0+, ρ̄1+, ε̄`) (under the notation of Lemma 2.6.1) satisfies (2a)–(2e) of
Lemma 2.6.1. In particular, (3) follows. �

3. Preliminaries on hermitian structures

In this section, we collect some constructions and results concerning objects with certain hermit-
ian structure. In Subsection 3.1, we introduce hermitian spaces, their associated unitary groups
and unitary Hecke algebras. In Subsection 3.2, we introduce unitary Shimura varieties and unitary
Shimura sets. In Subsection 3.3, we review the notion of (generalized) CM types. In Subsection
3.4, we collect some facts about abelian schemes with hermitian structure, which will be pa-
rameterized by our unitary Shimura varieties. In Subsection 3.5, we introduce a moduli scheme
parameterizing CM abelian varieties, which is an auxiliary moduli space in order to equip our
unitary Shimura variety a moduli interpretation.

Let N ≥ 1 be an integer.

3.1. Hermitian spaces and unitary Hecke algebras. We start by recalling the notion of the
coefficient field for an automorphic representation of GLN(AF ). Let Π be an irreducible cuspidal
automorphic (complex) representation of GLN(AF ).
Definition 3.1.1. The coefficient field of Π is defined to be the smallest subfield of C, denoted
by Q(Π), such that for every ρ ∈ Aut(C/Q(Π)), Π and Π⊗C,ρ C are isomorphic.

For a nonarchimedean place w of F such that Πw is unramified, let
α(Πw) := {α(Πw)1, . . . , α(Πw)N} ⊆ C

be the Satake parameter of Πw and Q(Πw) ⊆ C be the subfield generated by the coefficients of
the polynomial

N∏
i=1

(
T − α(Πw)i ·

√
‖w‖

N−1)
∈ C[T ].

Lemma 3.1.2. The coefficient field Q(Π) is the composition of Q(Πw) for all nonarchimedean
places w of F such that Πw is unramified.
Proof. Let Q(Π)′ be the composition of Q(Πw) for such w. By the construction of unramified
principal series, it is clear that for every γ ∈ Aut(C/Q(Π)′) and every w, Πw and Πw ⊗C,γ C have
the same Satake parameter hence are isomorphic. By the strong multiplicity one property, we
know that for γ ∈ Aut(C/Q(Π)′), Π and Π ⊗C,γ C are isomorphic. Thus, Q(Π) is contained in
Q(Π)′. Conversely, for γ ∈ Aut(C/Q(Π)), Πw and Πw⊗C,γC must have the same Satake parameter
for every w, which implies that γ fixes Q(Πw) for every w. Thus, Q(Πw) is contained in Q(Π) for
every w, which implies Q(Π)′ ⊆ Q(Π). The lemma follows. �

Definition 3.1.3 (Abstract Satake parameter). Let L be a ring. For a multi-subset α :=
{α1, . . . , αN} ⊆ L, we put

Pα(T ) :=
N∏
i=1

(T − αi) ∈ L[T ].

Consider a nonarchimedean place v of F+ not in Σ+
ram.
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(1) Suppose that v is inert in F . We define an (abstract) Satake parameter in L at v of rank
N to be a multi-subset α ⊆ L of cardinality N . We say that α is unitary if Pα(T ) =
(−T )N · Pα(T−1).

(2) Suppose that v splits in F . We define an (abstract) Satake parameter in L at v of rank N
to be a pair α := (α1;α2) of multi-subsets α1,α2 ⊆ L of cardinality N , indexed by the
two places w1, w2 of F above v. We say that α is unitary if Pα1(T ) = c · TN ·Pα2(T−1) for
some constant c ∈ L×.

For two Satake parameters α0 and α1 in L at v of rank n0 and n1, respectively, we may form their
tensor product α0 ⊗α1 which is of rank n0n1 in the obvious way. If α0 and α1 are both unitary,
then so is α0 ⊗α1.

Notation 3.1.4. We denote by Σ+
Π the smallest (finite) set of nonarchimedean places of F+

containing Σ+
ram such that Πw is unramified for every nonarchimedean place w of F not above Σ+

Π.
Take a nonarchimedean place v of F+ not in Σ+

Π.
(1) If v is inert in F , then we put α(Πv) := α(Πw) for the unique place w of F above v.
(2) If v splits in F into two places w1 and w2, then we put α(Πv) := (α(Πw1);α(Πw2)).

Thus, α(Πv) is a Satake parameter in C at v of rank N .

Definition 3.1.5. Let v be a nonarchimedean place of F+ inert in F , and L a ring in which ‖v‖
is invertible. Let P ∈ L[T ] be a monic polynomial of degree N satisfying P (T ) = (−T )N ·P (T−1).

(1) When N is odd, we say that P is Tate generic at v if the constant term of T−1P (T + 1) is
invertible in L.

(2) When N is odd, we say that P is intertwining generic at v if P (−‖v‖) is invertible in L.
(3) When N is even, we say that P is level-raising special at v if P (‖v‖) = 0 and the constant

term of T−1P (T + ‖v‖) is invertible in L.
(4) When N is even, we say that P is intertwining generic at v if P (−1) is invertible in L.

Remark 3.1.6. Suppose that L is a field in the above definition. Note that when N is odd, 1
appears in the Satake parameter and all other elements appear in pairs of the form {α, α−1};
when N is even, elements in the Satake parameter appear in pairs of the form {α, α−1}. Then

(1) means that 1 appears exact once in the Satake parameter;
(2) means that the pair {−‖v‖,−‖v‖−1} does not appear in the Satake parameter;
(3) means that the pair {‖v‖, ‖v‖−1} appears exactly once in the Satake parameter;
(4) means that the pair {−1,−1} does not appear in the Satake parameter.

We now introduce hermitian spaces.

Definition 3.1.7 (Hermitian space). Let R be a commutative OF+ [(Σ+
ram)−1]-algebra. A hermitian

space over OF ⊗OF+ R of rank N is a free OF ⊗OF+ R-module V of rank N together with a perfect
pairing

( , )V : V× V→ OF ⊗OF+ R

that is OF⊗OF+R-linear in the first variable and (OF⊗OF+R, c⊗idR)-linear in the second variable,
and satisfies (x, y)V = (y, x)c

V for x, y ∈ V. We denote by U(V) the group of OF ⊗OF+ R-linear
isometries of V, which is a reductive group over R.

Moreover, we denote by V] the hermitian space V⊕OF ⊗OF+ R · 1 where 1 has norm 1. For an
OF ⊗OF+ R-linear isometry f : V→ V′, we have the induced isometry f] : V] → V′].

Let v be a nonarchimedean place of F+ not in Σ+
ram. Let ΛN,v be the unique up to isomorphism

hermitian space over OFv = OF ⊗OF+ OF+
v
of rank N , and UN,v its unitary group over OF+

v
. Under
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a suitable basis, the associated hermitian from of ΛN,v is given by the matrix
0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 .
Consider the local spherical Hecke algebra

TN,v := Z[UN,v(OF+
v

)\UN,v(F+
v )/UN,v(OF+

v
)].

Note that according to our convention, the unit element is 1UN,v(O
F+
v

). Let AN,v be the maximal
split diagonal subtorus of UN,v, and X∗(AN,v) be its cocharacter group. Then there is a well-known
Satake transform

TN,v → Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)] ' Z[‖v‖±δ(v)/2][X∗(AN,v)](3.1)

as a homomorphism of algebras. Choose a uniformizer $v of F+
v .

Construction 3.1.8. Let L be a commutative Z[‖v‖±δ(v)/2]-algebra. Let α be a unitary Satake
parameter in L at v of rank N . There are two cases.

(1) Suppose that v is inert in F . Then a set of representatives of AN,v(F+
v )/AN,v(OF+

v
) can be

taken as
{($t1

v , . . . , $
tN
v ) | t1, . . . , tN ∈ Z satisfying ti + tN+1−i = 0 for all 1 ≤ i ≤ N}.

Choose an order in α as (α1, . . . , αN) satisfying αiαN+1−i = 1; we have a unique homo-
morphism

Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)]→ L

of Z[‖v‖±δ(v)/2]-algebras sending the class of ($t1
v , . . . , $

tN
v ) to ∏bN2 ci=1 αtii . Composing with

the Satake transform (3.1), we obtain a ring homomorphism
φα : TN,v → L.

It is independent of the choices of the uniformizer $v and the order in α.
(2) Suppose that v splits in F into two places w1 and w2. Then a set of representatives of

AN,v(F+
v )/AN,v(OF+

v
) can be taken as


$t1
v

. . .

$tN
v

 ,

$−tNv

. . .

$−t1v


∣∣∣∣∣∣∣∣ t1, . . . , tN ∈ Z

 ,
where the first diagonal matrix (resp. the second diagonal matrix) is regarded as an
element in AN,v(Fw1) (resp. AN,v(Fw2)). Choose orders in α1 and α2 as (α1,1, . . . , α1,N)
and (α2,1, . . . , α2,N) satisfying α1,iα2,N+1−i = 1; we have a unique homomorphism

Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)]→ L

of Z[‖v‖±δ(v)/2]-algebras sending the class of ($t1
v , . . . , $

tN
v ;$−tNv , . . . , $−t1v ) to ∏N

i=1 α
ti
1,i.

Composing with the Satake transform (3.1), we obtain a ring homomorphism
φα : TN,v → L.

It is independent of the choices of the uniformizer $v, the order of the two places of F
above v, and the orders in α1 and α2.
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Definition 3.1.9 (Abstract unitary Hecke algebra). For a finite set Σ+ of nonarchimedean places
of F+ containing Σ+

ram, we define the abstract unitary Hecke algebra away from Σ+ to be the
restricted tensor product

TΣ+

N :=
⊗
v

′TN,v

over all v 6∈ Σ+
∞ ∪Σ+ with respect to unit elements. It is a commutative Z-algebra (that is, a ring

under our convention).

Construction 3.1.10. Suppose that Π satisfies Π ◦ c ' Π∨. For v 6∈ Σ+
Π, the Satake parameter

α(Πv) is unitary. Thus by Construction 3.1.8, we have a homomorphism

φΠ :=
⊗

v 6∈Σ+
∞∪Σ+

Π

φα(Πv) : TΣ+
Π

N → C

which takes value in Q(Π) by Lemma 3.1.2. Here, we regard C as a Z[‖v‖±δ(v)/2]-algebra by
sending ‖v‖±δ(v)/2 to

√
‖v‖

±δ(v)
. If moreover Π is regular algebraic, then it is cohomological

[Clo90, Lemme 3.14]; hence Q(Π) is a number field and φΠ takes value in OQ(Π).

At last, we introduce some categories of open compact subgroups, which will be used later.

Definition 3.1.11. Let V be a hermitian space over F of rank N . Let � be a finite set of
nonarchimedean places of F+.

(1) (Neat subgroups [Lan13]) We consider U(V)(A∞,�F+ ) as a subgroup of GLF (V)(A∞,�F ) (by
choosing an arbitrary basis). For a nonarchimedean place v of F+ not in � and an element
gv ∈ U(V)(F+

v ), it makes sense to talk about the eigenvalues of gv in F+
v , which contains

Q. Let Γ(gv) be the subgroup of (F+
v )× generated by the eigenvalues of gv. Note that the

torsion subgroup Γ(gv)tors lies in Q×. We say an element g = (gv) ∈ U(V)(A∞,�F+ ) is neat if⋂
v/∈� Γ(gv)tors = {1}, and a subgroup K ⊆ U(V)(A∞,�F+ ) is neat if all its elements are neat.

(2) We define a category K(V)� whose objects are neat open compact subgroups K of
U(V)(A∞,�F+ ), and a morphism from K to K′ is an element g ∈ K\U(V)(A∞,�F+ )/K′ sat-
isfying g−1Kg ⊆ K′. Denote by K′(V)� the subcategory of K(V)� that allows only identity
double cosets as morphisms.

(3) We define a category K(V)�sp whose objects are pairs K = (K[,K]) where K[ is an object of
K(V)� and K] is an object of K(V])� such that K[ ⊆ K] ∩ U(V)(A∞,�F+ ), and a morphism
from K = (K[,K]) to K′ = (K′[,K′]) is an element g ∈ K[\U(V)(A∞,�F+ )/K′[ such that
g−1K[g ⊆ K′[ and g−1K]g ⊆ K′]. We have the obvious functors

�[ : K(V)�sp → K(V)�, �] : K(V)�sp → K(V])�

sending K = (K[,K]) to K[ and K], respectively. Note that K(V)�sp is a non-full subcategory
of K(V)� × K(V])�.

When � is the empty set, we suppress it from all the notations above.

3.2. Unitary Shimura varieties and sets. We introduce hermitian spaces over F that will be
used in this article.

Definition 3.2.1. Let V be a hermitian space over F of rank N .
(1) We say that V is standard definite if it has signature (N, 0) at every place in Σ+

∞.
(2) We say that V is standard indefinite if it has signature (N −1, 1) at τ∞ and (N, 0) at other

places in Σ+
∞.
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First, we introduce unitary Shimura varieties. Take a standard indefinite hermitian space V
over F of rank N . We have a functor

Sh(V,�) : K(V)→ Sch/F
K 7→ Sh(V,K)

of Shimura varieties associated to the reductive group ResF+/Q U(V) and the Deligne homomor-
phism

h: ResC/R Gm → (ResF+/Q U(V))⊗Q R

z 7→
((

z/z
1N−1

)
, 1N , . . . , 1N

)
∈ U(V)(F+

τ∞
)×

∏
τ∈Σ+

∞,τ 6=τ∞

U(V)(F+
τ ),

where we have identified U(V)(F+
τ∞

) with a subgroup of GLN(C) via the complex embedding τ∞
of F .

Second, we introduce unitary Shimura sets. Take a standard definite hermitian space V over F
of rank N . We have a functor

Sh(V,�) : K(V)→ Set
K 7→ Sh(V,K) := U(V)(F+)\U(V)(A∞F+)/K.

Remark 3.2.2. Whether the notion Sh(V,�) stands for a scheme or a set depends on whether V is
standard indefinite or standard definite; so there will be no confusion about notation. Of course,
one can equip with Sh(V,�) a natural scheme structure when V is standard definite; but we will
not take this point of view in this article.

We now recall the notion of global base change.
Definition 3.2.3 (Global base change). Let V be a hermitian space over F of rank N , and π a
discrete automorphic representation of U(V)(AF+).

(1) We define a global base change of π is an automorphic representation BC(π) of GLN(AF )
that is a finite isobaric sum of discrete automorphic representations such that BC(π)v '
BC(πv) holds for all but finitely many nonarchimedean places v of F+ such that πv is
unramified. By the strong multiplicity one property for GLN [PS79], if BC(π) exists, then
it is unique up to isomorphism.

(2) We say that π is stable if BC(π) exists and is cuspidal.2

Proposition 3.2.4. Let Π be a relevant representation of GLN(AF ).
(1) For every nonarchimedean place w of F , Πw is tempered.
(2) For every isomorphism ι` : C ∼−→ Q`, there is a semisimple continuous homomorphism

ρΠ,ι` : ΓF → GLN(Q`),
unique up to conjugation, satisfying that for every nonarchimedean place w of F , the Frobe-
nius semisimplification of the associated Weil–Deligne representation of ρΠ,ι` |ΓFw corre-
sponds to the irreducible admissible representation ι`Πw| det |

1−N
2

w of GLN(Fw) under the
local Langlands correspondence. Moreover, ρc

Π,ι` and ρ
∨
Π,ι`(1−N) are conjugate.

Proof. Part (1) is [Car12, Theorem 1.2]. For (2), the Galois representation ρΠ,ι` is constructed in
[CH13, Theorem 3.2.3], and the local-global compatibility is obtained in [Car12, Theorem 1.1] and
[Car14, Theorem 1.1]. The last property in (2) follows from the previous one and the Chebotarev
density theorem. �

2This is slightly more restrictive than the usual definition of stable representations by requiring BC(π) discrete.
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Definition 3.2.5. We say that a subfield E ⊆ C is a strong coefficient field of Π if E is a number
field containing Q(Π) (Definition 3.1.1); and for every prime λ of E, there exists a continuous
homomorphism

ρΠ,λ : ΓF → GLN(Eλ),
necessarily unique up to conjugation, such that for every isomorphism ι` : C ∼−→ Q` inducing the
prime λ, ρΠ,λ ⊗Eλ Q` and ρΠ,ι` are conjugate, where ρΠ,ι` is the homomorphism from Proposition
3.2.4(2).

Remark 3.2.6. By [CH13, Proposition 3.2.5], strong coefficient field of Π exists. Moreover, under
Hypothesis 3.2.9 below, Q(Π) is already a strong coefficient field of Π if Π is isomorphic to BC(π)
for a relevant pair (V, π) (see Definition 3.2.7 below) in which V is standard indefinite.

Definition 3.2.7. Consider a pair (V, π) where V is a hermitian space over F , and π a discrete
automorphic representation of U(V)(AF+). We say that (V, π) is relevant if either one of the
following two situations happens:

(1) V is standard definite, and π∞ appears in

lim−→
K∈K′(V)

C[Sh(V,K)];

(2) V is standard indefinite, and π∞ appears in

lim−→
K∈K′(V)

ι−1
` Hi

ét(Sh(V,K)F ,Q`)

for some isomorphism ι` : C ∼−→ Q` and some i ∈ Z.

Proposition 3.2.8. Let (V, π) be a relevant pair. Then BC(π) exists.

Proof. When V is standard definite, this is proved in [Lab, Corollaire 5.3]. When V is standard
indefinite, this is proved in [Shi, Theorem 1.1].3 �

Hypothesis 3.2.9. Consider an integer N ≥ 1. For every standard indefinite hermitian space V
over F of rank N , every discrete automorphic representation π of U(V)(AF+) such that BC(π)
exists and is a relevant representation of GLN(AF ), and every isomorphism ι` : C ∼−→ Q`, the
semisimplification of the Q`[ΓF ]-module

WN−1(π) := HomQ`[U(V)(A∞
F+ )]

ι`π∞, lim−→
K′(V)

HN−1
ét (Sh(V,K)F ,Q`)


is isomorphic to the underlying Q`[ΓF ]-module of ρc

BC(π),ι` .

Proposition 3.2.10. Hypothesis 3.2.9 holds for N ≤ 3, and for N > 3 if [F+ : Q] > 1.

Proof. By Proposition C.3.1, we know that WN−1(π) is of dimension N .
The case for N = 1 follows directly from the definition of the canonical model of Shimura

varieties over reflex fields. The case for N = 2 is proved in [Liu, Theorem D.6(2)]. The case
for N = 3 when F+ = Q follows from the main result of [Rog92]. The case for N ≥ 3 when
[F+ : Q] > 1 will be proved in [KSZ]. �

3In fact, in [Shi], the author considers the case for unitary similitude group and assumes that F contains an
imaginary quadratic field. However, we can obtain the result in our setup by modifying the argument as in the
proof of Theorem D.1.3.
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3.3. Generalized CM type and reflexive closure. We denote by N[Σ∞] the commutative
monoid freely generated by the set Σ∞, which admits an action of Aut(C/Q) via the set Σ∞.

Definition 3.3.1. A generalized CM type of rank N is an element

Ψ =
∑
τ∈Σ∞

rττ ∈ N[Σ∞]

satisfying rτ + rτc = N for every τ ∈ Σ∞. For such Ψ, we define its reflex field FΨ ⊆ C to be the
fixed subfield of the stabilizer of Ψ in Aut(C/Q). A CM type is simply a generalized CM type of
rank 1. For a CM type Φ, we say that Φ contains τ if its coefficient rτ equals 1.

Definition 3.3.2. We define the reflexive closure of F , denoted by Frflx, to be the subfield of C
generated by F and FΦ for every CM type Φ of F . Put F+

rflx := (Frflx)c=1.

Remark 3.3.3. It is clear that Frflx is a CM field, and is F -normal (Definition 1.3.1); F+
rflx is the

maximal totally real subfield of Frflx, and is F+-normal. In many cases, we have Frflx = F hence
F+

rflx = F+; for example, when F is Galois or contains an imaginary quadratic field.

Definition 3.3.4. We say that a prime p of F+ is special inert if the following are satisfied:
(1) p is inert in F ;
(2) the underlying rational prime p of p is odd and is unramified in F ;
(3) p is of degree one over Q, that is, F+

p = Qp.
By abuse of notation, we also denote by p for its induced prime of F .

We say that a special inert prime p of F+ is very special inert if there exists a prime p′ of F+
rflx

above p satisfying (F+
rflx)p′ = F+

p (= Qp).

Remark 3.3.5. In Definition 3.3.4, (3) is proposed only for the purpose of simplifying computations
on Dieudonné modules in Sections 4 and 5; it is not really necessary as results in these two sections
should remain valid without (3). However, dropping (3) will vastly increase the burden of notations
and computations in those two sections, where the technicality is already heavy.

In what follows in this article, we will often take a rational prime p that is unramified in F ,
and an isomorphism ιp : C ∼−→ Qp. By composing with ιp, we regard Σ∞ also as the set of p-adic
embeddings of F . We also regard Qp as a subfield of C via ι−1

p .

Notation 3.3.6. We introduce the following important notations.
(1) In what follows, whenever we introduce some finite unramified extension Q?

? of Qp, we
denote by Z?

? its ring of integers and put F?
? := Z?

?/pZ?
?.

(2) For every τ ∈ Σ∞, we denote by Qτ
p ⊆ C the composition of τ(F ) and Qp, which is

unramified over Qp. For a scheme S ∈ Sch/Zτp and an OS-module F with an action
OF → EndOS(F), we denote by Fτ the maximal OS-submodule of F on which OF acts via
the homomorphism τ : OF → Zτp → OS.

(3) We denote by Q♦p ⊆ C the composition of Qτ
p for all τ ∈ Φ, which is unramified over

Qp. We can identify Σ∞ with Hom(OF ,Z♦p ) = Hom(OF ,F♦p ). In particular, the p-power
Frobenius map σ acts on Σ∞.

(4) For a generalized CM type Ψ of rank N , we denote by QΨ
p ⊆ C the composition of Qp, F ,

and FΨ, which is contained in Q♦p .
(5) For a (functor in) scheme over Z?

? written like X?(· · ·), we put X?(· · ·) := X?(· · ·) ⊗Z?
?
F?

?
and Xη

?(· · ·) := X?(· · ·)⊗Z?
?
Q?

?. For a (functor in) scheme over F?
? written like X?

?(· · ·), we
put X?

?(· · ·) := X?
?(· · ·)⊗F?

?
Fp. Similar conventions are applied to morphisms as well.
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3.4. Unitary abelian schemes. We first introduce some general notations about abelian
schemes.

Notation 3.4.1. Let A be an abelian scheme over a scheme S. We denote by A∨ the dual abelian
variety of A over S. We denote by HdR

1 (A/S) (resp. LieA/S, and ωA/S) for the relative de Rham
homology (resp. Lie algebra, and dual Lie algebra) of A/S, all regarded as locally free OS-modules.
We have the following Hodge exact sequence

0→ ωA∨/S → HdR
1 (A/S)→ LieA/S → 0(3.2)

of sheaves on S. When the base S is clear from the context, we sometimes suppress it from the
notation.

Definition 3.4.2 (Unitary abelian scheme). We prescribe a subring P ⊆ Q. Let S be a scheme
in Sch/P.

(1) An OF -abelian scheme over S is a pair (A, i) in which A is an abelian scheme over S and
i : OF → EndS(A)⊗ P is a homomorphism of algebras.

(2) A unitary OF -abelian scheme over S is a triple (A, i, λ) in which (A, i) is an OF -abelian
scheme over S, and λ : A → A∨ is a quasi-polarization such that i(ac)∨ ◦ λ = λ ◦ i(a) for
every a ∈ OF , and there exists c ∈ P× making cλ a polarization.

(3) For two OF -abelian schemes (A, i) and (A′, i′) over S, a (quasi-)homomorphism from (A, i)
to (A′, i′) is a (quasi-)homomorphism ϕ : A → A′ such that ϕ ◦ i(a) = i′(a) ◦ ϕ for every
a ∈ OF . We will usually refer to such ϕ as an OF -linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion i if it is insensitive.

Definition 3.4.3 (Signature type). Let Ψ be a generalized CM type of rank N (Definition 3.3.1).
Consider a scheme S ∈ Sch/OFΨ⊗P. We say that an OF -abelian scheme (A, i) over S has signature
type Ψ if for every a ∈ OF , the characteristic polynomial of i(a) on LieA/S is given by∏

τ∈Σ∞
(T − τ(a))rτ ∈ OS[T ].

Construction 3.4.4. Let K be an OFΨ ⊗P-algebra that is an algebraically closed field. Suppose
that we are given a unitary OF -abelian scheme (A0, i0, λ0) over K of signature type Φ that is a
CM type, and a unitary OF -abelian scheme (A, i, λ) over K of signature type Ψ. For every set
� of places of Q containing ∞ and the characteristic of K, if not zero, we construct a hermitian
space

Homλ0,λ
F⊗QA�(Hét

1 (A0,A�),Hét
1 (A,A�))

over F ⊗Q A� = F ⊗F+ (F+ ⊗Q A�), with the underlying F ⊗Q A�-module
HomF⊗QA�(Hét

1 (A0,A�),Hét
1 (A,A�))

equipped with the pairing
(x, y) := i−1

0

(
(λ0∗)−1 ◦ y∨ ◦ λ∗ ◦ x

)
∈ i−1

0 EndF⊗QA�(Hét
1 (A0,A�)) = F ⊗Q A�.

Now we take a rational prime p that is unramified in F , and take the prescribed subring P in
Definition 3.4.2 to be Z(p). We also choose an isomorphism ιp : C ' Qp, and adopt Notation 3.3.6.

Definition 3.4.5. Let A and B be two abelian schemes over a scheme S ∈ Sch/Z(p) . We say
that a quasi-homomorphism (resp. quasi-isogeny) ϕ : A → B is a quasi-p-homomorphism (resp.
quasi-p-isogeny) if there exists some c ∈ Z×(p) such that cϕ is a homomorphism (resp. isogeny).
A quasi-isogeny ϕ is prime-to-p if both ϕ and ϕ−1 are quasi-p-isogenies. We say that a quasi-
polarization λ of A is p-principal if λ is a prime-to-p quasi-isogeny.
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Note that for a unitary OF -abelian scheme (A, i, λ), the quasi-polarization λ is a quasi-p-isogeny.
To continue, take a generalized CM type Ψ = ∑

τ∈Σ∞ rττ of rank N .
Remark 3.4.6. Let A be an OF -abelian scheme of signature type Ψ over a scheme S ∈ Sch/Zτp for
some τ ∈ Σ∞. Then (3.2) induces a short exact sequence

0→ ωA∨/S,τ → HdR
1 (A/S)τ → LieA/S,τ → 0

of locally free OS-modules of ranks N − rτ , N , and rτ , respectively. If S belongs to Sch/Z♦p , then
we have decompositions

HdR
1 (A/S) =

⊕
τ∈Σ∞

HdR
1 (A/S)τ ,

LieA/S =
⊕
τ∈Σ∞

LieA/S,τ ,

ωA/S =
⊕
τ∈Σ∞

ωA/S,τ

of locally free OS-modules.
Notation 3.4.7. Take τ ∈ Σ∞. Let (A, λ) be a unitary OF -abelian scheme of signature type Ψ
over a scheme S ∈ Sch/Zτp . We denote

〈 , 〉λ,τ : HdR
1 (A/S)τ × HdR

1 (A/S)τc → OS
the OS-bilinear pairing induced by the polarization λ, which might be degenerate. Moreover,
for an OS-submodule F ⊆ HdR

1 (A/S)τ , we denote by F⊥ ⊆ HdR
1 (A/S)τc its (right) orthogonal

complement under the above pairing, if λ is clear from the context.
Next we review some facts from the Serre–Tate theory [Kat81] and the Grothendieck–Messing

theory [Mes72], tailored to our application. Let Ψ be a generalized CM type of rank N such
that rτrτc = 0 for every τ not above τ∞. Consider a closed immersion S ↪→ Ŝ in Sch/ZΨ

p
with

an ideal equipped with a locally nilpotent PD-structure, and a unitary OF -abelian scheme (A, λ)
of signature type Ψ over S. We let Hcris

1 (A/Ŝ) be the evaluation of the first relative crystalline
homology of A/S at the PD-thickening S ↪→ Ŝ, which is a locally free OŜ ⊗ OF -module. The
polarization λ induces a pairing

〈 , 〉cris
λ,τ∞ : Hcris

1 (A/Ŝ)τ∞ × Hcris
1 (A/Ŝ)τc

∞ → OŜ.(3.3)
We define two groupoids

m Def(S, Ŝ;A, λ), whose objects are unitary OF -abelian schemes (Â, λ̂) of signature type Ψ
over Ŝ that lift (A, λ);

m Def ′(S, Ŝ;A, λ), whose objects are pairs (ω̂τ∞ , ω̂τc
∞) where for each τ = τ∞, τ

c
∞, ω̂τ ⊆

Hcris
1 (A/Ŝ)τ is a subbundle that lifts ωA∨/S,τ ⊆ HdR

1 (A/S)τ , such that 〈ω̂τ∞ , ω̂τc
∞〉cris

λ,τ∞ = 0.

Proposition 3.4.8. The functor from Def(S, Ŝ;A, λ) to Def ′(S, Ŝ;A, λ) sending (Â, λ̂) to
(ωÂ∨/Ŝ,τ∞ , ωÂ∨/Ŝ,τc

∞
) is a natural equivalence.

Proof. By étale descent, we may replace S ↪→ Ŝ by S ⊗ZΨ
p
Z♦p ↪→ Ŝ ⊗ZΨ

p
Z♦p . Then we have a

decomposition
Hcris

1 (A/Ŝ) =
⊕
τ∈Σ∞

Hcris
1 (A/Ŝ)τ

similar to the one in Notation 3.3.6. Note that for τ 6∈ {τ∞, τ c
∞}, the subbundle ωA∨/S,τ has a

unique lifting to either zero or the entire Hcris
1 (A/Ŝ)τ . Thus, the proposition follows from the

Serre–Tate and Grothendieck–Messing theories. �
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To end this subsection, we review some notions for abelian schemes in characteristic p.

Notation 3.4.9. Let A be an abelian scheme over a scheme S ∈ Sch/Fp . Put

A(p) := A×S,σ S,
where σ is the absolute Frobenius morphism of S. Then we have

(1) a canonical isomorphism HdR
1 (A(p)/S) ' σ∗HdR

1 (A/S) of OS-modules;
(2) the Frobenius homomorphism FrA : A→ A(p) which induces the Verschiebung map

VA := (FrA)∗ : HdR
1 (A/S)→ HdR

1 (A(p)/S)
of OS-modules;

(3) the Verschiebung homomorphism VerA : A(p) → A which induces the Frobenius map
FA := (VerA)∗ : HdR

1 (A(p)/S)→ HdR
1 (A/S)

of OS-modules.
For a subbundleH of HdR

1 (A/S), we denote byH(p) the subbundle of HdR
1 (A(p)/S) that corresponds

to σ∗H under the isomorphism in (1). In what follows, we will suppress A in the notations FA and
VA if the reference to A is clear.

Remark 3.4.10. In Notation 3.4.9, we have ker F = im V = ωA(p)/S and ker V = im F.
If S = Specκ for a field κ of characteristic p, then we have a canonical isomorphism

HdR
1 (A(p)/κ) ' HdR

1 (A/κ)⊗κ,σ κ. Thus, by abuse of notation, we have
m the (κ, σ)-linear Frobenius map F : HdR

1 (A/κ)→ HdR
1 (A/κ) and

m if κ is perfect, the (κ, σ−1)-linear Verschiebung map V : HdR
1 (A/κ)→ HdR

1 (A/κ).
Suppose that κ is perfect. Recall that we have the covariant Dieudonné module D(A) associated
to the p-divisible group A[p∞], which is a freeW (κ)-module, such that D(A)/pD(A) is canonically
isomorphic to HdR

1 (A/κ). Moreover, again by abuse of notation, we have
m the (W (κ), σ)-linear Frobenius map F : D(A)→ D(A) lifting the one above, and
m the (W (κ), σ−1)-linear Verschiebung map V : D(A)→ D(A) lifting the one above,

respectively, satisfying F ◦ V = V ◦ F = p.

Remark 3.4.11. Take τ ∈ Σ∞. For a scheme S ∈ Sch/Fτp and an OF -abelian scheme A over S, we
have (HdR

1 (A/S)τ )(p) = HdR
1 (A(p)/S)στ under Notations 3.3.6 and 3.4.9.

If S = Specκ for a perfect field κ (containing Fτp), then applying Notation 3.3.6 to the W (κ)-
module D(A), we obtainW (κ)-submodules D(A)σiτ ⊆ D(A) for every i ∈ Z. From Remark 3.4.10,
we obtain

m the (W (κ), σ)-linear Frobenius map F : D(A)τ → D(A)στ and
m the (W (κ), σ−1)-linear Verschiebung map V : D(A)τ → D(A)σ−1τ

by restriction. We have canonical isomorphisms and inclusions:
VD(A)στ/pD(A)τ ' ωA∨,τ ⊆ D(A)τ/pD(A)τ ' HdR

1 (A)τ .

Notation 3.4.12. Take τ ∈ Σ∞. Let (A, λ) be a unitary OF -abelian scheme of signature type Ψ
over Specκ for a perfect field κ containing Fτp. We have a pairing

〈 , 〉λ,τ : D(A)τ ×D(A)τc → W (κ)
lifting the one in Notation 3.4.7. We denote by D(A)∨τ the W (κ)-dual of D(A)τ , as a submodule
of D(A)τc ⊗ Q. In what follows, unless we specify, the dual is always with respect to the default
quasi-polarization.

The following lemma will be repeatedly used in later discussion.
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Lemma 3.4.13. Suppose that F+ is contained in Qp (via the embedding τ : F+ ↪→ C ' Qp) with
p the induced p-adic prime. Let $ ∈ OF+ be an element such that valp($) = 1. Consider two
OF -abelian schemes A and B over a scheme S ∈ Sch/Fp2 . Let α : A → B and β : B → A be two
OF -linear quasi-p-isogenies (Definition 3.4.5) such that β ◦ α = $ · idA (hence α ◦ β = $ · idB).
Then

(1) For τ ∈ {τ∞, τ c
∞}, the induced maps

α∗,τ : HdR
1 (A/S)τ → HdR

1 (B/S)τ ,
β∗,τ : HdR

1 (B/S)τ → HdR
1 (A/S)τ

satisfy the relations kerα∗,τ = im β∗,τ and ker β∗,τ = imα∗,τ ; and these kernels and images
are locally free OS-modules.

(2) We have
rankOS LieB/S,τ∞ − rankOS LieA/S,τ∞ = rankOS(kerα∗,τ∞)− rankOS(kerα∗,τc

∞).
(3) Let λA and λB be two quasi-polarizations on A and B, respectively, so that (A, λA) and

(B, λB) become unitary OF -abelian schemes of dimension n[F+ : Q]. Suppose that α∨ ◦
λB ◦ α = $λA.
(a) If both λA and λB are p-principal, then we have

rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc
∞) = n.

(b) If λA is p-principal and kerλB[p∞] is of rank p2, then we have
rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc

∞) = n− 1.
(c) If kerλA[p∞] is of rank p2 and λB is p-principal, then we have

rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc
∞) = n+ 1.

(d) If both kerλA[p∞] and kerλB[p∞] are of rank p2, respectively, then we have
rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc

∞) = n.

(4) Let λA and λB be two quasi-polarizations on A and B, respectively, so that (A, λA) and
(B, λB) become unitary OF -abelian schemes of dimension n[F+ : Q]. Suppose that α∨ ◦
λB ◦ α = λA. If kerλA[p∞] is of rank p2 and λB is p-principal, then we have

rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc
∞) = 1.

Proof. We may assume S connected; and up to replacing α, β and $ by a common Z×(p)-multiple,
we may also that α and β are genuine isogenies.

For (1), it suffices to show that the induced maps
α∗ : HdR

1 (A/S)⊗OF+ Zp → HdR
1 (B/S)⊗OF+ Zp,

β∗ : HdR
1 (B/S)⊗OF+ Zp → HdR

1 (A/S)⊗OF+ Zp
satisfy the relations kerα∗ = im β∗ and ker β∗ = imα∗; and these kernels and images are locally
free OS-modules.

Note that A[p], B[p], kerα[p], and ker β[p] are all locally free finite group schemes over S with
an action by OF/pOF . By the relation among α, β,$, we may assume that A[p] and B[p] have
degree p2d; kerα[p] has degree pr; and ker β[p] has degree p2d−r. As β∗ ◦α∗ = 0 and α∗ ◦ β∗ = 0, it
suffices to show that both kerα∗ and im β∗ (resp. both ker β∗ and imα∗) are locally direct factors
of HdR

1 (A/S)⊗OF+ Zp (resp. HdR
1 (B/S)⊗OF+ Zp) of rank r (resp. 2d− r), which will follow if we

can show that cokerα∗ and coker β∗ are locally free OS-modules of rank r and 2d− r, respectively.
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We now prove that cokerα∗ is a locally free OS-modules of rank r; and the other case is similar.
We follow the argument in [dJ93, Lemma 2.3]. Consider the big crystalline site (S/Zp)cris with the
structural sheaf Ocris

S . Let D(A[p∞]) and D(B[p∞]) denote by the covariant Dieudonné crystals on
(S/Zp)cris of p-divisible groups A[p∞] and B[p∞], respectively. They are locally free Ocris

S -modules.
We have a short exact sequence

0→ α∗D(A[p∞])/$D(B[p∞])→ D(B[p∞])/$D(B[p∞])→ D(B[p∞])/α∗D(A[p∞])→ 0(3.4)

and a surjective map

α∗ : D(A[p∞])/β∗D(B[p∞])→ α∗D(A[p∞])/$D(B[p∞])(3.5)

of Ocris
S -modules. To show that cokerα∗ is a locally free OS-module of rank r, it suffices to

show that D(B[p∞])/α∗D(A[p∞]) is a locally free Ocris
S /pOcris

S -module of rank r. By [BBM82,
Proposition 4.3.1], D(B[p∞])/$D(B[p∞]) is a locally free Ocris

S /pOcris
S -module of rank 2d. Thus,

by (3.4) and (3.5), it suffices to show that the Ocris
S /pOcris

S -modules α∗D(A[p∞])/$D(B[p∞]) and
D(B[p∞])/α∗D(A[p∞]) are locally generated by r and 2d− r sections, respectively. However, this
can be easily checked using classical Dieudonné modules after base change to geometric points of
S. Thus, (1) is proved.

For (2), we know from (1) that both kerα∗,τ∞ and kerα∗,τc
∞ are locally free OS-modules. We

may assume that S = Specκ for a perfect field κ containing Fp2 . Put r := dimκ LieA/κ,τ∞ and
s := dimκ LieB/κ,τ∞ . Then we have

s = dimκ(ωB∨/κ,τc
∞) = dimκ

VD(B)τ∞
pD(B)τc

∞

, r = dimκ(ωA∨/κ,τc
∞) = dimκ

VD(A)τ∞
pD(A)τc

∞

.

Thus, we obtain

s− r = dimκ
VD(B)τ∞
pD(B)τc

∞

− dimκ
VD(A)τ∞
pD(A)τc

∞

.(3.6)

Regarding D(A) as a submodule of D(B) via α∗, it follows that

(3.6) = dimκ
VD(B)τ∞
VD(A)τ∞

− dimκ

pD(B)τc
∞

pD(A)τc
∞

= dimκ
D(B)τ∞
D(A)τ∞

− dimκ

D(B)τc
∞

D(A)τc
∞

= dimκ(kerα∗,τ∞)− dimκ(kerα∗,τc
∞).

Thus, (2) is proved.
For (3), by assumption on λA, the alternating paring

〈 , 〉dR
τ∞ : HdR

1 (A/S)τ∞ × HdR
1 (A/S)τc

∞ → OS

induced by λA is perfect.
In case (a), we have kerα∗,τ∞ = (kerα∗,τc

∞)⊥, the orthogonal complement of kerα∗,τc
∞ = im β∗,τc

∞

under 〈 , 〉dR
τ , since λB is also p-principal.

In case (b), kerα∗,τ∞ is a subbundle of (kerα∗,τc
∞)⊥ of corank 1. The identity follows immediately

from the identity rankOS((kerα∗,τc
∞)⊥) + rankOS(kerα∗,τc

∞) = n.
In case (c), (kerα∗,τ∞)⊥ is a subbundle of kerα∗,τc

∞ of corank 1. The identity follows immediately
from the identity rankOS((kerα∗,τ∞)⊥) + rankOS(kerα∗,τ∞) = n.

In case (d), we have both situations in (b) and (c), and the identity follows by a similar reason.
The proof for (4) is similar to (3). We leave the detail to readers. �
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3.5. A CM moduli scheme. In this subsection, we introduce an auxiliary moduli scheme pa-
rameterizing certain CM abelian varieties, which will be used in Sections 4 and 5.

Definition 3.5.1. Let R be a commutative Z[(discF )−1]-algebra.
(1) A rational skew-hermitian space over OF ⊗ R of rank N is a free OF ⊗ R-module W of

rank N together with an R-bilinear skew-symmetric perfect pairing
〈 , 〉W : W×W→ R

satisfying 〈ax, y〉W = 〈x, acy〉W for every a ∈ OF ⊗R and x, y ∈W.
(2) Let W and W′ be two rational skew-hermitian spaces over OF ⊗ R, a map f : W→W′ is

a similitude if f is an OF ⊗ R-linear isomorphism such that there exists some c(f) ∈ R×
satisfying 〈f(x), f(y)〉W′ = c(f)〈x, y〉W for every x, y ∈W.

(3) Two rational skew-hermitian spaces over OF ⊗ R are similar if there exists a similitude
between them.

(4) For a rational skew-hermitian space W over OF ⊗ R, we denote by GU(W) its group of
similitude as a reductive group over R; it satisfies that for every ring R′ over R, GU(W)(R′)
is the set of self-similitude of the rational skew-hermitian space W⊗R R′ over OF ⊗R′.

We define a subtorus T0 ⊆ (ResOF /Z Gm) ⊗ Z[(discF )−1] such that for every commutative
Z[(discF )−1]-algebra R,

T0(R) = {a ∈ OF ⊗R | NmF/F+ a ∈ R×}.
Now we take a rational prime p that is unramified in F . We take the prescribed subring P in

Definition 3.4.2 to be Z(p).

Remark 3.5.2. Let W0 be a rational skew-hermitian space over OF ⊗Z(p) of rank 1. Then GU(W0)
is canonically isomorphic to T0⊗Z[(discF )−1] Z(p). Moreover, the set of similarity classes of rational
skew-hermitian spaces W′

0 over OF ⊗ Z(p) of rank 1 such that W′
0 ⊗Z(p) A is similar to W0 ⊗Z(p) A

is canonically isomorphic to

ker1(T0) := ker
H1(Q,T0)→

∏
v≤∞

H1(Qv,T0)
 ,

which is a finite abelian group.

Definition 3.5.3. Let Φ be a CM type. We say that a rational skew-hermitian space W0 over
OF ⊗ Z(p) of rank 1 has type Φ if for every x ∈ W0 and every totally imaginary element a ∈ F×
satisfying Im τ(a) > 0 for all τ ∈ Φ, we have 〈ax, x〉W0 ≥ 0.

Definition 3.5.4. For a rational skew-hermitian space W0 over OF ⊗ Z(p) of rank 1 and type Φ
and an open compact subgroup Kp

0 ⊆ T0(A∞,p), we define a presheaf T1
p(W0,Kp

0) on Sch′/OFΦ⊗Z(p)

as follows: for every S ∈ Sch′/OFΦ⊗Z(p)
, we let T1

p(W0,Kp
0)(S) be the set of equivalence classes of

triples (A0, λ0, η
p
0) where

m (A0, λ0) is a unitary OF -abelian scheme of signature type Φ over S such that λ0 is p-
principal;

m ηp0 is a Kp
0-level structure, that is, for a chosen geometric point s on every connected

component of S, a π1(S, s)-invariant Kp
0-orbit of similitude

ηp0 : W0 ⊗Q A∞,p → Hét
1 (A0s,A∞,p)

of rational skew-hermitian spaces over F ⊗Q A∞,p, where Hét
1 (A0s,A∞,p) is equipped with

the rational skew-hermitian form induced by λ0.
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Two triples (A0, λ0, η
p
0) and (A′0, λ′0, η

p′
0 ) are equivalent if there exists a prime-to-p OF -linear quasi-

isogeny ϕ0 : A0 → A′0 carrying (λ0, η
p
0) to (cλ′0, η

p′
0 ) for some c ∈ Z×(p).

For an object (A0, λ0, η
p
0) ∈ T1

p(W0,Kp
0)(C), its first homology H1(A0(C),Z(p)) is a rational skew-

hermitian space over OF ⊗ Z(p) induced by λ0, which is of rank 1 and type Φ, and is everywhere
locally similar to W0. Thus, by Remark 3.5.2, we obtain a map

w : T1
p(W0,Kp

0)(C)→ ker1(T0)

sending (A0, λ0, η
p
0) ∈ T1

p(W0,Kp
0)(C) to the similarity class of H1(A0(C),Q).

It is known that when Kp
0 is neat, T1

p(W0,Kp
0) is a scheme finite and étale over OFΦ ⊗ Z(p).

We define Tp(W0,Kp
0) to be the minimal open and closed subscheme of T1

p(W0,Kp
0) containing

w−1(W0). The group T0(A∞,p) acts on Tp(W0,Kp
0) via the formula

a.(A0, λ0, η
p
0) = (A0, λ0, η

p
0 ◦ a)

whose stabilizer is T0(Z(p))Kp
0. In fact, T0(A∞,p)/T0(Z(p))Kp

0 is the Galois group of the Galois
morphism

Tp(W0,Kp
0)→ Spec(OFΦ ⊗ Z(p)).

p

Definition 3.5.5. We denote by T the groupoid of T0(A∞,p)/T0(Z(p))Kp
0, that is, a category with

a single object ∗ with Hom(∗, ∗) = T0(A∞,p)/T0(Z(p))Kp
0.

Remark 3.5.6. As Tp(W0,Kp
0) is object in Sch/OFΦ⊗Z(p) with an action by T0(A∞,p)/T0(Z(p))Kp

0,
it induces a functor from T to Sch/OFΦ⊗Z(p) , which we still denote by Tp(W0,Kp

0). In what
follows, we may often have another category C and will regard Tp(W0,Kp

0) as a functor from
C × T to Sch/OFΦ⊗Z(p) as the composition of the projection functor C × T → T and the functor
Tp(W0,Kp

0) : T→ Sch/OFΦ⊗Z(p) .

Notation 3.5.7. For a functor X : T→ Sch and a coefficient ring L, we denote

Hi
T(X,L(j)) ⊆ Hi

ét(X(∗), L(j)), Hi
T,c(X,L(j)) ⊆ Hi

ét,c(X(∗), L(j))

the maximal L-submodules, respectively, on which T0(A∞,p)/T0(Z(p))Kp
0 acts trivially.

Definition 3.5.8. Let κ be an algebraically closed field of characteristic p, and L a p-coprime
coefficient ring. For a functor X : T→ Sch/κ such that X(∗) is smooth of finite type of dimension
d, we define the T-trace map ∫ T

X
: H2d

T,c(X(∗), L(d))→ L

to be the composite map

H2d
T,c(X(∗), L(d)) ↪→ H2d

c (X(∗), L(d))→
⊕
Y

H2d
c (Y, L(d))

∑
trY−−−→ L,

where {Y } is a set of representatives of T-orbits on the connected components of X(∗), and the
second map is the natural projection. It is clear that the above composite map does not depend
on the choice of {Y }.
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4. Unitary moduli schemes: smooth case

In this section, we define and study certain smooth integral moduli scheme whose generic fiber is
the product of a unitary Shimura variety and an auxiliary CM moduli. Since the materials in this
section are strictly in the linear order, we will leave the summary of contents to each subsection.

We fix a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational prime p).
We take the prescribed subring P in Definition 3.4.2 to be Z(p). We choose the following data

m a CM type Φ containing τ∞;
m a rational skew-hermitian space W0 over OF ⊗Z(p) of rank 1 and type Φ (Definition 3.5.3);
m a neat open compact subgroup Kp

0 ⊆ T0(A∞,p);
m an isomorphism ιp : C ' Qp such that ιp ◦ τ∞ : F+ ↪→ Qp induces the place p of F+;
m an element $ ∈ OF+ that is totally positive and satisfies valp($) = 1, and valq($) = 0 for

every prime q 6= p of F+ above p.
We adopt Notation 3.3.6. In particular, FΦ

p contains Fp2 . Since W0 and Kp
0 are insensitive and will

never be changed in the remaining part of this section, we will not include them in all notations.
However, we will keep the prime p in notations as, in later application, we need to choose different
primes in a crucial step. Put Tp := Tp(W0,Kp

0)⊗OFΦ⊗Z(p) ZΦ
p .

4.1. Construction of moduli schemes. In this subsection, we construct our initial moduli
schemes. We start from the datum (V, {Λq}q|p) where

m V is a standard indefinite hermitian space (Definition 3.1.7) over F of rank N ≥ 1, and
m Λq is a self-dual OFq-lattice in V⊗F Fq for every prime q of F+ above p.

Before defining the moduli functor, we need the following lemma to make sense of the later
definition.

Lemma 4.1.1. The field QΦ
p contains FΨ with Ψ = NΦ − τ∞ + τ c

∞, which is a generalized CM
type of rank N , for every N ≥ 1.

Proof. Take ρ ∈ Aut(C/QΦ
p ) ⊆ Aut(C/F ). Then we have ρΦ = Φ and ρτ∞ = τ∞. Thus, we have

ρ(NΦ− τ∞ + τ c
∞) = NΦ− τ∞ + τ c

∞ for every N ≥ 1. The lemma follows. �

Recall that we have the category Sch′/ZΦ
p
of locally Noetherian schemes over ZΦ

p , and PSch′/ZΦ
p

the category of presheaves on Sch′/ZΦ
p
.

Definition 4.1.2. We define a functor
Mp(V,�) : K(V)p × T→ PSch′/ZΦ

p

Kp 7→Mp(V,Kp)

such that for every S ∈ Sch′/ZΦ
p
, Mp(V,Kp)(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0;A, λ, ηp) where

m (A0, λ0, η
p
0) is an element in Tp(S);

m (A, λ) is a unitary OF -abelian scheme of signature type NΦ− τ∞+ τ c
∞ over S (Definitions

3.4.2 and 3.4.3) such that λ is p-principal;
m ηp is a Kp-level structure, that is, for a chosen geometric point s on every connected

component of S, a π1(S, s)-invariant Kp-orbit of isomorphisms

ηp : V⊗Q A∞,p → Homλ0,λ
F⊗QA∞,p(H

ét
1 (A0s,A∞,p),Hét

1 (As,A∞,p))

of hermitian spaces over F ⊗Q A∞,p = F ⊗F+ A∞,pF+ . See Construction 3.4.4 (with � =
{∞, p}) for the right-hand side.
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Two sextuples (A0, λ0, η
p
0;A, λ, ηp) and (A′0, λ′0, η

p′
0 ;A′, λ′, ηp′) are equivalent if there are prime-to-p

OF -linear quasi-isogenies ϕ0 : A0 → A′0 and ϕ : A→ A′ such that
m ϕ0 carries ηp0 to ηp′0 ;
m there exists c ∈ Z×(p) such that ϕ∨0 ◦ λ′0 ◦ ϕ0 = cλ0 and ϕ∨ ◦ λ′ ◦ ϕ = cλ;
m the Kp-orbit of maps v 7→ ϕ∗ ◦ ηp(v) ◦ (ϕ0∗)−1 for v ∈ V⊗Q A∞,p coincides with ηp′.

On the level of morphisms,
m a morphism g ∈ Kp\U(V)(A∞,pF )/Kp′ of K(V)p maps Mp(V,Kp)(S) to Mp(V,Kp′)(S) by

changing ηp to ηp ◦ g; and
m a morphism a of T acts on Mp(V,Kp)(S) by changing ηp0 to ηp0 ◦ a.

We have apparently the forgetful morphism

Mp(V,�)→ Tp(4.1)

in Fun(K(V)p×T,PSch′/ZΦ
p
), the category of functors from K(V)p×T to PSch′/ZΦ

p
. Here, we regard

Tp as an object in Fun(K(V)p × T, Sch′/ZΦ
p
) as in Remark 3.5.6. According to Notation 3.3.6,

we shall denote by the base change of (4.1) to FΦ
p by Mp(V,�) → Tp, which is a morphism in

Fun(K(V)p × T,PSch′/FΦ
p
).

Theorem 4.1.3. The morphism (4.1) is represented by a quasi-projective smooth scheme over Tp

of relative dimension N − 1. Moreover, for every Kp ∈ K(V)p, we have a canonical isomorphism
for the relative tangent sheaf

TMp(V,Kp)/Tp ' Hom
(
ωA∨,τ∞ ,HdR

1 (A)τ∞/ωA∨,τ∞
)

where (A0, λ0, η
p
0;A, λ, ηp) is the universal object over Mp(V,Kp). Moreover, (4.1) is projective if

and only if its base change to QΦ
p is.

Proof. This is well-known. We sketch the computation on the tangent sheaf hence the proof of
the smoothness for readers’ convenience. Take an object Kp ∈ K(V)p. Since both Kp

0 and Kp are
neat, Mp(V,Kp) is an algebraic space. Thus, we have the universal object (A0, λ0, η

p
0;A, λ, ηp) over

Mp(V,Kp). By a standard argument in deformation theory, using Proposition 3.4.8, we know that
the morphism Mp(V,Kp) → Tp is separated and smooth; and we have a canonical isomorphism
for the tangent sheaf

TMp(V,Kp)/Tp ' Hom
(
ωA∨,τ∞ ,HdR

1 (A)τ∞/ωA∨,τ∞
)

which is locally free of rank N − 1. Moreover, the canonical sheaf of Mp(V,Kp) is ample; hence
Mp(V,Kp) is a quasi-projective scheme. The theorem is proved. �

Let Kq be the stabilizer of Λq for every q | p; and put Kp := ∏
q|p Kq. As show in [RSZ,

Section 3.2], there is a canonical “moduli interpretation” isomorphism of varieties over QΦ
p

Mη
p(V,�) ∼−→ Sh(V,�Kp)×SpecF Tη

p(4.2)

in Fun(K(V)p × T, Sch/QΦ
p
)/Tη

p
, where T acts on Sh(V,�Kp)×SpecF Tη

p through the second factor.
See also Remark 4.1.5 below.

Lemma 4.1.4. Let L be a p-coprime coefficient ring. The two specialization maps

Hi
T,c(Mp(V,�)⊗ZΦ

p
Qp, L)→ Hi

T,c(Mp(V,�), L),
Hi

T(Mp(V,�)⊗ZΦ
p
Qp, L)→ Hi

T(Mp(V,�), L),
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are both isomorphisms. In particular, (4.2) induces isomorphisms

Hi
ét,c(Sh(V,�Kp)F , L) ' Hi

T,c(Mp(V,�), L),
Hi

ét(Sh(V,�Kp)F , L) ' Hi
T(Mp(V,�), L),

in Fun(K(V)p,Mod(L[Gal(Qp/QΦ
p )])) for every i ∈ Z. Here, Gal(Qp/QΦ

p ) is regarded as a subgroup
of Gal(F/F ) under our fixed isomorphism ιp : C ' Qp.

Proof. Since Mp(V,�) is smooth over ZΦ
p , we have a canonical isomorphism L ' RΨL. When

Mp(V,�) is proper, this is simply the proper base change. When Mp(V,�) is not proper, this
follows from [LS18, Corollary 5.20]. �

Remark 4.1.5. For readers’ convenience, we describe (4.2) on complex points, which determines
the isomorphism uniquely. It suffices to assign to every point

x = (A0, λ0, η
p
0;A, λ, ηp) ∈Mp(V,Kp)(C).

a point in
Sh(V,KpKp)(C) = U(V)(F+)\

(
V(C)−/C× × U(V)(A∞F+)/KpKp

)
where V(C)−/C× is the set of negative definite complex lines in V⊗F C. Put

Vx := HomF (H1(A0(C),Q),H1(A(C),Q))

equipped with a pairing in the way similar to Construction 3.4.4, which becomes a hermitian
space over F of rank N . Moreover, it is standard indefinite. By the comparison between singular
homology and étale homology, we have a canonical isometry of hermitian spaces

ρ : Vx ⊗Q A∞,p ∼−→ Homλ0,λ
F⊗QA∞,p(H

ét
1 (A0,A∞,p),Hét

1 (A,A∞,p))

which implies that Vx ⊗Q A∞,p ' V ⊗Q A∞,p by the existence of the level structure ηp. On the
other hand, we have a canonical decomposition

HomOF⊗Zp(Hét
1 (A0,Zp),Hét

1 (A,Zp)) =
⊕
q|p

Λx,q

of OF ⊗ Zp-modules in which Λx,q is a self-dual lattice in V ⊗F Fq for every prime q of F+ above
p. Thus, by the Hasse principle for hermitian spaces, this implies that hermitian spaces Vx and
V are isomorphic. Choose an isometry ηrat : Vx → V. Thus, we obtain an isometry

gp := ηrat ◦ ρ−1 ◦ ηp : V⊗Q A∞,p → V⊗Q A∞,p

as an element in U(V)(A∞,pF+ ). For every q above p, there exists an element gq ∈ U(V)(F+
q ) such

that gqΛq = ηratΛx,q. Together, we obtain an element gx := (gp, (gq)q|p) ∈ U(V)(A∞F+). Finally,

lx := {α ∈ HomF (HdR
1 (A0/C),HdR

1 (A/C)) | α(ωA∨0 ,τ∞) ⊆ ωA∨,τ∞}

is a line in Vx(C) such that ηrat(lx) is an element in V(C)−/C×. It is easy to check that the coset

U(V)(F+)(ηrat(lx), gxKpKp)

does not depend on the choice of ηrat, hence gives rise an element in Sh(V,KpKp)(C). It is clear
that the action of a morphism a of T on x does not change the above coset.
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4.2. Basic correspondence on special fiber. In this subsection, we construct and study the
basic correspondence on the special fiber Mp(V,�). Recall that we have chosen an element $ ∈
OF+ that is totally positive and satisfies valp($) = 1, and valq($) = 0 for every prime q 6= p of
F+ above p.

Definition 4.2.1. We define a functor
Sp(V,�) : K(V)p × T→ PSch′/FΦ

p

Kp 7→ Sp(V,Kp)
such that for every S ∈ Sch′/FΦ

p
, Sp(V,Kp)(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0;A?, λ?, ηp?) where

m (A0, λ0, η
p
0) is an element in Tp(S);

m (A?, λ?) is a unitary OF -abelian scheme of signature type NΦ over S such that kerλ?[p∞]
is trivial (resp. contained in A?[p] of rank p2) if N is odd (resp. even);

m ηp? is, for a chosen geometric point s on every connected component of S, a π1(S, s)-
invariant Kp-orbit of isomorphisms

ηp? : V⊗Q A∞,p → Hom$λ0,λ?

F⊗QA∞,p(H
ét
1 (A0s,A∞,p),Hét

1 (A?s,A∞,p))
of hermitian spaces over F ⊗QA∞,p = F ⊗F+ A∞,pF+ . Note that here we are using $λ0 rather
that λ0.

The equivalence relation and the action of morphisms in K(V)p × T are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism
Sp(V,�)→ Tp

in Fun(K(V)p × T,PSch′/FΦ
p
) which is represented by finite and étale schemes.

Now we take a point s? = (A0, λ0, η
p
0;A?, λ?, ηp?) ∈ Sp(V,Kp)(κ) where κ is a field containing

FΦ
p . By Remark 3.4.10, we have the (κ, σ)-linear Frobenius map

F : HdR
1 (A?/κ)τ∞ → HdR

1 (A?/κ)στ∞ = HdR
1 (A?/κ)τc

∞ .

We define a pairing
{ , }s? : HdR

1 (A?/κ)τ∞ × HdR
1 (A?/κ)τ∞ → κ

by the formula {x, y}s? := 〈Fx, y〉λ?,τc
∞ (Notation 3.4.7). To ease notation, we put

Vs? := HdR
1 (A?/κ)τ∞ .

Lemma 4.2.2. The pair (Vs? , { , }s?) is admissible of rank N (Definition A.1.1). In particular,
the Deligne–Lusztig variety DLs? := DL(Vs? , { , }s? , dN+1

2 e) (Definition A.1.2) is a geometrically
irreducible projective smooth scheme in Sch/κ of dimension bN−1

2 c with a canonical isomorphism
for its tangent sheaf

TDLs? /κ ' Hom
(
H/Ha, (Vs?)DLs?/H

)
where H ⊆ (Vs?)DLs? is the universal subbundle.

Proof. It follows from the construction that { , }s? is (κ, σ)-linear in the first variable and κ-linear
in the second variable. By the signature condition Definition 4.2.1(2), the map F : HdR

1 (A?/κ)τ∞ →
HdR

1 (A?/κ)τc
∞ is an isomorphism, and the pairing 〈F , 〉λ?,τc

∞ has kernel of rank 0 (resp. 1) if N is
odd (resp. even). Thus, by Proposition A.1.3, it suffices to show that (Vs? , { , }s?) is admissible.

Note that we have a canonical isomorphism (Vs?)κ = HdR
1 (A?/κ)τ∞ ⊗κ κ ' HdR

1 (A?κ/κ)τ∞ , and
that the (κ, σ)-linear Frobenius map F : HdR

1 (A?κ/κ)τ∞ → HdR
1 (A?κ/κ)τc

∞ and the (κ, σ−1)-linear
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Verschiebung map V : HdR
1 (A?κ/κ)τ∞ → HdR

1 (A?κ/κ)τc
∞ are both isomorphisms. Thus, we obtain

a (κ, σ2)-linear isomorphism V−1F : HdR
1 (A?κ/κ)τ∞ → HdR

1 (A?κ/κ)τ∞ . Denote by V0 the subset of
HdR

1 (A?κ/κ)τ∞ on which V−1F = id, which is an Fp2-linear subspace. Since the p-divisible group
A[p∞] is supersingular, by Dieudonné’s classification of crystals, the canonical map V0 ⊗Fp2 κ →
HdR

1 (A?/κ)τ∞ = (Vs?)κ is an isomorphism. For x, y ∈ V0, we have
{x, y}s? = 〈Fx, y〉λ?,τc

∞ = 〈x, Vy〉σλ?,τ∞ = 〈x, Fy〉σλ?,τ∞ = −〈Fy, x〉σλ?,τ∞ = −{y, x}σs? .
Thus, (Vs? , { , }s?) is admissible. The lemma follows. �

Definition 4.2.3. We define a functor
Bp(V,�) : K(V)p × T→ PSch′/FΦ

p

Kp 7→ Bp(V,Kp)

such that for every S ∈ Sch′/FΦ
p
, Bp(V,Kp)(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) where

m (A0, λ0, η
p
0;A, λ, ηp) is an element of Mp(V,Kp)(S);

m (A0, λ0, η
p
0;A?, λ?, ηp?) is an element of Sp(V,Kp)(S);

m α : A→ A? is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) kerα[p∞] is contained in A[p];
(b) we have $ · λ = α∨ ◦ λ? ◦ α; and
(c) the Kp-orbit of maps v 7→ α∗ ◦ ηp(v) for v ∈ V⊗Q A∞,p coincides with ηp?.

Two decuples (A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) and (A′0, λ′0, η

p′
0 ;A′, λ′, ηp′;A?′, λ?′, ηp?′;α′) are e-

quivalent if there are prime-to-p OF -linear quasi-isogenies ϕ0 : A0 → A′0, ϕ : A → A′, and
ϕ? : A? → A?′ such that

m ϕ0 carries ηp0 to ηp′0 ;
m there exists c ∈ Z×(p) such that ϕ∨0 ◦λ′0 ◦ϕ0 = cλ0, ϕ∨ ◦λ′ ◦ϕ = cλ, and ϕ?∨ ◦λ?′ ◦ϕ? = cλ?;
m the Kp-orbit of maps v 7→ ϕ∗ ◦ ηp(v) ◦ (ϕ0∗)−1 for v ∈ V⊗Q A∞,p coincides with ηp′;
m the Kp-orbit of maps v 7→ ϕ?∗ ◦ ηp?(v) ◦ (ϕ0∗)−1 for v ∈ V⊗Q A∞,p coincides with ηp?′;
m ϕ? ◦ α = α′ ◦ ϕ holds.

On the level of morphisms,
m a morphism g ∈ Kp\U(V)(A∞,pF )/Kp′ of K(V)p maps Bp(V,Kp)(S) to Bp(V,Kp′)(S) by

changing ηp, ηp? to ηp ◦ g, ηp? ◦ g, respectively; and
m a morphism a of T acts on Mp(V,Kp)(S) by changing ηp0 to ηp0 ◦ a.

We obtain in the obvious way a correspondence

Sp(V,�) Bp(V,�) ι //πoo Mp(V,�)(4.3)

in Fun(K(V)p × T,PSch′/FΦ
p
)/Tp .

Definition 4.2.4 (Basic correspondence). We refer to (4.3) as the basic correspondence4 on
Mp(V,�), with Sp(V,�) being the source of the basic correspondence.

Theorem 4.2.5. In the diagram (4.3), take a point
s? = (A0, λ0, η

p
0;A?, λ?, ηp?) ∈ Sp(V,Kp)(κ)

where κ is a field containing FΦ
p . Put Bs? := π−1(s?), and denote by (A, λ, ηp;α) the universal

object over the fiber Bs?.
4We adopt this terminology since the image of ι is in fact the basic locus of Mp(V,�).
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(1) The fiber Bs? is a smooth scheme over κ, with a canonical isomorphism for its tangent
bundle

TBs?/κ ' Hom (ωA∨,τ∞ , kerα∗,τ∞/ωA∨,τ∞) .
(2) The restriction of ι to Bs? is locally on Bs? a closed immersion, with a canonical isomor-

phism for its normal bundle

Nι|Bs? ' Hom (ωA∨,τ∞ , imα∗,τ∞) .

(3) The assignment sending a point (A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) ∈ Bs?(S) for every S ∈

Sch′/κ to the subbundle

H := (ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊆ HdR
1 (A?/S)τ∞ = HdR

1 (A?/κ)τ∞ ⊗κ OS = (Vs?)S,

where ᾰ : A? → A is the (unique) OF -linear quasi-p-isogeny such that ᾰ ◦ α = $ · idA,
induces an isomorphism

ζs? : Bs?
∼−→ DLs? = DL(Vs? , { , }s? , dN+1

2 e).

In particular, Bs? is a geometrically irreducible projective smooth scheme in Sch/κ of di-
mension bN−1

2 c by Lemma 4.2.2. In particular, ι is of pure codimension bN2 c.

Proof. For an object (A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) ∈ Bp(V,Kp)(S), Definition 4.2.3(a) implies

that there is a (unique) OF -linear quasi-p-isogeny ᾰ : A? → A such that ᾰ ◦ α = $ · idA hence
α ◦ ᾰ = $ · idA? . Moreover, we have the following properties from Definition 4.2.3:

(a’) ker ᾰ[p∞] is contained in A?[p];
(b’) we have $ · λ? = ᾰ∨ ◦ λ ◦ ᾰ; and
(c’) the Kp-orbit of maps v 7→ $−1ᾰ∗ ◦ η?p(v) for v ∈ V⊗Q A∞,p coincides with ηp.
First, we show (1). It is clear that Bs? is a scheme of finite type over κ. Consider a closed

immersion S ↪→ Ŝ in Sch′/κ defined by an ideal sheaf I satisfying I2 = 0. Take a point x =
(A0, λ0, η

p
0;A, λ, ηp;A?, λ?, ηp?;α) ∈ Bs?(S). To compute lifting of x to Ŝ, we use the Serre–Tate

and Grothendieck–Messing theories. Note that lifting α is equivalent to lifting both α and ᾰ,
satisfying (b,c) in Definition 4.2.3 and (b’,c’) above, respectively. Thus, by Proposition 3.4.8, to
lift x to an Ŝ-point is equivalent to lifting

m ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of Hcris
1 (A/Ŝ)τ∞ (of rank 1),

m ωA∨/S,τc
∞ to a subbundle ω̂A∨,τc

∞ of Hcris
1 (A/Ŝ)τc

∞ (of rank N − 1),
subject to the following requirements

(a”) ω̂A∨,τ∞ and ω̂A∨,τc
∞ are orthogonal under 〈 , 〉cris

λ,τ∞ (3.3); and
(b”) ᾰ∗,τc

∞Hcris
1 (A?/Ŝ)τc

∞ is contained in ω̂A∨,τc
∞ .

Since 〈 , 〉cris
λ,τ∞ is a perfect pairing, ω̂A∨,τ∞ uniquely determines ω̂A∨,τc

∞ by (a”). Moreover, by
Property (b’) above, we know that kerα∗,τ∞ and im ᾰ∗,τc

∞ are orthogonal complement to each
other under 〈 , 〉cris

λ,τ∞ . Thus, (b”) is equivalent to
(c”) ω̂A∨,τ∞ is contained in the kernel of α∗,τ∞ : Hcris

1 (A/Ŝ)τ∞ → Hcris
1 (A?/Ŝ)τ∞ .

To summarize, lifting x to an Ŝ-point is equivalent to lifting ωA∨/S,τ∞ to a subbundle
ω̂A∨,τ∞ of kerα∗,τ∞ . In other words, the subset of Bs?(Ŝ) above x is canonically a torsor over
HomOS(ωA∨,τ∞ , (kerα∗,τ∞/ωA∨,τ∞)⊗OS I). Thus, (1) follows.

Next, we show (2). By Theorem 4.1.3, we have a canonical isomorphism

ι∗κTMp(V,Kp)/κ|Bs? ' Hom
(
ωA∨,τ∞ ,HdR

1 (A)τ∞/ωA∨,τ∞
)
,
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and the induced map TBs?/κ → ι∗κTMp(V,Kp)/κ|Bs? is identified with the canonical map

Hom (ωA∨,τ∞ , kerα∗,τ∞/ωA∨,τ∞)→ Hom
(
ωA∨,τ∞ ,HdR

1 (A)τ∞/ωA∨,τ∞
)
.

It is clearly injective, with cokernel canonically isomorphic to
Hom (ωA∨,τ∞ , imα∗,τ∞) .

Thus, (2) follows.
Finally, we show (3). We first show that ζs? has the correct image, namely, H is a locally free
OS-module of rank dN+1

2 e, and satisfies (FH(p))⊥ ⊆ H. Lemma 3.4.13(1,2,3) implies that H is
locally free, and

rankOS(kerα∗,τ∞)− rankOS(kerα∗,τc
∞) = 1,

rankOS(kerα∗,τ∞) + rankOS(kerα∗,τc
∞) = 2dN2 e − 1.

Thus, we have rankOS(kerα∗,τ∞) = dN2 e and
rankOS(ker ᾰ∗,τ∞) = N − rankOS(kerα∗,τ∞) = dN−1

2 e.
On the other hand, as ωA∨/S,τ∞ has rank 1 and ωA?∨/S,τ∞ has rank 0, ωA∨/S,τ∞ is contained in the
kernel of α∗,τ∞ hence in the image of ᾰ∗,τ∞ . Together, we obtain rankOS H = dN+1

2 e. From the
equalities

ᾰ∗,τc
∞(FH(p)) = ᾰ∗,τc

∞FA?
(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞

)(p)
= ᾰ∗,τc

∞FA?(ᾰ(p)
∗,τc
∞

)−1ωA(p)∨/S,τc
∞

= FAᾰ
(p)
∗,τc
∞

(ᾰ(p)
∗,τc
∞

)−1ωA(p)∨/S,τc
∞

= FAωA(p)∨/S,τc
∞

= 0

and the fact that FH(p) and ker ᾰ∗,τc
∞ are both subbundles of HdR

1 (A?/S)τc
∞ of rank dN+1

2 e, we
know FH(p) = ker ᾰ∗,τc

∞ . By Definition 4.2.3(b) and the definition of ᾰ, we have
〈ker ᾰ∗,τc

∞ , imα∗,τ∞〉λ?,τc
∞ = 〈ᾰ∗,τc

∞ ker ᾰ∗,τc
∞ ,H

dR
1 (A/S)τ∞〉λ,τc

∞ = 0,
which implies

ker ᾰ∗,τ∞ = imα∗,τ∞ ⊆ (ker ᾰ∗,τc
∞)⊥ = (FH(p))⊥.

As both sides are subbundles of HdR
1 (A?/S)τ∞ of rank dN−1

2 e, we must have ker ᾰ∗,τ∞ = (FH(p))⊥.
In particular, we have (FH(p))⊥ ⊆ H. Thus, ζs? is defined as we claim.

Since the target of ζs? is smooth over κ by Lemma 4.2.2, to see that ζs? is an isomorphism, it
suffices to check that for every algebraically closed field κ′ containing κ
(3.1) ζs? induces a bijection on κ′-points; and
(3.2) ζs? induces an isomorphism on the tangent spaces at every κ′-point.

To ease notation, we may assume that κ′ = κ hence is perfect in particular.
For (3.1), we construct an inverse to the map ζs?(κ). Take a point y ∈ DLs?(κ) represented

by a κ-linear subspace H ⊆ Vs? = HdR
1 (A?/κ)τ∞ . We regard F and V as those sesquilinear maps

in Remark 3.4.10. In particular, we have (FH)⊥ ⊆ H. For every τ ∈ Σ∞, we define a W (κ)-
submodule DA,τ ⊆ D(A?)τ as follows.

m If τ 6∈ {τ∞, τ c
∞}, then DA,τ = D(A?)τ .

m We set DA,τ∞ := V−1H̃c, where H̃c is the preimage of H⊥ under the reduction map
D(A?)τc

∞ → D(A?)τc
∞/pD(A?)τc

∞ = HdR
1 (A?)τc

∞ .
m We set DA,τc

∞
:= FH̃, where H̃ is the preimage of H under the reduction map D(A?)τ∞ →

D(A?)τ∞/pD(A?)τ∞ = HdR
1 (A?)τ∞ .

Finally, put DA := ⊕
τ∈Σ∞ DA,τ as a W (κ)-submodule of D(A?). We show that it is stable under

F and V. It suffices to show that both F and V stabilize DA,τ∞ ⊕DA,τc
∞ , which breaks into checking

that
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m FDA,τ∞ ⊆ DA,τc
∞ , that is, FV−1H̃c ⊆ FH̃. It suffices to show that V−1(H⊥) (as a subspace

of HdR
1 (A?)τ∞) is contained in H. However, V−1(H⊥) = (FH)⊥, which is contained in H.

m FDA,τc
∞ ⊆ DA,τ∞ , that is, FFH̃ ⊆ V−1H̃c. It suffices to show pFH̃ ⊆ H̃c, which obviously

holds.
m VDA,τ∞ ⊆ DA,τc

∞ , that is, VV−1H̃c ⊆ FH̃. it suffices to show H⊥ ⊆ FH as subspaces of
HdR

1 (A?)τc
∞ , which follows from (FH)⊥ ⊆ H.

m VDA,τc
∞ ⊆ DA,τ∞ , that is, VFH̃ ⊆ V−1H̃c. It is obvious as V−1H̃c contains pD(A?)τ∞ .

Thus, (DA, F, V) is a Dieudonné module over W (κ). By the Dieudonné theory, there is an OF -
abelian scheme A over κ with D(A)τ = DA,τ for every τ ∈ Σ∞, and an OF -linear p-isogeny
α : A → A? inducing the inclusion of Dieudonné modules D(A) = DA ⊆ D(A?). Moreover, since
pD(A?) ⊆ D(A), we have kerα[p∞] ⊆ A[p].

Let λ : A→ A∨ be the unique quasi-polarization such that $λ = α∨ ◦ λ? ◦ α. We claim that λ
is p-principal. It is enough to show the induced pairing

p−1 · 〈 , 〉λ,τ∞ : D(A)τ∞ ×D(A)τc
∞ → W (κ)

(Notation 3.4.12) is non-degenerate. Since H̃ is W (κ)-dual to p−1H̃c, hence D(A)τc
∞ = FH̃ is dual

to V−1(p−1H̃c) = p−1V−1H̃c = p−1D(A)τ∞ , the above pairing is non-degenerate.
It is an easy consequence of Lemma 3.4.13(2,3) that the OF -abelian scheme A has signature

type NΦ− τ∞ + τ c
∞. Finally, let ηp be the unique Kp-level structure such that Definition 4.2.3(c)

is satisfied. Putting together, we obtain a point x = (A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) ∈ Bs?(κ)

such that ζs?(x) = y. It is easy to see that such assignment gives rise to an inverse of ζs?(κ); hence
(3.1) follows immediately.

For (3.2), let Tx and Ty be the tangent spaces at x and y as in (3.1), respectively. By (1) and
Lemma 4.2.2, we have canonical isomorphisms

Tx ' Homκ(ωA∨,τ∞ , kerα∗,τ∞/ωA∨,τ∞), Ty ' Homκ(H/(FH)⊥,HdR
1 (A?)τ∞/H).

Moreover, by the definition of ζs? , the map (ζs?)∗ : Tx → Ty is induced by the following two maps

H/(FH)⊥ = (ᾰ∗,τ∞)−1ωA∨,τ∞/ ker ᾰ∗,τ∞
ᾰ∗,τ∞−−−→ ωA∨,τ∞ ,

HdR
1 (A?)τ∞/H = HdR

1 (A?)τ∞/(ᾰ∗,τ∞)−1ωA∨,τ∞
ᾰ∗,τ∞−−−→ kerα∗,τ∞/ωA∨,τ∞ ,

both being isomorphisms. Thus, (3.2) hence (3) follow. �

Remark 4.2.6. In Theorem 4.2.5, when Kp is sufficiently small, the restriction of ι to Bs? is a closed
immersion for every point s? ∈ Sp(V,Kp)(κ) and every field κ containing FΦ

p .

4.3. Source of basic correspondence and Tate cycles. In this subsection, we study the source
Sp(V,�) of the basic correspondence. We will describe the set Sp(V,�)(Fp) in terms of certain
Shimura set and study its Galois action. Such a description is not canonical, which depends on
the choice of a definite uniformization datum defined as follows.

Definition 4.3.1. We define a definite uniformization datum for V (at p) to be a collection of
(V?, i, {Λ?

q}q|p) where
m V? is a standard definite hermitian space over F of rank N ;
m i : V⊗Q A∞,p → V? ⊗Q A∞,p is an isometry;
m for every prime q of F+ above p other than p, Λ?

q is a self-dual OFq-lattice in V?⊗F Fq; and
m Λ?

p is an OFp-lattice in V? ⊗F Fp satisfying pΛ?
p ⊆ (Λ?

p)∨ such that (Λ?
p)∨/pΛ?

p has length 0
(resp. 1) if N is odd (resp. even).
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By the Hasse principle for hermitian spaces, there exists a definite uniformization datum for
which we fix one. Let K?

q be the stabilizer of Λ?
q for every q over p; and put K?

p := ∏
q|p K?

q. The
isometry i induces an equivalence of categories i : K(V)p ∼−→ K(V?)p.

Construction 4.3.2. We now construct a uniformization map, denoted by the Greek letter up-
silon

υ : Sp(V,�)(Fp)→ Sh(V?, (i�)K?
p)× Tp(Fp)(4.4)

in Fun(K(V)p × T, Set)/Tp(Fp), which turns out to be an isomorphism.
Take a point s? = (A0, λ0, η

p
0;A?, λ?, ηp?) ∈ Sp(V,Kp)(Fp). Let

Vs? := HomOF (A0, A
?)⊗Q

be the space of OF -linear quasi-homomorphisms. We equip with Vs? a pairing

(x, y) = $−1 · λ−1
0 ◦ y∨ ◦ λ? ◦ x ∈ EndFp(A0)⊗Q = F,

which becomes a hermitian space over F . Note that we have an extra factor $−1 in the above
pairing. Moreover, for every prime q of F+ above p, put

Λs?,q := HomOF (A0[q∞], A?[q∞])

which is an OFq-lattice in (Vs?)q since A? is isogenous to AN0 .
Now we construct υ, whose process is very similar to Remark 4.1.5. Note that we have an

isometry
ρ : Vs? ⊗Q A∞,p ∼−→ Hom$λ0,λ?

F⊗QA∞,p(H
ét
1 (A0,A∞,p),Hét

1 (A?,A∞,p)).
By Lemma 4.3.3 below, we can choose an isometry ηrat : Vs? → V?. Thus, we obtain an isometry

gp := ηrat ◦ ρ−1 ◦ ηp? ◦ i−1 : V? ⊗Q A∞,p → V? ⊗Q A∞,p

as an element in U(V?)(A∞,pF+ ). By Lemma 4.3.3(1,2), for every q above p, there exists an element
gq ∈ U(V?)(F+

q ) such that gqΛ?
q = ηratΛs?,q. Together, we obtain an element gs? := (gp, (gq)q|p) ∈

U(V?)(A∞F+) such that the double coset U(V?)(F )g(iKp)K?
p depends only on the point s?. Thus,

it allows us to define

υ(s?) :=
(
U(V?)(F )gs?(iKp)K?

p, (A0, λ0, η
p
0)
)
∈ Sh(V?, (iKp)K?

p)× Tp(Fp).

Lemma 4.3.3. The hermitian spaces Vs? and V? are isomorphic. Moreover,
(1) for every prime q of F+ above p other than p, the lattice Λs?,q is self-dual;
(2) the lattice Λs?,p satisfies pΛs?,p ⊆ (Λs?,p)∨ such that (Λs?,p)∨/pΛs?,p has length 0 (resp. 1) if

N is odd (resp. even).

Proof. We first prove (1) and (2).
For (1), note that A?[q∞] is isomorphic to (A0[q∞])N , equipped with the polarization λ?[q∞]

that is principal. Thus, Λs?,q is self-dual as λ0[q∞] is principal and valq($) = 0.
For (2), note that A?[p∞] is isomorphic to (A0[p∞])N , equipped with the polarization λ?[p∞]

satisfying such that kerλ?[p∞] is trivial (resp. contained in A?[p] of rank p2) if N is odd (resp.
even). Thus, the statement follows as λ0[p∞] is principal and valp($) = 1.

Now to prove the main statement, it suffices to show that
(i) Vs? is totally positive definite; and
(ii) the hermitian spaces Vs? ⊗Q A∞,p and V⊗Q A∞,p are isomorphic.
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For (i), it follows from the same argument in [KR14, Lemma 2.7].
For (ii), we have a map

Vs? ⊗Q A∞,p → Hom$λ0,λ?

F⊗QA∞,p(H
ét
1 (A0,A∞,p),Hét

1 (A?,A∞,p))
of hermitian spaces, which is injective. As both sides have rank N and the right-hand side is
isomorphic to V⊗Q A∞,p, (ii) follows. �

Proposition 4.3.4. The uniformization map υ (4.4) is an isomorphism. Moreover, the induced
action of Gal(Fp/FΦ

p ) on the target of υ factors through the projection map

Sh(V?, (i�)K?
p)× Tp(Fp)→ Tp(Fp).

Proof. We first show that υ is an isomorphism. Take a point t = (A0, λ0, η
p
0) ∈ Tp(Fp). It suffices

to show that, for every Kp ∈ K(V)p, the restriction
υ : Sp(V,Kp)(Fp)/t → Sh(V?, (iKp)K?

p)
to the fiber over t is an isomorphism. The injectivity follows directly from the definition. For
the surjectivity, it suffices to show that for every g ∈ U(V?)(A∞,pF+ ), there is an object s? =
(A0, λ0, η

p
0;A?, λ?, ηp?) ∈ Sp(V,Kp)(Fp)/t whose image under υ is the image of g in Sh(V?, (iKp)K?

p).
To construct s?, we take an OF -lattice Λ? in V? satisfying OF ⊗F Fp = Λ?

p. Put A? := A0 ⊗OF Λ?,
which is equipped with a unique quasi-polarization λ? such that the canonical isomorphism

V? ⊗Q A∞,p ' HomF⊗QA∞,p(Hét
1 (A0,A∞,p),Hét

1 (A?,A∞,p))
of F ⊗Q A∞,p-modules is an isometry of hermitian spaces. We let ηp? be the map

V⊗Q A∞,p g◦i−−→ V? ⊗Q A∞,p = Hom$λ0,λ?

F⊗QA∞,p(H
ét
1 (A0,A∞,p),Hét

1 (A?,A∞,p)).

Then υ(s?) = g in Sh(V?, (iKp)K?
p). Thus, υ is an isomorphism.

Since υ is an isomorphism, the Galois group Gal(Fp/FΦ
p ) acts on the target of υ. We show

that it acts trivially on the first factor of the target of υ. Take an element ς ∈ Gal(Fp/FΦ
p )

and a point s? = (A0, λ0, η
p
0;A?, λ?, ηp?) ∈ Sp(V,Kp)(Fp). Then ςs? is simply represented by

(Aς0, λς0, ηpς0 ;A?ς , λ?ς , ηp?ς), the ς-twist of the previous object. We then have a canonical isomorphism
Vςs? = HomOF (Aς0, A?ς)⊗Q ' HomOF (A0, A

?)⊗Q = Vs?

of hermitian spaces. Unraveling the definition, we see that gs? = gςs? . Thus, we have

υ(ςs?) :=
(
U(V?)(F )gs?(iKp)K?

p, (Aς0, λς0, η
pς
0 )
)
.

The proposition follows. �

Next, we define an action of the Hecke algebra Z[K?
p\U(V?)(F+

p )/K?
p] on Sp(V,�) via finite étale

correspondences, that is compatible with the uniformization map (4.4).

Construction 4.3.5. For every element g ∈ K?
p\U(V?)(F+

p )/K?
p, we define a functor

Sp(V,�)g : K(V)p × T→ PSch′/FΦ
p

Kp 7→ Sp(V,Kp)g
such that for every S ∈ Sch′/FΦ

p
, Sp(V,Kp)g(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A?, λ?, ηp?;A?g, λ?g, ηp?g ;φ?) where

m (A0, λ0, η
p
0;A?, λ?, ηp?) and (A0, λ0, η

p
0;A?g, λ?g, ηp?g ) are both elements in Sp(V,Kp)(S); and

m φ? : A? → A?g is an OF -linear quasi-isogeny such that
(a) φ?∨ ◦ λ?g ◦ φ? = λ?;
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(b) φ?[p∞] : A?[p∞]→ A?g[p∞] is a quasi-isogeny of height zero under which the two lattices
HomOF (A0s[p∞], A?s[p∞]) and HomOF (A0s[p∞], A?gs[p∞]) are at the relative position
determined by g for every geometric point s of S;

(c) φ?[q∞] is an isomorphism for every prime q of F+ above p that is not p; and
(d) the Kp-orbit of maps v 7→ φ?∗ ◦ ηp?(v) for v ∈ V⊗Q A∞,p coincides with ηp?g .

The equivalence relation and the action of morphisms in K(V)p × T are defined similarly as in
Definition 4.2.3. Then we construct the Hecke correspondence (of g) to be the morphism

Hkg : Sp(V,�)g → Sp(V,�)× Sp(V,�)(4.5)
in Fun(K(V)p × T,PSch′/FΦ

p
)/Tp induced by the assignment

(A0, λ0, η
p
0;A?, λ?, ηp?;A?g, λ?g, ηp?g ;φ?) 7→ ((A0, λ0, η

p
0;A?, λ?, ηp?), (A0, λ0, η

p
0;A?g, λ?g, ηp?g )).

Here, the product in (4.5) is also taken in the category Fun(K(V)p × T,PSch′/FΦ
p
)/Tp , that is,

Sp(V,�)×Sp(V,�) is a functor sending Kp to Sp(V,Kp)×Tp Sp(V,Kp) on which T acts diagonally.
Proposition 4.3.6. For every g ∈ K?

p\U(V?)(F+
p )/K?

p, we have
(1) The morphism Hkg (4.5) is finite étale; in particular, it is a morphism in Fun(K(V)p ×

T, Sch/FΦ
p
)/Tp.

(2) The uniformization map υ (4.4) lifts uniquely to an isomorphism making the diagram

Sp(V,�)g(Fp) υ //

Hkg(Fp)
��

Sh(V?, (i�)(gK?
pg
−1 ∩K?

p))× Tp(Fp)

��

Sp(V,�)(Fp)×Tp(Fp) Sp(V,�)(Fp)
υ×υ //

(
Sh(V?, (i�)K?

p)× Sh(V?, (i�)K?
p)
)
× Tp(Fp)

in Fun(K(V)p × T, Set)/Tp(Fp) commutative, where the right vertical map is induced by the
set-theoretical Hecke correspondence of g.

Proof. For (1), it suffices to consider those Kp ∈ K(V)p that are sufficiently small. Then the
morphism Hkg : Sp(V,Kp)g → Sp(V,Kp)×Tp Sp(V,Kp) is closed, hence represented by a finite étale
scheme. Part (2) follows directly from the definition. �

Remark 4.3.7. In fact, the proof of Proposition 4.3.6(1) together with Proposition 4.3.4 imply that
Hkg is a local isomorphism.
Remark 4.3.8. Note that since K?

p is a special maximal open compact subgroup of U(V?)(F+
p ),

the algebra Z[K?
p\U(V?)(F+

p )/K?
p] is commutative. Moreover, when N is odd, Λs?,p is a self-dual

lattice under the pairing $ · ( , )V? ; hence Z[K?
p\U(V?)(F+

p )/K?
p] is canonically isomorphic to TN,p.

Let L be a p-coprime coefficient ring. The uniformization map (4.4) induces an isomorphism
L[Sh(V?, (i�)K?

p)] ' H0
T(Sp(V,�), L) = H0

T(Sp(V,�), L)
in Fun(K(V)p,Mod(L[K?

p\U(V? ⊗F Fp)/K?
p])) by Proposition 4.3.6. Recall from Theorem 4.2.5(3)

that the morphism ι in (4.3) is of pure codimension bN2 c.
Construction 4.3.9. Put r := bN2 c ≥ 0. We construct a pair of maps

inc?! : L[Sh(V?, (i�)K?
p)]

∼−→ H0
T(Sp(V,�), L)

π∗−→ H0
T(Bp(V,�), L) ι!−→ H2r

T (Mp(V,�), L(r)),

inc∗? : H2(N−r−1)
T (Mp(V,�), L(N − r − 1)) ι∗−→ H2(N−r−1)

T (Bp(V,�), L(N − r − 1))
π!−→ H0

T(Sp(V,�), L) ∼−→ L[Sh(V?, (i�)K?
p)],
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in Fun(K(V)p,Mod(L)).

Theorem 4.3.10. Suppose N = 2r + 1 odd with r ≥ 0. Then the composite map inc∗? ◦ inc?! is
equal to the Hecke operator

T?N,p :=
r∑
δ=0

dr−δ,p · TN,p;δ ∈ TN,p

in which the numbers dr−δ,p are introduced in Notation 1.3.2, and the Hecke operators TN,p;δ are
introduced in Notation B.2.1 (as T◦N ;δ).

Note that by Remark 4.3.8, L[Sh(V?, (i�)K?
p)] is a TN,p-module when N is odd.

Proof. This is [XZ, Theorem 9.3.5]. �

4.4. Functoriality under special morphisms. In this subsection, we study the behavior of
various moduli schemes under the special morphisms, which is closely related to the Rankin–
Selberg motives for GLn×GLn+1.

We start from the datum (Vn, {Λn,q}q|p) as in the beginning of Subsection 4.1, but with Vn of
rank n ≥ 1. We then have the induced datum

(Vn+1, {Λn+1,q}q|p) := ((Vn)], {(Λn,q)]}q|p)

of rank n + 1 by Definition 3.1.7. For N ∈ {n, n + 1}, we let KN,q be the stabilizer of ΛN,q, and
put KN,p := ∏

q|p KN,q. Recall the category K(Vn)psp and functors �[,�] from Definition 3.1.11. To
unify notation, we put �n := �[ and �n+1 := �]. There are five stages of functoriality we will
consider.

The first stage concerns Shimura varieties. The canonical inclusions

Vn ↪→ Vn+1, {Λn,q ↪→ Λn+1,q}q|p

induce a morphism

sh↑ : Sh(Vn,�nKn,p)→ Sh(Vn+1,�n+1Kn+1,p)(4.6)

in Fun(K(Vn)psp, Sch/F ), known as the special morphism.
For the second stage of functoriality, we have a morphism

m↑ : Mp(Vn,�n)→Mp(Vn+1,�n+1)(4.7)

in Fun(K(Vn)psp × T, Sch/ZΦ
p
)/Tp sending an object (A0, λ0, η

p
0;A, λ, ηp) ∈ Mp(Vn,Kp

n)(S) to the
object (A0, λ0, η

p
0;A×A0, λ× λ0, η

p ⊕ (idA0)∗) ∈Mp(Vn+1,Kp
n+1)(S). We then have the following

commutative diagram

Mη
p(Vn+1,�n+1)

(4.2)
// Sh(Vn+1,�n+1Kn+1,p)×SpecF Tη

p

Mη
p(Vn,�n)

(4.2)
//

mη
↑

OO

Sh(Vn,�nKn,p)×SpecF Tη
p

sh↑×id
OO

(4.8)

in Fun(K(Vn)psp × T, Sch/QΦ
p
)/Tη

p
.
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At the third stage of functoriality, we study the basic correspondence (4.3) under the special
morphisms. We will complete a commutative diagram in Fun(K(Vn)psp × T, Sch/FΦ

p
)/Tp as follows

Sp(Vn+1,�n+1) Bp(Vn+1,�n+1)
ιn+1 //

πn+1oo Mp(Vn+1,�n+1)

Sp(Vn,�)sp

�

s↑

OO

s↓
��

Bp(Vn,�)sp
πspoo

b↑

OO

b↓
��

Sp(Vn,�n) Bp(Vn,�n) ιn //πnoo Mp(Vn,�n)

m↑

OO
(4.9)

in which the lower-left square is Cartesian; and the lower (resp. upper) line is the basic correspon-
dences on Mp(Vn,�n) (resp. Mp(Vn+1,�n+1)) as introduced in Definition 4.2.4.

Definition 4.4.1. We define a functor
Sp(Vn,�)sp : K(Vn)psp × T→ PSch′/FΦ

p

Kp 7→ Sp(Vn,Kp)sp

such that for every S ∈ Sch′/FΦ
p
, Sp(Vn,Kp)sp(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A?, λ?, ηp?;A?\ , λ?\ , η

p?
\ ; δ?) where

m (A0, λ0, η
p
0;A?, λ?, ηp?) is an element in Sp(Vn,Kp

n)(S);
m (A0, λ0, η

p
0;A?\ , λ?\ , η

p?
\ ) is an element in Sp(Vn+1,Kp

n+1)(S);
m δ? : A? × A0 → A?\ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that

(a) ker δ?[p∞] is contained in (A? × A0)[p];
(b) we have λ? ×$λ0 = δ?∨ ◦ λ?\ ◦ δ?; and
(c) the Kp

n+1-orbit of maps v 7→ δ?∗ ◦ (ηp?⊕ (idA0)∗)(v) for v ∈ Vn+1⊗QA∞,p coincides with
ηp?\ .

The equivalence relation and the action of morphisms in K(Vn)psp × T are defined similarly as in
Definition 4.2.3.

We have apparently the forgetful morphism
Sp(Vn,�)sp → Tp

in Fun(K(Vn)psp × T,PSch′/FΦ
p
) which is represented by finite and étale schemes. By definition, we

have the two forgetful morphisms
s↓ : Sp(Vn,�)sp → Sp(Vn,�n),
s↑ : Sp(Vn,�)sp → Sp(Vn+1,�n+1)

in Fun(K(Vn)psp × T, Sch/FΦ
p
)/Tp .

Lemma 4.4.2. We have the following properties concerning s↓.
(1) When n is odd, s↓ is an isomorphism, and the morphism

s↑ ◦ s−1
↓ : Sp(Vn,�n)→ Sp(Vn+1,�n+1)

is given by the assignment
(A0, λ0, η

p
0;A?, λ?, ηp?) 7→ (A0, λ0, η

p
0;A? × A0, λ

? ×$λ0, η
p? × (idA0)∗).

(2) When n is even, s↓ is finite étale of degree p+ 1.
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Proof. Take an object Kp of K(Vn)psp, and a point x = (A0, λ0, η
p
0;A?, λ?, ηp?) ∈ Sp(Vn,Kp

n)(κ) for
some perfect field κ containing FΦ

p .
For (1), it suffices to show that the fibre s−1

↓ (x) consists of the single point with the extra
datum (A?\ , λ?\ , η

p?
\ ; δ?) = (A?×A0, λ

?×$λ0, η
p?× ηp0; id). This follows from the fact that δ? as in

Definition 4.4.1 induces an equivalence between (A?\ , λ?\ , η
p?
\ ) and (A? × A0, λ

? ×$λ0, η
p? × ηp0).

For (2), we note first that a point in the fibre s−1
↓ (x) is determined by the quasi-p-isogeny

δ?, which is in turn determined, up to equivalence, by a totally isotropic (OF/p)-subgroup of
ker(λ?×$λ0) of order p2. We classify such subgroups by using Dieudonné theory. LetD(A?×A0)∨τc

∞
be the dual lattice of D(A? × A0)τc

∞ (Notation 3.4.12) but with respect to the quasi-polarization
λ? × $λ0. The quotient Wx := D(A? × A0)∨τc

∞
/D(A? × A0)τ∞ is κ-vector space of dimension

2 equipped with an induced nondegenerate hermitian pairing. Then the hermitian space Wx is
admissible in the sense of Definition A.1.1 with underlying hermitian space over Fp2 given by
Wx,0 := W V−1F=1

x . Then Wx,0 is an Fp2-vector space of dimension 2. By the classical Dieudonné
theory for finite group schemes over κ, the set of totally isotropic (OF/p)-subgroups of ker(λ?×$λ0)
of order p2 is in natural bijection with the set of isotropic Fp2-lines in Wx,0, which has cardinality
p+ 1. �

Definition 4.4.3. We define Bp(Vn,�)sp to be the fiber product indicated in the following Carte-
sian diagram

Bp(Vn,�)sp
πsp //

b↓
��

Sp(Vn,�)sp

s↓
��

Bp(Vn,�n) πn // Sp(Vn,�n)

in Fun(K(Vn)psp × T, Sch/FΦ
p
)/Tp .

Lemma 4.4.4. The assignment sending an object

((A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α), (A0, λ0, η

p
0;A?, λ?, ηp?;A?\ , λ?\ , η

p?
\ ; δ?))

of Bp(Vn,Kp)sp(S) to

(A0, λ0, η
p
0;A× A0, λ× λ0, η

p ⊕ (idA0)∗;A?\ , λ?\ , η
p?
\ ; δ? ◦ (α× idA0))(4.10)

defines a morphism
b↑ : Bp(Vn,�)sp → Bp(Vn+1,�n+1)

in Fun(K(Vn)psp × T, Sch/FΦ
p
)/Tp.

Proof. The lemma amounts to showing that (4.10) is an object of Bp(Vn+1,Kp
n+1)(S). Put α\ :=

δ? ◦ (α × idA0) : A × A0 → A?\ . The only nontrivial condition in Definition 4.2.3 to check is that
kerα\[p∞] is contained in (A × A0)[p]. For this, we may assume S = Specκ for a perfect field κ
containing FΦ

p .
Consider the following injective maps of Dieudonné modules

D(A)τ ⊕D(A0)τ
α∗,τ⊕id−−−−→ D(A?)τ ⊕D(A0)τ

δ?∗,τ−−→ D(A?\ )τ

for every τ ∈ Σ∞. We have the inclusion D(A?\ )τ ⊆ D(A?)∨τc ⊕ $−1D(A0)τ (Notation 3.4.12).
Thus, it suffices to show pD(A?)∨τc ⊆ D(A)τ for every τ ∈ Σ∞. For τ 6∈ {τ∞, τ c

∞}, we have
D(A?)∨τc = D(A)τ . It remains to show pD(A?)∨τc ⊆ D(A)τ for τ ∈ {τ∞, τ c

∞}. Recall the subspace



50 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

H := (ᾰ∗,τ∞)−1ωA∨/κ,τ∞ ⊆ HdR
1 (A?/κ)τ∞ from Theorem 4.2.5. Under the notation in proof of

Theorem 4.2.5, since (FH)⊥ ⊆ H, we have pD(A?)∨τc
∞
⊆ H̃ hence pD̃(A?)∨τ∞ ⊆ H̃c. Thus, we have

pD(A?)∨τc
∞

= pV−1(D(A?)∨τ∞) ⊆ V−1H̃c = D(A)τ∞ ,
pD(A?)∨τ∞ = pF(D(A?)∨τc

∞
) ⊆ FH̃ = D(A)τc

∞ .

The lemma follows. �

By the above lemma, we obtain our desired diagram (4.9). Moreover, we have the following
result.

Proposition 4.4.5. When n is even, the square

Bp(Vn+1,�n+1)
ιn+1 // Mp(Vn+1,�n+1)

Bp(Vn,�)sp
ιn◦b↓ //

b↑

OO

Mp(Vn,�n)

m↑

OO

extracted from the diagram (4.9) is Cartesian.

We remark that the above proposition is not correct on the nose when n is odd and at least 3.

Proof. The square in the proposition induces a morphism

ιsp : Bp(Vn,�)sp → Bp(Vn+1,�n+1)×Mp(Vn+1,�n+1) Mp(Vn,�n).

We need to prove that ιsp is an isomorphism. By Theorem 4.2.5, we know that ιsp is locally for
the Zariski topology on the source a closed immersion, such that both the source and the target
are smooth. Thus, it suffices to show that for a given algebraically closed field κ containing FΦ

p ,
we have that

(1) ιsp(κ) is an isomorphism in Fun(K(Vn)psp × T, Set); and
(2) for every Kp ∈ K(Vn)psp and every x ∈ Bp(Vn,Kp)sp(κ), the induced diagram

Tb↑(x)
ιn+1∗ // Tιn+1(b↑(x))

Tx
ιn∗◦b↓∗ //

b↑∗

OO

Tι(b↓(x))

m↑∗

OO
(4.11)

of tangent spaces is a Cartesian square of κ-modules.
For (1), we take an object Kp ∈ K(Vn)psp and construct an inverse of ιsp(κ). Take a point

(A0, λ0, η
p
0;A, λ, ηp;A?\ , λ?\ , η

p?
\ ;α\)

in the target of ιsp(κ). Then α\ induces an inclusion

D(A)τ ⊕D(A0)τ ⊆ D(A?\ )τ
of Dieudonné modules, which is an equality if τ 6∈ {τ∞, τ c

∞}. We put

DA? :=
⊕
τ∈Σ∞

DA?,τ

where DA?,τ = D(A)τ for τ 6∈ {τ∞, τ c
∞} and DA?,τ = D(A?\ )τ ∩ p−1D(A)τ for τ ∈ {τ∞, τ c

∞}. Then
DA? is a Dieudonné module containing D(A). By the Dieudonné theory, there is an OF -abelian
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scheme A? over κ with D(A?)τ = DA?,τ for every τ ∈ Σ∞, and an OF -linear isogeny α : A → A?

inducing the inclusion of Dieudonné modules D(A) ⊆ D(A?). We factors α\ as

A× A0
α×idA0−−−−→ A? × A0

δ?−→ A?\ .

It is clear that there is a unique quasi-polarization λ? of A? such that λ? × $λ0 = δ?∨ ◦ λ?\ ◦ δ?.
Let ηp? be the Kp

n-level structure induced from ηp under α. We claim that the datum
((A0, λ0, η

p
0;A, λ, ηp;A?, λ?, ηp?;α), (A0, λ0, η

p
0;A?, λ?, ηp?;A?\ , λ?\ , η

p?
\ ; δ?))

gives rise to an element in Bp(Vn,Kp)sp(κ). It suffices to show that (A0, λ0, η
p
0;A?, λ?, ηp?) is an

element in Sp(Vn,Kp
n)(κ). Moreover precisely, we need to show that

(1.1) the OF -abelian scheme A? has signature type nΦ; and
(1.2) kerλ?[p∞] is contained in A?[p] of degree p2.

To prove these, we add two auxiliary properties
(1.3) the composite map D(A?\ )τ ⊆ p−1D(A)τ ⊕ p−1D(A0)τ → p−1D(A0)τ is surjective for τ ∈

{τ∞, τ c
∞}; and

(1.4) the cokernel of the inclusionD(A?)τ⊕D(A0)τ ⊆ D(A?\ )τ is isomorphic to κ for τ ∈ {τ∞, τ c
∞}.

For (1.3), if not surjective, then we have D(A?\ )τ ⊆ p−1D(A)τ ⊕D(A0)τ for both τ ∈ {τ∞, τ c
∞}.

As $λ×$λ0 = α∨\ ◦ λ?\ ◦ α\, this contradicts with the fact that λ?\ is p-principal.
For (1.4), it follows (1.3) and the fact that the kernel of D(A?\ )τ → p−1D(A0)τ is D(A?)τ for

τ ∈ {τ∞, τ c
∞}.

For (1.1), it amounts to showing that F : D(A?)τ → D(A?)τc is an isomorphism for every τ ∈
Φ. This is obvious for τ 6= τ∞. When τ = τ∞, this follows from (iv) and the fact that both
F : D(A?\ )τ → D(A?\ )τc and F : D(A0)τ → D(A0)τc are isomorphisms.

For (1.2), it follows from (1.4) and the fact that λ?\ is p-principal.
Thus, (1) is proved.
For (2), the diagram (4.11) is identified with

Homκ (ωA∨,τ∞ , kerα\∗,τ∞/ωA∨,τ∞) // Homκ

(
ωA∨,τ∞ ,HdR

1 (A× A0)τ∞/ωA∨,τ∞
)

Homκ (ωA∨,τ∞ , kerα∗,τ∞/ωA∨,τ∞) //

OO

Homκ

(
ωA∨,τ∞ ,HdR

1 (A)τ∞/ωA∨,τ∞
)

OO

by Theorem 4.1.3 and Theorem 4.2.5. However, it is an easy consequence of (1.3) that kerα\∗,τ∞ ∩
HdR

1 (A)τ∞ = kerα∗,τ∞ . Thus, the above diagram is Cartesian; and (2) follows. �

At the fourth stage of functoriality, we compare the special morphisms for basic correspondences
and for Deligne–Lusztig varieties. Take a point

s? = (A0, λ0, η
p
0;A?, λ?, ηp?;A?\ , λ?\ , η

p?
\ ; δ?) ∈ Sp(Vn,Kp)sp(κ)

for a field κ containing FΦ
p . Put

s?n := s↓(s?), s?n+1 := s↑(s?);
and denote by Bs? , Bs?n , and Bs?n+1

their preimages under πsp, πn, and πn+1, respectively. By Lemma
4.2.2, we have admissible pairs (Vs?n , { , }s?n) and (Vs?n+1

, { , }s?n+1
). As in Construction A.1.5, we

extend the pair (Vs?n , { , }s?n) to (Vs?n,], { , }s?n,]). Then the homomorphism δ? : A? × A0 → A?\
induces a κ-linear map

δs? : Vs?n,] → Vs?n+1
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satisfying {δs?(x), δs?(y)}s?n+1
= {x, y}s?n,] for every x, y ∈ Vs?n,]. By Construction A.1.5, we obtain

a morphism
δs?↑ : DLs?n = DL(Vs?n , { , }s?n , d

n+1
2 e)→ DLs?n+1

= DL(Vs?n+1
, { , }s?n+1

, dn+2
2 e)

of corresponding Deligne–Lusztig varieties.

Proposition 4.4.6. Let the notation be as above. The following diagram

Bs?n+1

ζs?
n+1

'
// DLs?n+1

Bs?

ζs?n
◦b↓
'

//

b↑

OO

DLs?n

δs?↑

OO

in Sch/κ commutes, where ζs?n and ζs?n+1
are the isomorphisms in Theorem 4.2.5(3). In particular,

b↑ : Bs? → Bs?n+1
is an isomorphism if n is odd, and is a regular embedding of codimension one if

n is even.

Proof. Note that by Lemma 4.4.2, the restricted morphism b↓ : Bs? → Bs?n is an isomorphism.
Thus, the last claim follows from the commutativity and Proposition A.1.6.

When n is odd, the commutativity is obvious. When n is even, it suffices to show that for every
point

(A0, λ0, η
p
0;A, λ, ηp;A?, λ?, ηp?;α) ∈ Bs?(S),

we have
δ?∗,τ∞

(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊕ HdR

1 (A0/S)τ∞
)

= (ᾰ\∗,τ∞)−1ωA∨×A∨0 /S,τ∞(4.12)
in view of the diagram

A× A0

α×idA0
��

A× A0

α\:=δ?◦(α×idA0 )
��

A? × A0
δ? //

ᾰ×$idA0
��

A?\

ᾰ\
��

A× A0 A× A0

in which ᾰ ◦ α = $ · idA and ᾰ\ ◦ ᾰ\ = $ · idA×A0 . Since both sides of (4.12) have the same rank,
it suffices to show that

ᾰ\∗,τ∞
(
δ?∗,τ∞

(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊕ HdR

1 (A0/S)τ∞
))
⊆ ωA∨×A∨0 /S,τ∞ ,

which is obvious as $ annihilates HdR
1 (A0/S)τ∞ . The proposition is proved. �

At the final stage of functoriality, we relate the special morphisms for sources of basic corre-
spondences to Shimura sets under the uniformization map υ (4.4).

Notation 4.4.7. As in Definition 4.3.1, we choose a definite uniformization datum
(V?

n, in, {Λ?
n,q}q|p) for V. We also fix a definite uniformization datum (V?

n+1, in+1, {Λ?
n+1,q}q|p) for

Vn+1 satisfying
m V?

n+1 = (V?
n)] and in+1 = (in)];

m Λ?
n+1,q = (Λ?

n,q)] for q 6= p; and
m (Λ?

n,p)] ⊆ Λ?
n+1,p ⊆ p−1(Λ?

n,p)∨] .
Let K?

n+1,q be the stabilizer of Λ?
n+1,q for every q over p; and put K?

n+1,p := ∏
q|p K?

n+1,q. Moreover,
we put K?

sp,p := K?
n,p ∩K?

n+1,p (as a subgroup of K?
n,p) and K?

sp,p := K?
sp,p ×

∏
q6=p K?

n,q.
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Remark 4.4.8. When n is odd, since (Λ?
n,p)∨ = pΛ?

n,p, we must have Λ?
n+1,p = (Λ?

n,p)] as well hence
K?

sp,p = K?
n,p. When n is even, the number of choices of Λ?

n+1,p is p+ 1.

Similar to Construction 4.3.2, we may construct a uniformization map
υsp : Sp(Vn,�)sp(Fp)→ Sh(V?

n, (in�n)K?
sp,p)× Tp(Fp)(4.13)

in Fun(K(Vn)psp × T, Set)/Tp(Fp) which is an isomorphism, whose details we leave to readers.

Proposition 4.4.9. The following diagram

Sp(Vn+1,�n+1)(Fp)
υn+1

(4.4)
// Sh(V?

n+1, (in+1�n+1)K?
n+1,p)× Tp(Fp)

Sp(Vn,�)sp(Fp)
υsp

(4.13)
//

s↑(Fp)

OO

s↓(Fp)
��

Sh(V?
n, (in�n)K?

sp,p)× Tp(Fp)

sh?↑×id
OO

sh?↓×id
��

Sp(Vn,�n)(Fp)
υn

(4.4)
// Sh(V?

n, (in�n)K?
n,p)× Tp(Fp)

in Fun(K(Vn)psp × T, Set)/Tp(Fp) commutes, where sh?↓ and sh?↑ are obvious maps on Shimura sets.
Moreover, the induced actions of Gal(Fp/FΦ

p ) on all terms on the right-hand side factor through
the projection to the factor Tp(Fp).

Proof. The commutativity follows directly from definition. The proof of the last claim is same to
Proposition 4.3.4. �

4.5. Second geometric reciprocity law. In this subsection, we state and prove a theorem we
call second geometric reciprocity law, which can be regarded a geometric template for the second
explicit reciprocity law studied in Subsection 7.3 once throw the automorphic input.

We keep the setup in Subsection 4.4. However, we allow � = (�n,�n+1) to be an object of
K(Vn)p×K(Vn+1)p, rather than K(Vn)psp. Denote by n0 and n1 the unique even and odd numbers
in {n, n + 1}, respectively. Write n0 = 2r0 and n1 = 2r1 + 1 for unique integers r0, r1 ≥ 1. In
particular, we have n = r0 + r1. Let L be a p-coprime coefficient ring.

To ease notation, we put X?
nα

:= X?
p(Vnα ,�nα) for meaningful triples (X, ?, α) ∈ {M,M,B, S}×

{ , η} × {0, 1}.

Construction 4.5.1. We construct two maps and two graphs.
(1) For every integers i, j, we define

loc′p : Hi
ét(Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p), L(j))→ Hi

T(Mn0 ×Tp Mn1 , L(j))
to be the composition of the localization map

locp : Hi
ét(Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p), L(j))

→ Hi
ét((Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p))⊗F QΦ

p , L(j)),
the pullback map

Hi
ét((Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p))⊗F QΦ

p , L(j))→ Hi
T(Mη

n0 ×Tη
p

Mη
n1 , L(j))

induced from (4.2), and the isomorphism
Hi

T(Mn0 ×Tp Mn1 ,RΨL(j)) ∼−→ Hi
T(Mn0 ×Tp Mn1 , L(j))

due to the fact L ' RΨL by Theorem 4.1.3.
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(2) Analogous to Construction 4.3.9, we define the map

inc?,?! : L[Sh(V?
n0 , (in0�n0)K?

n0,p)]⊗L L[Sh(V?
n1 , (in1�n1)K?

n1,p)]
∼−→ H0

T(Sn0 , L)⊗L H0
T(Sn1 , L) = H0

T(Sn0 ×Tp Sn1 , L)
(πn0×πn1 )∗
−−−−−−−→ H0

T(Bn0 ×Tp Bn1 , L) (ιn0×ιn1 )!−−−−−−→ H2n
T (Mn0 ×Tp Mn1 , L(n))

in Fun(K(Vn)p × K(Vn+1)p,Mod(L)).
Suppose that � is taken in the subcategory K(Vn)psp.

(3) We define 4 Sh(Vn,�nKn,p) to be the graph of the morphism sh↑ (4.6), as a closed sub-
scheme of Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p), which gives rise to a class

[4 Sh(Vn,�nKn,p)] ∈ H2n
ét (Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p), L(n))

by the absolute cycle class map.
(4) We define 4 Sh(V?

n, (in�n)K?
sp,p) to be the graph of the correspondence (sh?↓, sh?↑), which

is a subset of Sh(V?
n0 , (in0�n0)K?

n0,p)× Sh(V?
n1 , (in1�n1)K?

n1,p).

The following theorem, which we call the second geometric reciprocity law, relates the class
[4 Sh(Vn,�nKn,p)] with an explicit class coming from the Shimura set.

Theorem 4.5.2 (Second geometric reciprocity law). Suppose that � is taken in the subcategory
K(Vn)psp. We have

T?n1,p.(id× πn1)!(id× ιn1)∗loc′p ([4 Sh(Vn,�nKn,p)]) = (id× πn1)!(id× ιn1)∗inc?,?! (14Sh(V?n,(in�n)K?sp,p))

in H2r0
T (Mn0 ×Tp Sn1 , L(r0)), where T?n1,p ∈ Tn1,p is the Hecke operator appeared in Theorem 4.3.10.

Note that by Proposition 4.3.6 and Remark 4.3.8, H2r0
T (Mn0 ×Tp Sn1 , L(r0)) is a Tn1,p-module.

For readers’ convenience, we illustrate the identity in the above theorem through the following
diagram

H2n
ét (Sh(Vn0 ,�n0Kn0,p)×SpecF Sh(Vn1 ,�n1Kn1,p), L(n))

loc′p // H2n
T (Mn0 ×Tp Mn1 , L(n))

(id×ιn1 )∗
��

L[Sh(V?
n0 , (in0�n0)K?

n0,p)]⊗L L[Sh(V?
n1 , (in1�n1)K?

n1,p)]
inc?,?!oo

[4 Sh(Vn,�nKn,p)]

∈

�

..

H2n
T (Mn0 ×Tp Bn1 , L(n))

(id×πn1 )!
��

14Sh(V?n,(in�n)K?sp,p)

∈

9

pp

H2r0
T (Mn0 ×Tp Sn1 , L(r0))

T?n1,p. ∼=∼

∈

Proof. We denote
m4 : Mn →Mn ×Tp Mn+1 = Mn0 ×Tp Mn1

the diagonal morphism of the correspondence (id,m↑) (4.7) in Fun(K(Vn)psp×T, Sch/ZΦ
p
)/Tp . Then

we have the identity

loc′p ([4 Sh(Vn,�nKn,p)]) = m4![Mn] ∈ H2n
T (Mn ×Tp Mn+1, L(n))

by the commutative diagram (4.8).
Put Bsp := Bp(Vn,�)sp for short, and denote

b4 := (b↓, b↑) : Bsp → Bn ×Tp Bn+1 = Bn0 ×Tp Bn1
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the diagonal morphism of the correspondence (b↓, b↑). By Proposition 4.4.5 (resp. Lemma 4.4.2)
when n = n0 (resp. n = n1), the following commutative diagram

Bsp
(ιn0×id)◦b4 //

ιn◦b↓
��

Mn0 ×Tp Bn1

id×ιn1
��

Mn

m4 // Mn0 ×Tp Mn1

is Cartesian. Then by Proper Base Change, we have

T?n1,p.(id× πn1)!(id× ιn1)∗m4![Mn] = T?n1,p.(id× πn1)!((ιn0 × id) ◦ b4)!(ιn ◦ b↓)∗[Mn]
= T?n1,p.(id× πn1)!((ιn0 × id) ◦ b4)![Bsp].

The commutative diagram

Bsp
(ιn0×id)◦b4 //

(id×πn1 )◦b4
��

Mn0 ×Tp Bn1

id×π1
��

Bn0 ×Tp Sn1

ιn0×id
// Mn0 ×Tp Sn1

implies the identity

T?n1,p.(id× πn1)!((ιn0 × id) ◦ b4)![Bsp] = T?n1,p.(ιn0 × id)!((id× πn1) ◦ b4)![Bsp].

Now by the definition of Bsp (Definition 4.4.3), we have

((id× πn1) ◦ b4)![Bsp] = (πn0 × id)∗(14Sh(V?n,(in�n)K?sp,p)).

In all, we have

T?n1,p.(id× πn1)!(id× ιn1)∗m4![Mn] = (ιn0 × id)!(πn0 × id)∗(T?n1,p.14Sh(V?n,(in�n)K?sp,p)),

which, by Theorem 4.3.10, equals

(ιn0 × id)!(πn0 × id)∗(id× πn1)!(id× ιn1)∗(id× ιn1)!(id× πn1)∗(14Sh(V?n,(in�n)K?sp,p))
= (id× πn1)!(id× ιn1)∗inc?,?! (14Sh(V?n,(in�n)K?sp,p)).

The theorem follows. �

5. Unitary moduli schemes: semistable case

In this section, we define and study certain semistable integral moduli scheme whose generic
fiber is the product of a unitary Shimura variety and an auxiliary CM moduli. Since the materials
in this section are strictly in the linear order, we will leave the summary of contents to each
subsection.

We fix a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational prime p).
We take the prescribed subring P in Definition 3.4.2 to be Z(p). We choose following data

m a CM type Φ containing τ∞;
m a rational skew-hermitian space W0 over OF ⊗Z(p) of rank 1 and type Φ (Definition 3.5.3);
m a neat open compact subgroup Kp

0 ⊆ T0(A∞,p);
m an isomorphism Qp ' C that induces the place p of F+;
m an element $ ∈ OF+ that is totally positive and satisfies valp($) = 1, and valq($) = 0 for

every prime q 6= p of F+ above p.
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We adopt Notation 3.3.6. In particular, FΦ
p contains Fp2 . Since W0 and Kp

0 are insensitive and will
never be changed in the remaining part of this section, we will not include them in all notations.
However, we will keep the prime p in notations as later in application, we need to choose different
primes in a crucial step. Put Tp := Tp(W0,Kp

0)⊗OFΦ⊗Z(p) ZΦ
p .

5.1. Construction of moduli schemes. In this subsection, we construct our initial moduli
schemes. We start from the datum (V◦, {Λ◦q}q|p) where

m V◦ is a standard definite hermitian space (Definition 3.1.7) over F of rank N ≥ 1, and
m for every prime q of F+ above p, a self-dual OFq-lattice Λ◦q in V◦ ⊗F Fq.

Definition 5.1.1. We define a functor
Mp(V◦,�) : K(V◦)p × T→ PSch′/ZΦ

p

Kp◦ 7→Mp(V◦,Kp◦)
such that for every S ∈ Sch′/ZΦ

p
, Mp(V◦,Kp◦)(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0;A, λ, ηp) where

m (A0, λ0, η
p
0) is an element in Tp(S);

m (A, λ) is a unitary OF -abelian scheme of signature type NΦ− τ∞+ τ c
∞ over S (Definitions

3.4.2 and 3.4.3) such that kerλ[p∞] is contained in A[p] of rank p2;
m ηp is a Kp◦-level structure, that is, for a chosen geometric point s on every connected

component of S, a π1(S, s)-invariant Kp◦-orbit of isomorphisms
ηp : V◦ ⊗Q A∞,p → Homλ0,λ

F⊗QA∞,p(H
ét
1 (A0s,A∞,p),Hét

1 (As,A∞,p))

of hermitian spaces over F ⊗Q A∞,p = F ⊗F+ A∞,pF+ . See Construction 3.4.4 (with � =
{∞, p}) for the right-hand side.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.1.2.

Remark 5.1.2. In the definition of the moduli functor Mp(V◦,�), we use the definite hermitian
space V◦ to define the tame level structure – this is different from the usual treatment. The reason
for doing this is to make the uniformization map (5.4) for certain stratum in the special fiber of
Mp(V◦,�) canonical, since our main interest is the Shimura set Sh(V◦,�K◦p), while the trade-off
is that the relation between the generic fiber of Mp(V◦,�) and unitary Shimura varieties cannot
be made canonical (see Definition 5.1.6).

We have apparently the forgetful morphism
Mp(V◦,�)→ Tp(5.1)

in Fun(K(V◦)p × T,PSch′/ZΦ
p
), which is representable by quasi-projective schemes. According to

Notation 3.3.6, we shall denote by the base change of (5.1) to FΦ
p by Mp(V◦,�)→ Tp, which is a

morphism in Fun(K(V◦)p × T, Sch/FΦ
p
).

Definition 5.1.3. For every Kp◦ ∈ K(V◦)p, let (A0, λ0, η
p
0;A, λ, ηp) be the universal object over

Mp(V◦,Kp◦). We define
(1) M◦p(V◦,Kp◦) to be the locus of Mp(V◦,Kp◦) on which ωA∨,τ∞ coincides with HdR

1 (A)⊥τc
∞
,

which we call the balloon stratum;5

5This terminology is borrowed from an unpublished note by Kudla and Rapoport, where they study the corre-
sponding Rapoport–Zink space. The intuition becomes clear after Theorem 5.2.4 where we show that this stratum
is a projective space fibration over a zero-dimensional scheme.
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(2) M•p(V◦,Kp◦) to be the locus of Mp(V◦,Kp◦) on which HdR
1 (A)⊥τ∞ is a line subbundle of

ωA∨,τc
∞ , which we call the ground stratum;

(3) M†p(V◦,Kp◦) to be M◦p(V◦,Kp◦)⋂M•p(V◦,Kp◦), which we call the link stratum.6

We denote
m†◦ : M†p(V◦,�)→ M◦p(V◦,�),
m†• : M†p(V◦,�)→ M•p(V◦,�),

the obvious inclusion morphisms.
Remark 5.1.4. When N = 1, the ground stratum and link stratum are both empty.
Theorem 5.1.5. For every Kp◦ ∈ K(V◦)p, we have

(1) The scheme Mp(V◦,Kp◦) is quasi-projective and strictly semi-stable over Tp of relative
dimension N − 1; and we have

Mp(V◦,Kp◦) = M◦p(V◦,Kp◦)
⋃

M•p(V◦,Kp◦).
Moreover, (5.1) is projective if and only if its base change to QΦ

p is.
(2) The loci M◦p(V◦,Kp◦) and M•p(V◦,Kp◦) are both closed subsets of Mp(V◦,Kp◦), (whose in-

duced reduced schemes are) smooth over Tp.
(3) We have a canonical isomorphism for the relative tangent sheaf

TM◦p(V◦,Kp◦)/Tp ' Hom
(
ωA∨,τc

∞ ,LieA,τc
∞

)
.

(4) When N ≥ 2, the relative tangent sheaf TM•p(V◦,Kp◦)/Tp fits canonically into a sequence

0 // Hom
(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
// TM•p(V◦,Kp◦)/Tp

// Hom
(
ωA∨,τc

∞/HdR
1 (A)⊥τ∞ ,LieA,τc

∞

)
// 0.

(5) When N ≥ 2, we have a canonical isomorphism for the relative tangent sheaf

TM†p(V◦,Kp◦)/Tp
' Hom

(
ωA∨,τc

∞/H
dR
1 (A)⊥τ∞ ,LieA,τc

∞

)
.

Proof. For (1), the (quasi-)projectiveness part is well-known. We consider the remaining assertions.
Take a point x = (A0, λ0, η

p
0;A, λ, ηp) ∈ Mp(V◦,Kp◦)(κ) for a perfect field κ containing FΦ

p , and
denote by the completed local ring of Mp(V◦,Kp◦) at x by Ox. We have a W (κ)-bilinear pairing
〈 , 〉λ,τ∞ : D(A)τ∞ × D(A)τc

∞ → W (κ) as in Notation 3.4.12. By repeatedly applying Proposition
3.4.8, we have for every commutative Artinian W (κ)-algebra R that HomW (κ)(Ox, R) is the set of
R-subbundle

Mτ∞ ⊆ D(A)τ∞ ⊗W (κ) R, Mτc
∞ ⊆ D(A)τc

∞ ⊗W (κ) R

of ranks 1 and N − 1 lifting ωA∨/κ,τ∞ and ωA∨/κ,τc
∞ , respectively, such that 〈Mτ∞ ,Mτc

∞〉λ,τ∞ = 0.
We choose isomorphisms D(A)τ∞ ' W (κ)⊕N and D(A)τc

∞ ' W (κ)⊕N under which the pairing
〈 , 〉λ,τ∞ is given by

〈(x1, . . . , xN), (y1, . . . , yN)〉λ,τ∞ = px1y1 + x2y2 + · · ·+ xNyN .

There are four possible cases.
(i) If ωA∨/κ,τ∞ is generated by (1, 0, . . . , 0) and ωA∨/κ,τc

∞ contains (1, 0, . . . , 0), then possibly
after changing coordinates, we may assume that ωA∨/κ,τc

∞ = {(y1, . . . , yN−1, 0)}. Then we
have Ox ' W (κ)[[x1, . . . , xN−1, xN ]]/(x1xN − p).

(ii) If ωA∨/κ,τ∞ is generated by (1, 0, . . . , 0) and ωA∨/κ,τc
∞ does not contain (1, 0, . . . , 0), then

possibly after changing coordinates, we may assume that ωA∨/κ,τc
∞ = {(0, y2, . . . , yN)}. It

is clear that Mτ∞ is determined by Mτc
∞ ; and Ox ' W (κ)[[x2, . . . , xN ]].

6This is the stratum linking balloons to the ground.
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(iii) If ωA∨/κ,τ∞ is not generated by (1, 0, . . . , 0) and ωA∨/κ,τc
∞ contains (1, 0, . . . , 0), then possibly

after changing coordinates, we may assume that ωA∨/κ,τ∞ is generated by (0, . . . , 0, 1). It
is clear that Mτc

∞ is determined by Mτ∞ ; and Ox ' W (κ)[[x1, . . . , xN−1]].
(iv) If ωA∨/κ,τ∞ is not generated by (1, 0, . . . , 0) and ωA∨/κ,τc

∞ does not contain (1, 0, . . . , 0), then
this would not happen.

Together with the fact that Mp(V◦,Kp◦)⊗Q is smooth of dimension N−1, Mp(V◦,Kp◦) is strictly
semi-stable over Tp of relative dimension N − 1. Moreover, M◦p(V◦,Kp◦) is the locus where (i)
or (ii) happens; and M•p(V◦,Kp◦) is the locus where (i) or (iii) happens. Thus, both (1) and (2)
follow.

For (3–5), we will use deformation theory. For common use, we consider a closed immersion
S ↪→ Ŝ in Sch/Tp defined by an ideal sheaf I with I2 = 0. Take an S-point (A0, λ0, η

p
0;A, λ, ηp)

in various schemes we will consider. By Proposition 3.4.8, we need to lift ωA∨,τ∞ and ωA∨,τc
∞ to

subbundles ω̂A∨,τ∞ ⊆ Hcris
1 (A/Ŝ)τ∞ and ω̂A∨,τc

∞ ⊆ Hcris
1 (A/Ŝ)τc

∞ , respectively, that are orthogonal
to each other under the pairing (3.3).

For (3), since we require 〈ω̂A∨,τ∞ ,Hcris
1 (A/Ŝ)τc

∞〉cris
λ,τ∞ = 0, it remains to lift ω̂A∨,τc

∞ without re-
striction. Thus, (3) follows by Remark 3.4.6.

For (4), we need to first find lifting ω̂A∨,τc
∞ that contains Hcris

1 (A/Ŝ)⊥τ∞ ; and then find lifting
ω̂A∨,τ∞ satisfying 〈ω̂A∨,τ∞ , ω̂A∨,τc

∞〉cris
λ,τ∞ = 0. Thus, (4) follows by Remark 3.4.6.

For (5), we only need to find lifting ω̂A∨,τc
∞ that contains Hcris

1 (A/Ŝ)⊥τ∞ , which implies (5). �

In the remaining part of this subsection, we discuss the relation between Mp(V◦,�) and unitary
Shimura varieties. Since we use a standard definite hermitian space to parameterize the level struc-
tures, such relation is not canonical, which depends on the choice of an indefinite uniformization
datum defined as follows.

Definition 5.1.6. We define an indefinite uniformization datum for V◦ (at p) to be a collection
of (V′, j, {Λ′q}q|p) where

m V′ is a standard indefinite hermitian space over F of rank N ;
m j : V◦ ⊗Q A∞,p → V′ ⊗Q A∞,p is an isometry;
m for every prime q of F+ above p other than p, Λ′q is a self-dual OFq-lattice in V′⊗F Fq; and
m Λ′p is an OFp-lattice in V′ ⊗F Fp satisfying Λ′p ⊆ (Λ′p)∨ and (Λ′p)∨/Λ′p has length 1.

By the Hasse principle for hermitian spaces, there exists an indefinite uniformization datum for
which we fix one. Let K′q be the stabilizer of Λ′q for every q over p; and put K′p := ∏

q|p K′q. The
isometry j induces an equivalence of categories j : K(V◦)p ∼−→ K(V′)p.

Then similar to Remark 4.1.5, we obtain a “moduli interpretation” isomorphism

Mη
p(V◦,�) ∼−→ Sh(V′, j�K′p)×SpecF Tη

p(5.2)

in Fun(K(V◦)p × T, Sch/QΦ
p
)/Tη

p
, where T acts on Sh(V′, j�K′p)×SpecF Tη

p via the second factor.

Lemma 5.1.7. Let L be a p-coprime coefficient ring. The two specialization maps

Hi
T,c(Mp(V◦,�)⊗ZΦ

p
Qp, L)→ Hi

T,c(Mp(V◦,�),RΨL),
Hi

T(Mp(V◦,�)⊗ZΦ
p
Qp, L)→ Hi

T(Mp(V◦,�),RΨL),

are both isomorphisms. In particular, (5.2) induces isomorphisms

Hi
ét,c(Sh(V′, j�K′p)F , L) ' Hi

T,c(Mp(V◦,�),RΨL),
Hi

ét(Sh(V′, j�K′p)F , L) ' Hi
T(Mp(V◦,�),RΨL),
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in Fun(K(V◦)p,Mod(L[Gal(Qp/QΦ
p )])) for every i ∈ Z. Here, Gal(Qp/QΦ

p ) is regarded as a subgroup
of Gal(F/F ) under our fixed isomorphism ιp : C ' Qp.

Proof. When Mp(V,�) is proper, this is simply the proper base change. When Mp(V,�) is not
proper, this follows from [LS18, Corollary 5.20]. �

Remark 5.1.8. When [F+ : Q] > 1, the Shimura variety Sh(V′,Kp′K′p) is proper over F for
Kp′ ∈ K(V′)p. We explain that Sh(V′,Kp′K′p) has proper smooth reduction at every place w of F
above Σ+

p \ {p}.
Take a place w of F above Σ+

p \ {p}. Choose a CM type Φ containing τ∞ and an isomorphism
C ' Qp that induces w (not the unique place above p!). Put Tw := Tp(W0,Kp

0)⊗OFΦ⊗Z(p) ZΦ
p . We

define a functor Mw(V′,Kp′) on Sch′/ZΦ
p
such that for every S ∈ Sch′/ZΦ

p
, Mw(V′,Kp′)(S) is the set

of equivalence classes of sextuples (A0, λ0, η
p
0;A, λ, ηp) where

m (A0, λ0, η
p
0) is an element in Tw(S);

m (A, λ) is a unitary OF -abelian scheme of signature type NΦ− τ∞+ τ c
∞ over S (Definitions

3.4.2 and 3.4.3) such that kerλ[p∞] is contained in A[p] of rank p2;
m ηp is a Kp′-level structure, similarly defined as in Definition 5.1.1.

Then Mw(V′,Kp′) is represented by a projective scheme over ZΦ
p . An easy computation of the

tangent sheaf as in Theorem 4.1.3 shows that Mw(V′,Kp′) is smooth of relative dimension N − 1.
Moreover, we have a canonical isomorphism

Mη
w(V′,Kp′) ' Sh(V′,Kp′K′p)×SpecF Tη

w

over Tη
w. Thus, Sh(V′,Kp′K′p) has proper smooth reduction at w as Tw is finite étale over OFw .

5.2. Basic correspondence on balloon stratum. In this subsection, we construct and study
the basic correspondence on the balloon stratum M◦p(V◦,�).

Definition 5.2.1. We define a functor

S◦p(V◦,�) : K(V◦)p × T→ PSch′/FΦ
p

Kp◦ 7→ S◦p(V◦,Kp◦)

such that for every S ∈ Sch′/FΦ
p
, S◦p(V◦,Kp◦)(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0;A◦, λ◦, ηp◦) where

m (A0, λ0, η
p
0) is an element in Tp(S);

m (A◦, λ◦) is a unitary OF -abelian scheme of signature type NΦ over S such that λ◦ is
p-principal;

m ηp◦ is, for a chosen geometric point s on every connected component of S, a π1(S, s)-
invariant Kp◦-orbit of isomorphisms

ηp◦ : V◦ ⊗Q A∞,p → Homλ0,λ◦

F⊗QA∞,p(H
ét
1 (A0s,A∞,p),Hét

1 (A◦s,A∞,p))

of hermitian spaces over F ⊗Q A∞,p = F ⊗F+ A∞,pF+ .
The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism

S◦p(V◦,�)→ Tp

in Fun(K(V◦)p × T,PSch′/FΦ
p
) which is represented by finite and étale schemes.
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Now we take a point s◦ = (A0, λ0, η
p
0;A◦, λ◦, ηp◦) ∈ S◦p(V◦,Kp◦)(κ) where κ is a perfect field

containing FΦ
p . By Remark 3.4.10, the (κ, σ−1)-linear Verschiebung map

V : HdR
1 (A◦/κ)τ∞ → HdR

1 (A◦/κ)σ−1τ∞ = HdR
1 (A◦/κ)τc

∞

is an isomorphism. Thus, we obtain a (κ, σ)-linear isomorphism

V−1 : HdR
1 (A◦/κ)τc

∞ → HdR
1 (A◦/κ)τ∞ .

We define a non-degenerate pairing
{ , }s◦ : HdR

1 (A◦/κ)τc
∞ × HdR

1 (A◦/κ)τc
∞ → κ

by the formula {x, y}s◦ := 〈V−1x, y〉λ◦,τ∞ (Notation 3.4.7). To ease notation, we put

Vs◦ := HdR
1 (A◦/κ)τc

∞ .

By the same proof of Lemma 4.2.2, we know that (Vs◦ , { , }s◦) is admissible. Thus, we have the
Deligne–Lusztig variety DLs◦ := DL(Vs◦ , { , }s◦ , N − 1) (Definition A.1.2).

Definition 5.2.2. We define a functor
B◦p(V◦,�) : K(V◦)p × T→ PSch′/FΦ

p

Kp◦ 7→ B◦p(V◦,Kp◦)

such that for every S ∈ Sch′/FΦ
p
, B◦p(V◦,Kp◦)(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A, λ, ηp;A◦, λ◦, ηp◦; β) where

m (A0, λ0, η
p
0;A, λ, ηp) is an element of M◦p(V◦,Kp◦)(S);

m (A0, λ0, η
p
0;A◦, λ◦, ηp◦) is an element of S◦p(V◦,Kp◦)(S);

m β : A→ A◦ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker β[p∞] is contained in A[p];
(b) we have λ = β∨ ◦ λ◦ ◦ β; and
(c) the Kp◦-orbit of maps v 7→ β∗ ◦ ηp(v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp◦.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.2.3.

We obtain in the obvious way a correspondence

S◦p(V◦,�) B◦p(V◦,�) ι◦ //π◦oo M◦p(V◦,�)(5.3)

in Fun(K(V◦)p × T,PSch′/FΦ
p
)/Tp .

Definition 5.2.3 (Basic correspondence). We refer to (5.3) as the basic correspondence on the
balloon stratum M◦p(V◦,�), with S◦p(V◦,�) being the source of the basic correspondence.

Theorem 5.2.4. In the diagram (5.3), ι◦ is an isomorphism. Moreover, for every point s◦ =
(A0, λ0, η

p
0;A◦, λ◦, ηp◦) ∈ S◦p(V◦,Kp◦)(κ) where κ is a perfect field containing FΦ

p , if we put B◦s◦ :=
π◦−1(s◦), then the assignment sending (A0, λ0, η

p
0;A, λ, ηp;A◦, λ◦, ηp◦; β) ∈ B◦s◦(S) to the subbundle

H := β∗,τc
∞ωA∨/S,τc

∞ ⊆ HdR
1 (A◦/S)τc

∞ = HdR
1 (A◦/κ)τc

∞ ⊗κ OS = (Vs◦)S
induces an isomorphism ζ◦s◦ : B◦s◦

∼−→ P(Vs◦) satisfying that
(1) ζ◦s◦ restricts to an isomorphism

ζ◦s◦ : B◦s◦
⋂
ι◦−1M†p(V◦,Kp◦) ∼−→ DLs◦ = DL(Vs◦ , { , }s◦ , N − 1);
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(2) we have an isomorphism

Hom
(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
' (ζ◦s◦)∗OP(Vs◦ )(−(p+ 1)).

In particular, B◦s◦
⋂
ι◦−1M†p(V◦,Kp◦) is a Fermat hypersurface in B◦s◦ ' P(Vs◦).

Proof. Take an object Kp◦ ∈ K(V◦)p. It is clear that B◦p(V◦,�) is a scheme. We denote by
(A0, λ0, η

p
0;A, λ, ηp;A◦, λ◦, ηp◦; β) the universal object over B◦p(V◦,Kp◦).

First, we show that ι◦ is an isomorphism. It is an easy exercise from Grothendieck–Messing
theory that the canonical map TB◦p(V◦,Kp◦)/Tp → ι◦∗TM◦p(V◦,Kp◦)/Tp is an isomorphism. Thus, it
suffices to show that ι◦(κ′) is a bijection for every algebraically closed field κ′ containing κ.
To ease notation, we may assume κ′ = κ. We construct an inverse of ι◦(κ). Take a point
(A0, λ0, η

p
0;A, λ, ηp) ∈ M◦p(V◦,Kp◦)(κ). Write ω̃A∨,τ∞ the preimage of ωA∨,τ∞ under the reduction

map D(A)τ∞ → HdR
1 (A/κ)τ∞ . As 〈ωA∨,τ∞ ,HdR

1 (A/κ)τc
∞〉λ,τ∞ = 0, we have D(A)∨τc

∞
= p−1ω̃A∨,τ∞ .

Now we put DA◦,τ := D(A)τ for τ 6= τ∞, and DA◦,τ∞ := p−1ω̃A∨,τ∞ . We claim that DA◦ :=⊕
τ∈Σ∞ DA◦,τ is a Dieudonné module, which amounts to the inclusions FDA◦,τ∞ ⊆ DA◦,τc

∞ and
VDA◦,τ∞ ⊆ DA◦,τc

∞ . The first one is obvious; and the second one is equivalent to the first one
as DA◦,τ∞ and DA◦,τc

∞ are integrally dual under 〈 , 〉cris
λ,τ∞ . Then by the Dieudonné theory, there

is an OF -abelian scheme A◦ over κ with D(A◦)τ = DA◦,τ for every τ ∈ Σ∞, and an OF -linear
isogeny β : A → A◦ inducing the inclusion of Dieudonné modules D(A) ⊆ D(A◦). By Lemma
3.4.13(2,4), the OF -abelian scheme A◦ has signature type NΦ. Let λ◦ be the unique quasi-
polarization of A◦ satisfying λ = β∨ ◦ λ◦ ◦ β, which is p-principal as DA◦,τc

∞ = D∨A◦,τ∞ . Final-
ly, we let ηp◦ be the map sending v ∈ V◦ ⊗Q A∞,p to β∗ ◦ ηp(v). Thus, we obtain an object
(A0, λ0, η

p
0;A, λ, ηp;A◦, λ◦, ηp◦; β) ∈ S◦p(V◦,Kp◦)(κ). It is straightforward to check that such as-

signment gives rise to an inverse of ι◦(κ).
Second, we show that ζ◦s◦ is well-defined, namely, H is a subbundle of rank N − 1. By Lem-

ma 3.4.13(2,4) and Definition 5.2.2(b), we have rankOS(ker β∗,τ∞) − rankOS(ker β∗,τc
∞) = 1 and

rankOS(ker β∗,τ∞) + rankOS(ker β∗,τc
∞) = 1. Thus, β∗,τc

∞ is an isomorphism, hence H is a subbundle
of rank N − 1.

Third, we show that ζ◦s◦ is an isomorphism. Denote by H ⊆ (Vs◦)P(Vs◦ ) the universal subbundle
(of rank N − 1). Then we have a canonical isomorphism

TP(Vs◦ )/κ ' HomOP(Vs◦ )

(
H,HdR

1 (A◦/κ)τc
∞/H

)
.

By Theorem 5.1.5(1) and the fact that β∗,τc
∞ is an isomorphism, we obtain an isomorphism(

ι◦∗TM◦p(V◦,Kp◦)/Tp

)
|B◦
s◦
∼−→ ζ◦∗s◦ TP(Vs◦ )/κ.

Thus, to show that ζ◦s◦ : B◦s◦ → P(Vs◦) is an isomorphism, it suffices to construct an inverse of
ζ◦s◦(κ′) for every algebraically closed field κ′ containing κ. To ease notation, we may assume
κ′ = κ. Take a κ-linear subspace H ⊆ Vs◦ = HdR

1 (A◦)τc
∞ of rank N − 1. Let H̃ denote by its

preimage under the reduction map D(A◦)τc
∞ → HdR

1 (A◦)τc
∞ . We put DA,τ := D(A◦)τ for τ 6= τ∞,

and DA,τ∞ := V−1H̃ ⊆ D(A◦)τ∞ . It is clear that DA := ⊕
τ∈Σ∞ DA,τ is a Dieudonné module. By the

Dieudonné theory, there is an OF -abelian scheme A over κ with D(A)τ = DA,τ for every τ ∈ Σ∞,
and an OF -linear isogeny β : A→ A◦ inducing the inclusion of Dieudonné modules D(A) ⊆ D(A◦).
By a similar argument as for ι◦, we obtain a point (A, λ, ηp; β) ∈ B◦s◦(κ); and it follows that such
assignment is an inverse of ζ◦s◦(κ).

Finally, we check the two properties of ζ◦s◦ .
For (1), we check that the closed subscheme ζ◦s◦(B◦s◦ ∩ ι◦−1M†p(V◦,Kp◦)) coincides with

DL(Vs◦ , { , }s◦ , N − 1). Recall that M†p(V◦,Kp◦) is define by the condition
H1

dR(A/S)⊥τ∞ ⊆ ωA∨/S,τc
∞ .
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Note that we have H = β∗,τc
∞ωA∨/S,τc

∞ and V−1H(p) = β∗,τ∞HdR
1 (A/S)τ∞ , which implies

(V−1H(p))⊥ = (β∗,τ∞HdR
1 (A/S)τ∞)⊥ = β∗,τc

∞(H1
dR(A/S)⊥τ∞). Applying the isomorphism β∗,τc

∞ , the
above condition is equivalent to

(V−1H(p))⊥ ⊆ H,

which is the condition defining DL(Vs◦ , { , }s◦ , N − 1).
For (2), we have

ωA∨,τ∞ = ker β∗,τ∞ ' HdR
1 (A◦/S)τ∞/β∗,τ∞HdR

1 (A/S)τ∞ = HdR
1 (A◦/S)τ∞/V−1H(p)

and
ω⊥A∨,τc

∞
/ωA∨,τ∞ ' β∗,τ∞ω

⊥
A∨,τc

∞
= (β∗,τc

∞ωA∨/S,τc
∞)⊥ = H⊥.

Thus, we have
ωA∨,τ∞ ' ζ◦∗s◦OP(Vs◦ )(p), ω⊥A∨,τc

∞
/ωA∨,τ∞ ' ζ◦∗s◦OP(Vs◦ )(−1)

from which (2) follows.
The theorem is all proved. �

Corollary 5.2.5. When N ≥ 2, the normal bundle of the closed immersion
m†• : M†p(V◦,Kp◦)→ M•p(V◦,Kp◦)

is isomorphic to (m†◦)∗OM◦p(V◦,Kp◦)(−(p+ 1)).

Proof. By Theorem 5.1.5(4,5), we have that the normal bundle is isomorphic to

Hom
(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
.

Thus, the claim follows from Theorem 5.2.4. We can also argue that the normal bundle of m†•
is dual to the normal bundle of m†◦ which is isomorphic to (m†◦)∗OM◦p(V◦,Kp◦)(p + 1) by Theorem
5.2.4. �

Construction 5.2.6. Let K◦q be the stabilizer of Λ◦q for every q | p; and put K◦p := ∏
q|p K◦q. Similar

to Construction 4.3.2, we may construct a uniformization map, canonical this time,
υ◦ : S◦p(V◦,�)(Fp) ∼−→ Sh(V◦,�K◦p)× Tp(Fp)(5.4)

in Fun(K(V◦)p × T, Set)/Tp(Fp) which is an isomorphism, under which the induced action of
Gal(Fp/FΦ

p ) on the target is trivial on Sh(V◦,�K◦p).
Moreover, similar to Construction 4.3.5 and Proposition 4.3.6, for every g ∈ K◦p\U(V◦)(F+

p )/K◦p,
we may construct the Hecke correspondence

Hkg : S◦p(V◦,�)g → S◦p(V◦,�)× S◦p(V◦,�)
as a morphism in Fun(K(V◦)p × T, Sch/FΦ

p
)/Tp that is finite étale and compatible with the uni-

formization map.

5.3. Basic correspondence on ground stratum. In this subsection, we construct and study
the basic correspondence on the ground stratum M•p(V◦,�). We assume N ≥ 2.

Definition 5.3.1. We define a functor
S•p(V◦,�) : K(V◦)p × T→ PSch′/FΦ

p

Kp◦ 7→ S•p(V◦,Kp◦)
such that for every S ∈ Sch′/FΦ

p
, S•p(V◦,Kp◦)(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0;A•, λ•, ηp•) where

m (A0, λ0, η
p
0) is an element in Tp(S);
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m (A•, λ•) is a unitary OF -abelian scheme of signature type NΦ over S such that kerλ•[p∞]
is trivial (resp. contained in A•[p] of rank p2) if N is even (resp. odd);

m ηp• is, for a chosen geometric point s on every connected component of S, a π1(S, s)-
invariant Kp•-orbit of isomorphisms

ηp• : V◦ ⊗Q A∞,p → Hom$λ0,λ•

F⊗QA∞,p(H
ét
1 (A0s,A∞,p),Hét

1 (A•s,A∞,p))

of hermitian spaces over F ⊗Q A∞,p = F ⊗F+ A∞,pF+ .
The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism

S•p(V◦,�)→ Tp

in Fun(K(V◦)p × T,PSch′/FΦ
p
) which is represented by finite and étale schemes.

Now we take a point s• = (A0, λ0, η
p
0;A•, λ•, ηp•) ∈ S•p(V◦,Kp◦)(κ) where κ is a perfect field

containing FΦ
p . By Remark 3.4.10, the (κ, σ−1)-linear Verschiebung map

V : HdR
1 (A•/κ)τ∞ → HdR

1 (A•/κ)σ−1τ∞ = HdR
1 (A•/κ)τc

∞ ,

is an isomorphism. Thus, we obtain a (κ, σ)-linear isomorphism

V−1 : HdR
1 (A•/κ)τc

∞ → HdR
1 (A•/κ)τ∞ .

We define a pairing
{ , }s• : HdR

1 (A•/κ)τc
∞ × HdR

1 (A•/κ)τc
∞ → κ

by the formula {x, y}s• := 〈V−1x, y〉λ•,τ∞ (Notation 3.4.7). To ease notation, we put

Vs• := HdR
1 (A•/κ)τc

∞ .

By the same proof of Lemma 4.2.2, we know that (Vs• , { , }s•) is admissible. Thus, we have the
Deligne–Lusztig variety DL•s• := DL•(Vs• , { , }s•) (Definition A.2.1). Moreover, dimκ V ⊥s• is equal
to 0 (resp. 1) when N is even (resp. odd).

Definition 5.3.2. We define a functor

B•p(V◦,�) : K(V◦)p × T→ PSch′/FΦ
p

Kp◦ 7→ B•p(V◦,Kp◦)

such that for every S ∈ Sch′/FΦ
p
, B•p(V◦,Kp◦)(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A, λ, ηp;A•, λ•, ηp•; γ) where

m (A0, λ0, η
p
0;A, λ, ηp) is an element of M•p(V◦,Kp◦)(S);

m (A0, λ0, η
p
0;A•, λ•, ηp•) is an element of S•p(V◦,Kp◦)(S);

m γ : A→ A• is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker γ[p∞] is contained in A[p];
(b) (ker γ∗,τ∞)⊥ is contained in ωA∨/S,τc

∞ ;
(c) we have $ · λ = γ∨ ◦ λ• ◦ γ; and
(d) the Kp◦-orbit of maps v 7→ γ∗ ◦ ηp(v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp•.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.2.3.
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We obtain in the obvious way a correspondence

S•p(V◦,�) B•p(V◦,�) ι• //π•oo M•p(V◦,�)(5.5)

in Fun(K(V◦)p × T,PSch′/FΦ
p
)/Tp .

Definition 5.3.3 (Basic correspondence). We refer to (5.5) as the basic correspondence on the
ground stratum M•p(V◦,�), with S•p(V◦,�) being the source of the basic correspondence.
Theorem 5.3.4. In the diagram (5.5), take a point

s• = (A0, λ0, η
p
0;A•, λ•, ηp•) ∈ S•p(V◦,Kp◦)(κ)

where κ is a perfect field containing FΦ
p . Put B•s• := π•−1(s•), and denote by (A, λ, ηp; γ) the

universal object over the fiber B•s•.
(1) The fiber B•s• is a smooth scheme over κ, whose tangent sheaf TB•

s•/κ
fits canonically into

an exact sequence
0→ Hom

(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
→ TB•

s•/κ
→ Hom

(
ωA∨,τc

∞/(ker γ∗,τ∞)⊥,LieA∨,τc
∞

)
→ 0.

(2) The restriction of ι•κ to B•s• is locally on B•s• a closed immersion, with a canonical isomor-
phism for its normal sheaf
Nι•κ|B•s• ' Hom

(
(ker γ∗,τ∞)⊥/HdR

1 (A)⊥τ∞ ,LieA∨,τc
∞

)
' (im γ∗,τ∞)⊗OB•

s•
LieA∨,τc

∞ .

(3) The assignment sending (A0, λ0, η
p
0;A, λ, ηp;A•, λ•, ηp•; γ) ∈ B•s•(S) to the subbundles

H1 := ((γ̆∗,τ∞)−1ωA∨/S,τ∞)⊥ ⊆ HdR
1 (A•/S)τc

∞ = HdR
1 (A•/κ)τc

∞ ⊗κ OS = (Vs•)S,
H2 := γ∗,τc

∞ωA∨/S,τc
∞ ⊆ HdR

1 (A•/S)τc
∞ = HdR

1 (A•/κ)τc
∞ ⊗κ OS = (Vs•)S,

where γ̆ : A• → A is the (unique) OF -linear quasi-p-isogeny such that γ̆ ◦ γ = $ · idA,
induces an isomorphism

ζ•s• : B•s•
∼−→ DL•s• = DL•(Vs• , { , }s•).

In particular, B•s• is a geometrically irreducible projective smooth scheme in Sch/κ of di-
mension bN2 c.

(4) If we denote by (Hs•1,Hs•2) the universal object over DL•s•, then there is a canonical iso-
morphism

ζ•∗s•
(
Has•1/Hs•2

)
' ι•∗ LieA,τc

∞

of line bundles on B•s•.
Proof. For an object (A0, λ0, η

p
0;A, λ, ηp;A•, λ•, ηp•; γ) ∈ B•p(V◦,Kp◦)(S), Definition 5.3.2(a) im-

plies that there is a (unique) OF -linear quasi-p-isogeny γ̆ : A• → A such that γ̆ ◦ γ = $ · idA hence
γ ◦ γ̆ = $ · idA• . Moreover, we have the following properties from Definition 5.3.2:

(a’) ker γ̆[p∞] is contained in A•[p];
(b’) (im γ̆∗,τ∞)⊥ is contained in ωA∨,τc

∞ ;
(c’) we have $ · λ• = γ̆∨ ◦ λ ◦ γ̆; and
(d’) the Kp-orbit of maps v 7→ $−1γ̆∗ ◦ η•p(v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp.
First, we show (1). It is clear that B•s• is a scheme of finite type over κ. Consider a closed

immersion S ↪→ Ŝ in Sch′/κ defined by an ideal sheaf I satisfying I2 = 0. Take a point x =
(A0, λ0, η

p
0;A, λ, ηp;A•, λ•, ηp•; γ) ∈ B•s•(S). To compute lifting of x to Ŝ, we use the Serre–Tate

and Grothendieck–Messing theories. Note that lifting γ is equivalent to lifting both γ and γ̆,
satisfying (b,c,d) in Definition 5.3.2 and (b’,c’,d’) above, respectively. Thus, by Proposition 3.4.8,
to lift x to an Ŝ-point is equivalent to lifting
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m ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of Hcris
1 (A/Ŝ)τ∞ (of rank 1),

m ωA∨/S,τc
∞ to a subbundle ω̂A∨,τc

∞ of Hcris
1 (A/Ŝ)τc

∞ (of rank N − 1),
subject to the following requirements

(a”) ω̂A∨,τ∞ and ω̂A∨,τc
∞ are orthogonal under 〈 , 〉cris

λ,τ∞ (3.3);
(b”) (γ̆∗,τ∞Hcris

1 (A•/Ŝ)τ∞)⊥ is contained in ω̂A∨,τc
∞ .

As γ̆∗,τ∞Hcris
1 (A•/Ŝ)τ∞ = ker γ∗,τ∞ ⊆ Hcris

1 (A/Ŝ)τ∞ , (b”) is equivalent to
(c”) (ker γ∗,τ∞)⊥ is contained in ω̂A∨,τc

∞ .
To summarize, lifting x to an Ŝ-point is equivalent to lifting ωA∨/S,τc

∞ to a subbundle ω̂A∨,τc
∞ of

Hcris
1 (A/Ŝ)τc

∞ containing (ker γ∗,τ∞)⊥, and then lifting ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of ω̂⊥A∨,τc
∞
.

Thus, (1) follows.
Next, we show (2). By Theorem 5.1.5(4), the map TB•

s•/κ
→ ι•∗TM•p(V◦,Kp◦)/κ|B•

s•
is induced by

the canonical map

Hom
(
ωA∨,τc

∞/(ker γ∗,τ∞)⊥,LieA∨,τc
∞

)
→ Hom

(
ωA∨,τc

∞/H
dR
1 (A)⊥τ∞ ,LieA∨,τc

∞

)
.

It is clearly injective, whose cokernel is canonically isomorphic to

Hom
(
(ker γ∗,τ∞)⊥/HdR

1 (A)⊥τ∞ ,LieA∨,τc
∞

)
' Hom

(
(im γ∗,τ∞)∨,LieA∨,τc

∞

)
' (im γ∗,τ∞)⊗OB•

s•
LieA∨,τc

∞ .

We obtain (2).
Third, we show (3). We first show that ζ•s• has the correct image, namely, we check

m rankOS H1 = dN2 e and rankOS H2 = dN2 e − 1: By Lemma 3.4.13(2,3) and Definition 5.3.2,
we have

rankOS(ker γ∗,τ∞) + rankOS(ker γ∗,τc
∞) = 2bN2 c+ 1,

rankOS(ker γ∗,τ∞)− rankOS(ker γ∗,τc
∞) = 1,

which imply

rankOS(ker γ∗,τ∞) = dN+1
2 e, rankOS(ker γ∗,τc

∞) = dN−1
2 e.(5.6)

Thus, we obtain rankOS H1 = dN2 e. Since ker γ∗,τc
∞ ⊆ (ker γ∗,τ∞)⊥ ⊆ ωA∨/S,τc

∞ , we have
H2 = γ∗,τc

∞ωA∨/S,τc
∞ ' ωA∨/S,τc

∞/ ker γ∗,τc
∞ . Thus, we obtain rankOS H2 = dN2 e − 1.

m HdR
1 (A•/S)⊥τ∞ ⊆ H2: By Definition 5.3.2(c) and the definition of γ̆, we have λ◦ γ̆ = γ∨ ◦λ•,

which implies

(ker γ∗,τ∞)⊥ = γ−1
∗,τc
∞

(HdR
1 (A•/S)⊥τ∞).(5.7)

By Definition 5.3.2(b), H2 contains γ∗,τc
∞(ker γ∗,τ∞)⊥ in which the latter coincides with

HdR
1 (A•/S)⊥τ∞ by (5.7).

m H2 ⊆ H1: As λ ◦ γ̆ = γ∨ ◦ λ•, we have

〈(γ̆∗,τ∞)−1ωA∨/S,τ∞ , γ∗,τc
∞ωA∨/S,τc

∞〉λ•,τ∞ = 〈γ̆∗,τ∞(γ̆∗,τ∞)−1ωA∨/S,τ∞ , ωA∨/S,τc
∞〉λ,τ∞ = 0.

Thus, we have H2 ⊆ H1.
m H2 ⊆ Ha1 : Note that we have

im γ∗,τc
∞ = ker γ̆∗,τc

∞ = (γ̆∗,τc
∞)−1(Fω(p)

A∨/S,τ∞
) ⊆ F((γ̆∗,τ∞)−1ωA∨/S,τ∞) = F((H(p)

1 )⊥).
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Thus, (F((H(p)
1 )⊥))⊥ ⊆ (im γ∗,τc

∞)⊥, which in turn implies H(p)
1 ⊆ V((im γ∗,τc

∞)⊥), which
further implies V−1H

(p)
1 ⊆ (im γ∗,τc

∞)⊥, which implies im γ∗,τc
∞ ⊆ Ha1 . By comparing ranks

via (5.6), we obtain

im γ∗,τc
∞ = Ha1 .(5.8)

In particular, Ha1 contains H2 as im γ∗,τc
∞ does.

m H1 ⊆ Ha2 : Note that H(p)
2 = γ∗,τ∞(VHdR

1 (A/S)τc
∞) = V(im γ∗,τ∞) = V(ker γ̆∗,τ∞) ⊆ V(H⊥1 ).

Thus, V−1H
(p)
2 ⊆ H⊥1 , which implies H1 ⊆ (V−1H

(p)
2 )⊥ = Ha2 .

m Ha1 ⊆ Ha2 : It follows from H2 ⊆ H1.
Since the target of ζ•s• is smooth over κ by Proposition A.2.2, to see that ζ•s• is an isomorphism,

it suffices to check that for every algebraically closed field κ′ containing κ
(3.1) ζ•s• induces a bijection on κ′-points; and
(3.2) ζ•s• induces an isomorphism on the tangent spaces at every κ-point.

To ease notation, we may assume κ′ = κ.
For (3.1), we construct an inverse to the map ζ•s•(κ). Take a point y ∈ DL•s•(κ) represented by

κ-linear subspaces
HdR

1 (A•)⊥τ∞ ⊆ H2 ⊆ H1 ⊆ Vs• = HdR
1 (A•)τc

∞ .

We regard F and V as those sesquilinear maps in Remark 3.4.10. For every τ ∈ Σ∞, we define a
W (κ)-submodule DA,τ ⊆ D(A•)τ as follows.

m If τ 6∈ {τ∞, τ c
∞}, then DA,τ = D(A•)τ .

m We set DA,τ∞ := V−1H̃2, where H̃2 is the preimage of H2 under the reduction map
D(A•)τc

∞ → D(A•)τc
∞/pD(A•)τc

∞ = HdR
1 (A•)τc

∞ .
m We setDA,τc

∞
:= FH̃c

1 , where H̃c
1 is the preimage ofH⊥1 under the reduction mapD(A•)τ∞ →

D(A•)τ∞/pD(A•)τ∞ = HdR
1 (A•)τ∞ .

Finally, put DA := ⊕
τ∈Σ∞ DA,τ as a W (κ)-submodule of D(A•). We show that it is stable under

F and V. It suffices to show that both F and V stabilize DA,τ∞ ⊕DA,τc
∞ , which breaks into checking

that
m FDA,τ∞ ⊆ DA,τc

∞ , that is, FV−1H̃2 ⊆ FH̃c
1 . It suffices to show that V−1H2 (as a subspace of

HdR
1 (A•)τ∞) is contained in H⊥1 , which follow from the relation H1 ⊆ Ha2 .

m FDA,τc
∞ ⊆ DA,τ∞ , that is, FFH̃c

1 ⊆ V−1H̃2. It suffices to show pFH̃c
1 ⊆ H̃2, which obviously

holds.
m VDA,τ∞ ⊆ DA,τc

∞ , that is, VV−1H̃2 ⊆ FH̃c
1 . it suffices to show H2 ⊆ FH⊥1 , which follows

from the identity FH⊥1 = (V−1H1)⊥ and the relation H2 ⊆ Ha1 .
m VDA,τc

∞ ⊆ DA,τ∞ , that is, VFH̃c
1 ⊆ V−1H̃2. It is obvious as V−1H̃2 contains pD(A•)τ∞ .

Thus, (DA, F, V) is a Dieudonné module over W (κ). By the Dieudonné theory, there is an OF -
abelian scheme A over κ withD(A)τ = DA,τ for every τ ∈ Σ∞, and anOF -linear isogeny γ : A→ A•

inducing the inclusion of Dieudonné modules D(A) = DA ⊆ D(A•). Moreover, since pD(A•) ⊆
D(A), we have ker γ[p∞] ⊆ A[p]. Now we check that (ker γ∗,τ∞)⊥ is contained in ωA∨/S,τc

∞ , which
is equivalent to that pD(A•)∨τ∞ ∩ D(A)τc

∞ ⊆ VD(A)τ∞ . However, as H2 contains HdR
1 (A•)⊥τ∞ , we

have pD(A•)∨τ∞ ⊆ H̃2 = VD(A)τ∞ .
Let λ : A → A∨ be the unique quasi-polarization such that $λ = γ∨ ◦ λ• ◦ γ. We claim that

λ[p∞] is a polarization whose kernel is contained in A[p] of rank p2. Since H2 ⊆ H1, we have
〈H̃c

1 , H̃2〉λ•,τ∞ ⊆ pW (κ), which implies 〈D(A)τ∞ ,D(A)τc
∞〉λ•,τ∞ ⊆ pW (κ). It is enough to show

that the inclusion D(A)τc
∞ → D(A)∨τ∞ induced from 〈 , 〉λ•,τ∞ has cokernel of length N + 1. This
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follows from the facts that the cokernel of D(A•)τc
∞ ↪→ D(A•)∨τ∞ has length N − 2bN2 c, and the

cokernel of D(A)τ∞ ⊕D(A)τc
∞ ↪→ D(A•)τ∞ ⊕D(A•)τc

∞ has length 2bN2 c+ 1.
It is an easy consequence of Lemma 3.4.13(2) that the OF -abelian scheme A has signature type

NΦ − τ∞ + τ c
∞. Finally, let ηp be the unique Kp-level structure such that Definition 4.2.3(d) is

satisfied. Putting together, we obtain a point x = (A0, λ0, η
p
0;A, λ, ηp;A•, λ•, ηp•; γ) ∈ B•s•(κ) such

that ζ•s•(x) = y. It is easy to see that such assignment gives rise to an inverse of ζ•s•(κ); hence
(3.1) follows immediately.

For (3.2), let Tx and Ty be the tangent spaces at x and y as in (3.1), respectively. By Proposition
A.2.2 and the construction, the induced map (ζ•s•)∗ : Tx → Ty fits into a commutative diagram

Homκ

(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
//

��

Tx //

(ζ•
s• )∗

��

Homκ

(
ωA∨,τc

∞/(ker γ∗,τ∞)⊥,LieA∨,τc
∞

)

��
Homκ

(
H1/H2, H

a
2 /H1

)
// Ty // Homκ(H2/V as• , H

a
1 /H2)

in Mod(κ). The right vertical arrow is induced by maps

ωA∨,τc
∞/(ker γ∗,τ∞)⊥

γ∗,τc
∞−−−→ H2/V

a
s• , LieA∨,τc

∞ ' HdR
1 (A)τc

∞/ωA∨,τc
∞

γ∗,τc
∞−−−→ Ha1 /H2

which are both isomorphisms by (5.7) and (5.8), respectively. The left vertical arrow is the
composition

Homκ

(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
→ Homκ

(
H⊥1 /V

−1H2, H
⊥
2 /H

⊥
1

) ∼−→ Homκ

(
H1/H2, H

a
2 /H1

)
in which the first arrow is induced by maps

H⊥1 /V
−1H2

γ̆∗,τ∞−−−→ ωA∨,τ∞ , H⊥2 /H
⊥
1

γ̆∗,τ∞−−−→ ω⊥A∨,τc
∞
/ωA∨,τ∞

which are both isomorphisms as γ̆∗,τ∞(H⊥1 ) = ωA∨,τ∞ , γ̆∗,τ∞(V−1H2) = 0, and γ̆∗,τ∞(H⊥2 ) = ω⊥A∨,τc
∞
.

Thus, (ζ•s•)∗ : Tx → Ty is an isomorphism by the Five Lemma; hence (3.2) and (3) follow.
Finally, (4) is a consequence of (5.8). �

Remark 5.3.5. We have the following remarks concerning Theorem 5.3.4.
(1) When Kp◦ is sufficiently small, the restriction of ι•κ to B•s• is a closed immersion for every

point s• ∈ S•p(V◦,Kp◦)(κ) and every perfect field κ containing FΦ
p .

(2) In fact, one can show that the union of M†p(V◦,Kp◦) and the image of ι• : B•p(V◦,Kp◦) →
M•p(V◦,Kp◦) is exactly the basic locus of M•p(V◦,Kp◦). In particular, as long as N ≥ 5, the
basic locus of M•p(V◦,Kp◦) is not equidimensional.

Construction 5.3.6. To construct a uniformization map for S•p(V◦,�), we need to choose an
OFp-lattice Λ•p in V◦ ⊗F Fp satisfying

m Λ◦p ⊆ Λ•p ⊆ p−1Λ◦p, and
m pΛ•p ⊆ (Λ•p)∨ such that (Λ•p)∨/pΛ•p has length 0 (resp. 1) if N is even (resp. odd).

Let K•p be the stabilizer of Λ•p; and put K•p := K•p ×
∏

q|p,q6=p K◦q. Similar to Construction 4.3.2, we
may construct a uniformization map

υ• : S•p(V◦,�)(Fp) ∼−→ Sh(V◦,�K•p)× Tp(Fp)(5.9)

in Fun(K(V◦)p × T, Set)/Tp(Fp) which is an isomorphism, under which the induced action of
Gal(Fp/FΦ

p ) on the target is trivial on Sh(V◦,�K•p).
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Moreover, similar to Construction 4.3.5 and Proposition 4.3.6, for every g ∈ K•p\U(V◦)(F+
p )/K•p,

we may construct the Hecke correspondence

Hkg : S•p(V◦,�)g → S•p(V◦,�)× S•p(V◦,�)

as a morphism in Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp that is finite étale and compatible with the uni-

formization map.

5.4. Basic correspondence on link stratum. In this subsection, we construct and study the
basic correspondence on the link stratum M†p(V◦,�). We also discuss its relation with the two
previously constructed basic correspondences. We assume N ≥ 2.

Definition 5.4.1. We define a functor

S†p(V◦,�) : K(V◦)p × T→ PSch′/FΦ
p

Kp◦ 7→ S†p(V◦,Kp◦)

such that for every S ∈ Sch′/FΦ
p
, S†p(V◦,Kp◦)(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A◦, λ◦, ηp◦;A•, λ•, ηp•;ψ) where

m (A0, λ0, η
p
0;A◦, λ◦, ηp◦) is an element in S◦p(V◦,Kp◦)(S);

m (A0, λ0, η
p
0;A•, λ•, ηp•) is an element in S•p(V◦,Kp◦)(S);

m ψ : A◦ → A• is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) kerψ[p∞] is contained in A◦[p];
(b) we have $ · λ◦ = ψ∨ ◦ λ• ◦ ψ; and
(c) the Kp◦-orbit of maps v 7→ ψ∗ ◦ ηp◦(v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp•.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.2.3.

We have apparently the forgetful morphism

S†p(V◦,�)→ Tp

in Fun(K(V◦)p × T,PSch′/FΦ
p
) which is represented by finite and étale schemes.

By definition, we have the two forgetful morphisms

s†◦ : S†p(V◦,�)→ S◦p(V◦,�), s†• : S†p(V◦,�)→ S•p(V◦,�)

in Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp .

Definition 5.4.2. We define B†p(V◦,�) to be the limit of the following diagram

S◦p(V◦,�) B◦p(V◦,�) ι◦ //π◦oo M◦p(V◦,�)

S†p(V◦,�)

s†◦
OO

s†•
��

M†p(V◦,�)

m†◦
OO

m†•
��

S•p(V◦,�) B•p(V◦,�) ι• //π•oo M•p(V◦,�)

in the category Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp .
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From the definition above, we have the following commutative diagram

S◦p(V◦,�) B◦p(V◦,�) ι◦

∼
//π◦oo M◦p(V◦,�)

S†p(V◦,�)

s†◦
ff

s†•

&&

B†p(V◦,�) ι† //π†oo

b†◦
ff

b†•

&&

M†p(V◦,�)

m†◦
ff

m†•

&&
S•p(V◦,�) B•p(V◦,�) ι• //π•oo M•p(V◦,�)

(5.10)

in Fun(K(V◦)p×T, Sch/FΦ
p
)/Tp , together with the four new morphisms from B†p(V◦,�) as indicated.

It will be clear in Subsection 5.10 why we draw the diagram oblique.

Theorem 5.4.3. In the diagram (5.10), we have
(1) The square

B†p(V◦,�) ι† //

b†•
��

M†p(V◦,�)

m†•
��

B•p(V◦,�) ι• // M•p(V◦,�)
is a Cartesian diagram.

(2) Take a point s† = (A0, λ0, η
p
0;A◦, λ◦, ηp◦;A•, λ•, ηp•;ψ) ∈ S†p(V◦,Kp◦)(κ) where κ is a perfect

field containing FΦ
p . Put B†s† := π†−1(s†) and Vs† := (imψ∗,τc

∞)/HdR
1 (A•/κ)⊥τ∞ which has

dimension bN2 c. Then the assignment sending

((A0, λ0, η
p
0;A, λ, ηp;A◦, λ◦, ηp◦; β), (A0, λ0, η

p
0;A, λ, ηp;A•, λ•, ηp•; γ)) ∈ B†s†(S)

(with γ = ψ ◦ β) to (γ∗,τc
∞ωA∨/S,τc

∞)/HdR
1 (A•/S)⊥τ∞ induces an isomorphism

ζ†s† : B†s†
∼−→ P(Vs†).

Proof. For (1), unravelling all the definitions, it suffices to show that for every object
((A0, λ0, η

p
0;A, λ, ηp;A◦, λ◦, ηp◦; β), (A0, λ0, η

p
0;A, λ, ηp;A•, λ•, ηp•; γ))

of M†p(V◦,Kp◦)(S) ×M•p(V◦,Kp◦)(S) B•p(V◦,Kp◦)(S), the quasi-isogeny ψ := γ ◦ β−1 : A◦ → A• is a
quasi-p-isogeny. However, we know that β∗,τc

∞ : HdR
1 (A)τc

∞ → HdR
1 (A◦)τc

∞ is an isomorphism; and
ker β∗,τ∞ = ωA∨,τ∞ . Thus, it suffices to show that ωA∨,τ∞ is contained in ker γ, which is clear since
ωA•∨,τ∞ = 0.

For (2), we first show that for a point
x• = (A0, λ0, η

p
0;A, λ, ηp;A•, λ•, ηp•; γ) ∈ B•p(V◦,Kp◦)(S),

ι•(x•) belongs to M†p(V◦,Kp◦)(S) if and only if H1 = Ha1 , where we recall from Theorem 5.3.4
that H1 := ((γ̆∗,τ∞)−1ωA∨,τ∞)⊥. In fact, by Definition 5.1.3, ι•(x•) ∈ M†p(V◦,Kp◦)(S) if and only if
ωA∨,τ∞ = H1

dR(A)⊥τc
∞
. In the proof of Theorem 5.3.4, we see im γ∗,τc

∞ = Ha1 (5.8). As λ◦ γ̆ = γ∨ ◦λ•,
we have (im γ∗,τc

∞)⊥ = (γ̆∗,τ∞)−1H1
dR(A)⊥τc

∞
. Thus, if ωA∨,τ∞ = H1

dR(A)⊥τc
∞
, then H1 = ((im γ∗,τc

∞)⊥)⊥
which equals im γ∗,τc

∞ = Ha1 , as im γ∗,τc
∞ contains HdR

1 (A•)⊥τ∞ . On the other hand, if H1 = Ha1 , then
(γ̆∗,τ∞)−1ωA∨,τ∞ = (im γ∗,τc

∞)⊥ = (γ̆∗,τ∞)−1H1
dR(A)⊥τc

∞
, which implies easily that ωA∨,τ∞ = H1

dR(A)⊥τc
∞
.

Second, we show H1 = imψ∗,τc
∞ if x• ∈ B†s†(S). Since γ = ψ ◦ β, we have im γ∗,τc

∞ ⊆ imψ∗,τc
∞ .

As im γ∗,τc
∞ = Ha1 = H1, we have H1 ⊆ imψ∗,τc

∞ . On the other hand, it follows easily from Lemma
3.4.13(2,3) that imψ∗,τc

∞ has rank dN2 e. Thus, we must have H1 = imψ∗,τc
∞ .
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The above two claims together with Theorem 5.3.4(3) imply (2). �

Remark 5.4.4. It follows from the proof of Theorem 5.4.3 that for every s† ∈ S†p(V◦,Kp◦)(κ), if we
put s◦ := s†◦(s†) and s• := s†•(s†), then

(1) the morphism ζ◦s◦ ◦ b†◦ ◦ (ζ†s†)−1 identifies P(Vs†) as a closed subscheme of P(Vs◦) induced
by the obvious κ-linear (surjective) map Vs◦ → Vs† ; and

(2) the morphism ζ•s• ◦ b†• ◦ (ζ†s†)−1 identifies P(Vs†) as a closed subscheme (of codimension
one) of DL•(Vs• , { , }s•) defined by the condition H1 = Ha1 .

Construction 5.4.5. Put K†p := K◦p ∩ K•p. Similar to Construction 4.3.2, we construct a uni-
formization map

υ† : S†p(V◦,�)(Fp) ∼−→ Sh(V◦,�K†p)× Tp(Fp)(5.11)
in Fun(K(V◦)p × T, Set)/Tp(Fp) which is an isomorphism, under which the induced action of
Gal(Fp/FΦ

p ) on the target is trivial on Sh(V◦,�K†p).

5.5. Cohomology of link stratum. In this subsection, we study the cohomology of the link
stratum. We assume N ≥ 2.

We first construct certain Hecke correspondences for B◦p(V◦,�) extending Construction 5.2.6.
Unlike the functor S◦p(V◦,�), the natural action of K◦p = U(Λ◦p)(OF+

p
) on the functor B◦p(V◦,�)

is nontrivial. However, as we will see, such action factors through the quotient U(Λ◦p)(OF+
p

) →
U(Λ◦p)(Fp). Let K◦p1 be the kernel of the reduction map K◦p = U(Λ◦p)(OF+

p
)→ U(Λ◦p)(Fp).

Construction 5.5.1. We first define a functor
S◦p1(V◦,�) : K(V◦)p × T→ PSch′/FΦ

p

Kp◦ 7→ S◦p(V◦,Kp◦)
such that for every S ∈ Sch′/FΦ

p
, S◦p1(V◦,Kp◦)(S) is the set of equivalence classes of septuples

(A0, λ0, η
p
0;A◦, λ◦, ηp◦; η◦p) where

m (A0, λ0, η
p
0;A◦, λ◦, ηp◦) is an element in S◦p(V◦,Kp◦)(S);

m η◦p is, for a chosen geometric point s on every connected component of S, an isomorphism
η◦p : Λ◦p ⊗ Fp → HomOF (A0s[p], A◦s[p])

of hermitian spaces over OFp ⊗ Fp, where HomOF (A0s[p], A◦s[p]) is equipped with the her-
mitian form constructed similarly as in Construction 3.4.4 with respect to (λ0, λ

◦).
The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.1.2. In fact, we have a further action of U(Λ◦p)(Fp) on S◦p1(V◦,�). Moreover, similar
to Construction 4.3.5 and Proposition 4.3.6, for every g ∈ K◦p1\U(V◦)(F+

p )/K◦p1, we may construct
the Hecke correspondence

Hkg : S◦p1(V◦,�)g → S◦p1(V◦,�)× S◦p1(V◦,�)(5.12)
as a morphism in Fun(K(V◦)p × T, Sch/FΦ

p
)/Tp that is finite étale.

On the other hand, Theorem 5.2.4 implies that we have a canonical isomorphism

B◦p(V◦,�) ' S◦p1(V◦,�)
U(Λ◦p)(Fp)
× P(Λ◦p ⊗ Fp)

in the category Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp . Thus, for every g ∈ K◦p1\U(V◦)(F+

p )/K◦p1, we obtain
from (5.12) the Hecke correspondence

Hkg : B◦p(V◦,�)g → B◦p(V◦,�)× B◦p(V◦,�)
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as a morphism in Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp that is finite étale.

Now we study cohomology.

Lemma 5.5.2. Consider a p-coprime coefficient ring L.
(1) If p+ 1 is invertible in L, then the restriction map

(m†◦)∗ : Hi
T(M◦p(V◦,�), L)→ Hi

T(M†p(V◦,�), L)

is an isomorphism for every integer i 6∈ {N − 2, 2N − 2}. In particular, Hi
T(M◦p(V◦,�), L)

and Hi
T(M†p(V◦,�), L) vanish if i is odd and different from N − 2.

(2) For every i ∈ Z, both Hi
T(M◦p(V◦,�), L) and Hi

T(M†p(V◦,�), L) are free L-modules.
(3) When N is even, the action of Gal(Fp/FΦ

p ) on HN−2
T (M†p(V◦,�), L(N−2

2 )) is trivial.

Proof. By Theorem 5.2.4, for every Kp◦ ∈ K(V◦)p and every s◦ ∈ S◦p(V◦,Kp◦)(Fp), the restriction
of (m†◦)∗ to the fibers over s◦ is a morphism appeared in Lemma A.1.4.

Part (1) then follows from Lemma A.1.4(2). Part (2) follows from Lemma A.1.4(3). Part (3)
follows from Lemma A.1.4(4) and Construction 5.2.6. �

Definition 5.5.3. Let ξ ∈ H2
T(B◦p(V◦,�), L(1)) be the first Chern class of the tautological quotient

line bundle on B◦p(V◦,�) (that is, in the situation of Theorem 5.2.4, the restriction of ξ to B◦s◦ is
isomorphic to ζ◦∗s◦OP(Vs◦ )(1) for every Kp◦ ∈ K(V◦)p and every s◦ ∈ S◦p(V◦,Kp◦)(Fp)). We define
the primitive cohomology Hprim(M†p(V◦,�), L(i)) to be the kernel of the map

∪(m†◦∗ι◦! ξ) : HN−2
T (M†p(V◦,�), L(i))→ HN

T (M†p(V◦,�), L(i+ 1)).

Proposition 5.5.4. Take an object Kp◦ ∈ K(V◦)p and a rational prime ` 6= p. Let π∞,p be an
irreducible admissible representation of U(V◦)(A∞,pF+ ) with coefficients in Q` such that (π∞,p)Kp◦ is
a constituent of Hprim(M†p(V◦,Kp◦),Q`). Then one can complete π∞,p to an automorphic represen-
tation π = π∞,p ⊗ π∞ ⊗

∏
q|p πq of U(V◦)(AF+) such that π∞ is trivial; πq is unramified for q 6= p;

and
(1) when N is even, πp is a constituent of an unramified principal series;
(2) when N is odd, BC(πp) is a constituent of an unramified principal series of GLN(Fp) whose

Satake parameter contains {−p,−p−1}.

Proof. Put K◦p1 := K◦p1×
∏

q|p,q 6=p K◦q. By Construction 5.5.1, the cohomology HN−2
T (M†p(V◦,Kp◦),Q`)

is an Q`[Kp◦K◦p1\U(V◦)(A∞F+)/Kp◦K◦p1]-module for which Hprim(M†p(V◦,Kp◦),Q`) is a submodule.
In the uniformization map (5.4), we let s0 ∈ S◦p(V◦,Kp◦)(Fp) be the point corresponding to the

unit element on the right-hand side. Put
Hprim
s0 (M†p(V◦,Kp◦),Q`) := Hprim(M†p(V◦,Kp◦),Q`)

⋂
HN−2(M†p(V◦,Kp◦) ∩ π◦(s0),Q`).

Then Hprim
s0 (M†p(V◦,Kp◦),Q`) is a representation of U(Λ◦p)(Fp) = K◦p/K◦p1, which is (isomorphic to)

the representation ΩN studied in Subsection C.2. Then we may identify Hprim(M†p(V◦,Kp◦),Q`)
with

MapK◦p

U(V◦)(F+)\U(V◦)(A∞F+)/Kp◦ ∏
q|p,q6=p

K◦q,ΩN

(5.13)

as Q`[Kp◦K◦p1\U(V◦)(A∞F+)/Kp◦K◦p1]-modules. It is well-known (see, for example, [HM78]) that the
representation ΩN is irreducible and determined by N up to isomorphism. Therefore, (5.13) is a
submodule of Map(U(V◦)(F+)\U(V◦)(A∞F+)/Kp◦K◦p1,Q`). In particular, we can complete π∞,p to
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an automorphic representation π = π∞,p⊗ π∞⊗
∏

q|p πq of U(V◦)(AF+) such that π∞ is trivial; πq
is unramified for q 6= p; and πp|K◦p contains ΩN .

In case (1), by Proposition C.2.1(2), we know that ΩN has nonzero Borel fixed vectors. Thus,
πp is a constituent of an unramified principal series.

In case (2), we first consider the case where N = 3. As πp|K◦p contains Ω3, it has to be
c-IndU3

K3Ω3 by Proposition C.2.1(3) and [MP96, Theorem 6.11(2)]. Thus, by [MP96, Proposi-
tion 6.6], πp|K◦p is irreducible supercuspidal, which is actually the unique supercuspidal unipo-
tent representation of U(V◦)(F+

p ). In fact, c-IndU3
K3Ω3 is the representation πs(1) appeared in

[Rog90, Proposition 13.1.3(d)], after identifying Q` with C. By [Rog90, Proposition 13.2.2(c)],
BC(πs(1)) is the tempered constituent of the unramified principal series of GL3(Fp) with the Sa-
take parameter {−p, 1,−p−1}. Now for general N = 2r+ 1, as πp|K◦p contains ΩN , by Proposition
C.2.1(4) and [MP96, Theorem 6.11(2)], πp is a constituent the normalized parabolic induction of
πs(1)�χ1 � · · ·�χr−1 for some unramified characters χ1, . . . , χr−1 of F×. Therefore, by the com-
patibility of local base change and induction, BC(πp) is a constituent of an unramified principal
series of GLN(Fp) whose Satake parameter contains {−p,−p−1}.

The proposition is proved. �

5.6. Intersection on ground stratum. In this subsection, we describe certain scheme-
theoretical intersection on the ground stratum, which will be used in the next subsection. We
assume N ≥ 2.

Take an object Kp◦ ∈ K(V◦)p. Given two (possibly same) points s•1, s•2 ∈ S•p(V◦,Kp◦)(κ) for a
perfect field κ containing FΦ

p , we put

B•s•1,s•2 := B•s•1 ×M•p(V◦,Kp◦)κ B•s•2
as the (possibly empty) fiber product of ι•κ | B•s•1 and ι•κ | B•s•2 . To describe B•s•1,s•2 , we need to use
some particular cases of the Hecke correspondences introduced in Construction 5.3.6. We now
give more details.

Definition 5.6.1. For every integer 0 ≤ j ≤ N , we define a functor

S•p(V◦,�)j : K(V◦)p × T→ PSch′/FΦ
p

Kp◦ 7→ S•p(V◦,Kp◦)j

such that for every S ∈ Sch′/FΦ
p
, S•p(V◦,Kp◦)j(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;φ•) where

m (A0, λ0, η
p
0;A•i , λ•i , η

p•
i ) for i = 1, 2 are two elements in S•p(V◦,Kp◦)(S); and

m φ• : A•1 → A•2 is an OF -linear quasi-isogeny such that
(a) pφ• ◦ λ•−1

1 is a quasi-p-isogeny; and ker(pφ•)[p] has rank p2(N−j);
(b) φ•[q∞] is an isomorphism for every prime q of F+ above p that is not p;
(c) we have φ•∨ ◦ λ•2 ◦ φ• = λ•1; and
(d) the Kp◦-orbit of maps v 7→ φ•∗ ◦ η

p•
1 (v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp•2 .

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.2.3. Finally, we denote

Hkj : S•p(V◦,�)j → S•p(V◦,�)× S•p(V◦,�)

the morphism in Fun(K(V◦)p × T, Sch/FΦ
p
)/Tp induced by the assignment

(A0, λ0, η
p
0;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;φ•) 7→ ((A0, λ0, η

p
0;A•1, λ•1, η

p•
1 ), (A0, λ0, η

p
0;A•2, λ•2, η

p•
2 )).
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Remark 5.6.2. When Kp◦ is sufficiently small, the morphism

Hkj : S•p(V◦,Kp◦)j → S•p(V◦,Kp◦)× S•p(V◦,Kp◦)

is a closed immersion for every j; and the images of Hkj for all j are mutually disjoint.

Now we take a point s• = (A0, λ0, η
p
0;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;φ•) ∈ S•p(V◦,Kp◦)j(κ) where κ is a

perfect field containing FΦ
p . By Definition 5.6.1(c), we have (pφ• ◦ λ•−1

1 )∨ = pφ•−1 ◦ λ•−1
2 . Thus,

pφ•−1 ◦ λ•−1
2 hence pφ•−1 are quasi-p-isogenies as well. In particular, for every τ ∈ Σ∞, we may

consider

ker(pφ•)∗,τ := ker
(
(pφ•)∗,τ : HdR

1 (A•1/κ)τ → HdR
1 (A•2/κ)τ

)
,

im(pφ•−1)∗,τ := im
(
(pφ•−1)∗,τ : HdR

1 (A•2/κ)τ → HdR
1 (A•1/κ)τ

)
.

Lemma 5.6.3. We have
(1) im(pφ•−1)∗,τ ⊆ ker(pφ•)∗,τ for every τ ∈ Σ∞;
(2) dimκ ker(pφ•)∗,τ = N − j for τ ∈ {τ∞, τ c

∞};
(3) im(pφ•−1)∗,τ ∩ HdR

1 (A•1/κ)⊥τc = 0 for τ ∈ {τ∞, τ c
∞};

(4) (im(pφ•−1)∗,τ )⊥ = ker(pφ•)∗,τc for τ ∈ {τ∞, τ c
∞}; and

(5) dimκ im(pφ•−1)∗,τ = j for τ ∈ {τ∞, τ c
∞}.

In particular, S•p(V◦,Kp◦)j is empty if j > bN2 c.

Proof. For (1), it is obvious since (pφ•) ◦ (pφ•−1) = p2.
For (2), by Definition 5.6.1(a), we have dimκ ker(pφ•)∗,τ∞+dimκ ker(pφ•)∗,τc

∞ = 2(N− j). Using
the isomorphisms V : HdR

1 (A•1/κ)τ∞ → HdR
1 (A•1/κ)τc

∞ and V : HdR
1 (A•2/κ)τ∞ → HdR

1 (A•2/κ)τc
∞ , we

have dimκ ker(pφ•)∗,τ∞ = dimκ ker(pφ•)∗,τc
∞ hence both equal to N − j.

For (3), it suffices to consider τ = τ∞ due to the isomorphism V. Via φ•, we regard D(A•2) as
a lattice in D(A•1)Q. By Definition 5.6.1(a), we have pD(A•2)τ∞ ⊆ D(A•1)τ∞ ⊆ D(A•2)∨τc

∞
(Notation

3.4.12). Suppose HdR
1 (A•1/κ)⊥τc

∞
⊆ im(pφ•−1)∗,τ∞ . Then one can find x2 ∈ D(A•2)τ∞ and x1 ∈

D(A•1)∨τc
∞
\ D(A•1)τ∞ such that px1 = px2. It follows that 〈x2, Vx2〉λ•2,τ∞ = 〈x1, Vx1〉λ•1,τ∞ does

not belong to W (κ), which is a contradiction. Here, we regard V as Verschiebung maps on for
Dieudonné modules of A•1 and A•2, which are isomorphisms.

For (4), as λ•1 ◦ φ•−1 = φ•∨ ◦ λ•2, we have for τ ∈ {τ∞, τ c
∞} that

(im(pφ•−1)∗,τ )⊥ = ((pφ•)∗,τc)−1HdR
1 (A•1/κ)⊥τ ,

which equals ker(pφ•)∗,τc by (3).
For (5), by (2,3,4), we have dimκ im(pφ•−1)∗,τ = j for τ ∈ {τ∞, τ c

∞}.
The last claim follows from (1,2,5). �

By Lemma 5.6.3(1,4), for τ ∈ {τ∞, τ c
∞}, we may put

HdR
1 (φ•)τ := ker(pφ•)∗,τ

im(pφ•−1)∗,τ
;

and we have the induced κ-bilinear pairing

〈 , 〉λ•1,τ∞ : HdR
1 (φ•)τ∞ × HdR

1 (φ•)τc
∞ → κ.

On the other hand, the (κ, σ−1)-linear Verschiebung map V : HdR
1 (A•1/κ)τ∞ → HdR

1 (A•1/κ)τc
∞ induces

a (κ, σ−1)-linear isomorphism V : HdR
1 (φ•)τ∞ → HdR

1 (φ•)τc
∞ . We define a pairing

{ , }s• : HdR
1 (φ•)τc

∞ × HdR
1 (φ•)τc

∞ → κ
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by the formula {x, y}s• := 〈V−1x, y〉λ•1,τ∞ . To ease notation, we put

Vs• := HdR
1 (φ•)τc

∞ .

Lemma 5.6.4. Suppose j ≤ bN2 c − 1. The pair (Vs• , { , }s•) is admissible of rank N − 2j
(Definition A.1.1) satisfying dimκ V as• = N − 2bN2 c. In particular, we have the geometrically
irreducible smooth projective scheme DL•(Vs• , { , }s•) ∈ Sch/κ of dimension bN2 c− j as introduced
in Definition A.2.1.

Proof. By Lemma 5.6.3(2,5), we have dimκ Vs• = N−2j. By Lemma 5.6.3(3,4), we have dimκ V as• =
N − 2bN2 c. The lemma follows by Proposition A.2.2. �

Now consider a connected scheme S ∈ Sch′/κ and a point x ∈ B•s•1,s•2(S) represented by a quat-
tuordecuple (A0, λ0, η

p
0;A, λ, ηp;A•1, λ•1, η

p•
1 ; γ1;A•2, λ•2, η

p•
2 ; γ2).

Lemma 5.6.5. There exists a unique integer j satisfying 0 ≤ j ≤ bN2 c − 1 such that s• :=
(A0, λ0, η

p
0;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;φ•) is an element in S•p(V◦,Kp◦)j(S), where φ• := γ2◦γ−1

1 . More-
over, we have

im(pφ•−1)∗,τc
∞ ⊆ H2 ⊆ H1 ⊆ ker(pφ•)∗,τc

∞ ,(5.14)

where H2 ⊆ H1 ⊆ HdR
1 (A•1/S)τc

∞ are subbundles in Theorem 5.3.4 for the image of x in B•s•1(S).

Proof. First, by definition, we have ker(pφ•)[p] = ker(γ2 ◦ γ̆1)[p], which is an OF -stable finite flat
subgroup of A•1[p]. Thus, as S is connected, there is a unique integer j satisfying 0 ≤ j ≤ N such
that ker(pφ•)[p] has rank p2(N−j).

Second, we show that pφ• ◦ λ•−1
1 is a quasi-p-isogeny, that is, γ2 ◦ γ̆1 ◦ λ•−1

1 is a quasi-p-isogeny.
By Theorem 5.3.4(3), γ1∗,τc

∞ωA∨/S,τc
∞ contains HdR

1 (A•1)⊥τ∞ , which implies γ̆1∗,τ∞HdR
1 (A•1)⊥τ∞ = 0. In

other words, kerλ•1[p∞] is contained in ker γ̆1[p∞]. Thus, γ̆1 ◦ λ•−1
1 is already a quasi-p-isogeny; so

is pφ• ◦ λ•−1
1 .

Third, we show that j is at most bN2 c − 1. (Note that Lemma 5.6.3 already implies that
j ≤ bN2 c.) Theorem 5.3.4 implies rankOS H2 + 1 = rankOS H1 and HdR

1 (A•1/S)⊥τ∞ ⊆ H2. Lemma
5.6.3(3) implies rankOS H2 ≥ rankOS im(pφ•−1)∗,τc

∞ + 1. Thus, by Lemma 5.6.3(2,5) and (5.14), we
have (N − j)− j ≥ 2, that is, j ≤ bN2 c − 1.

Definition 5.6.1(b,c,d) are obvious. Thus, it remains to check (5.14). On one hand, we have

im(pφ•−1)∗,τc
∞ = im(γ1 ◦ γ̆2)∗,τc

∞ = γ1∗,τc
∞ γ̆2∗,τc

∞HdR
1 (A•2/S)τc

∞

= γ1∗,τc
∞ γ̆2∗,τc

∞ωA•∨2 /S,τc
∞ ⊆ γ1∗,τc

∞ωA•∨1 /S,τc
∞ = H2.

On the other hand, since γ̆1∗,τ∞ im(pφ•−1)∗,τ∞ = γ̆1∗,τ∞ im(γ1 ◦ γ̆2)∗,τ∞ = 0, we have the in-
clusion im(pφ•−1)∗,τ∞ ⊆ (γ̆1∗,τ∞)−1ωA∨,τ∞ . Thus, H1 = ((γ̆1∗,τ∞)−1ωA∨,τ∞)⊥ is contained in
(im(pφ•−1)∗,τ∞)⊥, which is ker(pφ•)∗,τc

∞ by Lemma 5.6.3(4). The lemma is proved. �

Definition 5.6.6. By Lemma 5.6.5, we have a morphism

B•s•1,s•2 →
bN2 c−1∐
j=0

Hk−1
j (s•1, s•2).

For a point s• ∈ Hk−1
j (s•1, s•2)(κ) for some 0 ≤ j ≤ bN2 c − 1, we denote by B•s• the inverse image

under the above morphism, which is an open and closed subscheme of B•s•1,s•2 .
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Theorem 5.6.7. Let s•1, s•2 ∈ S•p(V◦,Kp◦)(κ) be two points for a perfect field κ containing FΦ
p . We

have

B•s•1,s•2 =
bN2 c−1∐
j=0

∐
s•∈Hk−1

j (s•1,s•2)(κ)

B•s• .

Take s• = (A0, λ0, η
p
0;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;φ•) ∈ Hk−1

j (s•1, s•2)(κ) for some 0 ≤ j ≤ bN2 c − 1.
(1) Denote by H̄i the image of Hi in HdR

1 (φ•)τc
∞ ⊗κ OS = (Vs•)S for i = 1, 2. Then The

assignment sending (A0, λ0, η
p
0;A, λ, ηp;A•1, λ•1, η

p•
1 ; γ1;A•2, λ•2, η

p•
2 ; γ2) ∈ B•s•(S) to (H̄1, H̄2)

induces an isomorphism
ζ•s• : B•s• → DL•(Vs• , { , }s•)

(Definition A.2.1) in Sch/κ.
(2) The cokernel of the map

TB•
s•1
/κ |B•

s•

⊕
TB•

s•2
/κ|B•

s•
→ ι•∗TM•p(V◦,Kp◦)/κ|B•

s•

is canonically isomorphic to

ζ•∗s•
((
σ∗H̄s•2

)
⊗ODL•(Vs• ,{ , }s• )

(
H̄as•1/H̄s•2

))
where (H̄s•1, H̄s•2) is the universal object over DL•(Vs• , { , }s•).

Proof. The decomposition of B•s•1,s•2 follows directly from the definition and the fact that
Hk−1

j (s•1, s•2) is isomorphic to a finite disjoint union of Specκ.
Now we show (1). We first notice that Lemma 5.6.3 implies that (H̄1, H̄2) is an element in

DL•(Vs• , { , }s•)(S).
Since the target of ζ•s• is smooth over κ by Lemma 5.6.4, to see that ζ•s• is an isomorphism, it

suffices to check that for every algebraically closed field κ′ containing κ
(1.1) ζ•s• induces a bijection on κ′-points; and
(1.2) ζ•s• induces an isomorphism on the tangent spaces at every κ′-point.

To ease notation, we may assume κ′ = κ.
For (1.1), we construct an inverse to the map ζ•s•(κ). Take a point y ∈ DL•(Vs• , { , }s•)(κ)

represented by κ-linear subspaces V as• ⊆ H̄2 ⊆ H̄1 ⊆ Vs• , or equivalently, subspaces
im(pφ•−1)∗,τc

∞ ⊕ HdR
1 (A•1/κ)⊥τ∞ ⊆ H2 ⊆ H1 ⊆ ker(pφ•)∗,τc

∞ ⊆ HdR
1 (A•1/κ)τc

∞ .

These give rise to a point y1 ∈ DL•(Vs•1 , { , }s•1)(κ). By Theorem 5.3.4(3), we obtain a unique point
x1 = (A0, λ0, η

p
0;A, λ, ηp;A•1, λ•1, η

p•
1 ; γ1) ∈ B•s•1(κ) such that ζ•s•1(x1) = y1. Put γ2 := φ•◦γ1 : A→ A•2.

We claim that γ2 is a quasi-p-isogeny. In fact, as λ ◦ γ̆1 = γ∨1 ◦ λ•1, 〈im γ1∗,τ∞ , im γ1∗,τc
∞〉λ•1,τ∞ = 0.

Thus, we have
im γ1∗,τc

∞ ⊆ (im γ1∗,τ∞)⊥ = (V−1γ1∗,τc
∞ωA∨,τc

∞)⊥ = Ha2 ⊆ ker(pφ•)∗,τc
∞ .

By the isomorphisms V : HdR
1 (A•1/κ)τ∞ → HdR

1 (A•1/κ)τc
∞ and V : HdR

1 (A•2/κ)τ∞ → HdR
1 (A•2/κ)τc

∞ , we
obtain im γ1∗,τ∞ ⊆ ker(pφ•)∗,τ∞ . In particular, im(pφ• ◦ γ1)∗,τ = 0 for every τ ∈ Σ∞; in other
words, γ2 is a quasi-p-isogeny. Now we show that x2 := (A0, λ0, η

p
0;A, λ, ηp;A•2, λ•2, η

p•
2 ; γ2) satisfies

Definition 5.3.2(a–d).
For (a), it suffices to show that pγ−1

2 is a quasi-p-isogeny, equivalently, γ−1
1 ◦ (pφ•−1) is a quasi-

p-isogeny. However, we have im(pφ•−1)∗,τ∞ = V−1 im(pφ•−1)∗,τc
∞ ⊆ V−1H2 = im γ1∗,τ∞ , hence

im(pφ•−1)∗,τc
∞ ⊆ im γ1∗,τc

∞ using the action of V, which together imply that γ−1
1 ◦ (pφ•−1) is a

quasi-p-isogeny.
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For (b), we identify D(A) as submodules of both D(A•1) and D(A•2) via γ1 and γ2, respectively.
Then we need to show that pD(A•2)∨τ∞ ∩D(A)τc

∞ ⊆ VD(A)τ∞ . As pφ•−1 ◦ λ•−1
2 is a quasi-p-isogeny,

we have pD(A•2)∨τ∞ ⊆ D(A•1)τc
∞ . Moreover, the image of pD(A•2)∨τ∞ in D(A•1)τc

∞/pD(A•1)τc
∞ =

HdR
1 (A•1)τc

∞ is contained in im(pφ•−1)∗,τc
∞ ⊕HdR

1 (A•1/κ)⊥τ∞ , which is further contained in H2. Thus,
pD(A•2)∨τ∞ ∩ D(A)τc

∞ ⊆ VD(A)τ∞ as VD(A)τ∞ is the inverse image of H2 in D(A•1)τc
∞ .

For (c) and (d), they follow obviously.
To summarize, x2 belongs to B•s•2(κ); and x := (x1, x2) is an element in B•s•(κ) such that ζ•s•(x) =

y. It is easy to see that such assignment gives rise to an inverse of ζ•s•(κ); hence (1.1) follows
immediately.

For (1.2), let Tx and Ty be the tangent spaces at x and y as in (1.1), respectively. By Theorem
5.3.4(1), we have a canonical short exact sequence

0→ Homκ

(
ωA∨,τ∞ ,

ω⊥A∨,τc
∞

ωA∨,τ∞

)
→ Tx → Homκ

(
ωA∨,τc

∞

(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥ ,LieA∨,τc
∞

)
→ 0.

Then by Proposition A.2.2 and the construction, the induced map (ζ•s•)∗ : Tx → Ty fits into a
commutative diagram

Homκ

(
ωA∨,τ∞ ,

ω⊥A∨,τc
∞

ωA∨,τ∞

)
//

��

Tx //

(ζ•
s• )∗

��

Homκ

(
ωA∨,τc

∞

(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥ ,LieA∨,τc
∞

)

��

Homκ

(
H̄1/H̄2, H̄

a
2 /H̄1

)
// Ty // Homκ(H̄2/V as• , H̄

a
1 /H̄2)

in Mod(κ). The left vertical arrow is the composition

Homκ

(
ωA∨,τ∞ , ω

⊥
A∨,τc

∞
/ωA∨,τ∞

)
→ Homκ

(
H⊥1 /V

−1H2, H
⊥
2 /H

⊥
1

)
∼−→ Homκ

(
H1/H2, H

a
2 /H1

)
' Homκ

(
H̄1/H̄2, H̄

a
2 /H̄1

)
,

which is an isomorphism. The right vertical arrow is induced by maps
ωA∨,τc

∞

(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥
γ1∗,τc

∞−−−−→ H2

im(pφ•−1)∗,τc
∞ ⊕ HdR

1 (A•1/κ)⊥τ∞
' H̄2/V

a
s• ,

LieA∨,τc
∞ ' HdR

1 (A)τc
∞/ωA∨,τc

∞

γ1∗,τc
∞−−−−→ Ha1 /H2 ' H̄a1 /H̄2.

As ker γ2∗,τ∞ = im γ̆2∗,τ∞ , we have
ωA∨,τc

∞

(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥ '
γ1∗,τ∞ωA∨,τc

∞

im(γ1 ◦ γ̆2)∗,τc
∞ + HdR

1 (A•1/κ)⊥τ∞
= H2

im(pφ•−1)∗,τc
∞ ⊕ HdR

1 (A•1/κ)⊥τ∞
,

which implies that the first map is an isomorphism. By Theorem 5.3.4(4), the second map is an
isomorphism as well. Thus, (ζ•s•)∗ : Tx → Ty is an isomorphism by the Five Lemma; hence (1.2)
and (1) follow.

Then we show (2). Theorem 5.3.4(2) implies that the cokernel of the map

TB•
s•1
/κ |B•

s•

⊕
TB•

s•2
/κ|B•

s•
→ ι•∗TM•p(V◦,Kp◦)/κ|B•

s•

is canonically isomorphic to

Hom
(
(ker γ1∗,τ∞ + ker γ2∗,τ∞)⊥/HdR

1 (A)⊥τ∞ ,LieA∨,τc
∞

)
.(5.15)
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As ker γ2∗,τ∞ = im γ̆2∗,τ∞ , we have
HdR

1 (A)τ∞
ker γ1∗,τ∞ + ker γ2∗,τ∞

' im γ1∗,τ∞
im(γ1 ◦ γ̆2)∗,τ∞

= im γ1∗,τ∞
im(pφ•−1)∗,τ∞

' V im γ1∗,τ∞
V im(pφ•−1)∗,τ∞

.(5.16)

However, we have V im γ1∗,τ∞ = (γ1∗,τc
∞ωA,τc

∞)(p) and V im(pφ•−1)∗,τ∞ = (im(pφ•−1)∗,τc
∞)(p). Thus,

(5.16) is isomorphic to σ∗H̄s•2, hence

(5.15) ' Hom
(
(σ∗H̄s•2)∨,LieA∨,τc

∞

)
'
(
σ∗H̄s•2

)
⊗ODL•(Vs• ,{ , }s• )

(
H̄as•1/H̄s•2

)
,

where we use Theorem 5.3.4(4) for the last isomorphism. We have proved (2) and the theorem. �

We also need a description for
B†s• := B•s• ×M•p(V◦,Kp◦) M†p(V◦,Kp◦)

for s• ∈ Hk−1
j (s•1, s•2)(κ). It is clear that if we put

B†s•i := B•s•i ×M•p(V◦,Kp◦) M†p(V◦,Kp◦)

for i = 1, 2, then
B†s• = B†s•1 ×M†p(V◦,Kp◦) B†s•2 .

By definition, for every S ∈ Sch/κ, B†s•(S) is the set of equivalence classes of unvigintuples
(A0, λ0, η

p
0;A, λ, ηp;A◦, λ◦, ηp◦;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ; β, γ1, γ2, ψ1, ψ2, φ

•)
rendering the diagram

A•1
φ• // A•2

A

γ1
``

γ2
>>

β

��
A◦

ψ1

QQ

ψ2

MM

commute. Here, the letters remain the same meaning as in our previous moduli problems. Put

S†s• := {s•} ×S•p(V◦,Kp◦)×S•p(V◦,Kp◦)
(
S†p(V◦,Kp◦)× S†p(V◦,Kp◦)

)
×S◦p(V◦,Kp◦)×S◦p(V◦,Kp◦) S◦p(V◦,Kp◦)

where S◦p(V◦,Kp◦)→ S◦p(V◦,Kp◦)×S◦p(V◦,Kp◦) is the diagonal morphism. Then we have a canonical
map

π†s• : B†s• → S†s•
of κ-schemes by forgetting (A, λ, ηp) and related morphisms.

Theorem 5.6.8. Let s•1, s•2 ∈ S•p(V◦,Kp◦)(κ) be two points for a perfect field κ containing FΦ
p .

Take s• ∈ Hk−1
j (s•1, s•2)(κ) for some 0 ≤ j ≤ bN2 c − 1. Then the scheme S†s• is a disjoint of

(p+ 1)(p3 + 1) · · · (p2bN2 c−2j−1 + 1) copies of Specκ.
Take a point t† = (A0, λ0, η

p
0;A◦, λ◦, ηp◦;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;ψ1, ψ2, φ

•) ∈ S†s•(κ).
(1) The assignment sending

(A0, λ0, η
p
0;A, λ, ηp;A◦, λ◦, ηp◦;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ; β, γ1, γ2, ψ1, ψ2, φ

•) ∈ B†s•(S)
to H2/(im(pφ•−1)∗,τc

∞ + HdR
1 (A•/S)⊥τ∞) induces an isomorphism

ζ†t† : (π†s•)−1(t†) ∼−→ P(Vt†)
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where we put
Vt† := im(ψ1)∗,τc

∞

im(pφ•−1)∗,τc
∞ + HdR

1 (A•/S)⊥τ∞
which has dimension bN2 c − j.

(2) The cokernel of the map
TB†

s•1
/κ |(π†

s• )−1(t†)

⊕
TB†

s•2
/κ|(π†

s• )−1(t†) → ι•∗TM†p(V◦,Kp◦)/κ|(π†
s• )−1(t†)

is canonically isomorphic to

ζ†∗t†

(
(σ∗Ht†)⊗OP(V

t† )
OP(V

t† )(1)
)

where Ht† is the universal object, namely, the tautological bundle on P(Vt†).
Proof. In fact, the assignment sending (A0, λ0, η

p
0;A◦, λ◦, ηp◦;A•1, λ•1, η

p•
1 ;A•2, λ•2, η

p•
2 ;ψ1, ψ2, φ

•) ∈
S†s•(S) to im(ψ1)∗,τ∞c induces a bijection from S†s•(S) to the subbundles H ⊆ HdR

1 (A•/S)τc
∞ of rank

dN2 e satisfying im(pφ•−1)∗,τc
∞ ⊗κ OS ⊆ H ⊆ ker(pφ•)∗,τc

∞ ⊗κ OS and 〈V−1H,H〉τc
∞ = 0. Thus, we

know that S†s• is a disjoint of (p+ 1)(p3 + 1) · · · (p2bN2 c−2j−1 + 1) copies of Specκ.
For (1), we denote by s†1 the image of t† in S†p(V◦,Kp◦)(κ) in the first factor. Then a point

(A0, λ0, η
p
0;A, λ, ηp;A◦, λ◦, ηp◦;A•1, λ•1, η

p•
1 ; β, γ1) ∈ B†

s†1
(S) belongs to B†s•(S) if and only if H2 con-

tains im(pφ•−1)∗,τc
∞ ⊗κ OS. Thus, (1) follows from Theorem 5.4.3(2).

For (2), it follows from Theorem 5.6.7(2) and the isomorphism(
H̄as•1/H̄s•2

)
|P(V

t† ) =
(
H̄s•1/H̄s•2

)
|P(V

t† ) ' OP(V
t† )(1).

�

5.7. Incidence maps on ground stratum. In this subsection, we define and study the incidence
maps on ground stratum. We assume N ≥ 2. In order to have a uniformization map for S•p(V◦,�),
we also choose data as in Construction 5.3.6.
Definition 5.7.1. We denote

m T◦N,p the Hecke algebra Z[K◦p\U(V◦)(F+
p )/K◦p];

m T•N,p the Hecke algebra Z[K•p\U(V◦)(F+
p )/K•p];

m T•◦N,p ∈ Z[K•p\U(V◦)(F+
p )/K◦p] the characteristic function of K•pK◦p; and

m T◦•N,p ∈ Z[K◦p\U(V◦)(F+
p )/K•p] the characteristic function of K◦pK•p.

Moreover, we define the intertwining Hecke operator to be
I◦N,p := T◦•N,p ◦ T•◦N,p ∈ T◦N,p

where the composition is taken as composition of cosets.
Remark 5.7.2. We remind the readers that according to our convention, the unit elements of
Z[K◦p\U(V◦)(F+

p )/K◦p] and Z[K•p\U(V◦)(F+
p )/K•p] are 1K◦p and 1K•p , respectively. However, when N

is odd, K◦p and K•p have different volumes under a common Haar measure on U(V◦)(F+
p ); in other

words, the convolution products on the two Hecke algebras are not induced by the same Haar
measure on U(V◦)(F+

p ).
Let L be a p-coprime coefficient ring. By Construction 5.2.6 and Construction 5.3.6, we have

canonical isomorphisms
L[Sh(V◦,�K◦p)] ' H0

T(S◦p(V◦,�), L),
L[Sh(V◦,�K•p)] ' H0

T(S•p(V◦,�), L),
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in Fun(K(V◦)p,Mod(L[K◦p\U(V◦)(F+
p )/K◦p])) and in Fun(K(V◦)p,Mod(L[K•p\U(V◦)(F+

p )/K•p])), in-
duced by υ◦ (5.4) and υ• (5.9), respectively.

Construction 5.7.3. Recall from Definition 5.5.3 the class ξ ∈ H2
T(B◦p(V◦,�), L(1)), which is the

first Chern class of the tautological quotient line bundle on B◦p(V◦,�). Put r := bN2 c ≥ 1. We
construct three pairs of maps in Fun(K(V◦n)psp,Mod(L)) as follows:

inc◦! : L[Sh(V◦,�K◦p)]
∼−→ H0

T(S◦p(V◦,�), L) π◦∗−−→ H0
T(B◦p(V◦,�), L)

∪ξN−r−1
−−−−−→ H2(N−r−1)

T (B◦p(V◦,�), L(N − r − 1))
ι◦!−→ H2(N−r−1)

T (M◦p(V◦,�), L(N − r − 1)),

inc∗◦ : H2r
T (M◦p(V◦,�), L(r)) ι◦∗−→ H2r

T (B◦p(V◦,�), L(r))
∪ξN−r−1
−−−−−→ H2(N−1)

T (B◦p(V◦,�), L(N − 1))
π◦!−→ H0

T(S◦p(V◦,�), L) ∼−→ L[Sh(V◦,�K◦p)];

inc†! : L[Sh(V◦,�K◦p)]
∼−→ H0

T(S◦p(V◦,�), L) π◦∗−−→ H0
T(B◦p(V◦,�), L)

∪ξN−r−2
−−−−−→ H2(N−r−2)

T (B◦p(V◦,�), L(N − r − 2))
ι◦!−→ H2(N−r−2)

T (M◦p(V◦,�), L(N − r − 2))
m†◦∗−−→ H2(N−r−2)

T (M†p(V◦,�), L(N − r − 2))
m†•!−−→ H2(N−r−1)

T (M•p(V◦,�), L(N − r − 1)),

inc∗† : H2r
T (M•p(V◦,�), L(r)) m†•∗−−→ H2r

T (M†p(V◦,�), L(r))
m†◦!−−→ H2(r+1)

T (M◦p(V◦,�), L(r + 1))
ι◦∗−→ H2(r+1)

T (B◦p(V◦,�), L(r + 1)
∪ξN−r−2
−−−−−→ H2(N−1)

T (B◦p(V◦,�), L(N − 1))
π◦!−→ H0

T(S◦p(V◦,�), L) ∼−→ L[Sh(V◦,�K◦p)];

inc•! : L[Sh(V◦,�K•p)]
∼−→ H0

T(S•p(V◦,�), L) π•∗−−→ H0
T(B•p(V◦,�), L)

ι•!−→ H2(N−r−1)
T (M•p(V◦,�), L(N − r − 1)),

inc∗• : H2r
T (M•p(V◦,�), L(r)) ι•∗−→ H2r

T (B•p(V◦,�), L(r))
π•!−→ H0

T(S•p(V◦,�), L) ∼−→ L[Sh(V◦,�K•p)].
Note that the construction of the second pair only makes sense when N ≥ 3; and when N = 2,
we regard inc†! and inc∗† as zero maps. In fact, the two maps in each pair are essentially Poincaré
dual to each other.

Definition 5.7.4. Suppose N = 2r + 1 odd with r ≥ 1. We define the incidence map (on the
ground stratum) to be the map

inc : L[Sh(V◦,�K◦p)]
⊕

L[Sh(V◦,�K•p)]→ L[Sh(V◦,�K◦p)]
⊕

L[Sh(V◦,�K•p)]
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in Fun(K(V◦)p,Mod(L)) given by the matrix(
inc∗† ◦ inc†! inc∗† ◦ inc•!
inc∗• ◦ inc†! inc∗• ◦ inc•!

)
if we write elements in the column form.

Remark 5.7.5. The construction of the incidence map can be encoded in the following diagram

L[Sh(V◦,�K◦p)]

��

L[Sh(V◦,�K•p)]

��

H2r−2
T (M†p(V◦,�), L(r − 1))

m†•!

**

H0
T(B•p(V◦,�), L)

ι•!

tt

H2r
T (M•p(V◦,�), L(r))

m†•∗tt ι•∗ **

H2r
T (M†p(V◦,�), L(r))

��

H2r
T (B•p(V◦,�), L(r))

��
L[Sh(V◦,�K◦p)] L[Sh(V◦,�K•p)]

in Fun(K(V◦)p,Mod(L)).

Proposition 5.7.6. Suppose N = 2r+ 1 odd with r ≥ 1. Then the incidence map inc is given by
the matrix (

−(p+ 1)2 T◦•N,p
T•◦N,p T•N,p

)
where

T•N,p :=
r−1∑
δ=0

d•r−δ,p · T•N,p;δ

in which the numbers d•r−δ,p are introduced in Notation 1.3.2, and the Hecke operators T•N,p;δ are
introduced in Notation B.2.1 (as T•N ;δ).

Proof. Take an object Kp◦ ∈ K(V◦)p.
First, we show inc∗† ◦ inc†! = −(p+ 1)2. Since m†◦∗OM◦p(V◦,Kp◦)(1) has degree p+ 1, it follows from

Corollary 5.2.5.
Second, we show inc∗† ◦ inc•! = T◦•N,p and inc∗• ◦ inc†! = T•◦N,p. However, these are consequences of

Theorem 5.4.3 and Construction 5.4.5.
Finally, we show inc∗• ◦ inc•! = T•N,p. By Theorem 5.6.7(1), it suffices to show that for every

s•1, s
•
2 ∈ S•p(V◦,Kp◦)(Fp) and every s• ∈ Hk−1

j (s•1, s•2), the intersection multiplicity of B•s•1 and B•s•2 at
the component B•s• equals d•r−j,p. However, this is true by Theorem 5.6.7(2), Proposition A.2.4(1),
and the excessive intersection formula.

The proposition is proved. �

Now we assume that N = 2r is even with r ≥ 2. The reader may notice that the situation is
different from Definition 5.7.4 since now M•p(V◦,�) has dimension 2r− 1 while B•p(V◦,�) still has
dimension r. Thus to obtain a similar diagram as in Remark 5.7.5, we have to insert a map

Θ: H2r−2
T (M•p(V◦,�), L(r − 1))→ H2r

T (M•p(V◦,�), L(r))
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to obtain a diagram like

L[Sh(V◦,�K◦p)]

��

L[Sh(V◦,�K•p)]

��

H2r−4
T (M†p(V◦,�), L(r − 2))

m†•!

++

H0
T(B•p(V◦,�), L)

ι•!

tt

H2r−2
T (M•p(V◦,�), L(r − 1))

Θ
��

H2r
T (M•p(V◦,�), L(r))

m†•∗ss ι•∗ **

H2r
T (M†p(V◦,�), L(r))

��

H2r
T (B•p(V◦,�), L(r))

��
L[Sh(V◦,�K◦p)] L[Sh(V◦,�K•p)].

Definition 5.7.7. For every line bundle L on M•p(V◦,�),7 we denote

ΘL : H2r−2
T (M•p(V◦,�), L(r − 1))→ H2r

T (M•p(V◦,�), L(r))

the map by taking cup product with c1(L), and define the L-incidence map (on the ground stratum)
to be the map

incL : L[Sh(V◦,�K◦p)]
⊕

L[Sh(V◦,�K•p)]→ L[Sh(V◦,�K◦p)]
⊕

L[Sh(V◦,�K•p)]

in Fun(K(V◦)p,Mod(L)) given by the matrix(
inc∗† ◦ΘL ◦ inc†! inc∗† ◦ΘL ◦ inc•!
inc∗• ◦ΘL ◦ inc†! inc∗• ◦ΘL ◦ inc•!

)
if we write elements in the column form.

There are three natural choices of L, which are O(M†p(V◦,�)), LieA,τc
∞ , and ωA∨,τ∞ . We now

compute ΘL for the first two.8

Proposition 5.7.8. Suppose N = 2r with r ≥ 2. Let L be a p-coprime coefficient ring. For
L = O(M†p(V◦,�)), the incidence map incL is given by(

(p+ 1)3 −(p+ 1)T◦•N,p
−(p+ 1)T•◦N,p R•N,p

)
where

R•N,p :=
r−1∑
δ=0

1− (−p)r−δ
p+ 1 (p+ 1)(p+ 3) · · · (p2(r−δ)−1 + 1) · T•N,p;δ

in which the Hecke operators T•N,p;δ are introduced in Notation B.2.1 (as T•N ;δ).

7A line bundle L on M•p(V◦,�) is a collection of a line bundle L(Kp◦) on every M•p(V◦,Kp◦), compatible with
respect to pullbacks.

8In fact, the third one is a linear combination of the first two.
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Proof. Take an object Kp◦ ∈ K(V◦)p.
First, we show inc∗† ◦ΘL ◦ inc†! = (p+ 1)3. Since m†◦∗OM◦p(V◦,Kp◦)(1) has degree p+ 1, it follows

from Corollary 5.2.5.
Second, we show inc∗† ◦ΘL ◦ inc•! = −(p+ 1)T◦•N,p and inc∗• ◦ΘL ◦ inc†! = −(p+ 1)T•◦N,p. However,

these are consequences of Corollary 5.2.5, Theorem 5.4.3, and Construction 5.4.5.
It remains to compute inc∗• ◦ΘL ◦ inc•! . By Theorem 5.6.7(1), it suffices to show that for every

s•1, s
•
2 ∈ S•p(V◦,Kp◦)(Fp) and every s• ∈ Hk−1

j (s•1, s•2), the intersection multiplicity of B†s•1 and B†s•2
at the component B†s• equals

1− (−p)r−j
p+ 1 (p+ 1)(p+ 3) · · · (p2(r−j)−1 + 1).

By Theorem 5.6.8 and the excessive intersection formula, such intersection multiplicity equals∑
t†∈S†

s• (Fp)

∫
P(V

t† )
cr−j−1

(
(σ∗Ht†)⊗OP(V

t† )
OP(V

t† )(1)
)
.

A simple exercise shows that∫
P(V

t† )
cr−j−1

(
(σ∗Ht†)⊗OP(V

t† )
OP(V

t† )(1)
)

= 1− (−p)r−j
p+ 1

for every t† ∈ S†s•(Fp). Thus, the claim follows from Theorem 5.6.8. �

Proposition 5.7.9. Suppose N = 2r with r ≥ 2. Let L be a p-coprime coefficient ring. For
L = LieA,τc

∞, the incidence map incL is given by(
−(p+ 1)2 T◦•N,p

T•◦N,p T•N,p

)
where

T•N,p :=
r−1∑
δ=0

d•r−δ,p · T•N,p;δ

in which the numbers d•r−δ,p are introduced in Notation 1.3.2, and the Hecke operators T•N,p;δ are
introduced in Notation B.2.1 (as T•N ;δ).

Proof. Take an object Kp◦ ∈ K(V◦)p. By Theorem 5.2.4, we have an isomorphism
ι•∗ LieA,τc

∞ ' OM†p(V◦,Kp◦)(1)(5.17)

of line bundles on M†p(V◦,Kp◦).
First, we show inc∗† ◦ΘL ◦ inc†! = −(p+ 1)2. This is a consequence of (5.17), Corollary 5.2.5 and

the fact that m†◦∗OM◦p(V◦,Kp◦)(1) has degree p+ 1.
Second, we show inc∗† ◦ ΘL ◦ inc•! = T◦•N,p and inc∗• ◦ ΘL ◦ inc†! = T•◦N,p. However, these are

consequences of (5.17) and Corollary 5.2.5, Theorem 5.4.3, and Construction 5.4.5.
It remains to compute inc∗• ◦ΘL ◦ inc•! . By Theorem 5.6.7 and the excessive intersection formula,

it suffices to show that for every s•1, s•2 ∈ S•p(V◦,Kp◦)(Fp) and every s• ∈ Hk−1
j (s•1, s•2), we have∫

DL•(Vs• ,{ , }s• )
cr−1

((
σ∗H̄s•2

)
⊗ODL•(Vs• ,{ , }s• )

(
H̄as•1/H̄s•2

))
· c1

(
(ζ•s•)∗ LieA,τc

∞

)
= d•r,p,(5.18)

where (H̄s•1, H̄s•2) is the universal object over DL•(Vs• , { , }s•). However, by Theorem 5.3.4(4), we
have (ζ•s•)∗ LieA,τc

∞ ' H̄as•1/H̄s•2. Thus, (5.18) follows from Proposition A.2.4(2). The proposition
is proved. �
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5.8. Weight spectral sequence. In this subsection, we study the weight spectral sequence asso-
ciated to Mp(V◦,�). We keep the setup in Subsection 5.7. In particular, N is an integer at least 2
with r := bN2 c ≥ 1, and L is a p-coprime coefficient ring. To ease notation, we put X?

N := X?
p(V◦,�)

for meaningful pairs (X, ?) ∈ {M,M,B, S} × { , ◦, •, †}.

Construction 5.8.1. By Theorem 5.1.5(1), we have the weight spectral sequence (Ep,q
s , dp,qs ),

with terms in the category L[Gal(Fp/FΦ
p )], abutting to the cohomology Hp+q

T (MN ,RΨL(r)). In
particular, we have

E0,2d
1 = H2d

T (M◦N , L(r))
⊕

H2d
T (M•N , L(r)).

Thus, the six maps in Construction 5.7.3 give rise to another six maps

Inc◦! : L[Sh(V◦,�K◦p)]→ E0,2(N−r−1)
1 (N − 2r − 1),

Inc†! : L[Sh(V◦,�K◦p)]→ E0,2(N−r−1)
1 (N − 2r − 1),

Inc•! : L[Sh(V◦,�K•p)]→ E0,2(N−r−1)
1 (N − 2r − 1),

Inc∗◦ : E0,2r
1 → L[Sh(V◦,�K◦p)],

Inc∗† : E0,2r
1 → L[Sh(V◦,�K◦p)],

Inc∗• : E0,2r
1 → L[Sh(V◦,�K•p)],

in Fun(K(V◦)p,Mod(L)).

In the future, we will have to study the composite mapsInc∗◦
Inc∗†
Inc∗•

(Inc◦! Inc†! Inc•!
)
,

Inc∗◦
Inc∗†
Inc∗•

 ◦ d−1,2r
1 ◦ d0,2r−2

1 (−1) ◦
(
Inc◦! Inc†! Inc•!

)
when N is odd and even, respectively. In the next two lemmas, we will study the spectral sequence
and prove two formulae related to the above maps, according to the parity of N .

Lemma 5.8.2. Suppose N = 2r + 1 odd with r ≥ 1.
(1) The first page of Ep,q

s is as follows:

q ≥ 2r + 2 · · · // · · · // · · ·

q = 2r + 1 H2r−1
T (M†N , L(r − 1))

d−1,2r+1
1 // H2r+1

T (M◦N , L(r))⊕ H2r+1
T (M•N , L(r))

d0,2r+1
1 // H2r+1

T (M†N , L(r))

q = 2r H2r−2
T (M†N , L(r − 1))

d−1,2r
1 // H2r

T (M◦N , L(r))⊕ H2r
T (M•N , L(r))

d0,2r
1 // H2r

T (M†N , L(r))

q = 2r − 1 H2r−3
T (M†N , L(r − 1))

d−1,2r−1
1 // H2r−1

T (M◦N , L(r))⊕ H2r−1
T (M•N , L(r))

d0,2r−1
1 // H2r−1

T (M†N , L(r))

q ≤ 2r − 2 · · · // · · · // · · ·

Ep,q
1 p = −1 p = 0 p = 1

with d−1,i
1 = (m†◦! ,−m†•! ), d0,i

1 = (m†◦)∗ − (m†•)∗ for every i ∈ Z; and Ep,q
1 = 0 if |p| > 1.
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(2) We have Inc∗◦
Inc∗†
Inc∗•

(Inc◦! Inc†! Inc•!
)

=

1 0 0
0 −(p+ 1)2 T◦•N,p
0 T•◦N,p T•N,p

 .
(3) We have (T•◦N,p ◦ Inc∗† + (p+ 1)2Inc∗•) ◦ d−1,2r

1 = 0.

Proof. Part (1) is immediate. Part (2) is a consequence of Proposition 5.7.6.
For (3), note that under the composite isomorphism

i : L[Sh(V◦,�K◦p)]
∼−→ H0

T(S◦N , L) π◦∗−−→ H0
T(B◦N , L) ∪ξ

r−1
−−−→ H2r−2

T (B◦N , L(r − 1))
ι◦!−→ H2r−2

T (M◦N , L(r − 1)) m†◦∗−−→ H2r−2
T (M†N , L(r − 1)) = E−1,2r

1 ,

the map d−1,2r
1 ◦ i : L[Sh(V◦,�K◦p)]→ E0,2r

1 coincides with (p+ 1)Inc◦! − Inc†! . Thus, (3) follows by
(2) as we have

(
0 T•◦N,p (p+ 1)2

)1 0 0
0 −(p+ 1)2 T◦•N,p
0 T•◦N,p T•N,p


p+ 1
−1
0

 = 0.

The lemma is proved. �

For N even, we first recall that there is an (increasing) monodromy filtration F•RΨL(r)
of RΨL(r). Such filtration induces a filtration F•Hi

T(MN ,RΨL(r)) of the cohomology
Hi

T(MN ,RΨL(r)), and a corresponding filtration F•H1(IQΦ
p
,Hi

T(MN ,RΨL(r))) of the quotient
module H1(IQΦ

p
,Hi

T(MN ,RΨL(r))).

Lemma 5.8.3. Suppose N = 2r even with r ≥ 1.
(1) The first page of Ep,q

s is as follows:

q ≥ 2r + 1 · · · // · · · // · · ·

q = 2r H2r−2
T (M†N , L(r − 1))

d−1,2r
1 // H2r

T (M◦N , L(r))⊕ H2r
T (M•N , L(r))

d0,2r
1 // H2r

T (M†N , L(r))

q = 2r − 1 0 // H2r−1
T (M•N , L(r)) // 0

q = 2r − 2 H2r−4
T (M†N , L(r − 1))

d−1,2r−2
1 // H2r−2

T (M◦N , L(r))⊕ H2r−2
T (M•N , L(r))

d0,2r−2
1 // H2r−2

T (M†N , L(r))

q ≤ 2r − 3 · · · // · · · // · · ·

Ep,q
1 p = −1 p = 0 p = 1

with d−1,i
1 = (m†◦! ,−m†•! ), d0,i

1 = (m†◦)∗ − (m†•)∗ for every i ∈ Z; and Ep,q
1 = 0 if |p| > 1.

(2) The spectral sequence Ep,q
s degenerates at the second page.



ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR RANKIN–SELBERG MOTIVES 85

(3) In the (three-step) filtration F•H2r−1
T (MN ,RΨL(r)), we have canonical isomorphisms

F−1H2r−1
T (MN ,RΨL(r)) ' E1,2r−2

2 = coker d0,2r−2
1 ,

F0H2r−1
T (MN ,RΨL(r))

F−1H2r−1
T (MN ,RΨL(r))

' E0,2r−1
2 = H2r−1

T (M•N , L(r)),

H2r−1
T (MN ,RΨL(r))

F0H2r−1
T (MN ,RΨL(r))

' E−1,2r
2 = ker d−1,2r−2

1 ,

in Fun(K(V◦)p,Mod(L[Gal(Fp/FΦ
p )])).

(4) The monodromy map on H2r−1
T (MN ,RΨL(r)) factors through F0H2r−1

T (MN ,RΨL(r)) and
is given by the composite map

E−1,2r
2

µ−→ E1,2r−2
2 ↪→ H2r−1

T (MN ,RΨL(r)),

where µ is the map induced from the identity map on H2r−2
T (M†N , L(r − 1)).

(5) We have a canonical isomorphism

F−1H1(IQΦ
p
,H2r−1

T (MN ,RΨL(r))) '
(

E1,2r−2
2

µE−1,2r
2

)
(−1);

in Fun(K(V◦)p,Mod(L[Gal(Fp/FΦ
p )])); and the map d−1,2r

1 induces an isomorphism(
E1,2r−2

2

µE−1,2r
2

)
(−1) ' im d−1,2r

1

im(d−1,2r
1 ◦ d0,2r−2

1 (−1))

in Fun(K(V◦)p,Mod(L[Gal(Fp/FΦ
p )])).

(6) If p2 − 1 is invertible in L, then we have a canonical short exact sequence

0 // F−1H1(IQΦ
p
,H2r−1

T (MN ,RΨL(r))) // H1
sing(QΦ

p ,H2r−1
T (MN ,RΨL(r))) // H2r−1

T (M•N , L(r − 1))Gal(Fp/FΦ
p ) → 0

in Fun(K(V◦)p,Mod(L)).
(7) The composite mapInc∗◦

Inc∗†
Inc∗•

 ◦ d−1,2r
1 ◦ d0,2r−2

1 (−1) ◦
(
Inc◦! Inc†! Inc•!

)
coincides with p+ 1 (p+ 1)2 −T◦•N,p

(p+ 1)2 (p+ 1)3 −(p+ 1)T◦•N,p
−T•◦N,p −(p+ 1)T•◦N,p R•N,p

 ,
p+ 1 0 −T◦•N,p

0 0 0
−T•◦N,p 0 R•N,p


when N ≥ 4 and when N = 2, respectively.

(8) The image of the map

(T•◦N,p ◦ Inc∗◦ + (p+ 1)Inc∗•) ◦ d−1,2r
1 ◦ d0,2r−2

1 (−1) ◦ (Inc◦! + Inc†! + Inc•! ) :
L[Sh(V◦,�K◦p)]⊕2⊕L[Sh(V◦,�K•p)]→ L[Sh(V◦,�K•p)]

is exactly ((p+ 1)R•N,p− T•◦N,p ◦ T◦•N,p)L[Sh(V◦,�K•p)], where R•N,p is introduced in Proposition
5.7.8.

Proof. For (1), note that by Lemma 5.5.2(1), both Hi
T(M†N , L) and Hi

T(M◦N , L) vanish for i odd.
Thus, (1) follows.
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Parts (2–4) follow directly from the description of Ep,q
1 and [Sai03, Corollary 2.8](2) for the

description of the monodromy map9. Part (5) follows from (1–4).
For (6), by Lemma 5.5.2(3), we know that the action of Gal(Fp/FΦ

p ) on E1,2r−2
2 (−1) is trivial.

As p2 − 1 is invertible in L, we further have E−1,2r
2 (−1)Gal(Fp/FΦ

p ) = 0 and

H1(Gal(Fp/FΦ
p ),F−1H1(IQΦ

p
,H2r−1

T (MN ,RΨL(r)))) = 0.

In particular, we have the isomorphism

H1
sing(QΦ

p ,H2r−1
T (MN ,RΨL(r))) ' H1(IQΦ

p
,H2r−1

T (MN ,RΨL(r)))Gal(Fp/FΦ
p )

' F0H1(IQΦ
p
,H2r−1

T (MN ,RΨL(r)))Gal(Fp/FΦ
p ),

and that (6) follows from the induced long exact sequence.
For (7), when N ≥ 4 (that is, r ≥ 2), it follows from Theorem 5.2.4(2) and Proposition 5.7.8.

When N = 2, it follows from a direct computation.
For (8), we have the identity

(
T•◦N,p 0 p+ 1

)Inc∗◦
Inc∗†
Inc∗•

 ◦ d−1,2r
1 ◦ d0,2r−2

1 (−1) ◦
(
Inc◦! Inc†! Inc•!

)
=
(
0 0 (p+ 1)R•N,p − T•◦N,p ◦ T◦•N,p

)
by (7), which implies (8).

The lemma is all proved. �

Construction 5.8.4. We construct
(1) when N = 2r + 1 is odd, the map

∇1 : E0,2r
2 → L[Sh(V◦N ,K◦N)]

to be restriction of the map

T•◦N,p ◦ Inc∗† + (p+ 1)2Inc∗• : E0,2r−1
1 → L[Sh(V◦N ,K•N)],

to ker d0,2r−1
1 , which factors through E0,2r

2 by Lemma 5.8.2(3), composed with the map
T◦•N,p : L[Sh(V◦N ,K•N)]→ L[Sh(V◦N ,K◦N)];

(2) when N = 2r is even, the map

∇0 : ker d0,2r
1 → L[Sh(V◦N ,K◦N)]

to be restriction of the map

T•◦N,p ◦ Inc∗◦ + (p+ 1)Inc∗• : E0,2r
1 → L[Sh(V◦N ,K•N)]

in Lemma 5.8.3(8) to ker d0,2r
1 , composed with the map T◦•N,p : L[Sh(V◦N ,K•N)] →

L[Sh(V◦N ,K◦N)].

Remark 5.8.5. By the descriptions of the Galois actions in Construction 5.2.6 and Construction
5.3.6, the map ∇1 factors through the quotient map E0,2r

2 → (E0,2r
2 )Gal(Fp/FΦ

p ).

To temporarily end the discussion on weight spectral sequences, we record the following easy
lemma, which will be used later.

9The description of the monodromy map does not require that the scheme is proper over the base.
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Lemma 5.8.6. Suppose N ≥ 3. The following diagram

E0,2r
1

(Inc∗◦,Inc∗† ,Inc∗•) //

d0,2r
1
��

L[Sh(V◦,�K◦p)]⊕2⊕L[Sh(V◦,�K•p)]

(p+1,−1,0)
��

E1,2r
1

// L[Sh(V◦,�K◦p)]

is commutative, where the lower arrow is the composite map

H2r
T (M†p(V◦,�), L(r))

m†◦!−−→ H2(r+1)
T (M◦p(V◦,�), L(r + 1)) ι◦∗−→ H2(r+1)

T (B◦p(V◦,�), L(r + 1)
∪ξN−r−2
−−−−−→ H2(N−1)

T (B◦p(V◦,�), L(N − 1))
π◦!−→ H0

T(S◦p(V◦,�), L) ∼−→ L[Sh(V◦,�K◦p)],
which is an isomorphism.

Proof. The commutativity of the diagram follows from the formula d0,2r
1 = (m†◦)∗ − (m†•)∗, and

the fact that M†p(V◦,�) is a hypersurface in M◦p(V◦,�) of degree p + 1 by Theorem 5.2.4 and
Lemma A.1.4(1). By Lemma 5.5.2 and Poincaré duality, the lower arrow is an isomorphism. �

5.9. Special results in the rank 3 case. In this subsection, we study some special properties
of the ground stratum M•p(V◦,�) when N = 3. The results here will only be used in the situation
(b) of Lemma 8.1.4 and are only necessary for the main theorems in Subsection 1.1 in the case
where n = 2 and F+ = Q, so readers may skip this subsection at this moment.

To begin with, we recall the following definition.

Definition 5.9.1 ([FK88, Chapter I. Definition 3.7 & Note 3.10]). A proper morphism f : X → Y
of schemes of characteristic p is purely inseparable if the following two equivalent conditions hold:

(1) For every (scheme-theoretical) point y of Y , there lies exactly one point x of X, and the
residue field extension is purely inseparable.

(2) For every algebraically field κ of characteristic p, the induced map f(κ) : X(κ)→ Y (κ) is
a bijection.

We now assume dimF V◦ = N = 3.

Definition 5.9.2. We define a functor
M′

p(V◦,�) : K(V◦)p × T→ PSch′/ZΦ
p

Kp◦ 7→M′
p(V◦,Kp◦)

such that for every S ∈ Sch′/ZΦ
p
, M′

p(V◦,Kp◦)(S) is the set of equivalence classes of sextuples
(A0, λ0, η

p
0;A′, λ′, ηp′) where

m (A0, λ0, η
p
0) is an element in Tp(S);

m (A′, λ′) is a unitary OF -abelian scheme of signature type 3Φ−2τ∞+2τ c
∞ over S (Definitions

3.4.2 and 3.4.3) such that λ′ is p-principal;
m ηp′ is a Kp◦-level structure, that is, for a chosen geometric point s on every connected

component of S, a π1(S, s)-invariant Kp◦-orbit of isomorphisms

ηp′ : V◦ ⊗Q A∞,p → Homλ0,λ′

F⊗QA∞,p(H
ét
1 (A′0s,A∞,p),Hét

1 (A′s,A∞,p))
of hermitian spaces over F ⊗Q A∞,p = F ⊗F+ A∞,pF+ . See Construction 3.4.4 (with � =
{∞, p}) for the right-hand side.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.1.2.
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We have apparently the forgetful morphism
M′

p(V◦,�)→ Tp(5.19)
in Fun(K(V◦)p × T,PSch′/ZΦ

p
). By a similar proof of Theorem 4.1.3, the morphism (5.19) is repre-

sented by quasi-projective smooth schemes of relative dimension 2. We denote by the base change
of (5.19) to FΦ

p by M′p(V◦,�)→ Tp, which is a morphism in Fun(K(V◦)p × T, Sch/FΦ
p
).

Definition 5.9.3. We define a functor
Np(V◦,�) : K(V◦)p × T→ PSch′/FΦ

p

Kp◦ 7→ Np(V◦,Kp◦)
such that for every S ∈ Sch′/FΦ

p
, Np(V◦,Kp◦)(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A, λ, ηp;A′, λ′, ηp′; δ) where

m (A0, λ0, η
p
0;A, λ, ηp) is an element of Mp(V◦,Kp◦)(S);

m (A0, λ0, η
p
0;A′, λ′, ηp′) is an element of M′p(V◦,Kp◦)(S);

m δ : A→ A′ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker δ[p∞] is contained in A[p];
(b) we have λ = δ∨ ◦ λ′ ◦ δ; and
(c) the Kp◦-orbit of maps v 7→ δ∗ ◦ ηp(v) for v ∈ V◦ ⊗Q A∞,p coincides with ηp′.

The equivalence relation and the action of morphisms in K(V◦)p × T are defined similarly as in
Definition 4.2.3.

By definition, we have the following two obvious forgetful morphisms.
Np(V◦,�)

µ

xx

µ′

&&
Mp(V◦,�) M′p(V◦,�)

in Fun(K(V◦)p×T, Sch/FΦ
p
). By the extension property of isogeny, it is clear that both µ and µ′ are

proper. We apply the Stein factorization to the morphism µ′ and obtain the following diagram

Np(V◦,�)
µ

xx

ν // N′p(V◦,�)
ν′

&&
Mp(V◦,�) M′p(V◦,�)

(5.20)

in Fun(K(V◦)p×T, Sch/FΦ
p
). For every Kp◦ ∈ K(V◦)p a perfect field κ containing FΦ

p , we say that a
point (A0, λ0, η

p
0;A′, λ′, ηp′) ∈ M′p(V◦,Kp◦)(κ) is special if we have FHdR

1 (A′/κ)τ∞ = VHdR
1 (A′/κ)τ∞ .

We denote by M′p(V◦,Kp◦)sp the locus of special points in M′p(V◦,Kp◦), regarded as a Zariski closed
subset, and by N′p(V◦,Kp◦)sp the (set-theoretical) inverse image of M′p(V◦,Kp◦)sp under ν ′. An easy
deformation argument shows that M′p(V◦,Kp◦)sp is of dimension zero.
Proposition 5.9.4. In (5.20), for every Kp◦ ∈ K(V◦)p, we have

(1) The morphism µ : Np(V◦,Kp◦)→ Mp(V◦,Kp◦) induces a purely inseparable morphism onto
its image which is M•p(V◦,Kp◦).

(2) The morphism ν ′ : N′p(V◦,Kp◦)→ M′p(V◦,Kp◦) is purely inseparable.
(3) The morphism ν : Np(V◦,Kp◦)→ N′p(V◦,Kp◦) is the blow-up along N′p(V◦,Kp◦)sp.10

10Note that blow-up along a zero-dimensional closed subscheme Z of a regular scheme depends only on the
underlying closed subset of Z.
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Proof. For (1), it suffices to show that for every algebraically closed field κ containing FΦ
p , µ(κ) is

an isomorphism from Np(V◦,Kp◦)(κ) to M•p(V◦,Kp◦)(κ).
We first show that the image of µ(κ) is contained in M•p(V◦,Kp◦)(κ). Take a point y =

(A0, λ0, η
p
0;A, λ, ηp;A′, λ′, ηp′; δ) ∈ Np(V◦,Kp◦)(κ). By Lemma 3.4.13(2,4) and the relation λ =

δ∨ ◦λ′ ◦δ, we know that δ∗,τ : HdR
1 (A/κ)τ → HdR

1 (A′/κ)τ is an isomorphism if τ 6= τ c
∞; and ker δ∗,τc

∞

has dimension 1. Moreover, since λ′ is p-principal, we have ker δ∗,τc
∞ = HdR

1 (A/κ)⊥τ∞ . By the
signature condition again, we also have ker δ∗,τc

∞ ⊆ ωA∨,τc
∞ . Thus, µ(y) belongs to M•p(V◦,Kp◦)(κ)

by Definition 5.1.3.
It remains to construct an inverse to µ(κ) : Np(V◦,Kp◦)(κ) → M•p(V◦,Kp◦)(κ). Take a point

x = (A0, λ0, η
p
0;A, λ, ηp) ∈ M•p(V◦,Kp◦)(κ). Write H̃dR

1 (A/κ)⊥τ∞ the preimage of HdR
1 (A/κ)⊥τ∞ un-

der the reduction map D(A)τc
∞ → HdR

1 (A/κ)τc
∞ . As 〈HdR

1 (A/κ)⊥τ∞ ,HdR
1 (A/κ)τ∞〉λ,τc

∞ = 0, we
have D(A)∨τ∞ = p−1H̃dR

1 (A/κ)⊥τ∞ . Now we put DA′,τ := D(A)τ for τ 6= τ c
∞, and DA′,τc

∞
:=

p−1H̃dR
1 (A/κ)⊥τ∞ . We claim that DA′ := ⊕

τ∈Σ∞ DA′,τ is a Dieudonné module, which amounts
to the inclusions FDA′,τc

∞ ⊆ DA′,τ∞ and VDA′,τc
∞ ⊆ DA′,τ∞ . The first one follows from the relation

F(H1
dR(A/κ)⊥τ∞) ⊆ FωA∨,τc

∞ = 0 in which the first inclusion is due to Definition 5.1.3; and the
second one is equivalent to the first one as DA′,τc

∞ and DA′,τ∞ are integrally dual under 〈 , 〉cris
λ,τc
∞
.

Then by the Dieudonné theory, there is an OF -abelian scheme A′ over κ with D(A′)τ = DA′,τ
for every τ ∈ Σ∞, and an OF -linear isogeny δ : A → A′ inducing the inclusion of Dieudonné
modules D(A) ⊆ D(A′). By Lemma 3.4.13(2,4), the OF -abelian scheme A′ has signature type
3Φ− 2τ∞ + 2τ c

∞. Let λ′ be the unique quasi-polarization of A′ satisfying λ = δ∨ ◦ λ′ ◦ δ, which is
p-principal as DA′,τ∞ = D∨A′,τc

∞
. Finally, we let ηp′ be the map sending v ∈ V◦⊗QA∞,p to δ∗ ◦ηp(v).

Thus, we obtain an object (A0, λ0, η
p
0;A, λ, ηp;A′, λ′, ηp′; δ) ∈ Np(V◦,Kp◦)(κ). It is straightforward

to check that such assignment gives rise to an inverse of µ(κ).
We now consider (2) and (3) simultaneously. Let Np(V◦,Kp◦)sp be the inverse image of

M′p(V◦,Kp◦)sp under µ′. By Lemma 5.9.5(1) below, the induced morphism

µ′ : Np(V◦,Kp◦) \ Np(V◦,Kp◦)sp → M′p(V◦,Kp◦) \M′p(V◦,Kp◦)sp

is purely inseparable. Thus, the induced morphism

ν : Np(V◦,Kp◦) \ Np(V◦,Kp◦)sp → N′p(V◦,Kp◦) \ N′p(V◦,Kp◦)sp

is an isomorphism, and the induced morphism

ν ′ : N′p(V◦,Kp◦) \ N′p(V◦,Kp◦)sp → M′p(V◦,Kp◦) \M′p(V◦,Kp◦)sp

is purely inseparable. Since Np(V◦,Kp◦) is quasi-projective, ν is projective. Thus, ν is a projective
birational morphism, which has to be the blow-up along a subset Z of N′p(V◦,Kp◦)sp (see, for
example, [Liu02, Theorem 8.1.24]). Now we take a point x′ of M′p(V◦,Kp◦)sp with the residue field
κ, which is a finite extension of FΦ

p . Since ν ′ is a finite morphism, the inverse image of x′ consists
of finitely many points y′1, . . . , y′n of N′p(V◦,Kp◦)sp with residue fields κ1, . . . , κn, respectively. By
Lemma 5.9.5(2) below, the residue field extension κi/κ is trivial for every 1 ≤ i ≤ n; and moreover,
Z has nonempty intersection with {y′1, . . . , y′n}. Thus, µ′−1(x′) has cardinality at least |κ|+n. But
we know that µ′−1(x′) has cardinality exactly |κ| + 1. Therefore, we must have n = 1. We
immediately have both (2) and (3). �

Lemma 5.9.5. Consider an element x′ ∈ M′p(V◦,Kp◦)(κ) for some Kp◦ ∈ K(V◦)p and a perfect
field κ containing FΦ

p . We have
(1) If the image of x′ is not special, then µ′−1(x′) is a singleton.
(2) If the image of x′ is special, then µ′−1(x′) is isomorphic to P1(κ).
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Proof. Write x′ = (A0, λ0, η
p
0;A′, λ′, ηp′). By the Dieudonné theory and Lemma 3.4.13(2,4), we

see that µ′−1(x′) is bijective to Dieudonné submodules DA ⊆ D(A′) satisfying DA,τ = D(A′)τ for
τ 6= τ c

∞, and that D(A′)τc
∞/DA,τc

∞ is a vector space over κ of dimension 1. This amounts to the
subspaces of HdR

1 (A′/κ)τc
∞ of dimension 2 containing FHdR

1 (A′/κ)τ∞ + VHdR
1 (A′/κ)τ∞ . Since both

FHdR
1 (A′/κ)τ∞ and VHdR

1 (A′/κ)τ∞ have dimension 1, the lemma follows by the definition of special
points. �

Remark 5.9.6. In fact, one can show that µ induces an isomorphism from Np(V◦,�) to M•p(V◦,�);
and ν ′ is purely inseparable of degree p. But we do not need these facts.

5.10. Functoriality under special morphisms. In this subsection, we study the behavior of
various moduli schemes under the special morphisms, which is closely related to the Rankin–
Selberg motives for GLn×GLn+1.

We start from the datum (V◦n, {Λ◦n,q}q|p) as in the beginning of Subsection 5.1, but with V◦n of
rank n ≥ 2. (See Remark 5.10.15 below for the case n = 1.) We then have the induced datum

(V◦n+1, {Λ◦n+1,q}q|p) := ((V◦n)], {(Λ◦n,q)]}q|p)
of rank n + 1 by Definition 3.1.7. For N ∈ {n, n + 1}, we let K◦N,q be the stabilizer of Λ◦N,q, and
put K◦N,p := ∏

q|p K◦N,q. Recall the category K(V◦n)psp and functors �[,�] from Definition 3.1.11. To
unify notation, we put �n := �[ and �n+1 := �]. Similar to the case of smooth moduli schemes
considered in Subsection 4.4, there are five stages of functoriality we will consider.

The first stage concerns Shimura varieties.

Notation 5.10.1. We choose an indefinite uniformization datum (V′n, jn, {Λ′n,q}q|p) for V◦n
as in Definition 5.1.6. Put V′n+1 := (V′n)], jn+1 := (jn)], and Λ′n+1,q := (Λ′n,q)]. Then
(V′n+1, jn+1, {Λ′n+1,q}q|p) is an indefinite uniformization datum for V◦n+1. For N ∈ {n, n + 1},
we let K′N,q be the stabilizer of Λ′N,q, and put K′N,p := ∏

q|p K′N,q.

We obtain a morphism
sh′↑ : Sh(V′n, jn�nK′n,p)→ Sh(V′n+1, jn+1�n+1K′n+1,p)

in Fun(K(V◦n)psp, Sch/F ).
For the second stage of functoriality, we have a morphism

m↑ : Mp(V◦n,�n)→Mp(V◦n+1,�n+1)(5.21)
in Fun(K(V◦n)psp × T, Sch/ZΦ

p
)/Tp sending an object (A0, λ0, η

p
0;A, λ, ηp) ∈ Mp(V◦n,Kp◦

n )(S) to the
object (A0, λ0, η

p
0;A×A0, λ× λ0, η

p ⊕ (idA0)∗) ∈Mp(V◦n+1,K
p◦
n+1)(S). It is clear that m↑ restricts

to three morphisms 
m◦↑ : M◦p(V◦n,�n)→ M◦p(V◦n+1,�n+1),
m†↑ : M†p(V◦n,�n)→ M†p(V◦n+1,�n+1),
m•↑ : M•p(V◦n,�n)→ M•p(V◦n+1,�n+1).

(5.22)

Moreover, we have the following commutative diagram

Mη
p(V◦n+1,�n+1)

(5.2)
// Sh(V′n+1, jn+1�n+1K′n+1,p)×SpecF Tη

p

Mη
p(V◦n,�n)

(5.2)
//

mη
↑

OO

Sh(V′n, jn�nK′n,p)×SpecF Tη
p

sh′↑×id
OO

(5.23)

in Fun(K(V◦n)psp × T, Sch/QΦ
p
)/Tη

p
.
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At the third stage of functoriality, we study the basic correspondence diagram (5.10) for N =
n, n+ 1 under the special morphisms. We will complete a commutative diagram in Fun(K(V◦n)psp×
T, Sch/FΦ

p
)/Tp as follows

S
◦p (V

◦n+
1 ,�

n+
1 )

B
◦p (V

◦n+
1 ,�

n+
1 )

π
◦n

+
1

oo
ι ◦n

+
1

//M
◦p (V

◦n+
1 ,�

n+
1 )

S
†p (V

◦n+
1 ,�

n+
1 )

s †◦n+
1

hh

s †•n+
1

((

B
†p (V

◦n+
1 ,�

n+
1 )

b
†◦n+

1
hh

b
†•n+

1

((

π
†n

+
1

oo
ι †n

+
1

//M
†p (V

◦n+
1 ,�

n+
1 )

m
†◦n+

1
ii

m
†•n+

1

))
S
•p (V

◦n+
1 ,�

n+
1 )

B
•p (V

◦n+
1 ,�

n+
1 )

π
•n

+
1

oo
ι •n

+
1

//M
•p (V

◦n+
1 ,�

n+
1 )

S
†p (V

◦n ,�
)sp

s †•sp

((

s †↑

OOs †↓

��

B
†p (V

◦n ,�
)sp

b
†•sp

((

π
†sp

oo

b
†↓

�� b
†↑

OO

S
•p (V

◦n ,�
)sp

s •↑

OOs •↓

��

B
•p (V

◦n ,�
)sp

b
•↑

OOb
•↓

��

π
•sp

oo

S
◦p (V

◦n ,�
n )

s ◦↑

OO

B
◦p (V

◦n ,�
n )

ι ◦n
//

π
◦n

oo

b
◦↑

OO

M
◦p (V

◦n ,�
n )

m
◦↑

OO

S
†p (V

◦n ,�
n )

s †◦n
hh

s †•n

((

B
†p (V

◦n ,�
n )

b
†◦n

hh

b
†•n

((

ι †n
//

π
†n

oo
M
†p (V

◦n ,�
n )

m
†◦n

ii

m
†•n

))

m
†↑

OO

S
•p (V

◦n ,�
n )

B
•p (V

◦n ,�
n )

π
•n

oo
ι •n

//M
•p (V

◦n ,�
n )

m
•↑

OO

(5.24)

in which the bottom (resp. top) layer is the basic correspondence diagram (5.10) for Mp(V◦n,�n)
(resp. Mp(V◦n+1,�n+1)).
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First, we consider the basic correspondences on the balloon strata, that is, the back layer of the
diagram (5.24).

We define s◦↑ : S◦p(V◦n,�n)→ S◦p(V◦n+1,�n+1) to be the morphism sending an object

(A0, λ0, η
p
0;A◦, λ◦, ηp◦) ∈ S◦p(V◦n,Kp◦

n )(S)
to the object

(A0, λ0, η
p
0;A◦ × A0, λ

◦ × λ0, η
p◦ ⊕ (idA0)∗) ∈ S◦p(V◦n+1,K

p◦
n+1)(S).

Remark 5.10.2. The canonical inclusions
V◦n ↪→ V◦n+1, {Λ◦n,q ↪→ Λ◦n+1,q}q|p

induce a morphism
sh◦↑ : Sh(V◦n,�nK◦n,p)→ Sh(V◦n+1,�n+1K◦n+1,p)

in Fun(K(V◦n)psp, Set). It is clear that the following diagram

S◦p(V◦n+1,�n+1)(Fp)
υ◦n+1 // Sh(V◦n+1,�n+1K◦n+1,p)× Tp(Fp)

S◦p(V◦n,�n)(Fp)
υ◦n //

s◦↑(Fp)
OO

Sh(V◦n,�nK◦n,p)× Tp(Fp)

sh◦↑×idTp(Fp)

OO

in Fun(K(V◦n)psp, Set)/Tp(Fp) commutes, where υ◦n+1 and υ◦n are uniformization maps in Construction
5.2.6.

We define b◦↑ : B◦p(V◦n,�n)→ B◦p(V◦n+1,�n+1) to be the morphism sending an object

(A0, λ0, η
p
0;A, λ, ηp;A◦, λ◦, ηp◦; β) ∈ B◦p(V◦n,Kp◦

n )(S)
to the object
(A0, λ0, η

p
0;A×A0, λ×λ0, η

p⊕(idA0)∗;A◦×A0, λ
◦×λ0, η

p◦⊕(idA0)∗; β×idA0) ∈ B◦p(V◦n+1,K
p◦
n+1)(S).

Second, we consider the basic correspondences on the ground strata, that is, the front layer of
the diagram (5.24).

Definition 5.10.3. We define a functor
S•p(V◦n,�)sp : K(V◦n)psp × T→ PSch′/FΦ

p

Kp◦ 7→ S•p(V◦n,Kp◦)sp

such that for every S ∈ Sch′/FΦ
p
, S•p(V◦n,Kp◦)sp(S) is the set of equivalence classes of decuples

(A0, λ0, η
p
0;A•, λ•, ηp•;A•\ , λ•\ , η

p•
\ ; δ•) where

m (A0, λ0, η
p
0;A•, λ•, ηp•) is an element in S•p(V◦n,Kp◦

n )(S);
m (A0, λ0, η

p
0;A•\ , λ•\ , η

p•
\ ) is an element in S•p(V◦n+1,K

p◦
n+1)(S);

m δ• : A• × A0 → A•\ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker δ•[p∞] is contained in (A• × A0)[p];
(b) we have λ• ×$λ0 = δ•∨ ◦ λ•\ ◦ δ•; and
(c) the Kp

n+1-orbit of maps v 7→ δ•∗ ◦ (ηp• ⊕ (idA0)∗)(v) for v ∈ V◦] ⊗Q A∞,p coincides with
ηp•\ .

The equivalence relation and the action of morphisms in K(V◦n)psp × T are defined similarly as in
Definition 4.2.3.
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We have apparently the forgetful morphism

S•p(V◦n,�)sp → Tp

in Fun(K(V◦n)psp × T,PSch′/FΦ
p
) which is represented by finite and étale schemes. By definition, we

have the two forgetful morphisms

s•↓ : S•p(V◦n,�)sp → S•p(V◦n,�n), s•↑ : S•p(V◦n,�)sp → S•p(V◦n+1,�n+1)

in Fun(K(V◦n)psp × T, Sch/FΦ
p
)/Tp .

Lemma 5.10.4. We have the following properties concerning s•↓.
(1) When n is even, s•↓ is an isomorphism, and the morphism

s•↑ ◦ s•−1
↓ : S•p(V◦n,�n)→ S•p(V◦n+1,�n+1)

is given by the assignment

(A0, λ0, η
p
0;A•, λ•, ηp•) 7→ (A0, λ0, η

p
0;A• × A0, λ

• ×$λ0, η
p• × (idA0)∗).

(2) When n is odd, s•↓ is finite étale of degree p+ 1.

Proof. The proof is very similar to Lemma 4.4.2, which we leave to readers. �

Definition 5.10.5. We define B•p(V◦n,�)sp to be the fiber product indicated in the following
Cartesian diagram

B•p(V◦n,�)sp
π•sp //

b•↓
��

S•p(V◦n,�)sp

s•↓
��

B•p(V◦n,�n)
π•n // S•p(V◦n,�n)

in Fun(K(V◦n)psp×T, Sch/FΦ
p
)/Tp . We define b•↑ : B•p(V◦n,�)sp → B•p(V◦n+1,�n+1) to be the morphism

sending an object

((A0, λ0, η
p
0;A, λ, ηp;A•, λ•, ηp•; γ), (A0, λ0, η

p
0;A•, λ•, ηp•;A•\ , λ•\ , η

p•
\ ; δ•)) ∈ B•p(V◦n,Kp◦)sp(S)

to (A0, λ0, η
p
0;A × A0, λ × λ0, η

p ⊕ (idA0)∗;A•\ , λ•\ , η
p•
\ ; δ• ◦ (γ × idA0)), which is an object of

B•p(V◦n+1,K
p◦
n+1)(S) by a similar argument of Lemma 4.4.4.

We have the following result.

Proposition 5.10.6. When n is odd, the square

B•p(V◦n+1,�n+1)
ι•n+1 // M•p(V◦n+1,�n+1)

B•p(V◦n,�)sp
ι•n◦b•↓ //

b•↑

OO

M•p(V◦n,�n)

m•↑

OO

extracted from the diagram (5.24) is Cartesian.

Proof. The proof is very similar to Proposition 4.4.5, which we leave to readers. �

Third, we consider the basic correspondences on the link strata, that is, the middle (vertical)
layer of the diagram (5.24).
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Definition 5.10.7. We define S†p(V◦n,�)sp to be the fiber product indicated in the following
Cartesian diagram

S†p(V◦n,�)sp
s†•sp //

s†↓
��

S•p(V◦n,�)sp

s•↓
��

S†p(V◦n,�n) s†•n // S•p(V◦n,�n)

in Fun(K(V◦n)psp×T, Sch/FΦ
p
)/Tp . By Lemma 5.10.4, we know that s†↓ is an isomorphism (resp. finite

étale of degree p+ 1) when n is even (resp. odd). We define s†↑ : S†p(V◦n,�)sp → S†p(V◦n+1,�n+1) to
be the morphism sending an object

((A0, λ0, η
p
0;A◦, λ◦, ηp◦;A•, λ•, ηp•;ψ), (A0, λ0, η

p
0;A•, λ•, ηp•;A•\ , λ•\ , η

p•
\ ; δ•)) ∈ S†p(V◦n,Kp◦)sp(S)

to the object

(A0, λ0, η
p
0;A◦ × A0, λ

◦ × λ0, η
p◦ ⊕ (idA0)∗;A•\ , λ•\ , η

p•
\ ; δ• ◦ (ψ × idA0)) ∈ S†p(V◦n+1,K

p◦
n+1)(S).

Lemma 5.10.8. We have
(1) When n is even, the square

S†p(V◦n+1,�n+1)
s†•n+1 // S•p(V◦n+1,�n+1)

S†p(V◦n,�)sp
s†•sp //

s†↑

OO

S•p(V◦n,�)sp

s•↑

OO

extracted from (5.24) is a Cartesian diagram.
(2) When n is odd, the square

S◦p(V◦n+1,�n+1) S†p(V◦n+1,�n+1)
s†◦n+1oo

S◦p(V◦n,�n)

s◦↑

OO

S†p(V◦n,�)sp
s†◦n ◦s†↓oo

s†↑

OO

extracted from (5.24) is a Cartesian diagram.

Proof. Let S‡p(V◦n,�)sp be the actual fiber product in both cases. Take an object Kp◦ ∈ K(V◦n)psp.
We have to show that the natural morphism s‡ : S†p(V◦n,Kp◦)sp → S‡p(V◦n,Kp◦)sp is an isomorphism.
Since s‡ is a morphism of étale schemes over FΦ

p , it suffices to show that s‡(κ) is an isomorphism
for every perfect field κ containing FΦ

p .
For (1), by Lemma 5.10.4(1), an object in S‡p(V◦n,Kp◦)sp(S) is given by a pair of objects:

(A0, λ0, η
p
0;A•, λ•, ηp•;A• × A0, λ

• ×$λ0, η
p• × (idA0)∗) ∈ S•p(V◦n,Kp◦)sp(κ),

(A0, λ0, η
p
0;A◦\ , λ◦\ , η

p◦
\ ;A• × A0, λ

• ×$λ0, η
p• × (idA0)∗;ψ\) ∈ S†p(V◦n+1,K

p◦
n+1)(κ).

Let A◦ be the cokernel of the kernel of the composite map A◦\
ψ\−→ A•×A0 → A•, and ψ : A◦ → A•

the induced map. Let λ◦ be the unique quasi-polarization of A◦ satisfying $·λ◦ = ψ∨◦λ•◦ψ. Since
λ◦\ is p-principal and we have $·λ◦\ = ψ∨\ ◦(λ•×$·λ0)◦ψ\, the composite map A◦\

ψ\−→ A•×A0 → A0
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splits. Thus, the natural map A◦\ → A◦ × A0 is an isomorphism. Then λ◦ is p-principal, and we
obtain an object

(A0, λ0, η
p
0;A◦, λ◦, ηp◦;A•, λ•, ηp•;ψ) ∈ S†p(V◦n,Kp◦

n )(κ) = S†p(V◦n,Kp◦)sp(κ),
where ηp◦ is chosen so that Definition 5.4.1(c) is satisfied. In other words, we obtain a morphism
from S‡p(V◦n,Kp◦)sp(κ) to S†p(V◦n,Kp◦)sp(κ). It is straightforward to check that it is an inverse to
the morphism s‡(κ).

For (2), an object in S‡p(V◦n,Kp◦)sp(κ) is given by a pair of objects:
(A0, λ0, η

p
0;A◦, λ◦, ηp◦) ∈ S◦p(V◦n,Kp◦

n )(κ),
(A0, λ0, η

p
0;A◦ × A0, λ

◦ × λ0, η
p◦ × (idA0)∗;A•\ , λ•\ , η

p•
\ ;ψ\) ∈ S†p(V◦n+1,K

p◦
n+1)(κ).

Let A•∨ be the cokernel of the kernel of the composite map A•∨\
ψ∨\−→ A◦∨ × A∨0 → A◦∨, and

ψ∨ : A◦∨ → A•∨ the induced map. Taking dual, we obtain a map ψ : A◦ → A• and an induced
map δ• : A•×A0 → A•\ . Let λ• be the unique quasi-polarization of A• satisfying $ ·λ◦ = ψ∨◦λ•◦ψ.
Since λ•\ is p-principal and we have λ•×$ ·λ0 = δ•∨ ◦λ•\ ◦ δ•, we know that kerλ•[p∞] is contained
in A•[p] of rank p2, and we obtain an object(

(A0, λ0, η
p
0;A◦, λ◦, ηp◦;A•, λ•, ηp•;ψ), (A0, λ0, η

p
0;A•, λ•, ηp•;A•\ , λ•\ , η

p•
\ ; δ•)

)
∈ S†p(V◦n,Kp◦)sp(κ),

where ηp• is chosen so that Definition 5.4.1(c) is satisfied. In other words, we obtain a morphism
from S‡p(V◦n,Kp◦)sp(κ) to S†p(V◦n,Kp◦)sp(κ). It is straightforward to check that it is an inverse to
the morphism s‡(κ). �

Definition 5.10.9. We define B†p(V◦n,�)sp to be the fiber product indicated in the following
Cartesian diagram

B†p(V◦n,�)sp
π†sp //

b†↓
��

S†p(V◦n,�)sp

s†↓
��

B†p(V◦n,�n) π†n // S†p(V◦n,�n)
in Fun(K(V◦n)psp × T, Sch/FΦ

p
)/Tp .

By the universal property of Cartesian diagrams, we obtain a unique morphism
b†•sp : B†p(V◦n,�)sp → B•p(V◦n,�)sp

rendering the front lower-left cube of (5.24) commute. Finally, an easy diagram chasing indicates
that we have a unique morphism

b†↑ : B†p(V◦n,�)sp → B†p(V◦n+1,�n+1)
rendering the entire diagram (5.24) commute. Thus, we obtain our desired diagram (5.24).

Remark 5.10.10. By Proposition 5.10.6 and Theorem 5.4.3(1), one can show that when n is odd,
the square

B†p(V◦n+1,�n+1)
ι†n+1 // M†p(V◦n+1,�n+1)

B†p(V◦n,�)sp
ι†n◦b†↓ //

b†↑

OO

M†p(V◦n,�n)

m†↑

OO

extracted from the diagram (5.24) is Cartesian.
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Remark 5.10.11. By Lemma 5.10.4(1), Definition 5.10.5, Definition 5.10.7, and Definition 5.10.9,
the four downward arrows in the diagram (5.24) are isomorphisms when n is even.

At the fourth stage of functoriality, we compare the special morphisms for basic correspondences
and for Deligne–Lusztig varieties. Take a point s† ∈ S†p(V◦n,Kp◦)sp(κ) for a perfect field κ containing
FΦ
p . Put

s†n := s†↓(s†), s†n+1 := s†↑(s†);
s◦n := s†◦n (s†n), s◦n+1 := s†◦n+1(s†n+1);
s• := s†•sp(s†), s•n := s†•n (s†n), s•n+1 := s†•n+1(s†n+1).

Denote by B†s† , B†
s†n
, B†

s†n+1
, B◦s◦n , B◦s◦n+1

, B•s• , B•s•n , and B•s•n+1
their preimages under π†sp, π†n, π

†
n+1,

π◦n, π◦n+1, π•sp, π•n, and π•n+1, respectively.

Proposition 5.10.12. Let the notation be as above. The following diagram

B◦s◦n+1

ζ◦
s◦
n+1 // P(Vs◦n+1

)

B†
s†n+1

b†◦n+1
bb

b†•n+1

""

ζ†
s
†
n+1 // P(Vs†n+1

)

dd

$$
B•s•n+1

ζ•
s•
n+1 // DL•s•n+1

B◦s◦n

b◦↑

OO

ζ◦
s◦n // P(Vs◦n)

OO

B†s†

b†↑

OO

b†◦n ◦b†↓

bb

b†•sp ""

ζ†
s
†
n

◦b†↓
// P(Vs†n)

ee

$$

OO

B•s•

b•↑

OO

ζ•
s•n
◦b•↓

// DL•s•n

δs•↑

OO

in Schκ commutes, where
m ζ◦s◦n and ζ◦s◦n+1

are the isomorphisms in Theorem 5.2.4;
m ζ•s•n and ζ•s•n+1

are the isomorphisms in Theorem 5.3.4(3);
m ζ†

s†n
and ζ†

s†n+1
are the isomorphisms in Theorem 5.4.3(2);

m P(Vs†n)→ P(Vs◦n) and P(Vs†n+1
)→ P(Vs◦n+1

) are closed embeddings in Remark 5.4.4(1);
m P(Vs†n) → DL•s•n = DL•(Vs•n , { , }s•n) and P(Vs†n+1

) → DL•s•n+1
= DL•(Vs•n+1

, { , }s•n+1
) are

closed embeddings in Remark 5.4.4(2);
m P(Vs◦n) → P(Vs◦n+1

) is the morphism induced by the obvious κ-linear (surjective) map
Vs◦n+1

→ Vs◦n;
m δs•↑ is the morphism in Construction A.2.3 with respect to the map δs• : Vs•n,] → Vs•n+1

induced by δ• : A• × A0 → A•\ ; and
m P(Vs†n)→ P(Vs†n+1

) is the restriction of δs•↑, in view of Remark 5.4.4(2).
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In particular, b•↑ : B•s• → B•s•n+1
is an isomorphism when n is even.

Proof. The proof is very similar to Proposition 4.4.6, which we leave to readers. The last assertion
follows as b•↓ : B•s• → B•s•n is always an isomorphism, and δs•↑ is an isomorphism when n is even. �

At the final stage of functoriality, we relate the special morphisms for sources of basic corre-
spondences to Shimura sets under the uniformization maps υ◦ (5.4), υ• (5.9), and υ† (5.11). Recall
that we have data (V◦n, {Λ◦n,q}q|p) and (V◦n+1, {Λ◦n+1,q}q|p).

Notation 5.10.13. As in Construction 5.3.6, we choose a lattice chain Λ◦n,p ⊆ Λ•n,p ⊆ p−1Λ◦n,p of
V◦n ⊗F Fp, and a lattice chain Λ◦n+1,p ⊆ Λ•n+1,p ⊆ p−1Λ◦n+1,p of V◦n+1 ⊗F Fp, for which we assume
that (Λ•n,p)] ⊆ Λ•n+1,p ⊆ p−1(Λ•n,p)∨] holds. We now introduce various open compact subgroups at
p.

m For N ∈ {n, n+ 1}, we have K◦N,p from Construction 5.2.6, K•N,p from Construction 5.3.6,
and K†N,p = K◦N,p ∩K•N,p from Construction 5.4.5.

m Put K•sp,p := K•n,p ∩K•n+1,p (as a subgroup of K•n,p) and K•sp,p := K•sp,p ×
∏

q|p,q 6=p K◦n,q.
m Put K†sp,p := K•sp,p ∩K◦n,p.

For later use, we also introduce natural maps


sh◦↑ : Sh(V◦n,�nK◦n,p)→ Sh(V◦n+1,�n+1K◦n+1,p),
sh•↑ : Sh(V◦n,�nK•n,p)→ Sh(V◦n,�nK•sp,p),
sh•↓ : Sh(V◦n,�nK•sp,p)→ Sh(V◦n+1,�n+1K•n+1,p),
sh†↑ : Sh(V◦n,�nK†n,p)→ Sh(V◦n,�nK†sp,p),
sh†↓ : Sh(V◦n,�nK†sp,p)→ Sh(V◦n+1,�n+1K†n+1,p),
sh†◦n : Sh(V◦n,�nK†n,p)→ Sh(V◦n,�nK◦n,p),
sh†•n : Sh(V◦n,�nK†n,p)→ Sh(V◦n,�nK•n,p),
sh†◦n+1 : Sh(V◦n+1,�n+1K†n+1,p)→ Sh(V◦n+1,�n+1K◦n+1,p),
sh†•n+1 : Sh(V◦n+1,�n+1K†n+1,p)→ Sh(V◦n+1,�n+1K•n+1,p),
sh†•sp : Sh(V◦n,�nK†sp,p)→ Sh(V◦n,�nK•sp,p),

in Fun(K(V◦)psp, Set). Note that sh◦↑ has already appeared in Remark 5.10.2.

Similar to Construction 4.3.2, we may construct two uniformization maps

υ•sp : S•p(Vn,�)sp(Fp)→ Sh(V◦n,�nK•sp,p)× Tp(Fp)(5.25)

υ†sp : S†p(Vn,�)sp(Fp)→ Sh(V◦n,�nK†sp,p)× Tp(Fp)(5.26)

in Fun(K(V◦n)psp × T, Set)/Tp(Fp), which are isomorphisms. We leave the details to readers.
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Proposition 5.10.14. The following diagram

S
◦p (V

◦n+
1 ,�

n+
1 )(F

p )
υ
◦n

+
1

(5.4)
//Sh(V

◦n+
1 ,�

n+
1 K
◦n+

1
,p )×

T
p (F

p )

S
†p (V

◦n+
1 ,�

n+
1 )(F

p )

s †◦n+
1 (F

p )
ii

s †•n+
1 (F

p )

))

υ
†n

+
1

(5.11)
//Sh(V

◦n+
1 ,�

n+
1 K
†n+

1
,p )×

T
p ( F

p )

sh
†◦n+

1 ×
id

kk

sh
†•n+

1 ×
id

++

S
•p (V

◦n+
1 ,�

n+
1 )(F

p )
υ
•n

+
1

(5.9)
//Sh(V

◦n+
1 ,�

n+
1 K
•n+

1
,p )×

T
p (F

p )

S
†p (V

◦n ,�
)sp (F

p )
s †•sp (F

p )

))

s †↑ (F
p )

OOs †↓ ( F
p )

��

υ
†sp

(5.26)
//Sh(V

◦n ,�
n K
†sp
,p )×

T
p (F

p )
sh
†•sp ×

id

++

sh
†↓ ×

id

�� sh
†↑ ×

id

OO

S
•p (V

◦n ,�
)sp (F

p )

s •↑ (F
p )

OOs •↓ (F
p )

��

υ
•sp

(5.25)
//Sh(V

◦n ,�
n K
•sp
,p )×

T
p (F

p )

sh
•↑ ×

id

OOsh
•↓ ×

id

��

S
◦p (V

◦n ,�
n )( F

p )

s ◦↑ ( F
p )

OO

υ
◦n

(5.4)
//Sh(V

◦n ,�
n K
◦n
,p )×

T
p ( F

p )

sh
◦↑ ×

id

OO

S
†p (V

◦n ,�
n )( F

p )

s †◦n (F
p )

ii

s †•n (F
p )

))

υ
†n

(5.11)
//Sh(V

◦n ,�
n K
†n
,p )×

T
p (F

p )

sh
†◦n ×

id
kk

sh
†•n ×

id

++

S
•p (V

◦n ,�
n )(F

p )
υ
•n

(5.9)
//Sh(V

◦n ,�
n K
•n
,p )×

T
p (F

p )

in Fun(K(V◦n)psp × T, Set)/Tp(Fp) commutes (in which all uniformization maps are isomorphisms).
Moreover, the induced actions of Gal(Fp/FΦ

p ) on all terms on the right-hand side factor through
the projection to the factor Tp(Fp).

Proof. It follows from Constructions 5.2.6, 5.3.6, and 5.4.5. �
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Remark 5.10.15. When n = 1, we have the diagram (5.24) in which all terms not in the top or
back layers are empty. Propositions 5.10.12 and 5.10.14 can be modified in the obvious way.

5.11. First geometric reciprocity law. In this subsection, we state and prove a theorem we
call first geometric reciprocity law, which can be regarded a geometric template for the first explicit
reciprocity law studied in Subsection 7.2 once throw the automorphic input.

We maintain the setup in Subsection 5.10. However, we allow � = (�n,�n+1) to be an object of
K(V◦n)p×K(V◦n+1)p, rather than K(V◦n)psp. Denote by n0 and n1 the unique even and odd numbers
in {n, n + 1}, respectively. Write n0 = 2r0 and n1 = 2r1 + 1 for unique integers r0, r1 ≥ 1. In
particular, we have n = r0 + r1. Let L be a p-coprime coefficient ring.

To ease notation, we put X?
nα

:= X?
p(V◦nα ,�nα) for meaningful triples (X, ?, α) ∈ {M,M,B, S}×

{ , η, ◦, •, †} × {0, 1}.

Notation 5.11.1. We introduce following objects.

(1) Put P := Mn0 ×Tp Mn1 .
(2) For (?0, ?1) ∈ {◦, •, †}2, put P?0,?1 := M?0

n0 ×Tp M?1
n1 , which is a closed subscheme of P.11

(3) Let σ : Q → P be the blow-up along the subscheme P◦,◦, which is a morphism in
Fun(K(V◦n)p × K(V◦n+1)p × T, Sch/ZΦ

p
)/Tp .

(4) For (?0, ?1) ∈ {◦, •, †}2, let Q?0,?1 be the strict transform of P?0,?1 under σ, which is a closed
subscheme of Q.

(5) Let γ?0,?1
?′0,?′1

: P?0,?1 → P?′0,?′1 be the closed embedding if P?0,?1 is contained in P?′0,?′1 , and
δ?0,?1

?′0,?′1
: Q?0,?1 → Q?′0,?′1 the closed embedding if Q?0,?1 is contained in Q?′0,?′1 .

Suppose that � is taken in the subcategory K(V◦n)psp.

(6) Let P4 be the graph of m↑ : Mn →Mn+1 (5.21) over Tp in Fun(K(V◦n)psp × T, Sch/ZΦ
p
)/Tp ,

as a closed subscheme of P.
(7) For ? = •, ◦, let P?

4 be the graph of m?
↑ : M?

n → M?
n+1 (5.22) over Tp in Fun(K(V◦n)psp ×

T, Sch/FΦ
p
)/Tp , as a closed subscheme of P?,?.

(8) Let Q4 be the strict transform of P4 under σ, which is a closed subscheme of Q.

Lemma 5.11.2. The two specialization maps

Hi
T,c(Q⊗Zp2 Qp, L)→ Hi

T,c(Q,RΨL),
Hi

T(Q⊗Zp2 Qp, L)→ Hi
T(Q,RΨL),

are both isomorphisms.

Proof. When Q is proper, this is simply the proper base change. When Q is not proper, this again
follows from [LS18, Corollary 5.20]. �

Lemma 5.11.3. The scheme Q (valued at any object of K(V◦n)psp) is strictly semistable over ZΦ
p

of relative dimension 2n− 1. Moreover, we have

11Recall from Notation 3.3.6(5) that P is P⊗ZΦ
p
FΦ
p .
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(1) The reduction graph of Q is as follows

Q•,◦ Q†,◦

Q•,†

Q•,◦∩Q†,†

Q◦,◦

Q◦,†

Q•,•
Q†,•

Q†,†

Q◦,•

Q◦,•∩Q†,†

so that 

Q(0) = Q◦,◦
∐

Q◦,•
∐

Q•,•
∐

Q•,◦,
Q(1) = Q◦,†

∐
Q†,•

∐
Q•,†

∐
Q†,◦

∐
Q†,†,

Q(2) = (Q•,◦ ∩Q†,†)
∐

(Q◦,• ∩Q†,†),
Q(c) = ∅, for c ≥ 3.

Here, Q(c) denotes the union of the strata of Q of codimension c.
(2) For the morphism σ, we have that

m the induced morphism σ : Q?0,?1 → P?0,?1 is an isomorphism if ?0 6=?1;
m the induced morphism σ : Q?0,?1 → P?0,?1 is the blow-up along P†,† if (?0, ?1) ∈
{(◦, ◦), (•, •)};

m the induced morphism σ : Q†,† → P†,† is a trivial P1-bundle;
m the induced morphisms σ : Q•,◦ ∩ Q†,† → P†,† and σ : Q◦,• ∩ Q†,† → P†,† are both

isomorphisms.
(3) The natural map

σ∗ : Hi
T(P?0,?1 , Oλ)→ Hi

T(Q?0,?1 , Oλ)
is injective, and moreover an isomorphism if ?0 6=?1.

(4) For (?0, ?1) ∈ {(◦, ◦), (•, •)}, the map

(δ†,†?0,?1)! ◦ σ∗ : Hi−2
T (P†,†, Oλ(−1))→ Hi

T(Q?0,?1 , Oλ)
is injective; and we have

Hi
T(Q?0,?1 , Oλ) = σ∗Hi

T(P?0,?1 , Oλ)
⊕

(δ†,†?0,?1)!σ
∗Hi−2

T (P†,†, Oλ(−1)).

(5) If we denote by f ∈ H2
T(Q†,†, Oλ(1)) the cycle class of an arbitrary T-orbit of fibers of the

trivial P1-fibration σ : Q†,† → P†,†, then the map
(f∪) ◦ σ∗ : Hi−2

T (P†,†, Oλ(−1))→ Hi
T(Q†,†, Oλ)

is injective; and we have
Hi

T(Q†,†, Oλ) = σ∗Hi
T(P†,†, Oλ)

⊕
f ∪ σ∗Hi−2

T (P†,†, Oλ(−1)).
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Proof. Parts (1,2) follow from a standard computation of blow-up. Parts (3–5) follow from (2). �

Let (Ep,qs , dp,qs ) be the weight spectral sequence12 abutting to the cohomology Hp+q
T (Q,RΨOλ(n)),

whose first page is as follows:

q
≥

2n
+

1
···

//···
//···

//···
//···

q
=

2n
H

2
n−

4
T

(Q
(2),O

λ (n
−

2))
d
−

2
,2
n

1
//H

2
n−

2
T

(Q
(1),O

λ (n
−

1))
d
−

1
,2
n

1
//

H
2
n

T
(Q

(0),O
λ (n))

⊕
H

2
n−

2
T

(Q
(2),O

λ (n
−

1))

d
0
,2
n

1
//H

2
n

T
(Q

(1),O
λ (n))

d
1
,2
n

1
//H

2
n

T
(Q

(2),O
λ (n))

q
=

2n
−

1
H

2
n−

5
T

(Q
(2),O

λ (n
−

2)) d
−

2
,2
n
−

1
1

//H
2
n−

3
T

(Q
(1),O

λ (n
−

1)) d
−

1
,2
n
−

1
1

//
H

2
n−

1
T

(Q
(0),O

λ (n))
⊕

H
2
n−

3
T

(Q
(2),O

λ (n
−

1))

d
0
,2
n
−

1
1

//H
2
n−

1
T

(Q
(1),O

λ (n))
d

1
,2
n
−

1
1

//H
2
n−

1
T

(Q
(2),O

λ (n))

q
=

2n
−

2
H

2
n−

6
T

(Q
(2),O

λ (n
−

2)) d
−

2
,2
n
−

2
1

//H
2
n−

4
T

(Q
(1),O

λ (n
−

1)) d
−

1
,2
n
−

2
1

//
H

2
n−

2
T

(Q
(0),O

λ (n))
⊕

H
2
n−

4
T

(Q
(2),O

λ (n
−

1))

d
0
,2
n
−

2
1

//H
2
n−

2
T

(Q
(1),O

λ (n))
d

1
,2
n
−

2
1

//H
2
n−

2
T

(Q
(2),O

λ (n))

q
≤

2n
−

3
···

//···
//···

//···
//···

E
p
,q

1
p

=
−

2
p

=
−

1
p

=
0

p
=

1
p

=
2

(5.27)

with Ep,q1 = 0 if |p| > 2. The following lemma will be used later.

Construction 5.11.4. For α = 0, 1, let ξα ∈ H2
T(B◦nα , L(1)) be the first Chern class of the

tautological quotient line bundle on B◦nα . We construct four new pairs of maps in Fun(K(V◦n)p ×

12Strictly speaking, the differential maps dp,qs depend on the choice of the ordering of (types of) irreducible
components of Q, which we choose to be the clockwise order Q◦,◦ < Q◦,• < Q•,• < Q•,◦.
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K(V◦n+1)p,Mod(L)) as follows:



inc◦,†! : L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)]
∼−→ H0

T(S◦n0 , L)⊗L H0
T(S◦n1 , L) = H0

T(S◦n0 ×Tp
S◦n1 , L)

(π◦n0×π
◦
n1 )∗

−−−−−−−→ H0
T(B◦n0 ×Tp

B◦n1 , L)
∪ξr0−1

0 ∪ξr1−1
1−−−−−−−−→ H2(n−2)

T (B◦n0 ×Tp
B◦n1 , L(n− 2))

(ι◦n0×ι
◦
n1 )!−−−−−−→ H2(n−2)

T (M◦n0 ×Tp
M◦n1 , L(n− 2))

(id×m†◦n1 )∗
−−−−−−→ H2(n−2)

T (M◦n0 ×Tp
M†n1 , L(n− 2))

(id×m†•n1 )!−−−−−−→ H2(n−1)
T,c (M◦n0 ×Tp

M•n1 , L(n− 1)) = H2(n−1)
T,c (P◦,•, L(n− 1)),

inc∗◦,† : H2n
T (P◦,•, L(n)) = H2n

T (M◦n0 ×Tp
M•n1 , L(n))

(id×m†•n1 )∗
−−−−−−→ H2n

T (M◦n0 ×Tp
M†n1 , L(n))

(id×m†◦n1 )!−−−−−−→ H2n+2
T (M◦n0 ×Tp

M◦n1 , L(n+ 1))
(ι◦n0×ι

◦
n1 )∗

−−−−−−→ H2n+2
T (B◦n0 ×Tp

B◦n1 , L(n+ 1))
∪ξr0−1

0 ∪ξr1−1
1−−−−−−−−→ H4n−2

T (B◦n0 ×Tp
B◦n1 , L(2n− 1))

(π◦n0×π
◦
n1 )!−−−−−−→ H0

T(S◦n0 ×Tp
S◦n1 , L) = H0

T(S◦n0 , L)⊗L H0
T(S◦n1 , L)

∼−→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)];



inc◦,•! : L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)]
∼−→ H0

T(S◦n0 , L)⊗L H0
T(S•n1 , L) = H0

T(S◦n0 ×Tp
S•n1 , L)

(π◦n0×π
•
n1 )∗

−−−−−−−→ H0
T(B◦n0 ×Tp

B•n1 , L)
∪ξr0−1

0−−−−→ H2(r0−1)
T (B◦n0 ×Tp

B•n1 , L(r0 − 1))
(ι◦n0×ι

•
n1 )!−−−−−−→ H2(n−1)

T,c (M◦n0 ×Tp
M•n1 , L(n− 1)) = H2(n−1)

T,c (P◦,•, L(n− 1)),
inc∗◦,• : H2n

T (P◦,•, L(n)) = H2n
T (M◦n0 ×Tp

M•n1 , L(n))
(ι◦n0×ι

•
n1 )∗

−−−−−−→ H2n
T (B◦n0 ×Tp

B•n1 , L(n))
∪ξr0−1

0−−−−→ H2(n0−1+r1)
T (B◦n0 ×Tp

B•n1 , L(n0 − 1 + r1))
(π◦n0×π

•
n1 )!−−−−−−→ H0

T(S◦n0 ×Tp
S•n1 , L) = H0

T(S◦n0 , L)⊗L H0
T(S•n1 , L)

∼−→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)];
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inc•,†! : L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)]
∼−→ H0

T(S•n0 , L)⊗L H0
T(S◦n1 , L) = H0

T(S•n0 ×Tp
S◦n1 , L)

(π◦n0×π
◦
n1 )∗

−−−−−−−→ H0
T(B•n0 ×Tp

B◦n1 , L)
∪ξr1−1

1−−−−→ H2r1−2
T (B•n0 ×Tp

B◦n1 , L(r1 − 1))
(id×ι◦n1 )!−−−−−→ H2r1−2

T (B•n0 ×Tp
M◦n1 , L(r1 − 1))

(id×m†◦n1 )∗
−−−−−−→ H2r1−2

T (B•n0 ×Tp
M†n1 , L(r1 − 1))

(ι•n0×m†•n1 )!−−−−−−→ H2(n−1)
T,c (M•n0 ×Tp

M•n1 , L(n− 1)) = H2(n−1)
T,c (P•,•, L(n− 1)),

inc∗•,† : H2n
T (P•,•, L(n)) = H2n

T (M•n0 ×Tp
M•n1 , L(n))

(ι•n0×m†•n1 )∗
−−−−−−−→ H2n

T (B•n0 ×Tp
M†n1 , L(n))

(id×m†◦n1 )!−−−−−−→ H2n+2
T (B•n0 ×Tp

M◦n1 , L(n+ 1))
(id×ι◦n1 )∗
−−−−−→ H2n+2

T (B•n0 ×Tp
B◦n1 , L(n+ 1))

∪ξr1−1
1−−−−→ H2(r0+n1−1)

T (B•n0 ×Tp
B◦n1 , L(r0 + n1 − 1))

(π•n0×π
◦
n1 )!−−−−−−→ H0

T(S•n0 ×Tp
S◦n1 , L) = H0

T(S•n0 , L)⊗L H0
T(S◦n1 , L)

∼−→ L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)];

inc•,•! : L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)]
∼−→ H0

T(S•n0 , L)⊗L H0
T(S•n1 , L) = H0

T(S•n0 ×Tp
S•n1 , L)

(π•n0×π
•
n1 )∗

−−−−−−−→ H0
T(B•n0 ×Tp

B•n1 , L)
(ι•n0×ι

•
n1 )!−−−−−−→ H2(n−1)

T,c (M•n0 ×Tp
M•n1 , L(n− 1)) = H2(n−1)

T,c (P•,•, L(n− 1)),
inc∗•,• : H2n

T (P•,•, L(n)) = H2n
T (M•n0 ×Tp

M•n1 , L(n))
(ι•n0×ι

•
n1 )∗

−−−−−−→ H2n
T (B•n0 ×Tp

B•n1 , L(n))
(π•n0×π

•
n1 )!−−−−−−→ H0

T(S•n0 ×Tp
S•n1 , L) = H0

T(S•n0 , L)⊗L H0
T(S•n1 , L)

∼−→ L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)].

In fact, the two maps in each pair are Poincaré dual to each other.

Theorem 5.11.5 (First geometric reciprocity law). Take an object Kp◦ ∈ K(V◦n)psp. For the class
cl(P•4) ∈ H2n

T (P•,•, L(n)), we have
(1) For f ∈ L[Sh(V◦n0 ,K

p◦
n0K•n0,p)]⊗L L[Sh(V◦n1 ,K

p◦
n1K◦n1,p)], the identity∫ T

P•,•
cl(P•4) ∪ inc•,†! (f) =

∑
s∈Sh(V◦n,K

p◦
n K•sp,p)

(T•◦n1,pf)(sh•↓(s), sh•↑(s))
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holds.
(2) For f ∈ L[Sh(V◦n0 ,K

p◦
n0K•n0,p)]⊗L L[Sh(V◦n1 ,K

p◦
n1K•n1,p)], the identity∫ T

P•,•
cl(P•4) ∪ inc•,•! (f) =

∑
s∈Sh(V◦n,K

p◦
n K•sp,p)

(T•n1,pf)(sh•↓(s), sh•↑(s))

holds.
(3) For f ∈ L[Sh(V◦n0 ,K

p◦
n0K◦n0,p)]⊗L L[Sh(V◦n1 ,K

p◦
n1K◦n1,p)], the identity∫ T

P•,•
cl(P•4) ∪

(
inc•,†! (T•◦n0,p ⊗ I◦n1,pf) + (p+ 1)2inc•,•! (T•◦n0,p ⊗ T•◦n1,pf)

)
=

∑
s∈Sh(V◦n,K

p◦
n K◦n,p)

(I◦n0,p ⊗ T◦n1,pf)(s, sh◦↑(s))

holds.
Here,

∫ T
P•,• denotes the T-trace map in Definition 3.5.8; and sh◦↑, sh•↑, and sh•↓ are maps in Notation

5.10.13.

The intersection number in (3) is the actual one that is responsible for the first explicit reci-
procity law which will be discussed in Subsection 7.2.

Proof. We first show (3) assuming (1) and (2). By (1), (2), and Lemma B.4.4, we have for
f ∈ L[Sh(V◦n0 ,K

p◦
n0K◦n0,p)]⊗L L[Sh(V◦n1 ,K

p◦
n1K◦n1,p)],∫ T

P•,•
cl(P•4) ∪

(
inc•,†! (T•◦n0,p ⊗ I◦n1,pf) + (p+ 1)2inc•,•! (T•◦n0,p ⊗ T•◦n1,pf)

)
=

∑
s∈Sh(V◦n,K

p◦
n K•sp,p)

(T•◦n0,p ⊗ (T•◦n1,p ◦ I◦n1,p)f)(sh•↓(s), sh•↑(s))

+
∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n0,p ⊗ ((p+ 1)2T•n1,p ◦ T•◦n1,p)f)(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n0,p ⊗ (T•◦n1,p ◦ I◦n1,p)f)(sh•↓(s), sh•↑(s))

+
∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n0,p ⊗ (T•◦n1,p ◦ T◦n1,p − T•◦n1,p ◦ I◦n1,p)f)(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n0,p ⊗ (T•◦n1,p ◦ T◦n1,p)f)(sh•↓(s), sh•↑(s))

which, by Lemma 5.11.6 below, equals∑
s∈Sh(V◦n,K

p◦
n K◦n,p)

(I◦n0,p ⊗ T◦n1,pf)(s, sh◦↑(s)).

Thus, (3) is proved.
Now we consider (1) and (2) simultaneously. Similar to the maps inc•! and inc†! in Construction

5.7.3, we have maps

inc•α : L[Sh(V◦nα ,K
p◦
nαK•nα,p)]→ H2(rα+α−1)

T,c (M•nα , L(rα + α− 1)),

inc†α : L[Sh(V◦nα ,K
p◦
nαK◦nα,p)]→ H2(rα+α−1)

T,c (M•nα , L(rα + α− 1)),

for α = 0, 1. Note that we now take HT,c for the target of the maps rather than HT. Moreover, in
the calculation below, we will frequently use the following formula for intersection number pairings:
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for a finite morphism i : X → Y of smooth schemes over an algebraically closed field, and proper
smooth subschemes X ′ of X and Y ′ of Y , we have

〈X4, X ′ × Y ′〉X×Y = 〈X ′4, X ′ × Y ′〉X′×Y = 〈i∗X ′, Y ′〉Y
where X4 and X ′4 denote by the graphs of i and i | X ′, respectively. The proof for (1) and (2)
differs by the parity of n.

We first consider the case where n = n0 is even. By Lemma 5.10.4(1) and Proposition 5.10.14,
sh•↓ is an isomorphism. Take a point s•n ∈ Sh(V◦n,Kp◦

n K•n,p). Let s• be the unique element in
Sh(V◦n,Kp◦

n K•sp,p) such that s•n = sh•↓(s•), and put s•n+1 := sh•↑(s•). By (the last assertion in)
Proposition 5.10.12, we have

m•↑!inc•0(1s•n) = inc•1(1s•n+1
).

For (1), we have for every s′n+1 ∈ Sh(V◦n+1,K
p◦
n+1K◦n+1,p) the identity∫ T

P•,•
cl(P•4) ∪ inc•,†! (1(s•n,s′n+1)) =

∫ T

M•n+1

(
m•↑!inc•0(1s•n)

)
∪ inc†1(1s′n+1

)

=
∫ T

M•n+1

inc•0(1s•n+1
) ∪ inc†1(1s′n+1

).

Thus, (1) follows from Proposition 5.7.6. For (2), we have for every s′n+1 ∈ Sh(V◦n+1,K
p◦
n+1K•n+1,p)

the identity ∫ T

P•,•
cl(P•4) ∪ inc•,•! (1(s•n,s′n+1)) =

∫ T

M•n+1

(
m•↑!inc•0(1s•n)

)
∪ inc•1(1s′n+1

)

=
∫ T

M•n+1

inc•0(1s•n+1
) ∪ inc•1(1s′n+1

).

Thus, (2) follows from Proposition 5.7.6.
We then consider the case where n = n1 is odd. Take a point s•n+1 ∈ Sh(V◦n+1,K

p◦
n+1K•n+1,p). By

Proposition 5.10.6, Proposition 5.10.12, and Proposition 5.10.14, we have
m•∗↑ inc•0(1s•n+1

) = inc•1(sh•↓!sh•∗↑ 1s•n+1
).

For (1), we have for every s′n ∈ Sh(V◦n,Kp◦
n K◦n,p) the identity∫ T

P•,•
cl(P•4) ∪ inc•,†! (1(s•n+1,s

′
n)) =

∫ T

M•n

(
m•∗↑ inc•0(1s•n+1

)
)
∪ inc†1(1s′n)

=
∫ T

M•n
inc•1(sh•↓!sh•∗↑ 1s•n+1

) ∪ inc†1(1s′n).

Thus, (1) follows from Proposition 5.7.6. For (2), we have for every s′n ∈ Sh(V◦n,Kp◦
n K•n,p) the

identity ∫ T

P•,•
cl(P•4) ∪ inc•,•! (1(s•n+1,s

′
n)) =

∫ T

M•n

(
m•∗↑ inc•0(1s•n+1

)
)
∪ inc•1(1s′n)

=
∫ T

M•n
inc•1(sh•↓!sh•∗↑ 1s•n+1

) ∪ inc•1(1s′n).

Thus, (1) follows from Proposition 5.7.6.
The theorem is proved. �

Lemma 5.11.6. For every f ∈ L[Sh(V◦n0 ,K
p◦
n0K•n0,p)]⊗L L[Sh(V◦n1 ,K

p◦
n1K◦n1,p)], we have∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n1,pf)(sh•↓(s), sh•↑(s)) =
∑

s∈Sh(V◦n,K
p◦
n K◦n,p)

(T◦•n0,pf)(s, sh◦↑(s)).
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Proof. There are two cases.
When n is even, by Lemma 5.10.8(1) and Proposition 5.10.14, we have∑

s∈Sh(V◦n,K
p◦
n K•sp,p)

(T•◦n1,pf)(sh•↓(s), sh•↑(s)) =
∑

s∈Sh(V◦n,K
p◦
n K†sp,p)

f(sh†↓(sh†•n (s)), sh†◦n+1(sh†↑(s)))

=
∑

s∈Sh(V◦n,K
p◦
n K†sp,p)

f(sh†↓(sh†•n (s)), sh◦↑(sh†◦n (sh†↓(s)))),

which, by Lemma 5.10.4(1), Definition 5.10.7, and Proposition 5.10.14, equals∑
s∈Sh(V◦n,K

p◦
n K†sp,p)

f(sh†•n (s), sh◦↑(sh†◦n (s))) =
∑

s∈Sh(V◦n,K
p◦
n K◦n,p)

(T◦•n0,pf)(s, sh◦↑(s)).

When n is odd, by Definition 5.10.7 and Proposition 5.10.14, we have∑
s∈Sh(V◦n,K

p◦
n K•sp,p)

(T•◦n1,pf)(sh•↓(s), sh•↑(s)) =
∑

s∈Sh(V◦n,K
p◦
n K†sp,p)

f(sh†◦n (sh†↓(s)), sh•↑(sh†•sp(s)))

=
∑

s∈Sh(V◦n,K
p◦
n K†sp,p)

f(sh†◦n (sh†↓(s)), sh
†•
n+1(sh†↑(s))),

which, by Lemma 5.10.8(2) and Proposition 5.10.14, equals∑
s∈Sh(V◦n,K

p◦
n K◦n,p)

(T◦•n0,pf)(s, sh◦↑(s)).

The lemma is proved. �

Construction 5.11.7. We constructs maps

Inc∗◦,† : H2n
T (Q(0), L(n))→ H2n

T (Q◦,•, L(n)) σ!−→ H2n
T (P◦,•, L(n))

inc∗◦,†−−−→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)],
Inc∗◦,• : H2n

T (Q(0), L(n))→ H2n
T (Q◦,•, L(n)) σ!−→ H2n

T (P◦,•, L(n))
inc∗◦,•−−−→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)],

Inc∗•,† : H2n
T (Q(0), L(n))→ H2n

T (Q•,•, L(n)) σ!−→ H2n
T (P•,•, L(n))

inc∗•,†−−−→ L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)],
Inc∗•,• : H2n

T (Q(0), L(n))→ H2n
T (Q•,•, L(n)) σ!−→ H2n

T (P•,•, L(n))
inc∗•,•−−−→ L[Sh(V◦n0 ,�n0K•n0,p)]⊗L L[Sh(V◦n1 ,�n1K•n1,p)].

Define the map

∇ : H2n
T (Q(0), L(n))→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)]

to be the sum of the following four maps

(I◦n0,p ⊗ I◦n1,p) ◦ Inc∗◦,†, (p+ 1)2(I◦n0,p ⊗ T◦•n1,p) ◦ Inc∗◦,•,
(p+ 1)(T◦•n0,p ⊗ I◦n1,p) ◦ Inc∗•,†, (p+ 1)3(T◦•n0,p ⊗ T◦•n1,p) ◦ Inc∗•,•.

At last, we recall the construction of potential map from [Liu19, Section 2.2]. For r ∈ Z, put

Br(Q, L) := ker
(
δ∗0 : H2r

T (Q(0), L(r))→ H2r
T (Q(1), L(r))

)
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and

Br(Q, L) := coker
(
δ1! : H2(2n−r−2)

T (Q(1), L(2n− r − 2))→ H2(2n−r−1)
T (Q(0), L(2n− r − 1))

)
.

We define Br(Q, L)0 and B2n−r−1(Q, L)0 to be the kernel and the cokernel of the tautological map

Br(Q, L)→ B2n−r−1(Q, L),

respectively. By [Liu19, Lemma 2.4], the composite map

H2(r−1)
T (Q(0), L(r − 1)) δ∗0−→ H2(r−1)

T (Q(1), L(r − 1)) δ1!−→ H2r
T (Q(0), L(r))

factors through a unique map
B2n−r(Q, L)0 → Br(Q, L)0

in Fun(K(V◦n)p × K(V◦n+1)p,Mod(L[Gal(Fp/FΦ
p )])). Put

Cr(Q, L) := Br(Q, L)0
Gal(Fp/FΦ

p ), Cr(Q, L) := Br(Q, L)Gal(Fp/FΦ
p )

0 .

Then we obtain the potential map

∆r : C2n−r(Q, L)→ Cr(Q, L)(5.28)

in Fun(K(V◦n)p × K(V◦n+1)p,Mod(L)).13 We will be most interested in the case where r = n.

Remark 5.11.8. By the descriptions of the Galois actions in Construction 5.2.6 and Construction
5.3.6, the map ∇ in Construction 5.11.7 factors through the quotient map

H2n
T (Q(0), L(n))→ H2n

T (Q(0), L(n))Gal(Fp/FΦ
p ),

hence restricts to a map

∇ : Cn(Q, L)→ L[Sh(V◦n0 ,�n0K◦n0,p)]⊗L L[Sh(V◦n1 ,�n1K◦n1,p)]

in Fun(K(V◦n)p × K(V◦n+1)p,Mod(L)), via the canonical map Cn(Q, L)→ H2n
T (Q(0), L(n))Gal(Fp/FΦ

p ).

6. Tate classes and arithmetic level raising

In this section, we study two important arithmetic properties of semistable moduli schemes
introduced in Section 5. The first is the existence of Tate cycles when the rank is odd, studied
in Subsection 6.2. The second is the arithmetic level raising when the rank is even, studied
in Subsections 6.3 and 6.4. In Subsection 6.1, we collect some preliminaries on automorphic
representations and their motives.

Let N ≥ 2 be an integer with r := bN2 c.

6.1. Preliminaries on automorphic representations. In this subsection, we consider
m a relevant representation Π of GLN(AF ) (Definition 1.1.3),
m a strong coefficient field E ⊆ C of Π (Definition 3.2.5),
m a finite set Σ+

min of nonarchimedean places of F+ containing Σ+
Π (Notation 3.1.4),

m a (possibly empty) finite set Σ+
lr

14 of nonarchimedean places of F+ that are inert in F ,
strongly disjoint from Σ+

min (Definition 1.3.3),
m a finite set Σ+ of nonarchimedean places of F+ containing Σ+

min ∪ Σ+
lr .

13In [Liu19], Cr(Q, L) and Cr(Q, L) are denoted by Ar(Q, L)0 and Ar(Q, L)0, respectively.
14Here, the subscript “lr” standards for “level-raising”.
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We then have, by Construction 3.1.10, the homomorphism
φΠ : TΣ+

N → OE.

For every prime λ of E, we have a continuous homomorphism
ρΠ,λ : ΓF → GLN(Eλ)

from Proposition 3.2.4(2) and Definition 3.2.5, such that ρc
Π,λ and ρ∨Π,λ(1−N) are conjugate.

We choose
m a finite place λ of E (with the underlying rational prime `) satisfying ` - ‖v‖(‖v‖2 − 1) for

every v ∈ Σ+
lr ,

m a positive integer m,
m a standard definite hermitian space V◦N of rank N over F , together with a self-dual∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr
OFv -lattice Λ◦N in V◦N ⊗F A

Σ+
∞∪Σ+

min∪Σ+
lr

F , satisfying that (V◦N)v is not split for
v ∈ Σ+

lr when N is even,
m an object K◦N ∈ K(V◦N) of the form

K◦N =
∏

v∈Σ+
min∪Σ+

lr

(K◦N)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr

U(Λ◦N)(OF+
v

),

satisfying that when N is even, (K◦N)v is a transferable open compact subgroup of
U(V◦N)(F+

v ) (Definition D.2.1)15 for v ∈ Σ+
min and is a special maximal subgroup of

U(V◦N)(F+
v ) for v ∈ Σ+

lr ,
m a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational prime p)

satisfying
(P1): Σ+ does not contain p-adic places;
(P2): ` does not divide p(p2 − 1);
(P3): there exists a CM type Φ containing τ∞ as in the initial setup of Section 5 satisfying

QΦ
p = Qp2 ;

(P4): if N is even, then Pα(Πp) modλm is level-raising special at p (Definition 3.1.5);
if N is odd, then Pα(Πp) modλ is Tate generic at p (Definition 3.1.5);

(P5): Pα(Πp) modλ is intertwining generic at p (Definition 3.1.5);
(P6): if N is even, the natural map

OE/λ
m[Sh(V◦N ,K◦N)]

TΣ+∪Σ+
p

N ∩ kerφΠ

→ OE/λ
m[Sh(V◦N ,K◦N)]

kerφΠ

is an isomorphism;
(So we can and will adopt the setup in Section 5 to the datum (V◦N , {Λ◦N,q}|q|p).)

m remaining data in the initial setup of Section 5 with QΦ
p = Qp2 ;

m a definite uniformization datum as in Construction 5.3.6; and
m an indefinite uniformization datum (V′N , jN , {Λ′q,N}q|p) for V◦N as in Definition 5.1.6.

Put Kp◦
N := (K◦N)p and K•N := Kp◦

N × K•p. Like in Subsection 5.8, we put X?
N := X?

p(V◦N ,K
p◦
N )

for meaningful pairs (X, ?) ∈ {M,M,B, S} × { , η, ◦, •, †}. Let (Ep,q
s , dp,qs ) be the weight spectral

sequence abutting to the cohomology Hp+q
T (MN ,RΨOλ(r)) from Subsection 5.8.

Remark 6.1.1. By Construction 3.1.10 and (P2) (namely, ` 6= p), we know that Pα(Πp) is a poly-
nomial with coefficients in Oλ.
Remark 6.1.2. Note that when N = 2, (P2) and (P4) together imply (P5).

15By Lemma D.2.2(3), every sufficiently small (K◦N )v is transferable. So the readers may ignore this technical
requirement.
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Notation 6.1.3. We introduce the following ideas of TΣ+∪Σ+
p

N
m := TΣ+∪Σ+

p

N ∩ ker
(
TΣ+

N

φΠ−→ OE → OE/λ
)
,

n := TΣ+∪Σ+
p

N ∩ ker
(
TΣ+

N

φΠ−→ OE → OE/λ
m
)
.

We then introduce following assumptions.

Assumption 6.1.4. We have Hi
T(MN ,RΨOλ)m = 0 for i 6= N − 1, and that HN−1

T (MN ,RΨOλ)m
is a finite free Oλ-module.

Assumption 6.1.5. The Galois representation ρΠ,λ is residually absolutely irreducible.

Remark 6.1.6. Under Assumption 6.1.5, we obtain a homomorphism
ρ̄Π,λ : ΓF → GLN(Oλ/λ)

from the residual homomorphism of ρΠ,λ, which is unique to to conjugation, absolutely irreducible,
and (1−N)-polarizable (Definition 2.4.7). From Construction 2.4.8 or Lemma E.1.3(3), we then
have an extension

ρ̄Π,λ,+ : ΓF+ → GN(Oλ/λ)
of ρ̄Π,λ. For a different extension ρ̄Π,λ,+′ , there exist elements g ∈ GLN(Oλ/λ) and a ∈ (Oλ/λ)×
such that ρ̄Π,λ,+′(x) = gρ̄Π,λ,+(x)g−1 for x ∈ ΓF , and ρ̄Π,λ,+′(c) = (aB, µ, c) if ρ̄Π,λ,+(c) = (B, µ, c).
The discussion below on the extension ρ̄Π,λ,+ is independent of such ambiguity.

We now fix an isomorphism ι` : C ' Q` that induces the place λ of E, till the end of this section.

Definition 6.1.7. Let π be an automorphic representation of U(V◦N)(AF+). We say that π is
Π-congruent (outside Σ+ ∪ Σ+

p ) if π∞ is trivial, and for every nonarchimedean place v of F+ not
in Σ+ ∪Σ+

p ∪Σ+
` , the two homomorphisms ι`φα(BC(πv)) and ι`φα(Πv) from TN,v to Q`, which in fact

take values in Z`, coincide in F`.

Lemma 6.1.8. The two maps
T•◦N,p : OE[Sh(V◦N ,K◦N)]m → OE[Sh(V◦N ,K•N)]m
T◦•N,p : OE[Sh(V◦N ,K•N)]m → OE[Sh(V◦N ,K◦N)]m

are both isomorphisms, where T•◦N,p and T◦•N,p are introduced in Definition 5.7.1.

Proof. By Proposition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) and (P5),
we know that the endomorphism I◦N,p = T◦•N,p ◦ T•◦N,p of OE[Sh(V◦N ,K◦N)]m is an isomorphism. Thus,
it suffices to show that the free Oλ-modules OE[Sh(V◦N ,K◦N)]m and OE[Sh(V◦N ,K•N)]m have the
same rank. We show that OE[Sh(V◦N ,K◦N)]m ⊗Oλ Q` and OE[Sh(V◦N ,K•N)]m ⊗Oλ Q` have the same
dimension. We have

OE[Sh(V◦N ,K◦N)]m ⊗Oλ Q` '
⊕
π

m(π) · πK◦N ,

OE[Sh(V◦N ,K•N)]m ⊗Oλ Q` '
⊕
π

m(π) · πK•N ,

where π runs over all automorphic representations of U(V◦N)(AF+) (with coefficients in Q`) that
are Π-congruent; and m(π) denotes the automorphic multiplicity of π.16 It suffices to show that
if in the second direct sum π

K•N
p 6= {0}, which has to be of dimension one since K•N is special

16Although we know that m(π) = 1 by Proposition C.3.1(2), we do not need this fact here.
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maximal, then πK◦N
p 6= {0} as well. Since πp is semistable, then its Satake parameter α does not

contain the pair {−1,−1} (resp. {−p,−p−1}) when N is even (resp. odd) by (P5). Let π′p be
the unique constituent of the principal series of α such that (π′p)K◦N 6= {0}, then by Proposition
B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) again, we see that (π′p)K•N 6= {0}.
Thus, we must have πp = π′p as K•N is special maximal. The lemma follows. �

Lemma 6.1.9. Let π be an automorphic representation of U(V◦N)(AF+) that is Π-congruent. If
Assumption 6.1.5 holds, then π is stable.

Proof. By Proposition 3.2.8, we know that BC(π) exists as (V◦N , π) is a relevant pair. Let
ρBC(π),ι` : ΓF → GLN(Q`) be the associated Galois representation from Proposition 3.2.3(2), which
is the direct sum of the associated Galois representation of each isobaric factors. If BC(π) is
not cuspidal, then ρBC(π),ι` is decomposable. Since π is Π-congruent, by the Chebotarev density
theorem, ρBC(π),ι` admits a lattice whose residual representation is isomorphic to ρ̄Π,λ ⊗Oλ/λ F`,
which is irreducible. This is a contradiction. Thus, the lemma follows. �

Lemma 6.1.10. Assume Assumption 6.1.5. Then the natural maps
Hi

ét,c(Sh(V′N , jNKp◦
N K′p,N)F , Oλ)m → Hi

ét(Sh(V′N , jNKp◦
N K′p,N)F , Oλ)m,

Hi
T,c(M•N , Oλ)m → Hi

T(M•N , Oλ)m,
are both isomorphisms for every i ∈ Z.

Proof. By Lemma 5.1.7, and the description of the weight spectral sequence (Ep,q
s , dp,qs ) in Lemma

5.8.2 (for N odd) and Lemma 5.8.3 (for N even), it suffices to show that the natural map
Hi

ét,c(Sh(V′N , jNKp◦
N K′p,N)F , Oλ)m → Hi

ét(Sh(V′N , jNKp◦
N K′p,N)F , Oλ)m(6.1)

is an isomorphism for every i ∈ Z. This is trivial when Sh(V′N , jNKp◦
N K′p,N) is proper.

If Sh(V′N , jNKp◦
N K′p,N) is not proper, then the Witt index of V′N is 1; and Sh(V′N , jNKp◦

N K′p,N) has
a canonical toroidal compactification S̃h(V′N , jNKp◦

N K′p,N), which is smooth over F . As jNKp◦
N K′p,N

is neat, the boundary Z := S̃h(V′N , jNKp◦
N K′p,N) \ Sh(V′N , jNKp◦

N K′p,N) is geometrically isomorphic
to a disjoint union of abelian varieties (of dimension N − 2). In particular, Hi

ét(ZF , Oλ) is a free
Oλ-module (of finite rank). Let π′∞ be an irreducible admissible representation of U(V′N)(A∞F+)
that appears in Hi

ét(ZF , Oλ) ⊗Oλ,ι C. Then π′∞ extends to an automorphic representation π′ of
U(V′N)(AF+) that is a subquotient of the parabolic induction of a cuspidal automorphic represen-
tation of L(AF+) where L is the unique proper Levi subgroup of U(V′N) up to conjugation. In par-
ticular, π′ is not stable. Thus, by (the same argument of) Lemma 6.1.9, we have Hi

ét(ZF , Oλ)m = 0
for every i ∈ Z. This implies that (6.1) is an isomorphism. �

6.2. Tate classes in the odd rank case. In this section, we assume that N = 2r + 1 is odd
with r ≥ 1. We study the properties of the localized spectral sequence Ep,q

s,m, after Lemma 5.8.2.
Lemma 6.2.1. We have

Hi
T(M†N , Oλ)m = 0

for every odd integer i.

Proof. For i 6= 2r − 1, it follows from Lemma 5.5.2(1). Now we assume i = 2r − 1.
Let π∞,p be an irreducible admissible representation of U(V◦N)(A∞,pF+ ) that appears in the coho-

mology H2r−1
T (M†N , Oλ)m ⊗Oλ,ι C. By Proposition 5.5.4, we may complete π∞,p to an automorphic

representation π of U(V◦N)(AF+) as in that proposition, such that π is Π-congruent and such that
BC(πp) is a constituent of an unramified principal series of GLN(Fp), whose Satake parameter
contains {−p,−p−1} which is different from α(Πp) in F` by (P5).
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On the other hand, by the Chebotarev density theorem, both ρBC(π),ι` and ρΠ,λ ⊗Eλ Q` each
admits a lattice such that their reductions are isomorphic. However, this is not possible by
Proposition C.3.1(2) and Proposition 3.2.4(2). Therefore, we must have H2r−1

T (M†N , Oλ)m = 0.
The lemma is proved. �

Lemma 6.2.2. Assume Assumption 6.1.4. We have
(1) Ep,q

1,m = 0 if q is odd;
(2) Ep,q

1,m is a free Oλ-module for every (p, q) ∈ Z2;
(3) Ep,q

2,m = 0 unless (p, q) = (0, 2r);
(4) E0,2r

2,m is canonically isomorphic to H2r
T (MN ,RΨOλ(r))m, which is a free Oλ-module;

(5) E0,2r
s,m degenerates at the second page.

Proof. Part (1) follows from Lemma 6.2.1 and Assumption 6.1.4. Part (3) follows since d−1,2r
1

is injective and d0,2r
1 is surjective. The remaining parts are immediate consequences of (1) and

Assumption 6.1.4. �

Theorem 6.2.3. The map
∇1

m : E0,2r
2,m → Oλ[Sh(V◦N ,K◦N)]m

(Construction 5.8.4) is surjective. Moreover, if we assume Assumptions 6.1.4, 6.1.5, and Hypoth-
esis 3.2.9 for N , then we have

(1) The generalized Frobenius eigenvalues of the Oλ/λ[Gal(Fp/Fp2)]-module E0,2r
2,m ⊗Oλ Oλ/λ is

contained in the set of roots of Pα(Πp) modλ in a finite extension of Oλ/λ.
(2) The Oλ[Gal(Fp/Fp2)]-module E0,2r

2,m is weakly semisimple (Definition 2.1.2).
(3) The map ∇1

m induces an isomorphism
∇1

m : (E0,2r
2,m )Gal(Fp/Fp2 )

∼−→ Oλ[Sh(V◦N ,K◦N)]m.

By Remark 5.8.5, the map∇1
m always factors through the quotient map E0,2r

2,m → (E0,2r
2,m )Gal(Fp/Fp2 ).

Proof. We first show that ∇1
m is surjective. From Construction 5.8.1, we have a map

(Inc◦! , Inc†! , Inc•! ◦ T•◦p ) := Oλ[Sh(V◦N ,K◦N)]⊕3 → E0,2r
1

which induces a map
ker

(
d0,2r

1 ◦ (Inc◦! , Inc†! , Inc•! ◦ T•◦p )
)
→ ker d0,2r

1 .

However, by Lemma 5.8.6, the former kernel is simply the kernel of the map

(
p+ 1 −1 0

)Inc∗◦
Inc∗†
Inc∗•

(Inc◦! Inc†! Inc•! ◦ T•◦p
)
.

Now since (p+1,−1, 0) and (0, T◦•p ◦T•◦p , (p+1)2T◦•p )⊗Oλ are linearly independent, by Nakayama’s
lemma, ∇1

m is surjective if the following matrix Inc∗◦
Inc∗†

T◦•p ◦ Inc∗•

(Inc◦! Inc†! Inc•! ◦ T•◦p
)

in T◦N,p is nondegenerate modulo m. However, by Lemma 5.8.2(2), the above matrix equals1 0 0
0 −(p+ 1)2 I◦N,p
0 I◦N,p T◦•N,p ◦ T•N,p ◦ T•◦N,p

 ,
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whose non-degeneracy modulo m follows from Lemma B.4.2, Proposition B.4.3, and (P4,P5).
Now we consider the three remaining assertions. By Lemma 5.1.7 and Lemma 6.2.2, we have

an isomorphism
E0,2r

2,m ' H2r
ét (Sh(V′, jNKp◦

N K′p,N)F , Oλ(r))m
of Oλ[Gal(Qp/Qp2)]-modules. By Lemma 6.1.10, Proposition C.3.1(2), and Hypothesis 3.2.9, we
have

H2r
ét (Sh(V′, jNKp◦

N K′p,N)F , Oλ(r))m ⊗Oλ Q` '
⊕
π′
ρc

BC(π′),ι`(r)
⊕d(π′)

of representations of ΓF with coefficients in Q`, where d(π′) := dim(π′∞,p)jNKp◦N , and the direct sum
is taken over all stable automorphic representations π′ of U(V′)(AF+) that is Π-congruent and such
that π′τ∞ is a holomorphic discrete series representation of U(V′)(F+

τ∞
) with the Harish-Chandra

parameter {r, r − 1, . . . , 1− r,−r}; and π′τ is trivial for every archimedean place τ 6= τ∞.
For the proof of (1–3), we may replace Eλ by a finite extension inside Q` such that ρBC(π′),ι`

is defined over Eλ for every π′ appeared in the previous direct sum. Now we regard ρBC(π′),ι` as
a representation over Eλ. Then ρBC(π′),ι`(r) admits a ΓF -stable Oλ-lattice RBC(π′), unique up to
homothety, whose reduction R̄BC(π′) is isomorphic to ρ̄Π,λ(r). Moreover, we have an inclusion

E0,2r
2,m ' H2r

ét (Sh(V′, jNKp◦
N K′p,N)F , Oλ(r))m ⊆

⊕
π′

(Rc
BC(π′))⊕d(π′)

of Oλ[Gal(Fp/Fp2)]-modules. This already implies (1).
By (P4), we know that ρ̄c

Π,λ(r) is weakly semisimple and

dimOλ/λ ρ̄
c
Π,λ(r)Gal(Fp/Fp2 ) = 1.

On the other hand, we have
dimEλ ρ

c
BC(π′),ι`(r)

Gal(Fp/Fp2 ) ≥ 1.
Thus by Lemma 2.1.5, for every π′ in the previous direct sum, Rc

BC(π′) is weakly semisimple, and

dimEλ ρ
c
BC(π′),ι`(r)

Gal(Fp/Fp2 ) = 1.

This implies (2) by Lemma 2.1.4(1).
The above discussion also implies that, for (3), it suffices to show∑

π′
d(π′) ≤ dimEλ Oλ[Sh(V◦N ,K◦N)]m ⊗Oλ Eλ

where π′ is taken over the same set as in the previous direct sum. However, this follows from
Corollary C.3.3 and Lemma 6.1.8. The theorem is proved. �

6.3. Arithmetic level raising in the even rank case. In this subsection, we assume that
N = 2r is even with r ≥ 1. We study the properties of the localized spectral sequence Ep,q

s,m, after
Lemma 5.8.3.

Proposition 6.3.1. Suppose N ≥ 4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for
N . Then we have

(1) The map

(Inc◦! + Inc†! + Inc•! )m : Oλ[Sh(V◦N ,K◦N)]⊕2
m

⊕
Oλ[Sh(V◦N ,K•N)]m → E0,2r−2

1,m (−1)

from Construction 5.8.1 is an isomorphism.
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(2) The map
(Inc∗◦, Inc∗†, Inc∗•)m : E0,2r

1,m → Oλ[Sh(V◦N ,K◦N)]⊕2
m

⊕
Oλ[Sh(V◦N ,K•N)]m

from Construction 5.8.1 is surjective, whose kernel is the Oλ-torsion of H2r
T (M•N , Oλ(r))m.

(3) The map ∇0
m : d0,2r

1,m → Oλ[Sh(V◦N ,K◦N)]m (Construction 5.8.4) is surjective.
(4) The map ∇0

m ◦ d−1,2r
1,m ◦ d0,2r−2

1,m (−1) induces a map

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)→ Oλ[Sh(V◦N ,K◦N)]m/((p+ 1)R◦N,p − I◦N,p)

which is surjective, whose kernel is canonically the Oλ-torsion of H2r
T (M•N , Oλ(r))m.

Proof. We first claim that the map
(inc†! + inc•! ◦ T•◦N,p)m : Oλ[Sh(V◦N ,K◦N)]⊕2

m → H2r−2
T (M•N , Oλ(r − 1))m

is an isomorphism. In fact, by Lemma 6.3.2 below, it suffices to find a line bundle L as in Definition
5.7.7 such that (incL)m is surjective, where

incL := (inc∗†, T◦•N,p ◦ inc∗•) ◦ΘL ◦ (inc†! + inc•! ◦ T•◦N,p).

We take L to be O(M†N)⊗2 ⊗ (LieA,τc
∞)⊗p+1. Then by Proposition 5.7.8 and Proposition 5.7.9, the

endomorphism incL is given the matrix(
(p+ 1)3 (p+ 1)I◦N,p

(p+ 1)I◦N,p T◦•N,p ◦ (R•N,p + (R•N,p + (p+ 1)T•N,p)) ◦ T•◦N,p

)
in T◦N,p. Now, by Lemma B.3.6 and Proposition B.3.5, the determinant of the above matrix mod
m is equal to

−pr2
r∏
i=1

(
αi + 1

αi
+ 2

)
·

(p+ 1)2pr
2

r∏
i=1

(
αi + 1

αi
− p− 1

p

)
+ (p+ 1)3

(
pr

2+1 − pr2−1
) r∑
j=1

r∏
i=1
i 6=j

(
αi + 1

αi
− p− 1

p

)
where {αr, . . . , α1, α

−1
1 , . . . , α−1

r } are the roots of Pα(ΠN,p) modλ in a finite extension of Oλ/λ. By
(P2), we have

pr
2(p+ 1)3

(
pr

2+1 − pr2−1
)
6≡ 0 mod λ;

by (P4), we have
r∏
i=1

(
αi + 1

αi
− p− 1

p

)
≡ 0 mod λ,

r∑
j=1

r∏
i=1
i 6=j

(
αi + 1

αi
− p− 1

p

)
6≡ 0 mod λ;

and by (P5), we have
r∏
i=1

(
αi + 1

αi
+ 2

)
6≡ 0 mod λ.

In particular, the matrix representing incL is nondegenerate modulo m; hence the claim follows
from Nakayama’s lemma.

Part (1) follows immediately from the above claim and Lemma 6.1.8. Part (2) follows from (1)
by Poincaré duality, together with Lemma 6.1.10.

For (3), by definition, ∆0
m is the composition of

(T•◦N,pInc∗◦, T•◦N,p ◦ Inc∗†, Inc∗•)m : E0,2r
1,m → Oλ[Sh(V◦N ,K•N)]⊕3

m ,

which is surjective by (2) and Lemma 6.1.8, and the obviously surjective map
(1, 0, p+ 1): Oλ[Sh(V◦N ,K•N)]⊕3

m → Oλ[Sh(V◦N ,K•N)]m.
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Thus, (3) follows.
Now we consider (4). Let (E0,2r

1,m )fr be the freeOλ-quotient of E0,2r
1,m , which is simply the quotient by

the Oλ-torsion (H2r
T (M•N , Oλ(r))m)tor of H2r

T (M•N , Oλ(r))m. Thus by (2), we obtain an isomorphism
(Inc∗◦, Inc∗†, Inc∗•)m : (E0,2r

1,m )fr
∼−→ Oλ[Sh(V◦N ,K◦N)]⊕2

m

⊕
Oλ[Sh(V◦N ,K•N)]m

through which we identify the two sides. If we let (ker d0,2r
1,m )fr be the free Oλ-quotient of ker d0,2r

1,m ,
then by Lemma 5.8.6, the above isomorphism maps the submodule (ker d0,2r

1,m )fr to the kernel of the
map

(p+ 1,−1, 0) : Oλ[Sh(V◦N ,K◦N)]⊕2
m

⊕
Oλ[Sh(V◦N ,K•N)]m → Oλ[Sh(V◦N ,K◦N)]m.

By Assumption 6.1.4, we have im d−1,2r
1,m = ker d0,2r

1,m . Combining Lemma 5.8.3(5), we see that the
map d−1,2r

1,m induces a canonical isomorphism

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m) '

im d−1,2r
1,m

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))
=

ker d0,2r
1,m

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))

induced by d−1,2r
1,m . Thus, we have a canonical surjective map

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)→

(ker d0,2r
1,m )fr

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))
whose kernel is

(H2r
T (M•N , Oλ(r))m)tor

(H2r
T (M•N , Oλ(r))m)tor ∩ im(d−1,2r

1,m ◦ d0,2r−2
1,m (−1))

.

By Lemma 6.1.8 and Lemma 5.8.3(7), we see that (ker d0,2r
1,m )fr ∩ ker∇0

m is contained in the image
d−1,2r

1,m ◦ d0,2r−2
1,m (−1), as modules of (E0,2r

1,m )fr. Thus, by (3), the map ∇0
m induces an isomorphism

(ker d0,2r
1,m )fr

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))
∼−→ Oλ[Sh(V◦N ,K◦N)]m

im(∇0
m ◦ d−1,2r

1,m ◦ d0,2r−2
1,m (−1))

.

By Lemma 5.8.3(8), im(∇0
m ◦ d−1,2r

1,m ◦ d0,2r−2
1,m (−1)) coincides with the submodule(

T◦•N,p ◦ ((p+ 1)R•N,p − T•◦N,p ◦ T◦•N,p) ◦ T•◦N,p
)
.Oλ[Sh(V◦N ,K◦N)]m.

Note that, by Lemma B.3.6, we have
T◦•N,p ◦ ((p+ 1)R•N,p − T•◦N,p ◦ T◦•N,p) ◦ T•◦N,p = I◦N,p

(
(p+ 1)R◦N,p − I◦N,p

)
.

Thus, to conclude (4), it remains to show that
(H2r

T (M•N , Oλ(r))m)tor ∩ im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1)) = 0.(6.2)

By Lemma 5.1.7, Hypothesis 3.2.9, and Proposition C.3.1(2), we know that the Q`[ΓF ]-module
H2r−1

T (MN ,RΨOλ(r))m ⊗Oλ Qλ is isomorphic to a direct sum of ρΠ′,ι`(r) for some relevant repre-
sentations Π′ of GLN(AF ). By Proposition 3.2.4(1) and [TY07, Lemma 1.4(3)], we know that
ρΠ′,ι`(r) is pure of weight −1 at p (Definition 2.4.4). In particular, we have H1(Qp2 , ρΠ′,ι`(r)) = 0
by [Nek07, Proposition 4.2.2(1)], hence that both sides of the inclusion

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m) ⊆ H1

sing(Qp2 ,H2r−1
T (MN ,RΨOλ(r))m)

are torsion Oλ-modules. Thus, the Oλ-rank of im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1)) is equal to the Oλ-rank of
ker d0,2r

1,m , which in turn is equal to the sum of Oλ-ranks of Oλ[Sh(V◦N ,K◦N)]m and Oλ[Sh(V◦N ,K•N)]m.
However, the source of the map d−1,2r

1,m ◦ d0,2r−2
1,m (−1), which is E0,2r−2

1,m / im d−1,2r
1,m , is also a free Oλ-

module of the same rank. Therefore, we must have (6.2). Part (4) is proved. �
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Lemma 6.3.2. Suppose N ≥ 4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for N .
Then H2r−2

T (M•N , Oλ)m is a free Oλ-module; and its rank over Oλ is at most twice the rank of the
(free) Oλ-module Oλ[Sh(V◦N ,K◦N)]m.
Proof. By Assumption 6.1.4, Lemma 5.8.3(2), and Lemma 5.5.2(2), we have an injective map

H2r−2
T (M•N , Oλ)m ↪→ H2r−2

T (M†N , Oλ)m
induced by d0,2r−2

1 . For the target, we have an isomorphism
H2r−2

T (M†N , Oλ)m ' Oλ[Sh(V◦N ,K◦N)]m ⊕ Hprim(M†N , Oλ)m.
In particular, H2r−2

T (M†N , Oλ)m hence H2r−2
T (M•N , Oλ)m are free Oλ-modules.

Let π∞,p be an irreducible admissible representation of U(V◦N)(A∞,pF+ ) that appears in
H2r−2

T (M•N , Oλ)m ⊗Oλ,ι C. Then, by Proposition 5.5.4, one can complete π∞,p to an automorphic
representation π = π∞,p ⊗ π∞ ⊗

∏
q|p πq such that π∞ is trivial; πq is unramified for q 6= p; and πp

is a constituent of an unramified principal series. Moreover, π is Π-congruent. By Assumption
6.1.5 and Lemma 6.1.9, we know that π is stable.

To prove the lemma, it suffices to show that for such π as above, we have
dimQ` H2r−2

T (M•N ,Q`)[ι`π∞] ≤ 2 dimQ` Q`[Sh(V◦N ,K◦N)][ι`π∞].(6.3)
Note that as in the proof of Proposition 5.5.4, we have an isomorphism

ι−1
` Hprim(M†N ,Q`) ' MapK◦N,p

U(V◦N)(F+)\U(V◦N)(A∞F+)/Kp◦
N

∏
q|p,q6=p

K◦N,q,ΩN

 .(6.4)

By Proposition C.3.1(2), we have BC(πp) ' BC(π)p. Let ρBC(π),ι` : ΓF → GLN(Q`) be the
associated Galois representation. Since π is Π-congruent, by the Chebotarev density theorem,
ρBC(π),ι` admits a lattice whose residual representation is isomorphic to ρ̄Π,λ ⊗Oλ/λ F`, which is
irreducible by Assumption 6.1.5. Thus, by Proposition 3.2.4(2), α(BC(πp)) does not contain
{−1,−1} due to (P5) and contains {p, p−1} with multiplicity at most one by (P4). We now have
three cases.

Case 1: πp is unramified. Then (6.3) follows by (6.4) and the fact that the multiplicity of ΩN

in πp|K◦N,p is at most 1 by Proposition C.2.1(2).
Case 2: πp is not unramified and πp 6∈ S. Then by Lemma C.2.3(1), πp|K◦N,p does not contain

ΩN . Thus, both sides of (6.3) are zero by (6.4).
Case 3: πp belongs to S. Then we have Q`[Sh(V◦N ,K◦N)][ι`π∞] = 0, hence an inclusion

ι−1
` H2r−2

T (M•N ,Q`)[π∞] ↪→ MapK◦N,p

U(V◦N)(F+)\U(V◦N)(A∞F+)/Kp◦
N

∏
q|p,q 6=p

K◦N,q,ΩN

 [π∞](6.5)

by (6.4). Note that, by Proposition C.2.1(2), the multiplicity of ΩN in πp|K◦N,p is one, hence we
have

MapK◦N,p

U(V◦N)(F+)\U(V◦N)(A∞F+)/Kp◦
N

∏
q|p,q6=p

K◦N,q,ΩN

 [π∞] ' (π∞,p)Kp◦N

by Proposition C.3.1(2).
On the other hand, by Lemma 6.1.10, Proposition C.3.1(2), Corollary C.3.2, and Hypothesis

3.2.9, we know that the Q`[ΓF ]-module
H2r−1

ét (Sh(V′N , jNKp◦
N K′p,N)F ,Q`)[ι`π∞,p]

is isomorphic to dim(π∞,p)Kp◦N copies of ρc
BC(π),ι` . By Proposition 3.2.4(2), we know that

ρc
BC(π),ι` |Gal(Qp/Qp2 ) has nontrivial monodromy action. Thus, by Lemma 5.1.7 and the spectral
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sequence Ep,q
s , the cokernel of (6.5) has dimension dim(π∞,p)Kp◦N , which forces the target of (6.5)

to vanish. In particular, (6.3) holds.
The lemma is proved. �

Remark 6.3.3. Following the well-known computation of level raising of Shimura curves (see, for
example, Step 5 of the proof of [Liu19, Proposition 3.32]), we know that Proposition 6.3.1(4) also
holds when N = 2. Moreover, as M•2 is a disjoint union of projective lines, the kernel of the map
is trivial hence the map is an isomorphism.

Recall that we have fixed a positive integerm at the beginning of Subsection 6.1, and introduced
the ideal n in Notation 6.1.3.

Theorem 6.3.4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for N . Moreover, if
N ≥ 4, we further assume that

(a) ` ≥ 2(N + 1) and ` is unramified in F ;
(b) ρ̄Π,λ,+ (Remark 6.1.5) is rigid for (Σ+

min,Σ+
lr ) (Definition E.7.1), and ρ̄Π,λ|Gal(F/F (ζ`)) is

absolutely irreducible;
(c) the composite homomorphism TΣ+

N

φΠ−→ OE → OE/λ is cohomologically generic (Definition
D.1.1); and

(d) Oλ[Sh(V◦N ,K◦N)]m is nontrivial.
Then we have

(1) Hi
T(M•N , Oλ)m is a free Oλ-module for every i ∈ Z.

(2) Ep,q
2,m is a free Oλ-module, and vanishes if (p, q) 6∈ {(−1, 2r), (0, 2r − 1), (1, 2r − 2)}.

(3) If we denote by {α±1
1 , . . . , α±1

r } the roots of Pα(Πp) modλ in a finite extension of
Oλ/λ, then the generalized Frobenius eigenvalues of the Oλ/λ[Gal(Fp/Fp2)]-module
H2r−1

T (M•N , Oλ(r))m ⊗Oλ Oλ/λ is contained in {pα±1
1 , . . . , pα±1

r } \ {1, p2}.
(4) The map in Proposition 6.3.1(4) (see Remark 6.3.3 for N = 2) factors through a map

∇0
/n : F−1H1(IQp2 ,H

2r−1
T (MN ,RΨOλ(r))/n)→ Oλ[Sh(V◦N ,K◦N)]/n

which is an isomorphism. The map from Lemma 5.8.3(6) induces a canonical isomorphism
F−1H1(IQp2 ,H

2r−1
T (MN ,RΨOλ(r))/n)→ H1

sing(Qp2 ,H2r−1
T (MN ,RΨOλ(r))/n).

(5) There exist finitely many positive integers m1, . . . ,mµ at most m such that we have an
isomorphism

H2r−1
ét (Sh(V′N , jNKp◦

N K′p,N)F , Oλ(r))/n '
µ⊕
i=1

R̄(mi)c

of Oλ[ΓF ]-modules, where R is the ΓF -stable Oλ-lattice in ρΠ,λ(r), unique up to homothety.

Remark 6.3.5. In fact, from the proof, one sees that when N ≥ 4, we can take m1 = · · · = mµ = m
due to our strong extra assumptions.

6.4. Proof of Theorem 6.3.4. The proof differs according to N = 2 or N ≥ 4 as we can see
from the extra assumptions. We start from the much more difficult case where N ≥ 4.

We apply the discussion of Section E to the pair (r̄, χ) as in Subsection E.7, where
r̄ := ρ̄Π,λ,+ : ΓF+ → GN(Oλ/λ),

and the similitude character χ = ηµF/F+ε
1−N
` : ΓF+ → O×λ for some µ ∈ Z/2Z.17 Then r̄ is rigid for

(Σ+
min,Σ+

lr ), and also for (Σ+
min,Σ+

lr ∪ {p}) by (P4).
17In fact, it will follow from Theorem E.7.3(3) that µ = 0; but we do not need this fact a priori.
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For ? = mix, unr, ram, consider a global deformation problem (Definition E.2.6)
S ? := (r̄, ηµF/F+ε

1−N
` ,Σ+

min ∪ Σ+
lr ∪ {p} ∪ Σ+

` , {Dv}v∈Σ+
min∪Σ+

lr∪{p}∪Σ+
`

)

where
m for v ∈ Σ+

min, Dv is the local deformation problem classifying all liftings of r̄v;
m for v ∈ Σ+

lr , Dv is the local deformation problem D ram of r̄v from Definition E.6.1;
m for v = p, Dv is the local deformation problem D? of r̄v from Definition E.6.1;
m for v ∈ Σ+

` , Dv is the local deformation problem DFL of r̄v from Definition E.3.6.
Then we have the global universal deformation ring Runiv

S ? from Proposition E.2.7. Put R? := Runiv
S ?

for short. Then we have canonical surjective homomorphisms Rmix → Runr and Rmix → Rram of
Oλ-algebras. Finally, put

Rcong := Runr ⊗Rmix Rram.

We fix a universal lifting
rmix : ΓF+ → GN(Rmix)

of r̄, which induce a continuous homomorphism
r\mix : ΓF → GLN(Rmix)

by restriction (Notation E.1.2). By pushforward, Rcong also induces homomorphisms
runr : ΓF+ → GN(Runr), rram : ΓF+ → GN(Rram).

Denote by PF+
p

the maximal closed subgroup of the inertia subgroup IF+
p
⊆ ΓF+

p
of pro-order

coprime to `, as in Subsection E.5. Then ΓF+
p
/PF+

p
' tZ` o φẐ

p is a p-tame group (Definition
E.4.1). By definition, the homomorphism r\mix is trivial on PF+

p
. Let v̄ and v̄′ be eigenvectors in

(Oλ/λ)⊕N for r̄\(φ2
p) with eigenvalues p−2r and p−2r+2, respectively. By Hensel’s lemma, v̄ and v̄′

lift to eigenvectors v and v′ in (Rmix)⊕N for r\mix(φ2
p), with eigenvalues s and s′ in Rmix lifting p−2r

and p−2r+2, respectively. Let x ∈ Rmix be the unique element such that r\mix(t)v′ = xv + v′. Then
we must have x(s− p−2r) = 0. By Definition E.6.1, we have

Runr = Rmix/(x), Rram = Rmix/(s− p−2r), Rcong = Rmix/(s− p−2r, x).

Let Tunr be the image of TΣ+
N in EndOλ(Oλ[Sh(V◦N ,K◦N)]). By (d) in Theorem 6.3.4, we know

that Tunr
m 6= 0. Thus by Proposition E.7.3, we have a canonical isomorphism Runr ∼−→ Tunr

m so that
Oλ[Sh(V◦N ,K◦N)]m is canonically a free Runr-module of rank dunr > 0. We may write the eigenvalues
of r\unr(φ2

p) by {p−2r+1α±1
1 , . . . , p−2r+1α±1

r−1, s, s′ = p−4r+2s−1} with α1, . . . , αr−1 in certain finite flat
extension of Runr that are not congruent to p or p−1 in Oλ/λ. By Proposition B.3.5(2), we have

((p+ 1)R◦N,p − I◦N,p).Oλ[Sh(V◦N ,K◦N)]m = (s− p−2r).Oλ[Sh(V◦N ,K◦N)]m.
In particular, we have

Oλ[Sh(V◦N ,K◦N)]m/((p+ 1)R◦N,p − I◦N,p) = Oλ[Sh(V◦N ,K◦N)]m ⊗Runr Rcong,

which is a free Rcong-module of rank dunr.
On the other hand, let Tram be the image of TΣ+∩Σ+

p

N in EndOλ(H2r−1
T (MN ,RΨOλ)). By Propo-

sition 6.3.1(4) and Lemma 5.8.3(6), we know that Tram
m 6= 0. Thus by Lemma 5.1.7 and Theorem

E.7.3 (with (Σ+
min,Σ+

lr ,Σ+) replaced by (Σ+
min,Σ+

lr ∪ {p},Σ+ ∪ Σ+
p )), we have a canonical isomor-

phism Rram ∼−→ Tram
m so that H2r−1

T (MN ,RΨOλ)m is canonically a free Rram-module. Define the
Rram-module

H := HomΓF

(
(Rram)⊕N ,H2r−1

T (MN ,RΨOλ)m
)
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where ΓF acts on (Rram)⊕N via the homomorphism r\,cram. By the same argument for [Sch18, The-
orem 5.6] (using Proposition C.3.1 and Hypothesis 3.2.9, here), we have a canonical isomorphism

H2r−1
T (MN ,RΨOλ)m ' H⊗Rram (Rram)⊕N

of Rram[ΓF ]-modules. Since Rram is a local ring, H is a free Rram-module, say of rank dram. If we
still denote by v and v′ for their projection in (Rram)⊕N , then it is easy to see that

H1
sing(Qp2 , (Rram)⊕N(r)) = Rramv/xv ' Rram/(x) = Rcong.

Thus, we obtain
H1

sing(Qp2 ,H2r−1
T (MN ,RΨOλ(r))m) ' H⊗Rram H1

sing(Qp2 , (Rram)⊕N(r)) ' H⊗Rram Rcong,

which is a free Rcong-module of rank dram > 0.

Proposition 6.4.1. Under the assumptions of Theorem 6.3.4, we have dunr = dram. In particular,
the two canonical maps

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)→ Oλ[Sh(V◦N ,K◦N)]m/((p+ 1)R◦N,p − I◦N,p),

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)→ H1

sing(Qp2 ,H2r−1
T (MN ,RΨOλ(r))m),

from Proposition 6.3.1(4) and Lemma 5.8.3(6), respectively, are both isomorphisms.

Proof. By Proposition 6.3.1(4), the first map is surjective. By Lemma 5.8.3(6), the second map is
injective. Thus, we must have dram ≥ dunr > 0 by the previous discussion.

Take a geometric point η1 ∈ (Spec Runr)(Q`) in the support of Oλ[Sh(V◦N ,K◦N)]m, which corre-
sponds to a relevant representation Π1 of GLN(AF ) such that ρΠ1,ι` is residually isomorphic to
ρ̄Π,λ ⊗Oλ/λ F`. Then we have

dunr = dimQ`[Sh(V◦N ,K◦N)][ι`φΠ1 ].
Take a geometric point η2 ∈ (Spec Rram)(Q`) in the support of H2r−1

T (MN ,RΨOλ)m, which
corresponds to a relevant representation Π2 of GLN(AF ) such that ρΠ2,ι` is residually isomorphic
to ρ̄Π,λ ⊗Oλ/λ F`. Then we have

dram = dim H2r−1
T (MN ,RΨQ`)[ι`φΠ2 ] = dim H2r−1

ét (Sh(V′N , jNKp◦
N K′p,N)F ,Q`)[ι`φΠ2 ]

by Lemma 5.1.7. By Proposition D.2.3 and Lemma 6.4.2 below, we have dunr = dram. The
proposition follows. �

Lemma 6.4.2. Let Π1 and Π2 be two relevant representations of GLN(AF ) such that the associated
Galois representations ρΠ1,ι` and ρΠ2,ι` are both residually isomorphic to ρ̄Π,λ ⊗Oλ/λ F`. For every
v ∈ Σ+

min (so that every lifting of ρ̄Π,λ,+,v is minimally ramified), if we realize Π1,v and Π2,v on vector
spaces V1 and V2, respectively, then there exist normalized intertwining operators AΠ1,v and AΠ2,v

for Π1,v and Π2,v [Shi11, Section 4.1], respectively, such that we have an GLN(OFv)-equivariant
isomorphism i : V1

∼−→ V2 satisfying i ◦ AΠ1,v = AΠ2,v ◦ i.

Proof. We will give the proof when v does not split in F , and leave the other similar case to the
readers. Let w be the unique place of F above v.

By Proposition 3.2.4(1), both Π1,w and Π2,w are tempered. Thus by the Bernstein–Zelevinsky
classification, for α = 1, 2, we can write

Πα,w = IGLN (Fw)
Pα (σα,−tα � · · ·� σα,−1 � σα,0 � σα,1 � · · ·� σα,tα)

for some integer tα ≥ 0, some standard parabolic subgroup Pα ⊆ GLN(Fw), and some (unitary)
discrete series representations {σα,−tα , . . . , σα,tα} satisfying σα,−i ' σ∨c

α,i. See Subsection C.1 for
the notation on parabolic induction.



ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR RANKIN–SELBERG MOTIVES 119

By Proposition E.5.11(3) and [BLGGT14, Lemma 1.3.4(2)], we know that ρΠ1,ι` |IFw and ρΠ2,ι` |IFw
are conjugate. Thus, by [Yao, Lemma 3.6], we have P1 = P2 (say P ) and t1 = t2 (say t), and we
assume that there are unramified (unitary) characters {χ−t, . . . , χt} of F×w satisfying χ−i ' χ−1

i

such that σ2,i = σ1,i ⊗ χi. For every i, we choose a vector space Wi on which σ1,i realizes (and
also realize σ∨c

1,i on Wi via g 7→ tg−1,c), and fix a linear map Ai : Wi → W−i intertwining σi and
σ∨c
−i satisfying A−i ◦ Ai = idWi

. Put σ := �t
i=−tσ1,i regarded as a representation of P by inflation,

which realizes on the space W := ⊗t
i=−tWi; and put Aσ := ⊗ti=−tAi ∈ End(W ). Choose an

element w ∈ GLN(Fw) satisfying w = twc, that wPw−1 ∩ P is the standard Levi subgroup of P ,
and that for (a−t, . . . , at) ∈ wPw−1 ∩ P , we have w(a−t, . . . , at)w−1 = (at, . . . , a−t).

We realize Π1,w on the space

V1 := {f : GLn(Fw)→ W | f(pg) = δ
1/2
P (p)σ(p)f(g), p ∈ P, g ∈ GLn(Fw)}.

Define a linear map AΠ1,w : V1 → V1 by the formula(
AΠ1,w(f)

)
(g) = Aσ

(
f(w tg−1,c)

)
.

Then it is clear that AΠ1,w is a intertwining operator for Π1,w satisfying A2
Π1,w = 1. Similarly, we

realize Π2,w on the space

V2 := {f : GLn(Fw)→ W | f(pg) = δ
1/2
P (p)χ(p)σ(p)f(g), p ∈ P, g ∈ GLn(Fw)},

where we put χ := �t
i=−tχi regarded as a character of P . We define AΠ2,w : V2 → V2 by the same

formula, which is a normalized intertwining operator for Π2,w. The desired isomorphism i is the
map sending f ∈ V1 to the unique function i(f) such that i(f)(g) = f(g) for g ∈ GLN(OFw). The
lemma is proved. �

Now we can prove Theorem 6.3.4 when N ≥ 4.

Proof of Theorem 6.3.4 when N ≥ 4. For (1), Assumption 6.1.4, Lemma 5.5.2, and the spectral
sequence in Lemma 5.8.3 imply that Hi

T(M•N , Oλ)m is Oλ-torsion free for i 6= 2r − 1, 2r. By
Proposition 6.3.1(4) and Proposition 6.4.1, we know that H2r

T (M•N , Oλ)m is Oλ-torsion free. It
remains to show that H2r−1

T (M•N , Oλ)m is Oλ-torsion free as well.
By definition, the universal homomorphism r\ram : ΓF → GLN(Rram) has a direct sum decompo-

sition (Rram)⊕N = R1 ⊕ R2 in which R1 is a free Rram-submodule of rank N − 2, and R2 is the free
Rram-submodule of rank 2 generated by (the image of) v and v′. We have

F−1H2r−1
T (MN ,RΨOλ)m ⊆ H⊗Rram Rramv.

On the other hand, we have

H2r−1
T (M•N , Oλ)m = F0H2r−1

T (MN ,RΨOλ)m
F−1H2r−1

T (MN ,RΨOλ)m
,

and that the quotient F1H2r−1
T

(MN ,RΨOλ)m
F0H2r−1

T
(MN ,RΨOλ)m

is torsion free by Lemma 5.5.2. Thus, the Oλ-torsion of
H2r−1

T (M•N , Oλ)m coincides with

H⊗Rram Rramv/F−1H2r−1
T (MN ,RΨOλ)m,

which is fixed by Gal(Fp/Fp2). However, by Lemma 5.8.3(6) and Proposition 6.4.1, the Oλ-torsion
of H2r−1

T (M•N , Oλ)m has to vanish. Part (1) is proved.
Part (2) is an immediate consequence of (1), Assumption 6.1.4, Lemma 5.5.2, and the spectral

sequence in Lemma 5.8.3.
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Part (3) is a consequence of (1) and (P4) that Pα(Πp) modλm is level-raising special at p. In
fact, we have an isomorphism

H2r−1
T (M•N , Oλ(r)) ' H⊗Rram R1(r)

of Oλ[Gal(Fp/Fp2)]-modules.
For (4), by Proposition 6.4.1, it suffices to show that the two natural maps

F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)/n→ F−1H1(IQp2 ,H

2r−1
T (MN ,RΨOλ(r))/n),

H1
sing(Qp2 ,H2r−1

T (MN ,RΨOλ(r))m)/n→ H1
sing(Qp2 ,H2r−1

T (MN ,RΨOλ(r))/n),
are both isomorphisms. Note that we have a short exact sequence

0→ F−1H1(IQp2 ,H
2r−1
T (MN ,RΨOλ(r))m)→ H1(IQp2 ,H

2r−1
T (MN ,RΨOλ(r))m)→ H2r−1

T
(MN ,RΨOλ(r))m

F−1H2r−1
T

(MN ,RΨOλ(r))m
→ 0

of TΣ+∪Σ+
p

N -modules, which is split by considering Gal(Fp/Fp2) actions and (3). Thus, the first iso-
morphism is confirmed. The second one is also confirmed as, by (3), one can replace Gal(Fp/Fp2)-
invariants by Gal(Fp/Fp2)-coinvariants. Part (4) is proved.

For (5), we have
H2r−1

ét (Sh(V′N , jNKp◦
N K′p,N)F , Oλ(r))/n ' H⊗Rram/n (Rram/n)⊕N(r)

by Lemma 5.1.7. Here, we regard n as its image in Tram
m , where the latter is canonically isomorphic

to Rram. We claim thatOλ/λ
m = Rram/n and (Rram/n)⊕N(r) ' R̄(m)c asOλ/λ

m[ΓF ]-modules, where
we recall that ΓF acts on (Rram/n)⊕N via r\,cram. By definition, n is the kernel of homomorphism

TΣ+∪Σ+
p

N

φΠ−→ OE → OE/λ
m,

which satisfies n∩Oλ = λmOλ. Thus, the structure homomorphism Oλ → Rram induces an equality
Oλ/λ

m = Rram/n. Now by the Chebotarev density theorem, and a result of Mazur and Carayol
(see [Kis09, Theorem 1.4.1]), we know that the two liftings (Rram/n)⊕N(r) and R̄(m)c of ρ̄c

Π,λ(r) to
Oλ/λ

m have to be isomorphic.
Theorem 6.3.4 is all proved when N ≥ 4. �

Proof of Theorem 6.3.4 when N = 2. Part (1) is trivial since M•2 is a disjoint union of projective
lines.

Part (2) follows from (1) by the same reason as for N ≥ 4.
Part (3) is trivial as H1

T(M•2, Oλ(1)) = 0.
For (4), from Remark 6.3.3, we know that the natural map

F−1H1(IQp2 ,H
1
T(M2,RΨOλ(1))m)→ Oλ[Sh(V◦2,K◦2)]m/((p+ 1)R◦2,p − I◦2,p)

is an isomorphism. By (3) and Lemma 5.8.3(6), the natural map
F−1H1(IQp2 ,H

1
T(M2,RΨOλ(1))m)→ H1

sing(Qp2 ,H1
T(M2,RΨOλ(1))m)

is an isomorphism as well. Passing to the quotient by n follows from the same argument as for
N ≥ 4.

For (5), let Tram be the image of TΣ+∩Σ+
p

2 in EndOλ(H1
T(M2,RΨOλ(1))). Then by the same

argument for [Sch18, Theorem 5.6], one have an isomorphism
H1

T(M2,RΨOλ(1))m ' H⊗Tram
m

(Tram
m )⊕2

of Tram
m [ΓF ]-modules, where H is a (finitely generated) Tram

m -module, and ΓF acts on the factor
(Tram

m )⊕2 by some continuous homomorphism which lifts ρ̄c
Π,λ(r) (from Oλ/λ = Tram

m /m to Tram
m ).
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Clearly, the natural homomorphism Oλ/λ
m → Tram

m /n is an isomorphism. Then as an Oλ/λ
m-

module, H ⊗Tram
m

Tram
m /n is isomorphic to ⊕µ

i=1Oλ/λ
mi for some positive integers m1, . . . ,mµ at

most m. Thus, it remains to show that (Tram
m /n)⊕2 and R̄(m)c are isomorphic as deformations of

ρ̄c
Π,λ(r). But this is a consequence of the Eichler–Shimura relation for the unitary Shimura curve

Sh(V′2, j2Kp◦
2 K′p,2) [Liu, Corollary D.9], the Chebotarev density theorem, and a result of Mazur

and Carayol (see [Kis09, Theorem 1.4.1]).
Theorem 6.3.4 is all proved when N = 2. �

7. Explicit reciprocity laws for Rankin–Selberg motives

In this section, we state and prove the two explicit reciprocity laws for automorphic Rankin–
Selberg motives. In Subsection 7.1, we setup the stage for automorphic Rankin–Selberg motives,
which will be used until the end of the next section. In Subsections 7.2 and 7.3, we state and
prove our first and second explicit reciprocity law, respectively.

7.1. Setup for automorphic Rankin–Selberg motives. Let n ≥ 2 be an integer. We denote
by n0 and n1 the unique even and odd numbers in {n, n + 1}, respectively. Write n0 = 2r0 and
n1 = 2r1 + 1 for unique integers r0, r1 ≥ 1. In particular, we have n = r0 + r1.

In this and the next sections, we consider
m for α = 0, 1, a relevant representation Πα of GLnα(AF ) (Definition 1.1.3),
m a strong coefficient field E ⊆ C of both Π0 and Π1 (Definition 3.2.5).

Put Σ+
min := Σ+

Π0 ∪ Σ+
Π1 (Notation 3.1.4). We then have the homomorphism

φΠα : TΣ+
min

nα → OE

for α = 0, 1. For α = 0, 1 and every prime λ of E, we have a continuous homomorphism

ρΠα,λ : ΓF → GLnα(Eλ)

from Proposition 3.2.4(2) and Definition 3.2.5, such that ρc
Πα,λ and ρ∨Πα,λ(1− nα) are conjugate.

Assumption 7.1.1. For α = 0, 1, the Galois representation ρΠα,λ is residually absolutely irre-
ducible.

7.2. First explicit reciprocity law. We start by choosing
m a finite place λ of E (with the underlying rational prime `),
m a positive integer m,
m a (possibly empty) finite set Σ+

lr,I
18 of nonarchimedean places of F+ that are inert in F ,

strongly disjoint from Σ+
min (Definition 1.3.3), satisfying ` - ‖v‖(‖v‖2 − 1) for v ∈ Σ+

lr,I,
m a finite set Σ+

I of nonarchimedean places of F+ containing Σ+
min ∪ Σ+

lr,I,
m a standard definite hermitian space V◦n of rank n over F , together with a self-dual∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,I
OFv -lattice Λ◦n in V◦n ⊗F A

Σ+
∞∪Σ+

min∪Σ+
lr,I

F (and put V◦n+1 := (V◦n)] and
Λ◦n+1 := (Λ◦n)]), satisfying that (V◦n0)v is not split for v ∈ Σ+

lr,I,

18Here, the subscript “I” (Roman number one) stands for the “first”. In the next subsection, we will have Σ+
lr,II

for the second reciprocity law.
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m an object K◦n ∈ K(V◦n) and an object (K◦sp,K◦n+1) ∈ K(V◦n)sp of the forms

K◦n =
∏

v∈Σ+
min∪Σ+

lr,I

(K◦n)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,I

U(Λ◦n)(OF+
v

),

K◦sp =
∏

v∈Σ+
min∪Σ+

lr,I

(K◦sp)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,I

U(Λ◦n)(OF+
v

),

K◦n+1 =
∏

v∈Σ+
min∪Σ+

lr,I

(K◦n+1)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,I

U(Λ◦n+1)(OF+
v

),

satisfying (K◦sp)v = (K◦n)v for v ∈ Σ+
min, (K◦sp)v ⊆ (K◦n)v for v ∈ Σ+

lr,I, and that (K◦n0)v is a
transferable open compact subgroup (Definition D.2.1) of U(V◦n0)(F+

v ) for v ∈ Σ+
min and is

a special maximal subgroup of U(V◦n0)(F+
v ) for v ∈ Σ+

lr,I,
m a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational prime p)

satisfying
(PI1): Σ+

I does not contain p-adic places;
(PI2): ` does not divide p(p2 − 1);
(PI3): there exists a CM type Φ containing τ∞ as in the initial setup of Section 5 satisfying

QΦ
p = Qp2 ;

(PI4): Pα(Π0,p) modλm is level-raising special at p (Definition 3.1.5);
Pα(Π1,p) modλ is Tate generic at p (Definition 3.1.5);

(PI5): Pα(Πα,p) modλ is intertwining generic at p (Definition 3.1.5) for α = 0, 1;
(PI6): the natural map

OE/λ
m[Sh(V◦nα ,K◦nα)]

TΣ+
I ∪Σ+

p
nα ∩ kerφΠα

→
OE/λ

m[Sh(V◦nα ,K◦nα)]

TΣ+
I

nα ∩ kerφΠα

is an isomorphism of nontrivial OE/λ
m-modules for α = 0, 1;

(PI7): Pα(Π0,p)⊗α(Π1,p) modλm is level-raising special at p (Definition 3.1.5);
(So we can and will adopt the setup in Subsection 5.10 to the datum (V◦n, {Λ◦n,q}|q|p).)

m remaining data in the initial setup of Section 5 with QΦ
p = Qp2 ; and

m a definite uniformization datum as in Notation 5.10.13.
Put Kp◦

sp := (K◦sp)p and K•sp := Kp◦
sp × K•n0,p; put Kp◦

nα
:= (K◦nα)p and K•nα := Kp◦

nα × K•nα,p for
α = 0, 1. Like in Subsection 5.11, we put X?

nα
:= X?

p(V◦nα ,Kp◦
nα) for meaningful triples (X, ?, α) ∈

{M,M,B, S}×{ , η, ◦, •, †}×{0, 1}. For α = 0, 1, let (αEp,q
s , αdp,qs ) be the weight spectral sequence

abutting to the cohomology Hp+q
T (Mnα ,RΨOλ(rα)) from Subsection 5.8.

Notation 7.2.1. We introduce the following ideas of TΣ+
I ∪Σ+

p
nα , for α = 0, 1

mα := TΣ+
I ∪Σ+

p
nα ∩ ker

(
TΣ+

nα

φΠα−−→ OE → OE/λ
)
,

nα := TΣ+
I ∪Σ+

p
nα ∩ ker

(
TΣ+

nα

φΠα−−→ OE → OE/λ
m
)
.

We then introduce following assumptions.

Assumption 7.2.2. For α = 0, 1, we have Hi
T(Mnα ,RΨOλ)mα = 0 for i 6= nα − 1, and that

Hnα−1
T (Mnα ,RΨOλ)mα is a finite free Oλ-module.

Assumption 7.2.3. Under Assumption 7.1.1, if n0 ≥ 4, then
(a) ` ≥ 2(n0 + 1) and ` is unramified in F ;
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(b) ρ̄Π0,λ,+ (Remark 6.1.5) is rigid for (Σ+
min,Σ+

lr,I) (Definition E.7.1), and ρ̄Π0,λ|Gal(F/F (ζ`)) is
absolutely irreducible; and

(c) the composite homomorphism TΣ+
min

n0

φΠ0−−→ OE → OE/λ is cohomologically generic (Defini-
tion D.1.1).

Now we apply constructions in Subsection 5.11, evaluating on the object (Kp◦
n ,K

p◦
n+1) of K(V◦n)p×

K(V◦n+1)p. In particular, we have the blow-up morphism σ : Q→ P from Notation 5.11.1, and the
localized spectral sequence (Ep,qs,(m0,m1), d

p,q
s,(m0,m1)) from (5.27).

Lemma 7.2.4. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for both n and n+1.
Then

(1) For (?0, ?1) ∈ {◦, •, †}2 and i ∈ Z, we have a canonical isomorphism

Hi
T(P?0,?1 , Oλ)(m0,m1) '

⊕
i0+i1=i

Hi0
T (M?0

n0 , Oλ)m0 ⊗Oλ Hi1
T (M?1

n1 , Oλ)m1

in Mod(Gal(Fp/Fp2), Oλ)fr.
(2) We have Ep,q2,(m0,m1) = 0 if (p, q) 6∈ {(−1, 2n), (0, 2n− 1), (1, 2n− 2)}, and canonical isomor-

phisms 
E−1,2n

2,(m0,m1) '
0E−1,2r0

2,m0 ⊗Oλ
1E0,2r1

2,m1 ,

E0,2n−1
2,(m0,m1) '

0E0,2r0−1
2,m0 ⊗Oλ

1E0,2r1
2,m1 ,

E1,2n−2
2,(m0,m1) '

0E1,2r0−2
2,m0 ⊗Oλ

1E0,2r1
2,m1 ,

in Mod(Gal(Fp/Fp2), Oλ)fr.
(3) If Ei,2n−1−i

2,(m0,m1)(−1) has a nontrivial subquotient on which Gal(Fp/Fp2) acts trivially, then
i = 1.

(4) For (?0, ?1) ∈ {◦, •, †}2 and i ∈ Z, both H2i
T (P?0,?1 , Oλ(i))(m0,m1) and H2i

T (Q?0,?1 , Oλ(i))(m0,m1)
are weakly semisimple.

(5) We have Hi
T(Q,RΨOλ)(m0,m1) = 0 for i 6= 2n− 1.

(6) The canonical map Hi
T,c(Q(c), Oλ)(m0,m1) → Hi

T(Q(c), Oλ)(m0,m1) is an isomorphism for every
integers c and i.

Proof. For (1), by Lemma 5.5.2, Lemma 6.2.2(2), Theorem 6.3.4(1), we know that Hiα
T (M?α

nα , Oλ)mα
is a finitely generated free Oλ-module for α = 0, 1 and every iα ∈ Z. Thus, (1) follows from Lemma
6.1.10 and the Künneth formula.

For (2), we first show that Ep,qs,(m0,m1) degenerates at the second page. By (1), Lemma 5.11.3(2),
Lemma 5.5.2, and Lemma 6.2.1, the composition of d−2,q

1,(m0,m1) and the natural projection

E−1,q
1,(m0,m1) → Hq−2

T (Q†,†, Oλ(n− 1))
⊕

Hq−2
T (Q†,◦, Oλ(n− 1))

is injective for every q ∈ Z. Thus, d−2,q
1,(m0,m1) is injective, which implies E−2,q

2,(m0,m1) = 0 for every
q ∈ Z. By a dual argument, we have E2,q

2,(m0,m1) = 0 for every q ∈ Z as well. For the degeneration, it
suffices to show that d−1,q

1,(m0,m1) is injective and d0,q
1,(m0,m1) is surjective for q odd. By Lemma 5.11.3(2),

Lemma 5.5.2, and Lemma 6.2.2(1), we have Hq−2
T (Q(1), Oλ(n − 1)) = Hq−2

T (Q•,†, Oλ(n − 1)) for q
odd, which easily implies the injectivity of d−1,q

1,(m0,m1). By a dual argument, d0,q
1,(m0,m1) is surjective

for q odd.
Now for every q ∈ Z, the morphism σ induces a map

σ∗1 :
⊕

q0+q1=q

0E∗,q01,m0 ⊗Oλ
1E∗,q11,m1 → E∗,q1,(m0,m1)
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of complexes of Oλ[Gal(F/Fp2)]-modules, hence a map

σ∗2 :
⊕

p0+p1=p

⊕
q0+q1=q

0Ep0,q0
2,m0 ⊗Oλ

1Ep1,q1
2,m1 → Ep,q2,(m0,m1)

of Oλ[Gal(F/Fp2)]-modules for (p, q) ∈ Z2. By Lemma 6.2.2 and Theorem 6.3.4(2), to show (2), it
suffices to show that σ∗2 is an isomorphism, or the natural map⊕

i0+i1=i
Hi0

T (Mn0 ,RΨOλ(r0))m0 ⊗Oλ Hi1
T (Mn1 ,RΨOλ(r1))m1 → Hi

T(Q,RΨOλ(n))(m0,m1)

induced by σ is an isomorphism for every i ∈ Z. By Lemma 5.1.7 and Lemma 5.11.2, the above
map is identified with⊕
i0+i1=i

Hi0
T (Mη

n0⊗Qp2 Qp, Oλ(r0))m0⊗OλHi1
T (Mη

n1⊗Qp2 Qp, Oλ(r1))m1 → Hi
T(Qη⊗Qp2 Qp, Oλ(n))(m0,m1),

which is an isomorphism by Lemma 6.1.10, and the Künneth formula. Thus, (2) follows.
For (3), let {α±1

0,1, . . . , α
±1
0,r0} and {α±1

1,1, . . . , α
±1
1,r1 , 1} be the roots of Pα(Π0,p) modλ and

Pα(Π1,p) modλ in a finite extension of Oλ/λ, respectively. By (PI4), we may assume α0,r0 = p.
By (2), Theorem 6.2.3(1), and Theorem 6.3.4(3), the generalized Frobenius eigenvalues of the
Oλ/λ[Gal(Fp/Fp2)]-modules E−1,2n

2,(m0,m1)(−1)⊗Oλ Oλ/λ and E0,2n−1
2,(m0,m1)(−1)⊗Oλ Oλ/λ are contained in

{p−2α±1
1,1, . . . , p

−2α±1
1,r1 , p

−2} and {p−1α±1
0,1α

±1
1,1, . . . , p

−1α±1
0,r0−1α

±1
1,r1} ∪ {p−1α±1

0,1, . . . , p
−1α±1

0,r0−1}, re-
spectively. By (PI2), we have p2 6= 1 in Oλ/λ. By (PI7), we have α1,i1 6∈ {p2, p−2} for 1 ≤ i1 ≤ r1,
which implies 1 6∈ {p−2α±1

1,1, . . . , p
−2α±1

1,r1 , p
−2}. Again by (PI7), we have α0,i0α1,i1 6∈ {p, p−1} for

1 ≤ i0 < r0 and 1 ≤ i1 ≤ r1, which implies 1 6∈ {p−1α±1
0,1α

±1
1,1, . . . , p

−1α±1
0,r0−1α

±1
1,r1}. By (PI4),

we have α0,i0 6∈ {p, p−1} for 1 ≤ i0 < r0, which implies 1 6∈ {p−1α±1
0,1, . . . , p

−1α±1
0,r0−1}. Thus, (3)

follows.
For (4), by Lemma 5.11.3 (3–5) and Lemma 2.1.4(1), it suffices to show that

H2i
T (P?0,?1 , Oλ(i))(m0,m1) is weakly semisimple. By (1) and Lemma 6.2.2(1), it suffices to

show that H2i0
T (M?0

n0 , Oλ(i0))m0 ⊗Oλ H2i1
T (M?1

n1 , Oλ(i1))m1 is weakly semisimple for i0, i1 ∈ Z. By
Lemma 5.5.2, the action of Gal(Fp/Fp2) on H2iα

T (M?
nα , Oλ(iα))mα is trivial for α = 0, 1, ? = ◦, †,

and every iα ∈ Z. On the other hand, it is a consequence of Theorem 6.3.4(2) (for i0) and Lemma
6.2.2(3) (for i1) that the action of Gal(Fp/Fp2) on H2iα

T (M•nα , Oλ(iα))mα is trivial if i0 6∈ {r0− 1, r0}
or i1 6= r1. By Proposition 6.3.1(1,2) and Theorem 6.3.4(1), the actions of Gal(Fp/Fp2) on both
H2r0−2

T (M•n0 , Oλ(r0 − 1))m0 and H2r0
T (M•n0 , Oλ(r0))m0 are also trivial. Thus, by Lemma 2.1.4(1),

it remains to show that H2r1
T (M•n1 , Oλ(r1))m1 is weakly semisimple, which follows from Theorem

6.2.3(2) as it is isomorphic to the direct sum of 1E0,2r1
2,m1 and H2r1

T (M†n1 , Oλ(r1))m1 .
Part (5) is a direct consequence of (2).
Part (6) follows from (1), Lemma 6.1.10, and Lemma 5.11.3(3–5). �

Remark 7.2.5. In fact, Lemma 7.2.4(5) holds under only Assumption 7.2.2; and Lemma 7.2.4(6)
holds under only Assumption 7.1.1.

Lemma 7.2.4(5) induces a coboundary map
AJQ : ZnT(Qη)→ H1(Qp2 ,H2n−1

T (Q,RΨOλ(n))(m0,m1)).
We also recall the singular quotient map

∂ : H1(Qp2 ,H2n−1
T (Q,RΨOλ(n))(m0,m1))→ H1

sing(Qp2 ,H2n−1
T (Q,RΨOλ(n))(m0,m1)).

By our choice of K◦n and (K◦sp,K◦n+1), we obtain a morphism
Mp(V◦n,K◦sp)→ P
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which is finite. Denote by Psp the corresponding cycle; and let Qsp be the strict transform of
Psp under σ, which is a Tp-invariant cycle of Q. Our main goal is to compute ∂ AJQ(Qη

sp) in
H1

sing(Qp2 ,H2n−1
T (Q,RΨOλ(n))/(n0, n1)). Recall the map ∆n (5.28); the cycle Qsp gives rise to a

class cl(Qsp) ∈ Cn(Q, L) (see Subsection 5.11 for the target).

Proposition 7.2.6. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for both n and
n+ 1. There is a canonical isomorphism

H1
sing(Qp2 ,H2n−1

T (Q,RΨOλ(n))(m0,m1)) ' coker ∆n
(m0,m1)

under which ∂ AJQ(Qη
sp) coincides with the image of cl(Qsp) in coker ∆n

(m0,m1).

Proof. By [Liu19, Theorem 2.16 and Theorem 2.18],19 it suffices to show that Oλ is a very nice
coefficient for Ep,qs,(m0,m1) in the sense of [Liu19, Definition 2.15]. In fact, in [Liu19, Definition 2.15],
(N1) is satisfied due to Lemma 7.2.4(2); (N2) is satisfied due to Lemma 7.2.4(3); and (N3) is
satisfied due to Lemma 7.2.4(4) and Lemma 2.1.4(2).

The proposition is proved. �

By Construction 5.11.7 and Remark 5.11.8, we have a map
∇ : Cn(Q, Oλ)→ Oλ[Sh(V◦n0 ,K

◦
n0)]⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)].

Theorem 7.2.7 (First explicit reciprocity law). Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and
Hypothesis 3.2.9 for both n and n+ 1.

(1) The image of the composite map∇(m0,m1)◦∆n
(m0,m1) is contained in n0.Oλ[Sh(V◦n0 ,K

◦
n0)]m0⊗Oλ

Oλ[Sh(V◦n1 ,K
◦
n1)]m1.

(2) In view of (1), the induced map
∇m1/n0 : coker ∆n

m1/n0 → Oλ[Sh(V◦n0 ,K
◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1

is an isomorphism.
(3) Under the natural pairing

Oλ[Sh(V◦n0 ,K
◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1 ×Oλ/λ

m[Sh(V◦n0 ,K
◦
n0)][n0]⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1 → Oλ/λ

m

obtained by taking inner product, the pairing of ∇/(n0,n1)(∂ AJQ(Qη
4)) and every function

f ∈ Oλ/λ
m[Sh(V◦n0 ,K

◦
n0)][n0]⊗Oλ Oλ/λ

m[Sh(V◦n1 ,K
◦
n1)][n1] is equal to

(p+ 1) · φΠ0(I◦n0,p) · φΠ1(T◦n1,p) ·
∑

s∈Sh(V◦n,K◦sp)
f(s, sh◦↑(s)).

Here, we regard ∂ AJQ(Qη
sp) as an element in coker ∆n

(m0,m1) (hence in coker ∆n
m1/n0) via

the canonical isomorphism in Proposition 7.2.6.

Proof. We first consider (1). By Lemma 5.11.3(3,4), we have

H2(n−1)
T (Q(0), Oλ(n− 1))(m0,m1) =

⊕
(?0,?1)∈{◦,•}2

σ∗H2(n−1)
T (P?0,?1 , Oλ(n− 1))(m0,m1)

⊕
(δ†,†◦,◦)!σ

∗H2(n−2)
T (P†,†, Oλ(n− 2))(m0,m1)

⊕
(δ†,†•,•)!σ

∗H2(n−2)
T (P†,†, Oλ(n− 2))(m0,m1).

Thus, it suffices to show that
(1a) The image of σ∗H2(n−1)

T (P◦,•, Oλ(n− 1))(m0,m1)
⊕
σ∗H2(n−1)

T (P•,•, Oλ(n− 1))(m0,m1) under the
map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is contained in n0.Oλ[Sh(V◦n0 ,K

◦
n0)]m0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1 .

19Although it is assumed that the underlying strictly semistable scheme X is proper over the base in [Liu19], the
proof of relevant results works without change in our case even when Q is not proper in view of Lemma 7.2.4(6).
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(1b) The image of σ∗H2(n−1)
T (P◦,◦, Oλ(n− 1))(m0,m1)

⊕
σ∗H2(n−1)

T (P•,◦, Oλ(n− 1))(m0,m1) under the
map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is zero.

(1c) The image of (δ†,†◦,◦)!σ
∗H2(n−2)

T (P†,†, Oλ(n − 2))(m0,m1) under the map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is
zero.

(1d) The image of (δ†,†•,•)!σ
∗H2(n−2)

T (P†,†, Oλ(n − 2))(m0,m1) under the map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is
zero.

For (1a), we have a commutative diagram

H2(n−1)
T (P◦,•, Oλ(n− 1))(m0,m1)

⊕H2(n−1)
T (P•,•, Oλ(n− 1))(m0,m1) //

σ∗

��

0E0,2r0−2
1,m0 ⊗Oλ H2r1

T (M•n1 , Oλ(r1))m1

��
H2(n−1)

T (Q◦,•, Oλ(n− 1))(m0,m1)
⊕H2(n−1)

T (Q•,•, Oλ(n− 1))(m0,m1) // Oλ[Sh(V◦n0 ,K
◦
n0)]m0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1

in which
m the upper horizontal arrow is the map

H2(n−1)
T (P◦,•, Oλ(n− 1))(m0,m1)

⊕
H2(n−1)

T (P•,•, Oλ(n− 1))(m0,m1)

→ H2(r0−1)
T (M◦n0 , Oλ(r0 − 1))m0 ⊗Oλ H2r1

T (M•n1 , Oλ(r1))m1⊕
H2(r0−1)

T (M•n0 , Oλ(r0 − 1))m0 ⊗Oλ H2r1
T (M•n1 , Oλ(r1))m1

= 0E0,2r0−2
1,m0 ⊗Oλ H2r1

T (M•n1 , Oλ(r1))m1

given by Lemma 7.2.4(1) and the Künneth formula;
m the right vertical arrow is

(∇0 ◦ 0d−1,2r0
1 ◦ 0d0,2r0−2

1 (−1))m0 ⊗ (I◦n1,p ◦ inc∗† + (p+ 1)2T◦•n1,p ◦ inc∗•)m1 ;
and

m the lower horizontal arrow is (∇ ◦ δ1! ◦ δ∗0)(m0,m1).
For (1a), by Proposition B.3.5(2) and (PI4), we have

((p+ 1)R◦N,p − I◦N,p).Oλ[Sh(V◦n0 ,K
◦
n0)]m0 ⊆ n0.Oλ[Sh(V◦n0 ,K

◦
n0)]m0 .

Thus, (1a) follows from Proposition 6.3.1(4) and Lemma 5.11.3(3).
For (1b) and (1c), both images are actually contained in the sum of

(I◦n1,p ◦ inc∗◦,† + (p+ 1)2T◦•n1,p ◦ inc∗◦,•)(γ◦,†◦,•)!H2(n−1)
T (P◦,†, Oλ(n− 1))(m0,m1)

and
(I◦n1,p ◦ inc∗◦,† + (p+ 1)2T◦•n1,p ◦ inc∗•,•)(γ•,†•,•)!H2(n−1)

T (P•,†, Oλ(n− 1))(m0,m1),

which by Lemma 7.2.4(1) coincide with

H2r0
T (M◦n0 , Oλ(r0))m0 ⊗Oλ

(
(I◦n1,p ◦ Inc∗† + (p+ 1)2T◦•n1,p ◦ Inc∗•) 1d−1,2r1

1 H2(r1−1)
T (M†n1 , Oλ(r1 − 1))m1

)
and
H2r0

T (M•n0 , Oλ(r0))m0 ⊗Oλ
(
(I◦n1,p ◦ Inc∗† + (p+ 1)2T◦•n1,p ◦ Inc∗•) 1d−1,2r1

1 H2(r1−1)
T (M†n1 , Oλ(r1 − 1))m1

)
,

respectively. However, they vanish by Lemma 5.8.2(3). Thus, (1b) and (1c) follow.
For (1d), by [Liu19, Lemma 2.4], it follows from (1c). Thus, (1) is proved.
Now we consider (2). We claim that the map ∇(m0,m1) (with domain Cn(Q, Oλ)(m0,m1)) is surjec-

tive. In fact, consider the submodule

ker 0d0,2r0
1,m0 ⊗Oλ ker 1d0,2r1

1,m1 ⊆
⊕

(?0,?1)∈{◦,•}2
H2(n−1)

T (P?0,?1 , Oλ(n− 1))(m0,m1)
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in view of Lemma 7.2.4(1). Then σ∗
(
ker 0d0,2r0

1,m0 ⊗Oλ ker 1d0,2r1
1,m1

)
is contained in Cn(Q, Oλ)(m0,m1).

On the other hand, the map ∇(m0,m1) ◦ σ∗ (with domain ker 0d0,2r0
1,m0 ⊗Oλ ker 1d0,2r1

1,m1 ) coincides with
∇0

m0 ⊗∇
1
m1 , which is surjective by Proposition 6.3.1(3) and Theorem 6.2.3. The claim follows.

Thus, it remains to show that the domain and the target of ∇m1/n0 have the same cardinality.
By Proposition 7.2.6, we have an isomorphism

coker ∆n
m1/n0 = coker ∆n

(m0,m1)/n0 ' H1
sing(Qp2 ,H2n−1

T (Q,RΨOλ(n))(m0,m1))/n0(7.1)

of Oλ/λ
m-modules. By Lemma 7.2.4(2,3) and Theorem 6.2.3(2), we have

H1
sing(Qp2 ,H2n−1

T (Q,RΨOλ(n))(m0,m1)) ' H1
sing(Qp2 ,H2r0−1

T (Mn0 ,RΨOλ(r0))m0)⊗Oλ (1E0,2r1
2,m1 )Gal(Fp/Fp2 ).

Then by Theorem 6.2.3(3) and Theorem 6.3.4(4), we have
(7.1) ' Oλ[Sh(V◦n0 ,K

◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]m1 .

Thus, (2) is proved.
Finally we consider (3). As Qsp does not intersect with Q◦•, we have

cl(Qsp) = cl(Q•4) ∈ H2n
T (Q•,•, Oλ(n)),

and by Construction 5.11.7,

∇(cl(Qsp)) =
(
(p+ 1)(T◦•n0,p ⊗ I◦n1,p) ◦ inc∗•,† + (p+ 1)3(T◦•n0,p ⊗ T◦•n1,p) ◦ inc∗•,•

)
(cl(P•sp)).

Applying Theorem 5.11.5(3) to the object (K◦sp,K◦n+1) ∈ K(V◦n)sp followed by pushforward, we
know that the pairing between ∇m1/n0(cl(Qsp)) and any function

f ∈ Oλ/λ
m[Sh(V◦n0 ,K

◦
n0)][n0]⊗Oλ Oλ/λ

m[Sh(V◦n1 ,K
◦
n1)][n1]

is given by the formula
(p+ 1) · φΠ0(I◦n0,p) · φΠ1(T◦n1,p) ·

∑
s∈Sh(V◦n,K◦sp)

f(s, sh◦↑(s))

in view of (PI6). We then obtain (3) by Proposition 7.2.6.
The theorem is proved. �

We state a corollary for later application. We choose an indefinite uniformization datum as in
Notation 5.10.1, and put Sh′nα := Sh(V′nα , jnαKp◦

nαK′nα,p) for α = 0, 1.
Assume Assumptions 7.1.1, 7.2.2. By Lemma 6.1.10, Lemma 5.1.7, and the Künneth formula,

we have Hi
ét((Sh′n0 ×SpecF Sh′n1)F , Oλ)(m0,m1) = 0 if i 6= 2n− 1. In particular, we obtain the Abel–

Jacobi map
AJ: Zn(Sh′n0 ×SpecF Sh′n1)→ H1(F,H2n−1((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1)).

Let Sh′sp be the cycle given by the finite morphism Sh(V′n, jnKp◦
spK′n,p)→ Sh′n×SpecF Sh′n+1, which

is an element in Zn(Sh′n0 ×SpecF Sh′n1).

Corollary 7.2.8. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for both n and
n+ 1. Then we have

expλ
(
∂plocp AJ(Sh′sp),H1

sing(Fp,H2n−1((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1))
)

= expλ
(
1Sh(V◦n,K◦sp), Oλ[Sh(V◦n0 ,K

◦
n0)× Sh(V◦n1 ,K

◦
n1)]/(n0, n1)

)
where expλ is introduced in Definition 2.1.6. Here, we regard 1Sh(V◦n,K◦sp) as the pushforward of the
characteristic function along the map Sh(V◦n,K◦sp)→ Sh(V◦n,K◦n)× Sh(V◦n+1,K◦n+1).
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Proof. Note that the isomorphism (5.2) induces a map
H2n−1((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))(m0,m1) → H2n−1

T (Q,RΨOλ(n))(m0,m1)

of Oλ[Gal(Qp/Qp2)]-modules, which is an isomorphism by Lemma 5.11.2. Combining with the
diagram (5.23), we have

expλ
(
∂plocp AJ(Sh′sp),H1

sing(Fp,H2n−1((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1))
)

= expλ
(
∂ AJQ(Qη

sp),H1
sing(Qp2 ,H2n−1

T (Q,RΨOλ(n))/(n0, n1))
)
.

Now Theorem 7.2.7 implies
expλ

(
∂ AJQ(Qη

sp),H1
sing(Qp2 ,H2n−1

T (Q,RΨOλ(n))/(n0, n1))
)

= expλ
(
(p+ 1)φΠ0(I◦n0,p)φΠ1(T◦n1,p)1Sh(V◦n,K◦sp), Oλ[Sh(V◦n0 ,K

◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦n1 ,K

◦
n1)]/n1

)
.

Note that (p+1) is invertible in Oλ by (PI2); φΠ0(I◦n0,p) is invertible in Oλ by (PI5) and Proposition
B.3.5(1); and φΠ1(T◦n1,p) is invertible in Oλ by (PI4) and Proposition B.4.3(2). Thus, the corollary
follows. �

7.3. Second explicit reciprocity law. We start by choosing
m a finite place λ of E (with the underlying rational prime `),
m a positive integer m,
m a (possibly empty) finite set Σ+

lr,II of nonarchimedean places of F+ that are inert in F ,
strongly disjoint from Σ+

min (Definition 1.3.3), satisfying ` - ‖v‖(‖v‖2 − 1) for v ∈ Σ+
lr,II,

m a finite set Σ+
II of nonarchimedean places of F+ containing Σ+

min ∪ Σ+
lr,II,

m a standard indefinite hermitian space Vn of rank n over F , together with a self-dual∏
v 6∈Σ+

∞∪Σ+
min∪Σ+

lr,II
OFv -lattice Λn in Vn ⊗F A

Σ+
∞∪Σ+

min∪Σ+
lr,II

F (and put Vn+1 := (Vn)] and
Λn+1 := (Λn)]), satisfying that (Vn0)v is not split for v ∈ Σ+

lr,II,
m an object Kn ∈ K(Vn) and an object (Ksp,Kn+1) ∈ K(Vn)sp of the forms

Kn =
∏

v∈Σ+
min∪Σ+

lr,II

(Kn)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,II

U(Λn)(OF+
v

),

Ksp =
∏

v∈Σ+
min∪Σ+

lr,II

(Ksp)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,II

U(Λn)(OF+
v

),

Kn+1 =
∏

v∈Σ+
min∪Σ+

lr,II

(Kn+1)v ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr,II

U(Λn+1)(OF+
v

),

satisfying (Ksp)v = (Kn)v for v ∈ Σ+
min, (Ksp)v ⊆ (Kn)v for v ∈ Σ+

lr,II, and that (K◦n0)v is a
transferable open compact subgroup (Definition D.2.1) of U(V◦n0)(F+

v ) for v ∈ Σ+
min and is

a special maximal subgroup of U(V◦n0)(F+
v ) for v ∈ Σ+

lr,II,
m a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational prime p)

satisfying
(PII1): Σ+

II does not contain p-adic places;
(PII2): ` does not divide p(p2 − 1);
(PII3): there exists a CM type Φ containing τ∞ as in the initial setup of Section 5 satisfying

QΦ
p = Qp2 ;

(PII4): Pα(Π0,p) modλm is level-raising special at p (Definition 3.1.5);
Pα(Π1,p) modλ is Tate generic at p (Definition 3.1.5);

(PII7): Pα(Π0,p)⊗α(Π1,p) modλm is level-raising special at p (Definition 3.1.5);
(So we can and will adopt the setup in Subsection 4.4 to the datum (Vn, {Λn,q}|q|p).)
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m remaining data in the initial setup of Section 4 with QΦ
p = Qp2 ; and

m a definite uniformization datum as in Notation 4.4.7.
Put K?

sp := (inKp
sp)×K?

n,p, and K?
nα

:= (inαKp
nα)×K?

nα,p for α = 0, 1. Put K?
sp,sp := (inKp

sp)×K?
sp,p

and K?
n,sp := (inKp

n) × K?
sp,p. Like in Subsection 4.5, we put X?

nα
:= X?

p(Vnα ,Kp
nα) for meaningful

triples (X, ?, α) ∈ {M,M,B, S} × { , η} × {0, 1}.

Notation 7.3.1. We introduce the following ideas of TΣ+
II∪Σ+

p
nα , for α = 0, 1

mα := TΣ+
II∪Σ+

p
nα ∩ ker

(
TΣ+

nα

φΠα−−→ OE → OE/λ
)
,

nα := TΣ+
II∪Σ+

p
nα ∩ ker

(
TΣ+

nα

φΠα−−→ OE → OE/λ
m
)
.

We then introduce following assumption.

Assumption 7.3.2. For α = 0, 1, we have Hi
T(Mnα , Oλ)mα = 0 for i 6= nα − 1, and that

Hnα−1
T (Mnα , Oλ)mα is a finite free Oλ-module.

Lemma 7.3.3. Assume Assumptions 7.1.1, 7.3.2, and Hypothesis 3.2.9 for n1.
(1) The Oλ[Gal(Fp/Fp2)]-module H2r1

T (Mn1 , Oλ(r1))m1 is weakly semisimple (Definition 2.1.2).
(2) The map

πn1! ◦ ι∗n1 : (H2r1
T (Mn1 , Oλ(r1))m1)Gal(Fp/Fp2 ) → H0

T(Sn1 , Oλ)m1

is an isomorphism.

Proof. The proof of the lemma is similar to Theorem 6.2.3. For readers’ convenience, we reproduce
the details under the current setup.

For (1), by Lemma 5.1.7, we have an isomorphism
H2r1

T (Mn1 , Oλ(r1))m1 ' H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))m1

of Oλ[Gal(Qp/Qp2)]-modules. By Lemma 6.1.10, Proposition C.3.1(2), and Hypothesis 3.2.9, we
have an isomorphism

H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))m1 ⊗Oλ Q` '

⊕
π1

ρc
BC(π1),ι`(r1)⊕d(π1)

of representations of ΓF with coefficients in Q`, where d(π1) := dim(π∞,p1 )Kpn1 . Here, the direct sum
is taken over all stable automorphic representations π1 of U(Vn1)(AF+) that is Π1-congruent and
such that π1τ∞ is a holomorphic discrete series representation of U(Vn1)(F+

τ∞
) with the Harish-

Chandra parameter {r1, r1 − 1, . . . , 1 − r1,−r1}; and π1τ is trivial for every archimedean place
τ 6= τ∞. We may replace Eλ by a finite extension inside Q` such that ρBC(π1),ι` is defined over
Eλ for every π1 appeared in the previous direct sum. Now we regard ρBC(π1),ι` as a representation
over Eλ. Then ρBC(π1),ι`(r1) admits a ΓF -stable Oλ-lattice RBC(π1), unique up to homothety, whose
reduction R̄BC(π1) is isomorphic to ρ̄Π1,λ(r1). Moreover, we have an inclusion

H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))m1 ⊆

⊕
π1

(Rc
BC(π1))⊕d(π1)

of Oλ[Gal(Fp/Fp2)]-modules. By (PII4), we know that ρ̄c
Π1,λ(r1) is weakly semisimple and

dimOλ/λ ρ̄
c
Π1,λ(r1)Gal(Fp/Fp2 ) = 1.

On the other hand, we have

dimEλ ρ
c
BC(π1),ι`(r1)Gal(Fp/Fp2 ) ≥ 1.
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Thus by Lemma 2.1.5, for every π1 in the previous direct sum, Rc
BC(π1) is weakly semisimple. Thus,

H2r1
T (Mn1 , Oλ(r1))m1 is weakly semisimple by Lemma 2.1.4(1). Thus, (1) follows.
For (2), we note that in (1) we have also proved that (H2r1

T (Mn1 , Oλ(r1))m1)Gal(Fp/Fp2 ) is a free
Oλ-module of rank ∑π1 d(π1). By Theorem 4.3.10, Proposition B.4.3(2), and (PII4), we know that
πn1! ◦ ι∗n1 is surjective. Thus, it remains to show that∑

π1

d(π1) ≤ dimEλ H0
T(Sn1 , Oλ)m1 ⊗Oλ Eλ.

However, the above inequality is a consequence of Proposition 4.3.4 and Corollary C.3.3.
The lemma is proved. �

We have a finite morphism Sh(Vn,Ksp) → Sh(Vn,Kn) ×SpecF Sh(Vn+1,Kn+1), which gives rise
to a class

[Sh(Vn,Ksp)] ∈ H2n
ét (Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1), Oλ(n))

by the absolute cycle class map.

Theorem 7.3.4 (Second explicit reciprocity law). Assume Assumptions 7.1.1, 7.3.2, and Hypoth-
esis 3.2.9 for both n and n+ 1. Then we have

expλ
(
locp([Sh(Vn,Ksp)]),H2n

ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))Fp , Oλ(n))/(n0, n1)
)

≤ expλ
(
1Sh(V?n,K?sp,sp), Oλ[Sh(V?

n0 ,K
?
n0)× Sh(V?

n1 ,K
?
n1)]/(n0, n1)

)
where locp is introduced in Construction 4.5.1; expλ is introduced in Definition 2.1.6; and the
element 1Sh(V?n,K?sp,sp) is regarded as the pushforward of the characteristic function along the map
Sh(V?

n,K?
sp,sp)→ Sh(V?

n,K?
n)× Sh(V?

n+1,K?
n+1).

Proof. We claim that
(1) the action of T?n1,p on H2r0

T (Mn0 ×Tp Sn1 , Oλ(r0))(m0,m1) is invertible; and
(2) the composite map
(id× πn1)! ◦ (id× ιn1)∗ : H2n

T (Mn0 ×Tp Mn1 , Oλ(n))(m0,m1) → H2r0
T (Mn0 ×Tp Sn1 , Oλ(r0))(m0,m1)

is an isomorphism.
We prove the theorem assuming these two claims. Take a uniformizer λ0 of Eλ. Suppose

λe01Sh(V?n,K?sp,sp) = 0 in Oλ[Sh(V?
n0 ,K

?
n0) × Sh(V?

n1 ,K
?
n1)]/(n0, n1) for some integer e ≥ 0. Applying

Theorem 4.5.2 to the object (Ksp,Kn+1) ∈ K(Vn)sp followed by pushforward, we have
λe0T

?
n1,p.(id× πn1)!(id× ιn1)∗loc′p([Sh(Vn,Ksp)]) = 0

in H2n
T (Mn0 ×Tp Sn1 , Oλ(n))/(n0, n1). By the above two claims, we must have

λe0loc′p([Sh(Vn,Ksp)]) = 0

in H2n
T (Mn0 ×Tp Mn1 , Oλ(n))/(n0, n1). Thus, we have

λe0locp([Sh(Vn,Ksp)]) = 0
as the map H2n

ét ((Sh(Vn0 ,Kn0) ×SpecF Sh(Vn1 ,Kn1))Fp , Oλ(n)) → H2n
T (Mn0 ×Tp Mn1 , Oλ(n)) is an

isomorphism. The theorem follows.
Now we consider the two claims. By the Hochschild–Serre spectral sequence, we have a short

exact sequence

0 // H1(Fp2 ,H2n−1
T (Mn0 ×Tp

Mn1 , Oλ(n))(m0,m1)) // H2n
T (Mn0 ×Tp Mn1 , Oλ(n))(m0,m1) // H2n

T (Mn0 ×Tp
Mn1 , Oλ(n))Gal(Fp/Fp2 )

(m0,m1)
// 0
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of Oλ-modules. By the Künneth formula and (an analog of) Lemma 6.1.10, we have

Hi
T(Mn0 ×Tp

Mn1 , Oλ)(m0,m1) '
⊕

i0+i1=i
Hi0

T (Mn0 , Oλ)⊗Oλ Hi1
T (Mn1 , Oλ)

for every i ∈ Z. This implies H2n
T (Mn0 ×Tp

Mn1 , Oλ(n))(m0,m1) = 0 and

H2n−1
T (Mn0 ×Tp

Mn1 , Oλ(n))(m0,m1) ' H2r0−1
T (Mn0 , Oλ(r0))m0 ⊗Oλ H2r1

T (Mn1 , Oλ(r1))m1 .

In particular, we have a canonical isomorphism

H2n
T (Mn0 ×Tp Mn1 , Oλ(n))(m0,m1) ' H1(Fp2 ,H2r0−1

T (Mn0 , Oλ(r0))m0 ⊗Oλ H2r1
T (Mn1 , Oλ(r1))m1).

(7.2)

Similarly, we have

H2r0
T (Mn0 ×Tp Sn1 , Oλ(r0))(m0,m1) ' H1(Fp2 ,H2r0−1

T (Mn0 , Oλ(r0))m0 ⊗Oλ H0
T(Sn1 , Oλ)m1)(7.3)

= H1(Fp2 ,H2r0−1
T (Mn0 , Oλ(r0))m0)⊗Oλ H0

T(Sn1 , Oλ)m1 .

For claim (1), note that the action of Tn1,p on H2r0
T (Mn0 ×Tp Sn1 , Oλ(r0))(m0,m1) factors through

the second factor under the isomorphism (7.3). By Proposition B.4.3(2) and (PII4), we know that
the action of T?n1,p on H0

T(Sn1 , Oλ)m1 is invertible. Thus, (1) follows.
For claim (2), by (PII7) and a similar argument for the proof of Lemma 7.2.4(3), we know that

the Oλ[Gal(Fp/Fp2)]-module

H2r0−1
T (Mn0 , Oλ(r0))m0 ⊗Oλ ker

(
(H2r1

T (Mn1 , Oλ(r1))m1)→ (H2r1
T (Mn1 , Oλ(r1))m1)Gal(Fp/Fp2 )

)
has zero Gal(Fp/Fp2)-coinvariants. Combining with Lemma 7.3.3, we obtain an isomorphism

H2n
T (Mn0 ×Tp Mn1 , Oλ(n))(m0,m1) ' H1(Fp2 ,H2r0−1

T (Mn0 , Oλ(r0))m0)⊗Oλ (H2r1
T (Mn1 , Oλ(r1))m1)Gal(Fp/Fp2 )

from (7.2), under which the map (id× πn1)! ◦ (id× ιn1)∗ coincides with id⊗ (πn1! ◦ ι∗n1). Thus, (2)
follows.

The theorem is proved. �

8. Proof of main theorems

In the section, we prove our main theorems on bounding Selmer groups. In Subsection 8.1,
we introduce the notation of (weakly) admissible primes for the coefficient field, and make some
additional preparation for the main theorem. In Subsections 8.2 and 8.3, we prove our main
theorems in the (Selmer) rank 0 and 1 cases, respectively.

8.1. Admissible primes for coefficient field. We keep the setup in Subsection 7.1.

Definition 8.1.1. We introduce following assumptions on a prime λ of E with the underlying
rational prime ` (and the ring of integers Oλ of Eλ):
(L1): ` > 4n and is unramified in F ;
(L2): Σ+

min does not contain `-adic places;
(L3): the Galois representation ρΠ0,λ ⊗Eλ ρΠ1,λ is absolutely irreducible;
(L4): Assumption 7.1.1 is satisfied, that is, ρΠ0,λ and ρΠ1,λ are both residually absolutely irre-

ducible;



132 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

(L5): under (L4), for α = 0, 1, we have a ΓF -stable Oλ-lattice Rα in ρΠα,λ(rα), unique up to
homothety, that is (1−α)-polarizable, for which we choose a (1−α)-polarization Ξα : Rc

α
∼−→

R∨α(1− α) and an isomorphism Rα ' O⊕nαλ of Oλ-modules.20 After adopting the notation
in Subsection 2.6, we have
(L5-1): either one of the two assumptions in Lemma 2.3.4 is satisfied;
(L5-2): Lemma 2.6.1(3) holds with F ′ = F+

rflx (Definition 3.3.2) and P(T ) = T 2 − 1 (see
Remark 8.1.2 below for a more explicit description);

(L6): under (L4), the homomorphism ρ̄Π0,λ,+ (Remark 6.1.5) is rigid for (Σ+
min, ∅) (Definition

E.7.1), and ρ̄Π0,λ|Gal(F/F (ζ`)) is absolutely irreducible;
(L7): for α = 0, 1, the composite homomorphism TΣ+

min
nα

φΠα−−→ OE → OE/λ is cohomologically
generic (Definition D.1.1).

Finally, we say that
(1) λ is weakly admissible (with respect to (Π0,Π1)) if (L1–L5) are satisfied;
(2) λ is admissible (with respect to (Π0,Π1)) if (L1–L7) are satisfied.

Remark 8.1.2. In Definition 8.1.1, (L5-2) is equivalent to the following assertion: the image of the
restriction of the homomorphism

(ρ̄0+, ρ̄1+, ε̄`) : ΓF+ → Gn0(Oλ/λ)× Gn1(Oλ/λ)× (Oλ/λ)×

(see Notation 2.5.1 for the notation) to Gal(F/F+
rflx) contains an element (γ0, γ1, ξ) satisfying

(a) ξ2 − 1 6= 0;
(b) for α = 0, 1, γα belongs to (GLnα(Oλ/λ)× (Oλ/λ)×)c with order coprime to `;
(c) 1 appears in the eigenvalues of each of hγ0 , hγ1 , and hγ0 ⊗ hγ1 (Notation 2.5.2) with multi-

plicity one;
(d) hγ0 does not have an eigenvalue that is equal to −1 in Oλ/λ;
(e) hγ1 does not have an eigenvalue that is equal to −ξ in Oλ/λ.

Lemma 8.1.3. The representation ρΠ0,λ⊗EλρΠ1,λ(n) is pure of weight −1 at every nonarchimedean
place w of F not above ` (Definition 2.4.4).

Proof. This is a consequence of Proposition 3.2.4(1) and [TY07, Lemma 1.4(3)]. �

Lemma 8.1.4. Assume Hypothesis 3.2.9 for n1. Let Vn1 be a standard indefinite hermitian space
of rank n1 over F , Λn1 a self-dual ∏v 6∈Σ+

∞∪Σ+
min
OFv-lattice in Vn1⊗F A

Σ+
∞∪Σ+

min
F , and λ a prime of E.

Consider a finite set P of special inert primes of F+ whose underlying rational primes are distinct
and coprime to Σ+

min, and an object Kn1 ∈ K(Vn1) of the form (Kn1)Σ+
min
×∏v 6∈Σ+

∞∪Σ+
min

U(Λn1)(OF+
v

).
Put

m1 := T
Σ+

min∪Σ+
P

n1 ∩ ker
(
TΣ+

min
n1

φΠ1−−→ OE → OE/λ
)

where Σ+
P is the union of Σ+

p for all underlying rational primes p of P. Suppose that Pα(Π1,p) modλ
is intertwining generic (Definition 3.1.5) for every p ∈ P; and that

(a) either the composite homomorphism TΣ+
min

n1

φΠ1−−→ OE → OE/λ is cohomologically generic;
(b) or n1 = 3 and Hi

ét(Sh(V3,K3), OE/λ)m1 = 0 if i 6= 2.
Then for every special maximal subgroup K′n1,P of ∏p∈P U(Vn1)(F+

p ) and every i ∈ Z, we have an
isomorphism

Hi
ét(Sh(Vn1 ,Kn1), Oλ)m1 ' Hi

ét(Sh(Vn1 ,KP
n1K′n1,P), Oλ)m1

20In fact, (L5) does not depend on the choice of Ξα and the basis, since Ξα is unique up to units in Oλ and the
basis is unique up to conjugation in GLnα(Oλ).
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of Oλ[ΓF ]-modules.

Note that (a) is stronger than (b) when n1 = 3.
Proof. We first note that for every p ∈ P, U(Vn1)(F+

p ) has two special maximal subgroups up to
conjugation, exact one of which is hyperspecial maximal.

Take an element p ∈ P, a special maximal subgroup K′pn1,P of ∏p′∈P\{p}U(Vn1)(F+
p′ ), a hyper-

special maximal subgroup K◦n1,p of U(Vn1)(F+
p ), and a non-hyperspecial special maximal subgroup

K•n1,p of U(Vn1)(F+
p ). We claim that if Hi

ét(Sh(Vn1 ,KP
n1K′pn1,PK◦n1,p), OE/λ)m1 = 0 for i 6= 2r1, then

there is an isomorphism
Hi

ét(Sh(Vn1 ,KP
n1K′pn1,PK◦n1,p), Oλ)m1 ' Hi

ét(Sh(Vn1 ,KP
n1K′pn1,PK•n1,p), Oλ)m1

of Oλ[ΓF ]-modules for every i ∈ Z.
Fix an embedding Eλ ↪→ Q`. We first show that there is an isomorphism

Hi
ét(Sh(Vn1 ,KP

n1K′pn1,PK◦n1,p), Oλ)m1 ⊗Oλ Q` ' Hi
ét(Sh(Vn1 ,KP

n1K′pn1,PK•n1,p), Oλ)m1 ⊗Oλ Q`(8.1)

of Q`[ΓF ]-modules for every i ∈ Z. Let Λ◦n1,p be the self-dual OFp-lattice in Vn1 ⊗F Fp whose
stabilizer is K◦n1,p. Without lost of generality, we may assume that K•n1,p is the stabilizer of a
lattice Λ•n1,p satisfying Λ◦n1,p ⊆ Λ•n1,p and (Λ•n1,p)

∨/pΛ•n1,p ' Fp2 . To show (8.1), it suffices to show
that for every (necessarily cuspidal) automorphic representation π1 of U(Vn1)(AF+) that appears
in either side of (8.1), the maps

T•◦n1,p : πK◦n1,p
1,p → π

K•n1,p
1,p , T◦•n1,p : πK•n1,p

1,p → π
K◦n1,p
1,p

are both isomorphisms. Hypothesis 3.2.9 and the Chebotarev density theorem imply that ρBC(π1),ι`
and ρΠ1,λ ⊗Eλ Q` have the isomorphic (irreducible) residual representations. In particular, the
Satake parameter of BC(π1)p does not contain {−p,−p−1} by Proposition 3.2.4(2) and the as-
sumption that Pα(Π1,p) modλ is intertwining generic. Thus, we obtain the isomorphism (8.1) by
Proposition B.4.3(2).

To prove the claim it suffices to show that Hi
ét(Sh(Vn1 ,KP

n1K′pn1,PK•n1,p), Oλ)m1 is a free Oλ-module
for every i ∈ Z. If we assume (a), then this follows immediately. If we assume (b), then this follows
from Proposition 5.9.4, Lemma 6.2.1, and a straightforward computation on the spectral sequence
in Lemma 5.8.2.

The lemma follows immediately from the above claim by induction on the number of primes
p ∈ P for which K′n1,P is not hyperspecial maximal at p. Note that the initial induction hypothesis
is satisfied by either (a) or (b). �

Proposition 8.1.5. Suppose E = Q and that there are two elliptic curves A0 and A1 over F+

such that for every rational prime ` of E and α = 0, 1, we have ρΠα,` ' Symnα−1 H1
ét(AαF ,Q`)|ΓF .

If A0F and A1F are not isogenous to each other and End(A0F ) = End(A1F ) = Z, then all but
finitely many rational primes ` are weakly admissible; and when [F+ : Q] > 1, all but finitely many
rational primes ` are admissible.

Proof. We need to show that every condition in Definition 8.1.1 excludes only finitely many ` (for
(L7) we assume [F+ : Q] > 1). By [Ser72, Théorème 6], for sufficiently large `, the homomorphisms

ΓF+ → GL(H1
ét(AαF ,F`)) ' GL2(F`)

are both surjective for α = 0, 1. Thus, we may assume that this is the case.
For (L1) and (L2), this is trivial.
For (L3), (L4), and (L5), this has been proved in Proposition 2.6.3.
For (L6), by Proposition E.5.12, the condition that ρ̄Π0,λ,+ is rigid for (Σ+

min, ∅) excludes only
finitely many `. It is clear that the remaining two conditions also exclude only finitely many `.
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For (L7), this follows from Corollary D.1.4. �

8.2. Main theorem in the Selmer rank 0 case.

Theorem 8.2.1. Keep the setup in Subsection 7.1. Assume Hypothesis 3.2.9 for both n and n+1.
If L(1

2 ,Π0 × Π1) 6= 0, then for all admissible primes λ of E, and for all but finitely many weakly
admissible primes λ of E when n = 2, we have

H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) = 0.

Proof. By Lemma 8.2.2 below, we may fix the choices of V◦n, Λ◦n, (K◦n,K◦n+1) in that lemma such
that ∑

s∈Sh(V◦n,K◦n)
f(s, sh↑(s)) 6= 0

for some f ∈ OE[Sh(V◦n0 ,K
◦
n0)][kerφΠ0 ] ⊗OE OE[Sh(V◦n1 ,K

◦
n1)][kerφΠ1 ]. Moreover, by Lemma

D.2.2(3), we may assume that (K◦n0)v is transferable (Definition D.2.1) for v ∈ Σ+
min.

We take a prime λ of E with the underlying rational prime `. We adopt notation in Subsection
2.6 with the initial data in Definition 8.1.1. Define two nonnegative integers mper and mlat as
follows.

(1) Let mper be the largest (nonnegative) integer such that∑
s∈Sh(V◦n,K◦n)

f(s, sh↑(s)) ∈ λmperOE

for every f ∈ OE[Sh(V◦n0 ,K
◦
n0)][kerφΠ0 ]⊗OE OE[Sh(V◦n1 ,K

◦
n1)][kerφΠ1 ].

(2) We choose a standard indefinite hermitian space Vn1 over F of rank n1, together with an
identification U((V◦n1)∞) ' U(V∞n1) of reductive groups over A∞F+ .21 In particular, we have
the Shimura variety Sh(Vn1 ,K◦n1). By Hypothesis 3.2.9, we have an isomorphism

H2r1
ét (Sh(Vn1 ,K◦n1)F , Eλ(r1))/ kerφΠ1 ' (Rc

1 ⊗Oλ Eλ)⊕µ1

of Eλ[ΓF ]-modules for some integer µ1 > 0. We fix a map
H2r1

ét (Sh(Vn1 ,K◦n1)F , Oλ(r1))/ kerφΠ1 → (Rc
1)⊕µ1

of Oλ[ΓF ]-modules whose kernel and cokernel are both Oλ-torsion. Then we let mlat be the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by
λmlat .

Now we assume that either λ is admissible, or n = 2 and λ is weakly admissible and satisfies
Hi

ét(Sh(V3,K◦3)F , OE/λ)/ kerφΠ1 = 0 for i 6= 2 (which only excludes finitely many primes). Note
that in both cases we have Hi

ét(Sh(Vn1 ,K◦n1)F , OE/λ)/ kerφΠ1 = 0 if i 6= 2r1.
We start to prove the theorem by contradiction, hence assume

dimEλ H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) ≥ 1.

Take a sufficiently large positive integer m which will be determined later. By Lemma 8.1.3, we
may apply Proposition 2.4.6 by taking Σ to be the set of places of F above Σ+

min ∪ Σ+
` . Then we

obtain a submodule S of H1
f,R(F, R̄(m)) that is free of rank 1 over Oλ/λ

m−mΣ such that locw|S = 0
for every nonarchimedean place w ∈ Σ not above `. Now we apply the discussion in Subsection
2.3 to the submodule S ⊆ H1(F, R̄(m)). By (L5-1) and Lemma 2.3.6, we obtain an injective map

θS : Gal(FS/Fρ̄(m))→ HomOλ(S, R̄(m))

21There are many choices of such Vn1 and the isomorphism. We choose one only to get some control on the
discrepancy of the integral cohomology of Shimura varieties and the lattice coming from Galois representations.
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whose image generates an Oλ-submodule containing λrR̄(m) HomOλ(S, R̄(m)), which further contains
λrR HomOλ(S, R̄(m)) by Lemma 2.3.3 and (L3). By (L5-2) and Lemma 2.6.1, we may choose an
element (γ1, γ2, ξ) in the image of (ρ̄(m)

1+ , ρ̄
(m)
2+ , ε̄

(m)
` )|Gal(F/F+

rflx) satisfying Lemma 2.6.1(2). It gives
rise to an element γ ∈ (GLn0n1(Oλ/λ

m)× (Oλ/λ
m)×)c as in Notation 2.5.2 such that (R̄(m))hγ is a

free Oλ/λ
m-module of rank 1 by Lemma 2.6.2 and (2.4). Now we apply the discussion in Subsection

2.5. By Proposition 2.5.5 (with m0 = mΣ, rγ = 1, rS = 1), we may fix an (S, γ)-abundant element
Ψ ∈ GS,γ (Definition 2.5.6).

We apply the discussion and notation in Subsection 7.2 to our situation with λ, m, Σ+
lr,I = ∅,

Σ+
I = Σ+

min, (V◦n,Λ◦n), K◦n and (K◦n,K◦n+1). By the Chebotarev density theorem, we can choose a
γ-abundant place w(m)

+ of F (m)
+ satisfying Ψw(m) = Ψ and whose underlying prime p of F+ (and

the underlying rational prime p) is a special inert prime satisfying (PI1)–(PI7) and
(PI8): the natural map

H2r1
ét (Sh(Vn1 ,K◦n1)F , Oλ(r1))/(TΣ+

I ∪Σ+
p

n1 ∩ kerφΠ1)→ H2r1
ét (Sh(Vn1 ,K◦n1)F , Oλ(r1))/ kerφΠ1

is an isomorphism.
We also choose remaining data in the initial setup of Section 5 with QΦ

p = Qp2 , a definite uni-
formization datum as in Notation 5.10.13, and an indefinite uniformization datum as in Notation
5.10.1. By the definition of mper, we have

expλ
(
1Sh(V◦n,K◦sp), OE[Sh(V◦n0 ,K

◦
n0)× Sh(V◦n1 ,K

◦
n1)]/(n0, n1)

)
≥ m−mper,(8.2)

where we recall that
nα = TΣ+

I ∪Σ+
p

nα ∩ ker
(
TΣ+

min
nα

φΠα−−→ OE → OE/λ
m
)

for α = 0, 1. Here, 1Sh(V◦n,K◦sp) is nothing but the characteristic function of the graph 4 Sh(V◦n,K◦n)
of the map Sh(V◦n,K◦n)→ Sh(V◦n+1,K◦n+1).

We claim that there exists an element c1 ∈ H1(F, R̄(m1)c) for some positive integer m1 ≤ m
satisfying

expλ
(
∂plocp(c1),H1

sing(Fp, R̄(m1)c)
)
≥ m−mper −mlat;(8.3)

and such that for every nonarchimedean place w of F not above Σ+ ∪ {p},

locw(c1) ∈ H1
f (Fw, R̄(m1)c)(8.4)

holds.
We first prove the theorem assuming the existence of such c1. Fix a generator of the submodule

S ⊆ H1
f,R(F, R̄(m)) and denote by its image in H1(F, R̄(m1)) by s1. We also identify R̄(m1)c with

(R̄(m1))∗ via the polarization Ξ. Now we compute the local Tate pairing 〈s1, c1〉w (2.1) for every
nonarchimedean place w of F .

m Suppose that w is above Σ+
min. Then we have locw(s1) = 0 by our choice of S. Thus,

〈s1, c1〉w = 0.
m Suppose that w is above Σ+

` . Then by (L2), RQ is crystalline with Hodge–Tate weights
in [−n, n − 1]. Thus, we have locw(s1) ∈ H1

f (Fw, R̄(m1)) by Lemma 2.4.3(2) and (L1). By
(8.4), Lemma 2.2.6 and (L1), we have λmdif〈s1, c1〉w = 0 where dλ = λmdif ⊆ Oλ is the
different ideal of Eλ/Q`.

m Suppose that w is not above Σ+
min ∪ Σ+

` ∪ {p}. Then by (L2), R is unramified. Thus, we
have locw(s1) ∈ H1

f (Fw, R̄(m1)) by Lemma 2.4.3(1). By (8.4) and Lemma 2.2.3, we have
〈s1, c1〉w = 0.
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m Suppose that w is the unique place above p. Then since w(m)
+ is abundant, we have

expλ
(
locw(s1),H1

f (Fw, R̄(m1))
)
≥ m1 −mΣ − rR.

By (8.3) and Lemma 2.2.3 again, we have
expλ (〈s1, c1〉w, Oλ/λ

m1) ≥ m−mper −mlat −mΣ − rR.

Therefore, as long as we take m such that m > mper + mlat + mΣ + rR + mdif , we will have a
contradiction to the relation ∑

w

〈s1, c1〉w = 0,

where the sum is taken over all nonarchimedean places w of F . The theorem is proved.
Now we consider the claim. By (L4), (L6), and Theorem 6.3.4(5), we have an isomorphism

H2r0−1
ét ((Sh(V′n0 , jn0Kp◦

n0K′n0,p)F , Oλ(r0))/n0
∼−→

µ0⊕
i=1

R̄(mi)c
0(8.5)

of Oλ[ΓF ]-modules, for finitely many positive integers m1, . . . ,mµ0 at most m. Assumption 7.2.2
for α = 0 is satisfied by (L7) if n ≥ 3 and by (L4) if n = 2.

By Lemma 8.1.4, we have an isomorphism
Hi

ét(Sh(Vn1 ,K◦n1)F , Oλ)m1 ' Hi
ét(Sh(V′n1 , jn1Kp◦

n1K′n1,p)F , Oλ)m1

of Oλ[ΓF ]-modules. Assumption 7.2.2 for α = 1 is satisfied by (L7) if n ≥ 3 and by (PI8) if n = 2.
Moreover, by (PI8), we may fix a map

H2r1
ét (Sh(V′n1 , jn1Kp◦

n1K′n1,p)F , Oλ(r1))/(TΣ+
I ∪Σ+

p
n1 ∩ kerφΠ1)→ (Rc

1)⊕µ1

of Oλ[ΓF ]-modules whose kernel and cokernel are both annihilated by λmlat . Taking quotient by
λm, we obtain a map

H2r1
ét (Sh(V′n1 , jn1Kp◦

n1K′n1,p)F , Oλ(r1))/n1 → (R̄(m)c
1 )⊕µ1(8.6)

of Oλ[ΓF ]-modules whose kernel and cokernel are both annihilated by λmlat .
To continue, we adopt the notational abbreviation prior to Corollary 7.2.8. By Lemma 6.1.10

and the Künneth formula, we obtain a map

Υ: H2n−1
ét ((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1)→

µ⊕
i=1

R̄(mi)c(8.7)

of Oλ[ΓF ]-modules whose kernel and cokernel are both annihilated by λmlat , from (8.5) and (8.6).
Here, we have re-indexed µ1 copies of {m1, . . . ,mµ0} into µ := µ0µ1 positive integers at most m.
Recall that we have a class

AJ(Sh′sp) ∈ H1(F,H2n−1
ét ((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1)),

where Sh′sp is nothing but the graph of the morphism Sh′n → Sh′n+1. By Corollary 7.2.8 and (8.2),
we have

expλ
(
∂plocp AJ(Sh′sp),H1

sing(Fp,H2n−1
ét ((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1))

)
≥ m−mper.(8.8)

For every 1 ≤ i ≤ µ, let
Υi : H2n−1

ét ((Sh′n0 ×SpecF Sh′n1)F , Oλ(n))/(n0, n1)→ R̄(mi)c

be the composition of Υ (8.7) with the projection to the i-th factor; and put

ci := H1(F,Υi)(AJ(Sh′sp)) ∈ H1(F, R̄(mi)c).
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Then (8.8) implies

max
1≤i≤µ

expλ
(
∂plocp(ci),H1

sing(Fp, R̄(mi)c)
)
≥ m−mper −mlat.

Without lost of generality, we obtain (8.3). On the other hand, as both Sh′n and Sh′n+1 have
smooth models over OFw for which (an analogue of) Lemma 4.1.4 holds, we obtain (8.4).

�

Lemma 8.2.2. Let Π0 and Π1 be as in Theorem 8.2.1 such that for α = 0, 1, ρΠα,λ is absolutely
irreducible for some prime λ of E. Suppose L(1

2 ,Π0 × Π1) 6= 0. Then there exist
m a standard definite hermitian space V◦n of rank n over F , together with a self-dual∏

v 6∈Σ+
∞∪Σ+

min
OFv-lattice Λ◦n in V◦n⊗F AΣ+

∞∪Σ+
min

F (and put V◦n+1 := (V◦n)] and Λ◦n+1 := (Λ◦n)]),
m an object (K◦n,K◦n+1) ∈ K(V◦n)sp in which K◦nα is of the form

K◦nα =
∏

v∈Σ+
min

(K◦nα)v ×
∏

v 6∈Σ+
∞∪Σ+

min

U(Λ◦nα)(OF+
v

)

for α = 0, 1,
such that ∑

s∈Sh(V◦n,K◦n)
f(s, sh↑(s)) 6= 0

for some element f ∈ OE[Sh(V◦n0 ,K
◦
n0)][kerφΠ0 ]⊗OE OE[Sh(V◦n1 ,K

◦
n1)][kerφΠ1 ].

Proof. This follows from the direction (1)⇒(2) of [BPLZZ, Theorem 1.7], together with [BPLZ-
Z, Remark 4.15]. Note that since our Π0 and Π1 are relevant representations of GLn0(AF ) and
GLn1(AF ), respectively, both members in the pair of hermitian spaces in (2) of [BPLZZ, Theo-
rem 1.7] have to be standard definite. �

Corollary 8.2.3. Keep the setup in Subsection 7.1. Suppose that
(a) there exists a very special inert prime p of F+ (Definition 3.3.4) such that Π0,p is Steinberg,

and Π1,p is unramified whose Satake parameter contains 1 exactly once;
(b) for α = 0, 1, there exists a nonarchimedean place wα of F such that Πα,wα is supercuspidal;
(c) [F+ : Q] > 1 if n ≥ 3.

If L(1
2 ,Π0 × Π1) 6= 0, then for all but finitely many primes λ of E, we have

H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) = 0.

Proof. By Theorem 8.2.1, it suffices to show that all but finitely many primes λ of E are admissible
(or weakly admissible if n = 2). It suffices to show that each of conditions (L1–L6) in Definition
8.1.1 excludes only finitely many λ, and also for (L7) if n 6= 3.

For (L1) and (L2), this is trivial.
For (L4), this follows from Lemma E.8.3 by (b).
For (L3), this follows from Lemma 8.2.4 below by (L4) and (a).
For (L6), this follows from Theorem E.8.4 by (a) and (b).
For (L7), this follows from Corollary D.1.4 by (c).
For (L5-1), let λ be a prime of E satisfying (L4) and (L6), whose underlying rational prime is

at least 2n(n+ 1)−1. Then by (a), ρ̄Π0,λ and ρ̄Π1,λ satisfy the assumptions in Lemma 8.2.4 below,
with k = Oλ/λ and Γ = ΓF . Thus, by Lemma 8.2.4(2), assumption (b) of Lemma 2.3.4 hence
(L5-1) hold.

For (L5-2), take an arithmetic Frobenius element φp ∈ ΓF+
p
. By Definition 3.3.4, φp belongs to

Gal(F/F+
rflx). For α = 0, 1, put rα := bnα2 c as always. By (a), the Satake parameter of Π0,p is
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{p±1, . . . , p±(2r0−1)}; and we may write the Satake parameter of Π1,p as {1, α±1
1 , . . . , α±1

r1 } in which
αi is an algebraic number other than 1 for 1 ≤ i ≤ r1. For our purpose, we may replace E by a
finite extension in C so that αi ∈ E for 1 ≤ i ≤ r1. By Proposition 3.2.4(1), we have |αi| = 1 for
1 ≤ i ≤ r1. Therefore, for all but finitely many prime λ of E, we have

m {p, α1, . . . , αr1} is contained in O×λ ;
m {p±1 modλ, . . . , p±(2r0−1) modλ} consists of distinct elements and does not contain −1;
m {αi modλ | 1 ≤ i ≤ r1} is disjoint from {1,−p,−p−1};
m {p±1αi modλ, . . . , p±(2r0−1)αi modλ | 1 ≤ i ≤ r1} is disjoint from {p, p−1}.

Then for every prime λ satisfying (L4) and the above properties, (L5-2) is satisfied by taking the
element (ρ̄0+, ρ̄1+, ε̄`)(φp) in Lemma 2.6.1(3).

The corollary follows. �

Lemma 8.2.4. Let Γ be a group, and k a field of characteristic either zero or at least 2n(n+1)−1.
Let ρ0 : Γ→ GLn0(k) and ρ1 : Γ→ GLn1(k) be two homomorphisms that are absolutely irreducible.
Suppose that there exists an element t ∈ Γ such that ρ0(t) = 1 + Jn0 and ρ1(t) = 1. Then we have

(1) ρ0 ⊗ ρ1 is absolutely irreducible;
(2) ρ0 ⊗ ρ1 is not a subquotient of ad(ρ0 ⊗ ρ1).

Proof. We may assume that k is algebraically closed. For α = 0, 1, let Vi = k⊕ni be the space
which Γ acts on through ρα. By [Ser94, Corollaire 1], we know that both ρ0 ⊗ ρ1 and ad(ρ0 ⊗ ρ1)
are semisimple.

For (1), thanks to the element t, every subrepresentation of V0 ⊗k V1 is of the form V0 ⊗k V ′1
where V ′1 is a subrepresentation of V1. Since ρ1 is irreducible, it follows that ρ0⊗ ρ1 is irreducible.

For (2), note that (ρ0 ⊗ ρ1)(t) is conjugate to (1 + Jn0)⊕n1 . On the other hand, ad(ρ0 ⊗ ρ1)(t)
is conjugate to

n0⊕
i=1

(1 + J2i−1)⊕n2
1 .

Since n0 is even and 1, 3, . . . , 2n0 − 1 are odd, ρ0 ⊗ ρ1 is not a subquotient of ad(ρ0 ⊗ ρ1) as
ad(ρ0 ⊗ ρ1) is semisimple.

The lemma is proved. �

Corollary 8.2.5. Let n ≥ 2 be an integer and denote by n0 and n1 the unique even and odd
numbers in {n, n + 1}, respectively. Let A0 and A1 be two modular elliptic curves over F+ such
that End(A0F ) = End(A1F ) = Z. Suppose that

(a) A0F and A1F are not isogenous to each other;
(b) both Symn0−1A0 and Symn1−1A1 are modular; and
(c) [F+ : Q] > 1 if n ≥ 3.

If the (central critical) L-value L(n, Symn0−1A0F × Symn1−1A1F ) does not vanish, then we have
H1
f (F, Symn0−1 H1

ét(A0F ,Q`)⊗Q` Symn1−1 H1
ét(A1F ,Q`)(n)) = 0

for all but finitely many rational primes `.

Proof. By (b) and [AC89], both Symn0−1A0F and Symn1−1A1F are modular. Thus, we may let
Πα be the (cuspidal) automorphic representation of GLnα(AF ) associated to Symnα−1AαF for
α = 0, 1, which is a relevant representation (Definition 1.1.3). We also have the identify

L(n+ s, Symn0−1A0F × Symn1−1A1F ) = L(1
2 + s,Π0 × Π1)

of L-functions, and that the representation of ΓF on Symnα−1 H1
ét(AαF ,Q`) is isomorphic to ρΠα,`

for α = 0, 1. By Proposition 3.2.10 and (c), Hypothesis 3.2.9 is known in this case. Then the
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corollary follows immediately from Theorem 8.2.1 and Proposition 8.1.5 (where we use (a) and
(c)) with E = Q. �

Remark 8.2.6. In this remark, we summarize the current knowledge on the modularity of symmetric
powers of elliptic curves, namely, condition (a) in Corollary 8.2.5. Let A be a modular elliptic
curve over F+. We have

m Sym2A is modular by [GJ76];
m Sym3A is modular by [KS02];
m Sym4A is modular by [Kim03];
m Sym5A and Sym6A are modular if F+ is linearly disjoint from Q(ζ5) over Q;
m Sym7A is modular if F+ is linearly disjoint from Q(ζ35) over Q;
m Sym8A is modular if F+ is linearly disjoint from Q(ζ7) over Q;

in which the last three cases are obtained in a series of recent work [CT14,CT15,CT17] of Clozel
and Thorne.

8.3. Main theorem in the Selmer rank 1 case. We state the following weak version of the
arithmetic Gan–Gross–Prasad conjecture.

Conjecture 8.3.1. Suppose L(1
2 ,Π0 × Π1) = 0 but L′(1

2 ,Π0 × Π1) 6= 0. Then there exist
m a standard indefinite hermitian space Vn of rank n over F , together with a self-dual∏

v 6∈Σ+
∞∪Σ+

min
OFv-lattice Λn in Vn⊗F AΣ+

∞∪Σ+
min

F (and put Vn+1 := (Vn)] and Λn+1 := (Λn)]),
m an object (Kn,Kn+1) ∈ K(Vn)sp in which Knα is of the form

Knα =
∏

v∈Σ+
min

(Knα)v ×
∏

v 6∈Σ+
∞∪Σ+

min

U(Λnα)(OF+
v

)

for α = 0, 1,
such that for every prime λ of E, the graph 4 Sh(Vn,Kn) of the morphism sh↑ : Sh(Vn,Kn) →
Sh(Vn+1,Kn+1) (4.6) is nonvanishing in the quotient Chow group

CHn(Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))E/(kerφΠ0 , kerφΠ1).

In the situation of the above conjecture, since both Π0 and Π1 are cuspidal, we have
Hi

ét((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))F , Eλ)/(kerφΠ0 , kerφΠ1) = 0
if i 6= 2n − 1. In particular, the Hochschild–Serre spectral sequence gives rise to a coboundary
map

AJΠ0,Π1
λ : Zn(Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))

→ H1(F,H2n−1
ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))F , Eλ(n))/(kerφΠ0 , kerφΠ1)).

Theorem 8.3.2. Keep the setup in Subsection 7.1. Assume Hypothesis 3.2.9 for both n and n+1.
Let λ be a prime of E for which there exist

m a standard indefinite hermitian space Vn of rank n over F , together with a self-dual∏
v 6∈Σ+

∞∪Σ+
min
OFv-lattice Λn in Vn⊗F AΣ+

∞∪Σ+
min

F (and put Vn+1 := (Vn)] and Λn+1 := (Λn)]),
m an object (Kn,Kn+1) ∈ K(Vn)sp in which Knα is of the form

Knα =
∏

v∈Σ+
min

(Knα)v ×
∏

v 6∈Σ+
∞∪Σ+

min

U(Λnα)(OF+
v

)

for α = 0, 1, satisfying that (Kn0)v is a transferable open compact subgroup (Definition
D.2.1) of U(V◦n0)(F+

v ) for v ∈ Σ+
min,
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such that
AJΠ0,Π1

λ (4 Sh(Vn,Kn)) 6= 0.(8.9)
If we further assume that either λ is admissible, or n = 2 and λ is weakly admissible and satisfies
Hi

ét(Sh(V3,K3)F , OE/λ)/ kerφΠ1 = 0 for i 6= 2, then we have
dimEλ H1

f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) = 1.

Remark 8.3.3. In fact, (8.9) already implies that the global epsilon factor of Π0 × Π1 is −1.

Proof of Theorem 8.3.2. We take a prime λ of E for which we may choose data Vn, Λn, (Kn,Kn+1)
as in the statement of the theorem such that AJΠ0,Π1

λ (4 Sh(Vn,Kn)) 6= 0. We assume that λ
satisfies either (a) or (b) of Lemma 8.1.4. Lemma 8.1.3 and (L2) imply that AJΠ0,Π1

λ (4 Sh(Vn,Kn))
belongs to the subspace

H1
f (F,H2n−1

ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))F , Eλ(n))/(kerφΠ0 , kerφΠ1))
hence to the submodule

H1
f (F,H2n−1

ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))F , Oλ(n))/(kerφΠ0 , kerφΠ1))
by Definition 2.4.2.

We adopt notation in Subsection 2.6 with the initial data in Definition 8.1.1. Define two
nonnegative integers mper and mlat as follows.

(1) By Hypothesis 3.2.9, we may choose a map
H2n−1

ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))F , Oλ(n))/(kerφΠ0 , kerφΠ1)→ Rc

of Oλ[ΓF ]-modules such that the induced image of AJΠ0,Π1
λ (4 Sh(Vn,Kn)) in H1

f (F,Rc),
denoted by sc, is non-torsion. Let s ∈ H1

f (F,R) be the element corresponding to sc under
the isomorphism in Lemma 2.4.5. We put

mper := ordλ
(
s,H1

f (F,R)/H1
f (F,R)tor

)
(Definition 2.1.6), which is a nonnegative integer.

(2) By Hypothesis 3.2.9, we have an isomorphism
H2r1

ét (Sh(Vn1 ,Kn1)F , Eλ(r1))/ kerφΠ1 ' (Rc
1 ⊗Oλ Eλ)⊕µ1

of Eλ[ΓF ]-modules for some integer µ1 > 0. We fix a map
H2r1

ét (Sh(Vn1 ,Kn1)F , Oλ(r1))/ kerφΠ1 → (Rc
1)⊕µ1

of Oλ[ΓF ]-modules whose kernel and cokernel are both Oλ-torsion. Then we let mlat be the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by
λmlat .

Note that in (1), we obtain an element s ∈ H1
f (F,R)Q = H1

f (F,RQ) = H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n))

that is nonzero. In particular, we have dimEλ H1
f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) ≥ 1.

We start to prove the theorem by contradiction, hence assume
dimEλ H1

f (F, ρΠ0,λ ⊗Eλ ρΠ1,λ(n)) ≥ 2.
Take a sufficiently large positive integer m which will be determined later. We fix a uniformizer

λ0 of Eλ. By Lemma 8.1.3, we may apply Proposition 2.4.6 by taking Σ to be the set of places
of F above Σ+

min ∪Σ+
` . Then we obtain a submodule S of H1

f,R(F, R̄(m)) containing (the image of)
λ
mΣ−mper
0 s of order 0,22 that is free of rank 2 over Oλ/λ

m−mΣ , and such that locw|S = 0 for every
22Here, λ−mper

0 s is any element in H1
f (F,R) satisfying λmper

0 (λ−mper
0 s) = s.
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nonarchimedean place w ∈ Σ not above `. Now we apply the discussion in Subsection 2.3 to the
submodule S ⊆ H1(F, R̄(m)). By (L5-1) and Lemma 2.3.6, we obtain an injective map

θS : Gal(FS/Fρ̄(m))→ HomOλ(S, R̄(m))

whose image generates an Oλ-submodule containing λ4rR̄(m) HomOλ(S, R̄(m)), which further con-
tains λ4rR HomOλ(S, R̄(m)) by Lemma 2.3.3 and (L3). By (L5-2) and Lemma 2.6.1, we may choose
an element (γ1, γ2, ξ) in the image of (ρ̄(m)

1+ , ρ̄
(m)
2+ , ε̄

(m)
` )|Gal(F/F+

rflx) satisfying Lemma 2.6.1(2). It gives
rise to an element γ ∈ (GLn0n1(Oλ/λ

m) × (Oλ/λ
m)×)c as in Notation 2.5.2 such that (R̄(m))hγ is

a free Oλ/λ
m-module of rank 1 by Lemma 2.6.2 and (2.4). Now we apply the discussion in Sub-

section 2.5. By Proposition 2.5.5 (with m0 = mΣ, rγ = 1, rS = 2), we may fix an (S, γ)-abundant
pair (Ψ1,Ψ2) ∈ G2

S,γ (Definition 2.5.6). By the definition of a (S, γ)-abundant pair, we may choose
a basis {s1, s2} of S such that θS(Ψ1)(s2) = θS(Ψ2)(s1) = 0, and

expλ
(
θS(Ψj)(sj), R̄(m),hγ

)
≥ m−mΣ − 4rR(8.10)

for j = 1, 2. Moreover, without lost of generality, we may assume λmΣ−mper
0 s = a1s1 + a2s2 in

which a1 ∈ O×λ .
First, we apply the discussion and notation in Subsection 7.3 to our situation with λ, m,

Σ+
lr,II = ∅, Σ+

II = Σ+
min, (Vn,Λn), Kn and (Kn,Kn+1). By the Chebotarev density theorem, we can

choose a γ-abundant place w(m)
1+ of F (m)

+ satisfying Ψ
w

(m)
1

= Ψ1 and whose underlying prime p1 of
F+ (and the underlying rational prime p1) is a special inert prime satisfying (PII1)–(PII7) and
(PII8): the natural map

H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))/(TΣ+

II∪Σ+
p1

n1 ∩ kerφΠ1)→ H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))/ kerφΠ1

is an isomorphism.
We also choose remaining data in the initial setup of Section 4 with QΦ

p1 = Qp2
1
, a definite uni-

formization datum (V?
nα , inα , {Λ?

nα,q}q|p1) for α = 0, 1 as in Notation 4.4.7. By (2.4), (8.10), and
our choice of S, we have

expλ
(
s,H1

f (Fw1 , R̄(m))
)
≥ m−mper − 4rR,

which implies that

expλ
(
locp1([4 Sh(Vn,Kn)]),H2n

ét ((Sh(Vn0 ,Kn0)×SpecF Sh(Vn1 ,Kn1))Fp1
, L(n))/(n0, n1)

)
≥ m−mper − 4rR.

Here, we recall that
nα = TΣ+

II∪Σ+
p1

nα ∩ ker
(
TΣ+

min
nα

φΠα−−→ OE → OE/λ
m
)

for α = 0, 1. Note that Assumption 7.3.2 for α = 0 is satisfied by (L7) if n ≥ 3 and by (L4) if
n = 2; Assumption 7.3.2 for α = 1 is satisfied by (L7) if n ≥ 3 and by (PII8) if n = 2. Thus, we
may apply Theorem 7.3.4 hence obtain

expλ
(
1Sh(V?n,K?sp), OE[Sh(V?

n0 ,K
?
n0)× Sh(V?

n1 ,K
?
n1)]/(n0, n1)

)
≥ m−mper − 4rR.(8.11)

Second, we apply the discussion and notation in Subsection 7.2 to our situation with λ, m,
Σ+

lr,I = {p1}, Σ+
I = Σ+

min ∪ Σ+
p1 , V◦n = V?

n, K◦n = K?
n and (K◦sp,K◦n+1) = (K?

sp,K?
n+1). By the

Chebotarev density theorem, we can choose a γ-abundant place w(m)
2+ of F (m)

+ satisfying Ψ
w

(m)
2

= Ψ2

and whose underlying prime p2 of F+ (and the underlying rational prime p2) is a special inert
prime satisfying (PI1)–(PI7), p2 6= p1, and
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(PI8): the natural map

H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))/(TΣ+

I ∪Σ+
p2

n1 ∩ kerφΠ1)→ H2r1
ét (Sh(Vn1 ,Kn1)F , Oλ(r1))/ kerφΠ1

is an isomorphism.
We claim that there exists an element c2 ∈ H1(F, R̄(m2)c) for some positive integer m2 ≤ m

satisfying

expλ
(
∂p2 locp2(c2),H1

sing(Fp2 , R̄(m2)c)
)
≥ m−mper − 4rR −mlat;(8.12)

and such that for every nonarchimedean place w of F not above Σ+ ∪ {p1, p2},

locw(c2) ∈ H1
f (Fw, R̄(m2)c)(8.13)

holds.
By Remark 4.3.8 and Remark 4.4.8, we know that there exists an isomorphism U((V◦n1)∞) '

U(V∞n1) sending K◦n1 to Kn1 . Then the claim can be proved by the exactly same argument for
the similar claim in the proof of Theorem 8.2.1, using (8.11) and the fact that ρ̄Π0,λ,+ is rigid for
(Σ+

min,Σ+
lr,I).23

Now we deduce a contradiction. Replace s2 by its image in H1
f (F, R̄(m2)). We also identify

R̄(m2)c with (R̄(m2))∗ via the polarization Ξ. Now we compute the local Tate pairing 〈s2, c2〉w (2.1)
for every nonarchimedean place w of F .

m Suppose that w is above Σ+
min. Then we have locw(s2) = 0 by our choice of S. Thus,

〈s2, c2〉w = 0.
m Suppose that w is above Σ+

` . Then by (L2), RQ is crystalline with Hodge–Tate weights in
[1−n, n]. Thus, we have locw(s2) ∈ H1

f (Fw, R̄(m2)) by Lemma 2.4.3(2) and (L1). By (8.13),
Lemma 2.2.6 and (L1), we have λmdif〈s2, c2〉w = 0 where dλ = λmdif ⊆ Oλ is the different
ideal of Eλ/Q`.

m Suppose that w is not above Σ+
min∪Σ+

` ∪{p1, p2}. Then by (L2), R is unramified. Thus, we
have locw(s2) ∈ H1

f (Fw, R̄(m2)) by Lemma 2.4.3(1). By (8.13) and Lemma 2.2.3, we have
〈s2, c2〉w = 0.

m Suppose that w is the unique place above p1. Then we have locw(s2) = 0 by our choice of
the basis {s1, s2}. Thus, we have 〈s2, c2〉w = 0.

m Suppose that w is the unique place above p2. Then we have

expλ
(
locw(s2),H1

f (Fw, R̄(m2))
)
≥ m2 −mΣ − 4rR.

By (8.12) and Lemma 2.2.3 again, we have

expλ (〈s2, c2〉w, Oλ/λ
m2) ≥ m−mper −mlat −mΣ − 8rR.

Therefore, as long as we take m such that m > mper + mlat + mΣ + 8rR + mdif , we will have a
contradiction to the relation ∑

w

〈s2, c2〉w = 0,

where the sum is taken over all nonarchimedean places w of F . The theorem is proved. �

23In fact, one needs to use the additional fact that when [F+ : Q] > 1, both Shimura varieties Sh′n0
and Sh′n1

have proper smooth reduction at every place w of F above Σ+
p1
\ {p1}. See Remark 5.1.8.
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Appendix A. Unitary Deligne–Lusztig varieties

In this appendix, we study some unitary Deligne–Lusztig varieties in Subsections A.1 and A.2
for those used in Sections 4 and 5, respectively.

We fix a rational prime p. Let κ be a field containing Fp2 . Recall from Subsection 1.3 that we
denote by σ : S → S the absolute p-power Frobenius morphism for schemes S in characteristic p.

A.1. Unitary Deligne–Lusztig varieties in the smooth case. In this subsection, we intro-
duce certain Deligne–Lusztig varieties that appear in the special fiber of the smooth integral model
studied in Section 4.

Consider a pair (V , { , }) in which V is a finite dimensional κ-linear space, and { , } : V ×V → κ
is a (not necessarily non-degenerate) pairing that is (κ, σ)-linear in the first variable and κ-linear
in the second variable. For every κ-scheme S, put VS := V ⊗κOS. Then there is a unique pairing
{ , }S : VS × VS → OS extending { , } that is (OS, σ)-linear in the first variable and OS-linear
in the second variable. For a subbundle H ⊆ VS, we denote by Ha ⊆ VS its right orthogonal
complement under { , }S.

Definition A.1.1. We say that a pair (V , { , }) is admissible if there exists an Fp2-linear subspace
V0 ⊆ Vκ such that the induced map V0⊗Fp2 κ→ Vκ is an isomorphism, and {x, y} = −{y, x}σ for
every x, y ∈ V0.

Definition A.1.2. For a pair (V , { , }) and an integer h, we define a presheaf
DL(V , { , }, h)

on Sch/κ such that for every S ∈ Sch/κ, DL(V , { , }, h)(S) is the set of subbundles H of VS of
rank h such that Ha ⊆ H. We call DL(V , { , }, h) the (unitary) Deligne–Lusztig variety (see
Proposition A.1.3 below) attached to (V , { , }) of rank h.

Proposition A.1.3. Consider an admissible pair (V , { , }). Put N := dimκ V and d := dimκ V a.
(1) If 2h < N + d or h > N , then DL(V , { , }, h) is empty.
(2) If N + d ≤ 2h ≤ 2N , then DL(V , { , }, h) is represented by a projective smooth scheme

over κ of dimension (2h − N − d)(N − h) with a canonical isomorphism for its tangent
sheaf

TDL(V ,{ , },h)/κ ' Hom
(
H/Ha,VDL(V ,{ , },h)/H

)
where H ⊆ VDL(V ,{ , },h) is the universal subbundle.

(3) If N + d < 2h ≤ 2N , then DL(V , { , }, h) is geometrically irreducible.

Proof. Part (1) is obvious from the definitions.
For (2), DL(V , { , }, h) is a closed sub-presheaf of the Grassmannian scheme Gr(V , h) classifying

subbundles of V of rank h, hence is represented by a projective scheme over κ. Now we compute
the tangent sheaf. Consider a closed immersion S ↪→ Ŝ in Sch/κ defined by an ideal sheaf I
with I2 = 0. Take an object H ⊆ VS in DL(V , { , }, h)(S). Let DH and GH be the subset of
DL(V , { , }, h)(Ŝ) and Gr(V , h)(Ŝ) of elements that reduce to H, respectively. It is well-known
that GH is canonically a torsor over HomOS(H, (VS/H)⊗OS I). Since Ip = 0, the right orthogonal
complement Ĥa depends only on H for every Ĥ ∈ GH . In particular, the subset DH is canonically
a torsor over the subgroup HomOS(H/Ha, (VS/H) ⊗OS I) of HomOS(H, (VS/H) ⊗OS I). Thus,
DL(V , { , }, h) is smooth; and we have a canonical isomorphism for the tangent sheaf

TDL(V ,{ , },h)/κ ' Hom
(
H/Ha,VDL(V ,{ , },h)/H

)
where H is the universal subbundle. Note that this is a locally free ODL(V ,{ , },h)-module of rank
(2h−N − d)(N − h).
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For (3), we may assume that κ is algebraically closed. By Definitions A.1.1 and A.1.2, we
have a canonical isomorphism DL(V , { , }, h) ' DL(V0, { , }0, h) ⊗Fp2 κ, where { , }0 denotes
the restriction of { , } to V0. Suppose d = 0. Then { , }0 is non-degenerate. By [BR06,
Theorem 1], we know that DL(V0, { , }0, h) is geometrically irreducible. In general, we consider
V ′0 := V0/V a0 equipped with a pairing { , }′0 induced from { , }0. Then it is clear that the
morphism DL(V0, { , }0, h) → DL(V ′0 , { , }′0, h) sending a point H ∈ DL(V0, { , }0, h)(S) to
H/V a0S is an isomorphism. Thus, DL(V0, { , }0, h) is geometrically irreducible by the previous
case. The proposition is proved. �

Lemma A.1.4. Consider a pair (V , { , }) with dimκ V = N ≥ 2 and dimκ V a = 0, and a
p-coprime coefficient ring L. Suppose that p+ 1 is invertible in L.

(1) The subscheme DL(V , { , }, N − 1) is a hypersurface in P(V ) of degree p+ 1.
(2) The restriction map

Hi
ét(P(V )κ, L)→ Hi

ét(DL(V , { , }, N − 1)κ, L)
induced by the obvious inclusion DL(V , { , }, N − 1) → P(V ) is an isomorphism for
i 6∈ {N − 2, 2N − 2}.

(3) For every i ∈ Z, Hi
ét(DL(V , { , }, N − 1)κ, L) is a free L-module.

(4) When N is even, the action of Gal(κ/κ) on HN−2
ét (DL(V , { , }, N −1)κ, L(N−2

2 )) is trivial.

Proof. The lemma is trivial if N = 2. Now we assume N ≥ 3. Then S := DL(V , { , }, N − 1) is
a geometrically connected smooth hypersurface in P(V ) by Proposition A.1.3.

Part (1) follows since S is defined by a homogenous polynomial of degree p+1, by its definition.
For (2), by the Lefschetz hyperplane theorem, the restriction map Hi

ét(P(V )κ, L) → Hi
ét(Sκ, L)

is an isomorphism for 0 ≤ i ≤ N − 3; and the Gysin map Hi
ét(Sκ, L) → Hi+2

ét (P(V )κ, L(1)) is an
isomorphism for N − 1 ≤ i ≤ 2(N − 2). By (1), the composite map

Hi
ét(P(V )κ, L)→ Hi

ét(Sκ, L)→ Hi+2
ét (P(V )κ, L(1))

is given by the cup product with c1(OP(V )κ(p+ 1)), which is an isomorphism for i 6= 2N − 2 since
p+ 1 is invertible in L. Thus, (2) follows.

Part (3) is an immediate consequence of (2).
For (4), it suffices to consider the case where L = Q` for some ` 6= p by (3). Then it is

well-known that HN−2
ét (DL(V , { , }, N − 1)κ,Q`(N−2

2 )) is spanned by Tate cycles over κ (see, for
example, [HM78]). In particular, (4) follows. �

Now we construct the special morphisms between Deligne–Lusztig varieties when rank increases.

Construction A.1.5. Let (V , { , }) be an admissible pair with dimκ V = n ≥ 1 satisfying
dim V a = n + 1 − 2bn+1

2 c. We put V] := V ⊕ κ1 and extend { , } to a pairing { , }] on V]
with {1, 1}] = 0. Suppose that we have another admissible pair (V\, { , }\) with dimκ V\ = n + 1
satisfying dim V a\ = n − 2bn2 c, together with a κ-linear map δ : V] → V\ of corank dim V a such
that {δ(x), δ(y)}\ = {x, y}] for every x, y ∈ V]. We construct a morphism

δ↑ : DL(V , { , }, dn+1
2 e)→ DL(V\, { , }\, dn+2

2 e)
by sending H ∈ DL(V , { , }, hdn+1

2 e)(S) to δ(H ⊕OS). We call δ↑ a special morphism.

Proposition A.1.6. The morphism δ↑ is well-defined, and is a regular embedding.

Proof. When n is odd, δ is an isomorphism, which implies that δ↑ is well-defined an is an isomor-
phism.

When n is even, δ is of corank 1. The identity {δ(x), δ(y)}\ = {x, y}] for every x, y ∈ V] implies
ker δ ⊂ V a] = V ] ⊕ κ1. Take S ∈ Sch/κ. For H ∈ DL(V , { , }, dn+1

2 e)(S), H ⊕ OS must contain
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V a] hence (ker δ)S. It follows that δ(H ⊕ OS) has the same rank as H, which is dn+1
2 e = dn+2

2 e.
Since { , }\ is nondegenerate, we have δ1 6= 0 hence (δκ1)a = δV]. In particular, (δ(H ⊕ OS))a
is contained in (δV])S, which implies that (δ(H ⊕ OS))a ⊆ δ(H ⊕ OS). In other words, δ↑ is
well-defined. On the other hand, for H\ ∈ DL(V\, { , }\, dn+2

2 e)(S), whether (δκ1)S ⊆ H ⊆ (δV])S
holds is a closed condition; and once it does, there is a unique H ∈ DL(V , { , }, dn+1

2 e)(S) such
that H\ = δ(H ⊕OS). Thus, δ↑ is a regular embedding by Proposition A.1.3(2).

The proposition is proved. �

A.2. Unitary Deligne–Lusztig varieties in the semistable case. In this subsection, we in-
troduce certain Deligne–Lusztig varieties that appear in the special fiber of the semistable integral
model studied in Section 5. We keep the notation from the previous subsection.

Definition A.2.1. For a pair (V , { , }) with dimκ V = N , we define a presheaf
DL•(V , { , })

on Sch/κ such that for every S ∈ Sch/κ, DL•(V , { , })(S) is the set of pairs (H1, H2) of subbundles
of VS of ranks dN2 e and d

N
2 e − 1, respectively, satisfying the following inclusion relations

H1
⊂

V aS ⊂ H2

⊂

⊂
Ha2

Ha1

⊂

of subbundles of VS.

Proposition A.2.2. Consider an admissible pair (V , { , }). Put N := dimκ V and d := dimκ V a.
(1) If d ≥ dN2 e, then DL•(V , { , }) is empty.
(2) If d ≤ dN2 e − 1, then DL•(V , { , }) is represented by a projective smooth scheme over κ,

whose tangent sheaf fits canonically into a sequence

0→ Hom
(
H1/H2,Ha2/H1

)
→ TDL•(V ,{ , })/κ → Hom(H2/V

a
DL•(V ,{ , }),Ha1/H2)→ 0

where V aDL•(V ,{ , }) ⊆ H2 ⊆ H1 ⊆ VDL•(V ,{ , }) are the universal subbundles.
(3) If N ≥ 2 and d = N − 2bN2 c, then DL•(V , { , }) is geometrically irreducible of dimension
bN2 c.

Proof. Part (1) is obvious from the definitions.
For (2), let Gr(V , r) denote by the Grassmannian variety that classifies subspaces of V of

dimension r. Then DL•(V , { , }) is a closed sub-presheaf of Gr(V , dN2 e)×Gr(V , dN2 e − 1), hence
it is represented by a projective scheme over κ. Now we prove that DL•(V , { , }) is smooth and
compute its tangent sheaf. Consider a closed immersion S ↪→ Ŝ in Sch/κ defined by an ideal sheaf
I with I2 = 0. Take an object V aS ⊆ H2 ⊆ H1 ⊆ VS in DL•(V , { , })(S). To lift (H1, H2) to a
pair (Ĥ1, Ĥ2) ∈ DL•(V , { , })(Ŝ), we first lift H2, which is canonically a torsor under the group
HomOS(H2/V aS , (Ha1 /H2) ⊗OS I) as Ĥa1 depends only on Ha1 . Once such a lift Ĥ2 is given, the
possible lifts of H1 form a torsor under the group HomOS(H1/H2, (Ha2 /H1)⊗OS I). In particular,
Zariski locally, there is no obstruction to lifting (H1, H2), hence DL•(V , { , }) is smooth. The
statement on the tangent bundle of DL•(V , { , }) follows immediately from the discussion by
considering the universal object on DL•(V , { , }).



146 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

For (3), similar to the argument for Proposition A.1.3(3), we may assume N even this time.
Then the statement follows again by [BR06, Theorem 1]. �

Construction A.2.3. Let (V , { , }) be an admissible pair with dimκ V = n ≥ 2 satisfying
dimκ V a = n − 2bn2 c. We put V] := V ⊕ κ1 and extend { , } to a pairing { , }] on V] with
{1, 1}] = 0. Suppose that we have another admissible pair (V\, { , }\) with dimκ V\ = n + 1
satisfying dim V a\ = n + 1 − 2bn+1

2 c, together with a κ-linear map δ : V] → V\ of corank dim V a

such that {δ(x), δ(y)}\ = {x, y}] for every x, y ∈ V]. Then similar to Construction A.1.5 and
Proposition A.1.6, we have a morphism

δ↑ : DL•(V , { , })→ DL•(V\, { , }\)

by sending (H1, H2) ∈ DL•(V , { , })(S) to (δ(H1 ⊕OS), δ(H2 ⊕OS)) ∈ DL•(V\, { , }\)(S), which
is a regular embedding.

Proposition A.2.4. Suppose κ algebraically closed. Consider an admissible pair (V , { , }) over
κ. Let (H1,H2) be the universal object over DL•(V , { , }).

(1) Suppose dimκ V = 2r + 1 for some integer r ≥ 1 and dimκ V a = 1. Then we have∫
DL•(V ,{ , })

cr
(
(σ∗H2)⊗ODL•(V ,{ , })

(
Ha1/H2

))
= d•r,p.

(2) Suppose dimκ V = 2r for some integer r ≥ 1 and dimκ V a = 0. Then we have∫
DL•(V ,{ , })

cr−1
(
(σ∗H2)⊗ODL•(V ,{ , })

(
Ha1/H2

))
· c1

(
Ha1/H2

)
= d•r,p.

Here, d•r,p is the number introduced in Notation 1.3.2.

Note that DL•(V , { , }) is irreducible of dimension r, by Proposition A.2.2.

Proof. For (1), we let V̄ be the quotient space V /V a, equipped with the induced pairing, which
we still denote by { , }. Then we have a canonical isomorphism DL•(V , { , }) ∼−→ DL•(V̄ , { , })
by sending a pair (H1, H2) to (H1/V a, H2/V a). If we denote by (H̄1, H̄2) the universal object
over DL•(V̄ , { , }). Then we have

cr
(
(σ∗H2)⊗ODL•(V ,{ , })

(
Ha1/H2

))
= cr−1

((
σ∗H̄2

)
⊗ODL•(V̄ ,{ , })

(
H̄a1/H̄2

))
· c1

(
H̄a1/H̄2

)
under the above isomorphism. Therefore, (1) follows from (2).

For (2), consider V] := V ⊕κ1 and extend { , } to a pairing { , }] on V] with {1, 1}] = 1. Then
we have Deligne–Lusztig varieties DL(V], { , }], h). In what follows, we only need to study the
one with h = r+ 1, and will simply write DL(V]) for DL(V], { , }], r+ 1). Since we will work with
two spaces, we will denote by (`,a) for the (left,right) orthogonal complement for V , and (�, �)
for the (left,right) orthogonal complement for V].

We now define a correspondence

DL(V]) π←− D̃L(V ) π•−→ DL•(V )

of schemes over κ. For every κ-scheme S,
m D̃L(V )(S) is the set of pairs (H,H2) where H is an element in DL(V])(S) and H2 is a

subbundle of H� of rank r − 1 that is contained in VS;
m π sends (H,H2) ∈ D̃L(V )(S) to H ∈ D̃L(V )(S); and
m π• sends (H,H2) ∈ D̃L(V )(S) to (H1, H2) ∈ DL•(V )(S) where H1 := (H ∩ VS)`.

It needs to show that π• is well-defined, which amounts to the following four statements:
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m H1 is a subbundle of VS: It suffices to show that the composite map H → V]S → OS is
surjective, where the latter map is induced by the projection V] → κ1. If not, then there
exists a geometric point s of S such that Hs is contained in Vs, which contradicts the
inclusion H �

s ⊆ Hs.
m H2 ⊆ H1: As H �⊆ H by the definition of DL(V]), we have H� ⊆ H and {H�, H}] = 0.

Thus, {H� ∩ VS, H ∩ VS} = 0, which implies H2 ⊆ H� ∩ VS ⊆ (H ∩ VS)` = H1.
m H1 ⊆ H`2 : As H� ⊆ H, we have that Ha1 = H ∩ VS contains H2, which implies H1 =

(Ha1 )` ⊆ H`2 .
m H1 ⊆ Ha2 : As H �⊆ H, we have (H�) ��∩VS ⊆ H∩VS, which is equivalent to (H�∩VS)aa ⊆

H ∩ VS. As H2 is contained in H� ∩ VS, we have Haa2 ⊆ H ∩ VS = Ha1 , which implies
H1 ⊆ Ha2 .

We denote by H, (H̃, H̃2), and (H1,H2) the universal objects over DL(V]), D̃L(V ), and DL•(V ),
respectively. By definition, we have H̃ = π∗H and H̃2 = π•∗H2.

We first study the morphism π. We say that a point s ∈ DL(V])(κ) represented by Hs is
special if H�

s is a maximal isotropic subspace of V satisfying H �
s = H�

s . Then there are exactly
(p+ 1)(p3 + 1) · · · (p2r−1 + 1) special points. Let DL(V])′ be the locus of special points. It is clear
that for every morphism S → DL(V]) \ DL(V])′, π−1(S) is a singleton; and for a special point s,
we have π−1(s) = P(H�

s ) ' Pr−1
κ . In particular, π is a blow-up along DL(V])′, for which we denote

by E ⊆ D̃L(V ) the exceptional divisor. In particular, π is projective. Moreover, E is exactly the
zero locus of the canonical projection map

H̃�/H̃2 → OD̃L(V ) · 1 ⊆ OD̃L(V ) ⊗κ V],

which implies

H̃�/H̃2 ' OD̃L(V )(−E).(A.1)

Next we study the morphism π•. We claim that π• is generically finite of degree p+ 1. Take a
point s ∈ DL•(V )(κ) represented by (H1s, H2s). Then by construction, for every scheme S over
{s}×DL•(V ) D̃L(V ), D̃L(V )(S) consists of subbundles H ⊆ V]⊗κOS satisfying H2s⊗κOS ⊆ H� ⊆
H1s ⊗κ OS ⊕OS1 and H� ⊆ H. Note that we have an induced pairing

{ , }s : H1s ⊕ κ1
H2s

× H1s ⊕ κ1
H2s

→ κ

that is σ-linear in the first variable and linear in the second variable. Then it is clear that when
{ , }s is perfect, {s}×DL•(V ) D̃L(V ) is isomorphic to the union of p+ 1 copies of Specκ. However,
{ , }s fails to be perfect if and only if Ha1 = H1. Thus, the locus where { , }s fails to be perfect
is a finite union of Pr−1

κ . Therefore, π• is generically finite of degree p+ 1.
To proceed, we introduce two more bundles

E :=
(
σ∗H�

)
⊗DL(V])

(
H/H�

)
, E• := (σ∗H2)⊗DL•(V )

(
Ha1/H2

)
on DL(V]) and DL•(V ) of ranks r and r − 1, respectively.

We claim that

L := π•∗
(
Ha1/H2

)
' OD̃L(V )(−E)⊗O

D̃L(V )

(
H̃/H̃�

)
.(A.2)

In fact, we have
L =

(
H̃ ∩ VD̃L(V )

)
/H̃2
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by definition. Thus, the claim follows from the following injective map

0 // H̃2 //

��

H̃� //

��

OD̃L(V )(−E) //

��

0

0 // H̃ ∩ VD̃L(V )
// H̃ // OD̃L(V ) · 1 // 0

of short exact sequences of coherent sheaves on D̃L(V ) by (A.1) and the Snake Lemma.
By (A.1) and (A.2), we have

π∗ (cr(E))
= cr (π∗E)

= cr−1

((
σ∗H̃2

)
⊗O

D̃L(V )

(
H/H�

))
· c1

(
OD̃L(V )(−pE)⊗O

D̃L(V )

(
H/H�

))
= cr−1

((
σ∗H̃2

)
⊗O

D̃L(V )
L(E)

)
· c1(L((1− p)E))

= cr−1

(
π•∗E• ⊗O

D̃L(V )
OD̃L(V )(E)

)
· c1(L((1− p)E))

=
(
cr−1 (π•∗E•) +

r−1∑
i=1

c1(E)icr−i−1 (π•∗E•)
)
· (c1(L) + (1− p)c1(E))

= cr−1 (π•∗E•) · c1(L) +
r−1∑
i=1

c1(E)ic1(L)cr−i−1 (π•∗E•) + (1− p)
r∑
i=1

c1(E)icr−i (π•∗E•)

= π•∗
(
cr−1(E•) · c1

(
Ha1/H2

))
+

r−1∑
i=1

c1(E)ic1(L)cr−i−1 (π•∗E•) + (1− p)
r∑
i=1

c1(E)icr−i (π•∗E•) .

In particular, since π and π• are generically finite of degrees 1 and p+ 1, respectively, we have

(p+ 1)
∫

DL•(V )
cr−1(E) · c1

(
Ha1/H2

)
−
∫

DL(V])
cr(E)(A.3)

= (p− 1)
r∑
i=1

∫
D̃L(V )

c1(E)icr−i (π•∗E•)−
r−1∑
i=1

∫
D̃L(V )

c1(E)ic1(L)cr−i−1 (π•∗E•)

= (p− 1)
r−1∑
i=0

∫
E

(−η)icr−i−1 (π•∗E•|E)−
r−2∑
i=0

∫
E

(−η)ic1(L|E)cr−i−2 (π•∗E•|E)

where η := c1(OE(1)). As H̃/H̃� = π∗
(
H/H�

)
, we have L|E ' OE(−E) = OE(1). On the other

hand, H̃2|E is the tautological subbundle (of rank r − 1), which satisfies the short exact sequence

0→ H̃2|E → O⊕rE → OE(1)→ 0.

Thus, F := π•∗E•|E, which equals (σ∗H̃2|E)⊗OE (L|E), satisfies the short exact sequence

0→ F → OE(1)⊕r → OE(p+ 1)→ 0.
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Therefore, we have

(A.3) = p
r−1∑
i=0

∫
E

(−η)icr−i−1(F)−
∫
E
cr−1(F)(A.4)

= p
∫
E
cr−1(F(−1))−

∫
E
cr−1(F)

= p
∫
E

(−p)r−1ηr−1 −
∫
E

1− (−p)r
p+ 1 ηr−1

= (−p)r+1 − 1
p+ 1

∫
E
ηr−1

= (−p)r+1 − 1
p+ 1 · |DL(V])′(κ)|

= (−p)r+1 − 1
p+ 1 (p+ 1)(p3 + 1) · · · (p2r−1 + 1).

By [XZ, Proposition 9.3.10], we have ∫
DL(V])

cr(E) = dr,p,(A.5)

where dr,p is the number introduced in Notation 1.3.2. Thus, (2) follows from (A.3), (A.4) and
(A.5). The proposition is proved. �

Appendix B. Computation in Hecke algebras

In this appendix, we compute several explicit formulae on the evaluation of certain Hecke
elements. In Subsection B.1, we prove some combinatorial formulae on characters of the dual
group (of a unitary group). In Subsection B.2, we introduce the two unitary Hecke algebras and
prove a formula for an intertwining operator between the two Hecke algebras. In Subsections B.3
and B.4, we evaluate certain Hecke operators under a Satake parameter in the even and odd rank
cases, respectively.

B.1. Characters of the dual group. Let N ≥ 1 be an integer with r := bN2 c. We let GLN be
the group of automorphism of the Z-module Z⊕N , which is a group scheme over Z. Let TN ⊆ GLN
be the subgroup of diagonal matrices. The group of homomorphisms from TN to Gm, denoted by
X∗N , is a free abelian group generated by {µ1, . . . , µN} where µi is the projection to the i-th factor.
For µ ∈ X∗N , we denote by [µ] the corresponding element in Z[X∗N ]. For 1 ≤ i ≤ r, we put

µi := [µi − µN+1−i] + [µN+1−i − µi] ∈ Z[X∗N ].
For 0 ≤ δ ≤ r, let sδ ∈ Z[X∗N ] be the elementary symmetric polynomial in µ1, . . . ,µr of degree δ.
Finally, we denote by Z[X∗N ]sym the subring of Z[X∗N ] generated by {s1, . . . , sr} over Z.

Now we consider GLext
N := GLN o{1, σ} in which the involution σ sends A ∈ GLN to

1
−1

. .
.

(−1)N−2

(−1)N−1


tA−1



1
−1

. .
.

(−1)N−2

(−1)N−1



−1

.

For every algebraic representation ρ of GLext
N (over Z), we denote by χ(ρ) the restriction of the

character of ρ to TNσ, regarded as an element in Z[X∗N ]. Let ρN,std be the standard representation
of GLN and ρ∨N,std its dual. We let {ε1, . . . , εN} be the standard basis of ρN,std and {ε∨1 , . . . , ε∨N}
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the dual basis of ρ∨N,std. For a subset I ⊆ {1, . . . , N}, we put 〈I〉 := ∑
i∈I i, I∨ := {N+1− i | i ∈ I},

εI := ∧i∈Iεi and ε∨I := ∧i∈Iε∨i (in the increasing order of the indices). For 0 ≤ δ ≤ r, put

ρN ;δ :=
(

δ∧
ρN,std

)
⊗
(

δ∧
ρ∨N,std

)
,

which extends uniquely to a representation of GLext
N such that σ sends εI⊗ε∨J∨ to (−1)〈I〉+〈J〉εJ⊗ε∨I∨ .

Remark B.1.1. In the next subsection, we will study the unramified unitary group U(VN) over
nonarchimedean local fields. Then GLext

N (C) is simply the Langlands dual group of U(VN), and
we have Z[X∗N ]sym ' Z[X∗(Û(VN))σ]WN .
Lemma B.1.2. We have

χ(ρN ;δ) =



δ∑
i=0

(
r − δ + i

b i2c

)
· sδ−i, if N is odd;

b δ2 c∑
j=0

(
r − δ + 2j

j

)
· sδ−2j, if N is even.

In particular, χ(ρN ;δ) belongs to Z[X∗N ]sym.

Proof. Note that for every t ∈ TN , tσ sends εI ⊗ ε∨J∨ to
(−1)〈I〉+〈J〉

∏
i∈I∨

µi(t)−1 ∏
j∈J

µj(t) · εJ ⊗ ε∨I∨ .

Thus, we have
χ(ρN,δ)(tσ) =

∑
I⊆{1,...,r},|I|=δ

∏
i∈I∨

µi(t)−1∏
i∈I
µi(t)

=
∑

I⊆{1,...,r},|I|=δ

∏
i∈I
µi(t)µN+1−i(t)−1.

To evaluate the above sum, we consider i := |I ∩ I∨|, which has to be even when N is even. It is
easy to see that for fixed 0 ≤ i ≤ δ (that is even if N is even), the contribution from those subsets
I to the above sum is (

r − δ + i

b i2c

)
· sδ−i(t).

Thus, the lemma follows. �

Lemma B.1.3. Suppose that N = 2r is even.
(1) We have

r∏
i=1

(
λ+ λ−1 + µi

)
= χ(ρN ;r) +

r∑
δ=1

χ(ρN ;r−δ)(λδ + λ−δ)

in Z[X∗N ]sym ⊗ Z[λ, λ−1].
(2) We have

r∑
j=1

r∏
i=1
i 6=j

(
λ+ λ−1 + µi

)
=

r∑
δ=1

δ · χ(ρN ;r−δ)
λδ − λ−δ

λ− λ−1

in Z[X∗N ]sym ⊗ Z[λ, λ−1].
Proof. Part (1) is follows from Lemma B.1.2 by comparing coefficients of powers of λ. Part (2)
follows from (1) by taking derivative with respect to λ and dividing both sides of the resulted
equality by 1− λ−2. �
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Lemma B.1.4. Suppose that N = 2r + 1 is odd. We have
r∏
i=1

(
λ+ λ−1 + µi

)
=

r∑
δ=0

χ(ρN ;r−δ)
λδ+1 + λ−δ

λ+ 1

in Z[X∗N ]sym ⊗ Z[λ, λ−1].

Proof. By Lemma B.1.2, the right-hand side of the desired identity equals
r∑
δ=0

λδ+1 + λ−δ

λ+ 1

r−δ∑
i=0

(
δ + i

b i2c

)
· sr−δ−i,

which coincides with
r∑
i=0

(
r−i∑
δ=0

λδ+1 + λ−δ

λ+ 1

(
r − i
b r−i−δ2 c

))
si

by substituting i by r − δ − 1. Thus, it remains to show that
k∑
δ=0

λδ+1 + λ−δ

λ+ 1

(
k

bk−δ2 c

)
= (λ+ λ−1)k

for 0 ≤ k ≤ r. However, we have
k∑
δ=0

λδ+1 + λ−δ

λ+ 1

(
k

bk−δ2 c

)

=
(
k

0

)(
λk+1 + λ−k

λ+ 1 + λk + λ−(k−1)

λ+ 1

)
+
(
k

1

)(
λk−1 + λ−(k−2)

λ+ 1 + λk−2 + λ−(k−3)

λ+ 1

)
+ · · ·

=
(
k

0

)
(λk + λ−k) +

(
k

1

)
(λk−1 + λ−(k−1)) + · · ·

= (λ+ λ−1)k.

The lemma follows. �

B.2. Two Hecke algebras. From now to the end of this section, we fix an unramified quadratic
extension F/F+ of nonarchimedean local fields. Let q be the residue cardinality of F+ and p the
maximal ideal of OF .

Let N ≥ 1 be an integer with r := bN2 c. Consider a hermitian space VN over F (with respect
to F/F+) of rank N together with a basis {e−r, . . . , er} (with e0 omitted if N is even) such that
(e−i, ej)VN = δij for 0 ≤ i, j ≤ r. Via this basis, we identify U(VN) as a closed subgroup of
ResF/F+ GLN . We study two lattices

Λ◦N = OF e−r ⊕ · · · ⊕OF er, Λ•N = p−1e−r ⊕ · · · ⊕ p−1e−1 ⊕OF e0 ⊕ · · · ⊕OF er(B.1)

of VN . We have (Λ◦N)∨ = Λ◦N , pΛ•N ⊆ (Λ•N)∨, and that the OF -module (Λ•N)∨/pΛ•N has length
N − 2r. Let K◦N and K•N be the stabilizers of Λ◦N and Λ•N , respectively, which are subgroups of
U(VN)(F+). It is clear that K◦N is hyperspecial maximal; K•N is special maximal and is hyperspecial
if and only if N is even. We have two commutative Hecke algebras

T◦N := Z[K◦N\U(VN)(F+)/K◦N ], T•N := Z[K•N\U(VN)(F+)/K•N ].

Recall that by our convention in Subsection 1.3, the units in T◦N and T•N are 1K◦N and 1K•N ,
respectively. Let AN(F+) (resp. AN(OF+)) be the subgroup of U(VN)(F+) that acts on ei by a
scalar in F+ (resp. OF+) for every −r ≤ i ≤ r.
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Notation B.2.1. For each element t = (t1, . . . , tN) ∈ ZN satisfying ti + tN+1−i = 0 and a ∈ F×,
we have an element at ∈ AN(F+) such that at.e−i = atr+1−ie−i for 1 ≤ i ≤ r. For 0 ≤ δ ≤ r, put
tδ := (1δ, 0N−2δ, (−1)δ). We let T◦N ;t (resp. T•N ;t) be the element in T◦N (resp. T•N) corresponding to
the double coset K◦N$tK◦N (resp. K•N$tK•N) for some uniformizer $ of F ; and simply write T◦N ;δ
(resp. T•N ;δ) for T◦N ;tδ (resp. T•N ;tδ).

Remark B.2.2. The elements T◦N ;t ∈ T◦N and T•N ;t ∈ T•N do not depend on the choice of the basis
{e−r, . . . , er} satisfying (B.1).

Now we recall Satake isomorphisms. Denote by WN the Weyl group of AN(F+) in U(VN)(F+),
which preserves AN(OF+); and we have the two Satake isomorphisms24

Sat◦N : T◦N
∼−→ Z[AN(F+)/AN(OF+)]WN ,

Sat•N : T•N
∼−→ Z[AN(F+)/AN(OF+)]WN .

In addition, we have an isomorphism

Z[AN(F+)/AN(OF+)]WN ' Z[X∗N ]sym

of rings under which sδ corresponds to the characteristic function of the WN -orbit of ptδ for every
0 ≤ δ ≤ r. In what follows, we will regard Z[X∗N ]sym as the target of both Satake isomorphisms
Sat◦N and Sat•N .

Notation B.2.3. Let Z[X∗N ]′ be the subring of Z[X∗N ] generated by {µ1, . . . ,µr} over Z, sending
µi to αi + α−1

i for 1 ≤ i ≤ r. For every ring L and every tuple α = (α1, . . . , αN) ∈ LN satisfying
αiαN+1−i = 1, we have a homomorphism φ′α : Z[X∗N ]′ → L, and denote

φ◦α : T◦N
Sat◦N−−−→ Z[X∗N ]sym ⊆ Z[X∗N ]′ φ

′
α−→ L,

φ•α : T•N
Sat•N−−−→ Z[X∗N ]sym ⊆ Z[X∗N ]′ φ

′
α−→ L,

the composite homomorphisms.

Definition B.2.4. We denote
m Lat◦N the set of all self-dual lattices in VN ;
m Lat•N the set of all lattices L in VN satisfying pL ⊆ L∨ and that L∨/pL has length N−2bN2 c;
m T•◦N ∈ Z[K•N\U(VN)(F+)/K◦N ] the characteristic function of K•NK◦N ; and
m T◦•N ∈ Z[K◦N\U(VN)(F+)/K•N ] the characteristic function of K◦NK•N .

Moreover, we define the intertwining Hecke operator

I◦N := T◦•N ◦ T•◦N ∈ T◦N
where the composition is taken as composition of cosets.

Note that we have canonical injective homomorphisms

T◦N → EndZ(Z[Lat◦N ]), T•N → EndZ(Z[Lat•N ])

sending T?
N ;t to the endomorphism that takes f ∈ Z[Lat?

N ] to the function T?
N ;tf satisfying

(T?
N ;tf)(L) = ∑

f(L′) where the sum is taken over all L′ ∈ Lat?
N such that L′ and L have rel-

ative position $t for ? = ◦, •.

24Strictly speaking, we need to choose a square root of q2, which we take to be q.
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Lemma B.2.5. We have the identity

I◦N =


T◦N ;r + (q + 1)T◦N ;r−1 + (q + 1)(q3 + 1)T◦N ;r−2 + · · ·+

r∏
i=1

(q2i−1 + 1)T◦N ;0, if N = 2r;

T◦N ;r + (q3 + 1)T◦N ;r−1 + (q3 + 1)(q5 + 1)T◦N ;r−2 + · · ·+
r∏
i=1

(q2i+1 + 1)T◦N ;0, if N = 2r + 1

in T◦N .

Proof. To compute I◦N , it suffices to compute its induced endomorphism on Z[Lat◦N ]. Now we take
an element f ∈ Z[Lat◦N ]. Then

(T◦•N (T•◦N f))(L◦1) =
∑

L•∈Lat•N
L◦1⊆L•⊆p−1L◦1

(T•◦N f)(L•) =
∑

L•∈Lat•N
L◦1⊆L•⊆p−1L◦1

∑
L◦2∈Lat◦N

L◦2⊆L•⊆p−1L◦2

f(L◦2)

for every L◦1 ∈ Lat◦N . Note that for pairs (L◦1,L◦2) ∈ (Lat◦N)2 appearing in the formula above, we
have pL◦2 ⊆ L◦1 ⊂ p−1L◦2 and [L◦1 : L◦2] := [L◦1 : L◦1 ∩ L◦2] + [L◦2 : L◦1 ∩ L◦2] ∈ {0, 2, . . . , 2r}.

Now for a pair (L◦1,L◦2) ∈ (Lat◦N)2 satisfying pL◦2 ⊆ L◦1 ⊂ p−1L◦2, we consider the set
Lat•N(L◦1,L◦2) := {L• ∈ Lat•N |L◦1 ⊆ L• ⊆ p−1L◦1,L◦2 ⊆ L• ⊆ p−1L◦2}.

It is easy to see that the cardinality of Lat•N(L◦1,L◦2) depends only on [L◦1 : L◦2]. For 0 ≤ δ ≤ r, we
denote by cN,δ the cardinality of Lat•N(L◦1,L◦2) with [L◦1 : L◦2] = 2δ. Then the lemma is equivalent
to showing that cN,r = 1 and

cN,δ =



r−δ∏
i=1

(q2i−1 + 1), 0 ≤ δ < r, when N = 2r;

r−δ∏
i=1

(q2i+1 + 1), 0 ≤ δ < r, when N = 2r + 1.

Without lost of generality, we may assume L◦1 = Λ◦N and
L◦2 = p−1e−r ⊕ · · · ⊕ p−1e−r+δ−1 ⊕OF e−r+δ ⊕ · · · ⊕OF er−δ ⊕ pOF er−δ+1 ⊕ · · · ⊕ pOF er.

When δ = r, Λ•N is the only element in Lat•N(L◦1,L◦2). Thus, we have cN,r = 1. For 0 ≤ δ < r, we
have cN,δ = cN−2δ,0. Thus, it suffices to show

cN,0 =



r∏
i=1

(q2i−1 + 1) = (q + 1) · · · (q2r−1 + 1), when N = 2r;

r∏
i=1

(q2i+1 + 1) = (q3 + 1) · · · (q2r+1 + 1), when N = 2r + 1.

However, cN,0 is nothing but the number of maximal isotropic subspaces of the hermitian space
Λ◦N ⊗OF OF/p over OF/p of dimension N , which is given by the above formula. Thus, the lemma
is proved. �

The following three lemmas will be used in later computation.

Lemma B.2.6. We have the identity

qδ(N−δ)χ(ρN,δ) =
δ∑
i=0

[
N − 2i
δ − i

]
−q

Sat◦N(T◦N ;i)

in Z[X∗N ]sym for 0 ≤ δ ≤ r.

Proof. This is [XZ, Lemma 9.2.4]. �
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Lemma B.2.7. For every integer k ≥ 1, we have
k∑

δ=−k
qδ

2
[

2k
k − δ

]
−q

= (q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof. For every integer k ≥ 1, we have the Gauss polynomial identity
2k∑
δ=0

(−1)δ
[
2k
δ

]
λ

= (1− λ)(1− λ3) · · · (1− λ2k−1)

in Z[λ].25 Now we specialize the identity to λ = −q−1. Then we get
2k∑
δ=0

(−1)δ(−q)−(2k−1)−(2k−3)−···−(2k−2δ+1)
[
2k
δ

]
−q

= q−k
2(q + 1)(q3 + 1) · · · (q2k−1 + 1).

The lemma then follows by changing δ to k − δ. �

Lemma B.2.8. For every integer k ≥ 1, we have
k∑

δ=−k−1
(−1)δδqδ2+δ

[
2k + 1
k − δ

]
−q
−

k∑
δ=−k

(−1)δδqδ2+δ
[

2k
k − δ

]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof. In fact, we have
k∑

δ=−k−1
(−1)δδqδ2+δ

[
2k + 1
k − δ

]
−q
−

k∑
δ=−k

(−1)δδqδ2+δ
[

2k
k − δ

]
−q

=
k∑

δ=−k−1
(−1)δδqδ2+δ(−q)k+δ+1

[
2k

k − δ − 1

]
−q

= (−1)k+1qk
k∑

δ=−k
(δ − 1)qδ2

[
2k
k − δ

]
−q

which, by Lemma B.2.7, equals

(−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1) + (−1)k+1qk
k∑

δ=−k
δqδ

2
[

2k
k − δ

]
−q
.

The lemma follows since
k∑

δ=−k
δqδ

2
[

2k
k − δ

]
−q

= 0.

�

B.3. Enumeration of Hecke operators in the even rank case. In this subsection, we assume
that N = 2r is even.

Lemma B.3.1. We have the identity

qr
2

r∏
i=1

(µi + 2) = Sat◦N(T◦N ;r) +
r∑
δ=1

(q + 1)(q3 + 1) · · · (q2δ−1 + 1) · Sat◦N(T◦N ;r−δ)

in Z[X∗N ]sym.

25A proof can be found at http://mathworld.wolfram.com/GausssPolynomialIdentity.html.

http://mathworld.wolfram.com/GausssPolynomialIdentity.html
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Proof. By Lemma B.1.3(1) and Lemma B.2.6, we have

qr
2

r∏
i=1

(µi + 2) = qr
2
χ(ρN ;r) + qr

2
r∑
δ=1

2χ(ρN ;r−δ)

=
r∑
i=0

[
2r − 2i
r − i

]
−q

Sat◦N(T◦N ;i) +
r∑
δ=1

2qδ2
r−δ∑
i=0

[
2r − 2i
r − δ − i

]
−q

Sat◦N(T◦N ;i)

=
r∑
i=0

 r−i∑
δ=−(r−i)

qδ
2
[

2r − 2i
r − δ − i

]
−q

 Sat◦N(T◦N ;i),

which equals

Sat◦N(T◦N ;r) +
r∑
δ=1

(q + 1)(q3 + 1) · · · (q2δ−1 + 1) · Sat◦N(T◦N ;r−δ)

by Lemma B.2.7. The lemma is proved. �

Lemma B.3.2. We have the identity

qr
2

r∏
i=1

(
µi − q − q−1

)
= Sat◦N(T◦N ;r) +

r∑
δ=1

(−q)δ(q + 1)(q3 + 1) · · · (q2δ−1 + 1) · Sat◦N(T◦N ;r−δ)

in Z[X∗N ]sym.

Proof. By Lemma B.1.3(1) and Lemma B.2.6, we have

qr
2

r∏
i=1

(
µi − q − q−1

)
= qr

2
χ(ρN ;r) + qr

2
r∑
δ=1

((−q)δ + (−q)−δ)χ(ρN ;r−δ)

=
r∑
i=0

[
2r − 2i
r − i

]
−q

Sat◦N(T◦N ;i) +
r∑
δ=1

r−δ∑
i=0

qδ
2((−q)δ + (−q)−δ)

[
2r − 2i
r − δ − i

]
−q

Sat◦N(T◦N ;i)

=
r∑
i=0

[2r − 2i
r − i

]
−q

+
r−i∑
δ=1

(−1)δ
(
qδ

2+δ + qδ
2−δ
) [ 2r − 2i
r − δ − i

]
−q

 Sat◦N(T◦N ;i)

=
r∑
i=0

 r−i∑
δ=−(r−i)

(−1)δqδ2+δ
[

2r − 2i
r − δ − i

]
−q

 Sat◦N(T◦N ;i).

Thus, the lemma follows from Lemma B.3.3 below by comparing coefficients. �

Lemma B.3.3. For every integer k ≥ 1, we have
k∑

δ=−k
(−1)δqδ2+δ

[
2k
k − δ

]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof. By Lemma B.2.7, the lemma is equivalent to the identity

(−q)k
k∑

δ=−k
qδ

2
[

2k
k − δ

]
−q

=
k∑

δ=−k
(−1)δqδ2+δ

[
2k
k − δ

]
−q
.
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However, we have

(−q)k
k∑

δ=−k
qδ

2
[

2k
k − δ

]
−q
−

k∑
δ=−k

(−1)δqδ2+δ
[

2k
k − δ

]
−q

=
k∑

δ=−k
(−1)δqδ2+δ

(
(−q)k−δ − 1

) [ 2k
k − δ

]
−q

=
k∑

δ=−k
(−1)δqδ2+δ

(
(−q)2k − 1

) [2k − 1
k − δ

]
−q

=
(
(−q)2k − 1

) k∑
δ=−k

(−1)δqδ2+δ
[
2k − 1
k − δ

]
−q
.

Note that in the last summation, the term of δ and the term of 1 − δ cancel with each other for
−k < δ ≤ k; and the term of −k is zero. Thus, the above summation is zero; and the lemma
follows. �

Lemma B.3.4. We have the identity

(
qr

2+1 − qr2−1
) r∑
j=1

r∏
i=1
i 6=j

(
µi − q − q−1

)

=
r∑
δ=1

(−q)δ(q + 1)(q3 + 1) · · · (q2δ−1 + 1)−
δ∑
i=0

(−1)i(2i+ 1)qi2+i
[
2δ + 1
δ − i

]
−q

 Sat◦N(T◦N ;r−δ)

in Z[X∗N ]sym.

Proof. By Lemma B.1.3(2) and Lemma B.2.6, we have

(
qr

2+1 − qr2−1
) r∑
j=1

∏
i 6=j

(
µi − q − q−1

)

= qr
2

r∑
δ=1

(−1)δ−1δ(qδ − q−δ) · χ(ρN ;r−δ)

=
r∑
δ=1

(−1)δ−1qδ
2(δqδ − δq−δ)

r−δ∑
i=0

[
2r − 2i
r − δ − i

]
−q

Sat◦N(T◦N ;i)

=
r−1∑
i=0

r−i∑
δ=1

(−1)δ−1qδ
2(δqδ − δq−δ)

[
2r − 2i
r − δ − i

]
−q

 Sat◦N(T◦N ;i).

Thus the lemma is equivalent to the identity

k∑
δ=0

(−1)δ(2δ + 1)qδ2+δ
[
2k + 1
k − δ

]
−q
−

k∑
δ=1

(−1)δqδ2(δqδ − δq−δ)
[

2k
k − δ

]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1)



ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR RANKIN–SELBERG MOTIVES 157

for every integer k ≥ 1. In fact, we have
k∑
δ=0

(−1)δ(2δ + 1)qδ2+δ
[
2k + 1
k − δ

]
−q
−

k∑
δ=1

(−1)δqδ2(δqδ − δq−δ)
[

2k
k − δ

]
−q

=
k∑

δ=−k−1
(−1)δδqδ2+δ

[
2k + 1
k − δ

]
−q
−

k∑
δ=−k

(−1)δqδ2
δqδ

[
2k
k − δ

]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1)
by Lemma B.2.8. The lemma follows. �

Proposition B.3.5. Let L be a ring. Consider an N-tuple α = (α1, . . . , αN) ∈ LN satisfying
αiαN+1−i = 1, which determines a homomorphism φ◦α : T◦N → L as in Notation B.2.3.

(1) We have

φ◦α(I◦N) = qr
2

r∏
i=1

(
αi + 1

αi
+ 2

)
.

(2) We have

φ◦α ((q + 1)R◦N − I◦N) = −qr2
r∏
i=1

(
αi + 1

αi
− q − 1

q

)
where

R◦N :=
r−1∑
δ=0

1− (−q)r−δ
q + 1 (q + 1)(q + 3) · · · (q2(r−δ)−1 + 1) · T◦N ;δ.

(3) We have

φ◦α (R◦N + (q + 1)T◦N) = −
(
qr

2+1 − qr2−1
) r∑
j=1

r∏
i=1
i 6=j

(
αi + 1

αi
− q − 1

q

)

where

T◦N :=
r−1∑
δ=0

d•r−δ,q · T◦N ;δ

in which the numbers d•r−δ,q are introduced in Notation 1.3.2.

Proof. Part (1) follows from Lemma B.2.5 and Lemma B.3.1. Part (2) follows from Lemma B.2.5
and Lemma B.3.2. Part (3) follows from Lemma B.3.4. �

Lemma B.3.6. We have
T•◦N ◦ R◦N = R•N ◦ T•◦N , T•◦N ◦ T◦N = T•N ◦ T•◦N

in Z[K•N\U(VN)(F+)/K◦N ], where R◦N and T◦N are defined in Proposition B.3.5 (2) and (3), respec-
tively, and 

R•N :=
r−1∑
δ=0

1− (−q)r−δ
q + 1 (q + 1)(q + 3) · · · (q2(r−δ)−1 + 1) · T•N ;δ,

T•N :=
r−1∑
δ=0

d•r−δ,q · T•N ;δ.

Proof. In fact, by the same lattice counting argument as for Lemma B.2.5, we have
T•◦N ◦ T◦N ;δ = T•N ;δ ◦ T•◦N

for every 0 ≤ δ ≤ r. Then the lemma follows immediately. �
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B.4. Enumeration of Hecke operators in the odd rank case. In this subsection, we assume
that N = 2r + 1 is odd.

Lemma B.4.1. We have the identity

qr
2+r

r∏
i=1

(
µi + q + q−1

)
= Sat◦N(T◦N ;r) +

r∑
δ=1

(q3 + 1)(q5 + 1) · · · (q2δ+1 + 1) · Sat◦N(T◦N ;r−δ)

in Z[X∗N ]sym.

Proof. By Lemma B.1.4 and Lemma B.2.6, we have

qr
2+r

r∏
i=1

(
µi + q + q−1

)
= qr

2+r
r∑
δ=0

qδ+1 + q−δ

q + 1 · χ(ρN ;r−δ)

= qr
2+r

r∑
δ=0

qδ+1 + q−δ

q + 1 · q−(r−δ)(r+1+δ)
r−δ∑
i=0

[
2r + 1− 2i
r − δ − i

]
−q

Sat◦N(T◦N ;i)

= 1
q + 1

r∑
i=0

r−i∑
δ=0

(q2δ+1 + 1)qδ2
[
2(r − i) + 1
r − i− δ

]
−q

 Sat◦N(T◦N ;i)

= 1
q + 1

r∑
i=0

 r−i∑
δ=−(r−i)−1

qδ
2
[
2(r − i) + 1
r − i− δ

]
−q

 Sat◦N(T◦N ;i).

Thus the lemma is equivalent to the identity
k∑

δ=−k−1
qδ

2
[
2k + 1
k − δ

]
−q

= (q + 1)(q3 + 1) · · · (q2k+1 + 1)

for every integer k ≥ 0. By Lemma B.2.7, we have
k+1∑

δ=−k−1
qδ

2
[

2k + 2
k + 1− δ

]
−q

= (q + 1)(q3 + 1) · · · (q2k+1 + 1).

Thus, it remains to show
k+1∑

δ=−k−1
qδ

2
[

2k + 2
k + 1− δ

]
−q

=
k∑

δ=−k−1
qδ

2
[
2k + 1
k − δ

]
−q
.

However, the difference equals
k+1∑

δ=−k−1
qa

2

[ 2k + 2
k + 1− δ

]
−q
−
[
2k + 1
k − δ

]
−q

 =
k+1∑

δ=−k−1
qa

2(−q)k+1−a
[

2k + 1
k + 1− δ

]
−q

= (−q)k+1
k∑

δ=−k−1
(−1)δqδ2+δ

[
2k + 1
k + 1− δ

]
−q

which equals zero as the term of δ and the term of −δ−1 cancel each other. The lemma follows. �

Lemma B.4.2. We have the identity

qr
2+r

r∏
i=1

(µi − 2) =
r∑
δ=0

dδ,q · Sat◦N(T◦N ;r−δ)

in Z[X∗N ]sym, in which the numbers dδ,q are introduced in Notation 1.3.2.
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Proof. By Lemma B.1.4 and Lemma B.2.6, we have

qr
2+r

r∏
i=1

(µi − 2) = qr
2+r

r∑
δ=0

(−1)δ(2δ + 1) · χ(ρN ;r−δ)

= qr
2+r

r∑
δ=0

(−1)δ(2δ + 1) · q−(r−δ)(r+1+δ)
r−δ∑
i=0

[
2r + 1− 2i
r − δ − i

]
−q

Sat◦N(T◦N ;i)

=
r∑
i=0

r−i∑
δ=0

(−1)δ(2δ + 1)qδ(δ+1)
r−δ∑
i=0

[
2(r − i) + 1
r − i− δ

]
−q

 Sat◦N(T◦N ;i)

=
r∑
δ=0

dδ,q · Sat◦N(T◦N ;r−δ).

The lemma is proved. �

Proposition B.4.3. Let L be a ring. Consider an N-tuple α = (α1, . . . , αN) ∈ LN satisfying
αiαN+1−i = 1, which determines a homomorphism φ◦α : T◦N → L as in Notation B.2.3.

(1) We have

φ◦α(I◦N) = qr
2+r

r∏
i=1

(
αi + 1

αi
+ q + 1

q

)
.

(2) We have

φ◦α(T◦N) = qr
2+r

r∏
i=1

(
αi + 1

αi
− 2

)
where

T◦N :=
r∑
δ=0

dr−δ,q · T◦N ;δ

in which the numbers dr−δ,q are introduced in Notation 1.3.2.

Proof. Part (1) follows from Lemma B.2.5 and Lemma B.4.1. Part (2) follows from Lemma
B.4.2. �

Lemma B.4.4. We have

T•◦N ◦ T◦N =
(
(q + 1)2T•N + T•◦N ◦ T◦•N

)
◦ T•◦N

in Z[K•N\U(VN)(F+)/K◦N ], where T◦N is defined in Proposition B.4.3(2), and

T•N :=
r−1∑
δ=0

d•r−δ,q · T•N ;δ.

This lemma is a hard exercise in combinatorics. In fact, our proof below is by brutal force; it
would be interesting to find a conceptual proof.

Proof. It suffices to show that for every element f ∈ Z[Lat◦N ], we have(
(q + 1)2T•N + T•◦N ◦ T◦•N

)
(T•◦N (f)) = T•◦N (T◦N(f))(B.2)

in Z[Lat•N ]. Without lost of generality, we may just consider their values on Λ•N .
For every L ∈ Lat◦N and 0 ≤ δ ≤ r, we denote

m c•δ(L) the number of L• ∈ Lat•N satisfying L ⊆ L• and (L• + Λ•N)/Λ•N ' (OF/p)⊕δ; and
m c◦δ(L) the number of L◦ ∈ Lat◦N satisfying L◦ ⊆ Λ•N and L/(L ∩ L◦) ' (OF/p)⊕δ.
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We then have
(T•N ;δ(T•◦N (f)))(Λ•N) =

∑
L∈Lat◦N

c•δ(L) · f(L),

(T•◦N (T◦N ;δ(f)))(Λ•N) =
∑

L∈Lat◦N

c◦δ(L) · f(L).

We claim the following identities

c•δ(L) =


q(δ−γ)(δ−γ+2)

[
r − γ
δ − γ

]
q2
, if (L + Λ•N)/Λ•N ' (OF/p)⊕γ for some 0 ≤ γ ≤ δ;

0, otherwise;
(B.3)

c◦δ(L) =


q(δ−γ)2

[
r − γ
δ − γ

]
q2
, if (L + Λ•N)/Λ•N ' (OF/p)⊕γ for some 0 ≤ γ ≤ δ;

0, otherwise.
(B.4)

For (B.3), we must have (L + Λ•N)/Λ•N ⊆ (L• + Λ•N)/Λ•N ' (OF/p)⊕δ. Thus, the otherwise
case is confirmed. Suppose (L + Λ•N)/Λ•N ' (OF/p)⊕γ for some 0 ≤ γ ≤ δ. Then (pΛ•N + L)/L
is an isotropic subspace of p−1L/L of dimension γ. Moreover, c•δ(L) is the same as the number
of maximal isotropic subspaces of ((pΛ•N + L)/L)⊥/((pΛ•N + L)/L) whose intersection with (the
image of) (p−1L ∩ Λ•N + L)/L, which itself is a maximal isotropic subspace, has dimension r − δ.
Thus, we obtain (B.3) by Lemma B.4.5 below since ((pΛ•N +L)/L)⊥/((pΛ•N +L)/L) has dimension
2r + 1− 2γ.

For (B.4), we must have (L+Λ•N)/Λ•N ' L/(L∩Λ•N) which is a quotient of L/(L∩L◦) ' (OF/p)⊕δ.
Thus, the otherwise case is confirmed. Suppose (L + Λ•N)/Λ•N ' (OF/p)⊕γ for some 0 ≤ γ ≤ δ.
Then (L + Λ•N)/Λ•N is an isotropic subspace of p−1Λ•N/Λ•N of dimension γ. Moreover, c◦δ(L) is the
same as the number of maximal isotropic subspaces of ((L + Λ•N)/Λ•N)⊥/((L + Λ•N)/Λ•N) whose
intersection with (the image of) (p−1Λ•N ∩ p−1L + Λ•N)/Λ•N , which itself is a maximal isotropic
subspace, has dimension r−δ. Thus, we obtain (B.4) by Lemma B.4.5 since ((L+Λ•N)/Λ•N)⊥/((L+
Λ•N)/Λ•N) has dimension 2r − 2γ.

Now we come back to the values of (B.2) on Λ•N . By a similar proof of Lemma B.2.5, we have

T•◦N ◦ T◦•N = T•N ;r + (q + 1)T•N ;r−1 + (q + 1)(q3 + 1)T•N ;r−2 + · · ·+
r∏
i=1

(q2i−1 + 1)T•N ;0

in T•N . Then under Notation 1.3.2, we have(
(q + 1)2T•N + T•◦N ◦ T◦•N

)
◦ T•◦N(B.5)

= T•N ;r ◦ T•◦N +
r−1∑
δ=0

(
(q + 1)dr−δ,q + (−q)r−δ+1(q + 1)(q3 + 1) · · · (q2(r−δ)−1 + 1)

)
T•N ;δ ◦ T•◦N .

By (B.3), (B.4) and (B.5), the lemma is equivalent to that for every integer k ≥ 0, we have
k∑
δ=0

dk−δ,qqδ
2
[
k

δ

]
q2

= qk(k+2) +
k−1∑
δ=0

(
(q + 1)dk−δ,q + (−q)k−δ+1(q + 1)(q3 + 1) · · · (q2(k−δ)−1)

)
qδ(δ+2)

[
k

δ

]
q2
,

or equivalently,

k∑
δ=0

dδ,qq(k−δ)2
[
k

δ

]
q2

= qk(k+2) +
k∑
δ=1

(
(q + 1)dδ,q + (−q)δ+1(q + 1)(q3 + 1) · · · (q2δ−1 + 1)

)
q(k−δ)(k−δ+2)

[
k

δ

]
q2
.

(B.6)
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By Lemma B.2.8, we have
(−q)δ+1(q + 1)(q3 + 1) · · · (q2δ−1 + 1)

= −q
δ∑

j=−δ−1
(−1)jjqj2+j

[
2δ + 1
δ − j

]
−q

+ q
δ∑

j=−δ
(−1)jjqj2+j

[
2δ
δ − j

]
−q

= −qdδ,q + q
δ∑

j=−δ
(−1)jjqj2+j

[
2δ
δ − j

]
−q
.

Thus, (B.6) is equivalent to
k∑
δ=0

dδ,qq(k−δ)2
[
k

δ

]
q2

=
k∑
δ=0

dδ,q + q
δ∑

j=−δ
(−1)jjqj2+j

[
2δ
δ − j

]
−q

 q(k−δ)(k−δ+2)
[
k

δ

]
q2
,

or equivalently,
k∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)
[
k

δ

]
q2

= −
k∑
δ=0

δ∑
j=−δ

(−1)jjqj2+j
[

2δ
δ − j

]
−q
q(k−δ+1)2

[
k

δ

]
q2
.(B.7)

However, we have
k∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)
[
k

δ

]
q2

=
k−1∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)
[
k

δ

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1)jjqj2+j
[
2δ + 1
δ − j

]
−q
q(k−δ)2(q2(k−δ) − 1)

[
k

δ

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1)jjqj2+j
[
2δ + 1
δ − j

]
−q
q(k−δ)2(q2δ+2 − 1)

[
k

δ + 1

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1)jjq(k−δ)2+j2+j((−q)2δ+2 − 1)
[
2δ + 1
δ − j

]
−q

[
k

δ + 1

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1)jjq(k−δ)2+j2+j((−q)δ−j+1 − 1)
[

2δ + 2
δ − j + 1

]
−q

[
k

δ + 1

]
q2

=
k∑
δ=1

δ−1∑
j=−δ

(−1)jjq(k+1−δ)2+j2+j((−q)δ−j − 1)
[

2δ
δ − j

]
−q

[
k

δ

]
q2

=
k∑
δ=0

δ∑
j=−δ

(−1)jjq(k+1−δ)2+j2+j((−q)δ−j − 1)
[

2δ
δ − j

]
−q

[
k

δ

]
q2
.

Thus, (B.7) is equivalent to
k∑
δ=0

δ∑
j=−δ

(−1)jjq(k+1−δ)2+j2+j(−q)δ−j
[

2δ
δ − j

]
−q

[
k

δ

]
q2

= 0,

which is obvious since
δ∑

j=−δ
jqj

2
[

2δ
δ − j

]
−q

= 0.

The lemma is finally proved. �
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Lemma B.4.5. Let V be a (nondegenerate) hermitian space over OF/p of dimension m ≥ 1
with r = bm2 c, and Y0 ⊆ V a maximal isotropic subspace. Then the number of maximal isotropic
subspaces Y ⊆ V satisfying dimOF /p(Y ∩ Y0) = r − s with 0 ≤ s ≤ r is given by

qs(s+2)
[
r

s

]
q2
, if m = 2r + 1;

qs
2
[
r

s

]
q2
, if m = 2r.

Proof. We will prove the case for m odd and leave the similar case for m even to readers. We fix
an integer 0 ≤ s ≤ r. It is easy to see that the number of choices of the intersection Y ∩ Y0 (of
dimension r − s) is

(q2r − 1)(q2(r−1) − 1) · · · (q2(r−s+1) − 1)
(q2s − 1)(q2(s−1) − 1) · · · (q2 − 1) =

[
r

s

]
q2
.

Then we count the number of Y with Y ∩ Y0 fixed. We take a basis {e−r, . . . , er} of V such
that (e−i, ej)V = δi,j for 0 ≤ i, j ≤ r; Y0 is spanned by {e−r, . . . , e−1}; and Y ∩ Y0 is spanned by
{e−r, . . . , e−s−1}. Let {f1, . . . , fs} be an element in Y s such that {e−r, . . . , e−s−1, f1, . . . , fs} form
a basis of Y . Then since Y is isotropic, the coefficients on {es+1, . . . , er} of each fi have to be zero.
In particular, there is unique such element {f1, . . . , fs} ∈ Y s that is of the form

(f1, . . . , fs) = (e1, . . . , es) + (e−s, . . . , e−1, e0)
(
A
v

)
with (uniquely determined) A ∈ Ms,s(OF/p) and v ∈ M1,s(OF/p). Moreover, the isotropic condi-
tion on Y is equivalent to that A+A′ = 0 where A′ is the q-th Frobenius of A (and no condition
on v). It follows that the number for such Y with given Y ∩ Y0 (of dimension r − s) is qs(s+2).
Thus, the lemma follows. �

Appendix C. Some representation theory for unitary groups

In this section, we prove several results for representations of unitary groups. Unless specified
otherwise, all representations will have coefficients in C. In Subsection C.1, we recall some general
facts about the local base change for unitary groups. In Subsection 6.2, we study the representation
appeared in the cohomology of Fermat hypersurfaces, and also compute the local base change of
some semistable representations. In Subsection C.3, we collect everything we need from the
endoscopic classification for unitary groups in Proposition C.3.1 and derive two corollaries from
it.

C.1. Local base change for unitary groups. In this subsection, we fix an unramified quadratic
extension F/F+ of nonarchimedean local fields.

Consider a hermitian space V over F (with respect to F/F+) of rank N . Put G := U(V). For
an irreducible admissible representation π of G(F+), we denote by BC(π) its base change, which is
an irreducible admissible representation of GLN(F ). Such local base change is defined by [Rog90]
when N ≤ 3 and by [Mok15,KMSW] for general N .

We review the construction of BC(π) in certain special cases. For a parabolic subgroup P of
G and an admissible representation σ of P (F+), we denote by IGP (σ) the normalized parabolic
induction, which is an admissible representation of G(F+). Fix a minimal parabolic subgroup
Pmin of G.

We first review Langlands classification of irreducible admissible representations of G(F+) (see,
for example, [Kon03]). For an irreducible admissible representation π of G(F+), there is a unique
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parabolic subgroup P of G containing Pmin with Levi quotient MP , a unique tempered represen-
tation τ of MP (F+), and a unique strictly positive (unramified) character χ of Pπ(F+), such that
π is isomorphic to the unique irreducible quotient of IGP (τχ), which we denote by JGP (τχ), known
as the Langlands quotient.

We then review the construction of tempered representations from discrete series representa-
tions (see, for example, [Jan14]). Let τ be an irreducible admissible tempered representation of
G(F+). Then there is a unique parabolic subgroup P of G containing Pmin, and a discrete series
representation σ of MP (F+) such that τ is a direct summand of IGP (σ). In fact, IGP (σ) is a direct
sum of finitely many tempered representations of multiplicity one.

Now suppose that π ' JGP (τχ) is a Langlands quotient. Then we may write

MP = G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt

with G0 the unitary factor, under which

χ = 1 � |detr1|−s1F � · · ·� |detrt |−stF

for unique real numbers 0 < s1 < · · · < st, where detr denotes the determinant on GLr(F ).
Suppose τ = τ0 � τ1 � · · · � τt under the above decomposition. Consider a standard parabolic
subgroup P̃ of GLN whose Levi is GLrt × · · · ×GLr1 ×GLN0 ×GLr1 × · · · ×GLrt . Then we have

BC(π) ' JGLN
P̃

(
τ∨c
t |detrt |stF � · · ·� τ∨c

1 |detr1|s1F � BC(τ0) � τ1|detr1|−s1F � · · ·� τt|detrt |−stF

)
which is a Langlands quotient of GLN(F ). Here, τ c stands for τ ◦ c.

Now suppose that τ is an irreducible admissible tempered representation of G(F+), which is
a direct summand of IGP (σ) for some square-integrable representation σ of P (F+). Write σ =
σ0 � σ1 � · · ·� σt, similar to the previous case. Then under the same notation, we have

BC(τ) ' IGLN
P̃

(σ∨c
t � · · ·� σ∨c

1 � BC(σ0) � σ1 � · · ·� σt)

which is an irreducible admissible representation of GLN(F ).
Finally, if π is an irreducible admissible representation of G(F+) that is a constituent of an un-

ramified principal series, then BC(π) is a constituent of an unramified principal series of GLN(F ).
Thus, it makes sense to talk about the Satake parameter of BC(π), denoted by α(BC(π)).

In what follows, we will suppress the parabolic subgroup P̃ of GLN when it is clear. We denote
by StN the Steinberg representation of GLN(F ).

C.2. Tate–Thompson representations. In this subsection, we fix an unramified quadratic ex-
tension F/F+ of nonarchimedean local fields, with residue field extension κ/κ+. Let q be the
residue cardinality of F+ and p the maximal ideal of OF .

Let N ≥ 2 be an integer with r := bN2 c. Consider a hermitian space VN over F of rank N
together with a self-dual lattice ΛN . Put UN := U(VN), and let KN be the stabilizer of ΛN which
is a hyperspecial maximal subgroup of UN(F+). Put Λ̄N := ΛN ⊗OF+ κ

+ and ŪN := U(Λ̄N). Then
we have the reduction homomorphism KN → ŪN(κ+).

Let Iso(Λ̄N) ⊆ P(Λ̄N) be the isotropic locus, that is, it parameterizes hyperplanes H of Λ̄N

satisfying H⊥ ⊆ H. Then Iso(Λ̄N) is a smooth hypersurface in P(Λ̄N). In particular, Iso(Λ̄N) has
dimension N − 2 and admits a natural action by ŪN(κ+). For a rational prime ` that is invertible
in κ, put

Hprim(Iso(Λ̄N)κ,Q`) := ker
(
∪c1(OP(Λ̄N )(1)) : HN−2

ét (Iso(Λ̄N)κ,Q`)→ HN
ét(Iso(Λ̄N)κ,Q`(1))

)
.
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It is well-known by Tate–Thompson that (see, for example, [HM78]) there is a unique irreducible
representation ΩN of ŪN(κ+) such that ΩN is isomorphic to ι−1

` Hprim(Iso(Λ̄N)κ,Q`) as represen-
tations of ŪN(κ+) for every isomorphism ι` : C ∼−→ Q`. We call ΩN the Tate–Thompson represen-
tation. We often regard ΩN as a representation of KN by inflation according to the context.

To describe ΩN , we first recall some notation from parabolic induction of finite reductive groups.
For every N , we fix a Borel subgroup PN of ŪN . For positive integers r1, . . . , rt satisfying r1 +
· · · + rt ≤ r, we obtain a parabolic subgroup P(r1,...,rt)

N of ŪN containing PN , whose Levi quotient
M(r1,...,rt)
N is isomorphic to ŪN−2(r1+···+rt)×Resκ/κ+ GLr1 × · · ·×Resκ/κ+ GLrt . For example, we have

P(1r)
N = PN . Given a representation σ of M(r1,...,rt)

N (κ+), we denote by IndŪN
P(r1,...,rt)
N

σ the parabolic

induction, which is a representation of ŪN(κ+).
Now we suppose N = 2r even. The irreducible constituents of IndŪN

PN 1 is parameterized by
irreducible representations of the Weyl group WN ' {±1}r o Sr. For every irreducible repre-
sentation ε of WN , we denote by PS(ε) the corresponding irreducible representation of ŪN(κ+).
We now specify a character εTT

N : WN → {±1} as the extension of the product homomorphism
{±1}r → {±1}, which is invariant under the Sr-action, to WN that is trivial on {+1}r oSr.

Proposition C.2.1. We have
(1) When N = 2r is even, the representation ΩN is isomorphic to PS(εTT

N ).
(2) When N = 2r is even, ΩN is the unique nontrivial irreducible representation of ŪN(κ+)

satisfying dim ΩPN (κ+)
N = dim ΩP(r)

N (κ+)
N = 1.

(3) The representation Ω3 is the (unique) cuspidal unipotent representation of Ū3(κ+).
(4) When N = 2r+1 is odd with r ≥ 1, the representation ΩN is a multiplicity free constituent

of IndŪN
P(1r−1)
N

Ω3 � 1�r−1.

Proof. We recall some notion of Deligne–Lusztig characters. Let SN be the group of N -
permutations, andPN its conjugacy classes which is canonically identified with the set of partitions
of N . For every π ∈ PN , we let Rπ be the Deligne–Lusztig character (of ŪN(κ+)) [DL76, Corol-
lary 4.3] associated to the trivial representation of the maximal torus corresponding to π. Let RN

be the character of the representation ΩN . Then by [HM78, Theorem 1], we have

RN = (−1)N+1 ∑
π∈PN

χN(π)
zπ

Rπ(C.1)

where χN is the character function (on PN) of the unique nontrivial subrepresentation of the
standard representation of SN ; and N !/zπ is the cardinality of the conjugacy class π. By [DL76,
Theorem 6.8], we have the following orthogonality relation

〈Rπ, Rπ′〉 =
{0, if π 6= π′;
zπ, if π = π′.

(C.2)

We are ready to prove the proposition.
For (1), note that εTT

N is the unique nontrivial character of WN that is trivial on {+1}r oSr.
Thus, (1) follows from (2) by [Cur79, Theorem 4.4.5].

For (2), it suffices to show that dim ΩPN (κ+)
N = 1 and ΩP(r)

N (κ+)
N 6= 0. Let R′2r be the character of

IndŪ2r
P2r 1. Then by [DL76, Proposition 8.2], we have R′2r = R(2r). By (C.1) and (C.2), we have

〈R2r, R
′
2r〉 =

〈
−

∑
π∈P2r

χ2r(π)
zπ

Rπ, R(2r)

〉
= −χ2r((2r)) = −(−1) = 1,
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which implies dim ΩPN (κ+)
N = 1. Let YN ⊆ Λ̄N be the maximal isotropic subspace stabilized by

P(r)
N . Then P(YN) is contained in Iso(Λ̄N), which gives rise to an element in CHr−1(Iso(Λ̄N)).

It is well-known that its cohomology class subtracted by c1(OP(Λ̄N )κ(1)) is a nonzero element in

Hprim(Iso(Λ̄N)κ,Q`)(r−1), which is fixed by P(r)
N (κ+) by construction. Thus, we have ΩP(r)

N (κ+)
N 6= 0;

and (1) and (2) follow.
For (3), we have R3 = 1

3(R(13) −R(3)) by (C.1). Then as computed in [Pra, Example 6.2], Ω3 is
the unique cuspidal unipotent representation of Ū3(κ+).

For (4), let R′2r+1 be the character of IndŪ2r+1

P(1r−1)
2r+1

(
Ω3 � 1�r−1

)
. Then by [DL76, Proposition 8.2],

we have
R′2r+1 = 1

3
(
R(2r−1,13) −R(2r−1,3)

)
.

By (C.1) and (C.2), we have

〈R2r+1, R
′
2r+1〉 =

〈 ∑
π∈P2r+1

χ2r+1(π)
zπ

Rπ,
1
3
(
R(2r−1,13) −R(2r−1,3)

)〉

= 1
3
(
χ2r+1((2r−1, 13))− χ2r+1((2r−1, 3))

)
= 1

3(2− (−1)) = 1.

Thus, (4) follows. �

From now on, we assume that N = 2r is even. Let V′2r be another hermitian space over F
together with a lattice Λ′2r satisfying Λ′2r ⊆ (Λ′2r)∨ and (Λ′2r)∨/Λ′2r ' κ. Put U′2r := U(V′2r), and
let K′2r be the stabilizer of Λ′2r which is a special maximal subgroup of U′2r(F+). The following
proposition exhibits an example of the local Jacquet–Langlands correspondence.
Proposition C.2.2. Define

m S to be the set of isomorphism classes of irreducible admissible representations π of U2r(F+)
such that π|K2r contains Ω2r and that the Satake parameter of BC(π) contains {q, q−1} with
multiplicity one but does not contain {−1,−1} (Remark 3.1.6);

m S ′ to be the set of isomorphism classes of irreducible admissible representations π′ of
U′2r(F+) such that π′|K′2r contains the trivial representation and that the Satake param-
eter of BC(π) contains {q, q−1} with multiplicity one but does not contain {−1,−1}.

Then there is a unique bijection between S and S ′ such that π and π′ correspond if and only if
BC(π) ' BC(π′).
Proof. We first note that both BC(π) and BC(π′) are constituents of unramified principal series.
We define a correspondence between S and S ′ via the condition that the two Satake parameters
α(BC(π)) and α(BC(π′)) coincide, which is clearly a bijection. By Lemma C.2.3(2) and Lemma
C.2.4 below, we have BC(π) ' BC(π′) if π and π′ correspond. The proposition is proved. �

Lemma C.2.3. For every irreducible admissible representation π of U2r(F+) such that π|K2r

contains Ω2r (hence π is a constituent of an unramified principal series).
(1) If the Satake parameter of BC(π) does not contain {q, q−1} and does not contain {−1,−1},

then π is unramified.
(2) If the Satake parameter of BC(π) contains {q, q−1} with multiplicity one, then there exists

a unique multi-subset {s2, . . . , sr} ⊆ C/(log q)−1πi with Re si ≥ 0 such that if we arrange
them so that 0 ≤ Re s2 ≤ · · · ≤ Re sr holds, then BC(π) is isomorphic to the unique
irreducible quotient of

IGL2r
(
| |srF � · · ·� | |s2F � St2 � | |−s2F � · · ·� | |−srF

)
.
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Proof. We fix a decomposition
Λ2r = OF e−r ⊕ · · · ⊕OF e−1 ⊕OF e1 ⊕ · · · ⊕OF er

in which (e−i, ej) = δij for 1 ≤ i, j ≤ r. For 0 ≤ i ≤ r, put
V2i := Fe−i ⊕ · · · ⊕ Fe−1 ⊕ Fe1 ⊕ · · · ⊕ Fei

which is a hermitian subspace of V2r. We take the minimal parabolic (Borel) subgroup Pmin of
G := U2r to be the stabilizer of the flag Fe−r ⊆ · · · ⊆ Fe−r ⊕ · · · ⊕ Fe−1. We also fix a Levi
subgroup of Pmin to be ResF/F+ GL(Fe1)× · · · × ResF/F+ GL(Fer).

Put K := K2r, which is a hyperspecial maximal subgroup of G(F+). Let I be the subgroup of K
of elements whose reduction modulo p stabilizes the flag κe−r ⊆ · · · ⊆ κe−r ⊕ · · · ⊕ κe−1, which is
an Iwahori subgroup of G(F+). Let J be the subgroup of K of elements whose reduction modulo
p stabilizes the subspace κe−r ⊕ · · · ⊕ κe−1, which is a parahoric subgroup of G(F+). We clearly
have I ⊆ J ⊆ K. Now we realize the Weyl group W2r ' {±1}r oSr explicitly as a subgroup of
K. For 1 ≤ i ≤ r, we let i-th −1 in W2r correspond to the element that only switches e−i and ei,
denoted by wi. For every σ ∈ Sr, we let (1r, σ) ∈ W2r correspond to the element that sends e±i
to e±σ(i), denoted by w′σ ∈ J . Then {w1, w

′
(1,2), . . . , w

′
(r−1,r)} is a set of distinguished generators of

W2r. We recall the Bruhat decompositions

K =
∐

w∈W2r

IwI, K =
r∐
i=0

Jw1 · · ·wiJ.

For w ∈ W , we let 0 ≤ i(w) ≤ r be the unique integer such that w ∈ Jw1 · · ·wi(w)J .
By Proposition C.2.1(2), we have a K-equivariant embedding Ω2r ↪→ C[I\K], unique up to

scalar, hence obtain a distinguished subspace ΩI
2r ⊆ C[I\K/I] of dimension one. We would like

to find a generator of ΩI
2r. Now we compute the character of the C[I\K/I]-module ΩI

2r. By
Proposition C.2.1(1), the element 1Iw1I acts on ΩI

2r by −1; and by Proposition C.2.1(2), which
implies that ΩI

2r is contained in C[J\K/J ], the element 1Iw′(i,i+1)I
acts on ΩI

2r by [Iw′(i,i+1)I : I] = q2

for every 1 ≤ i ≤ r − 1. It follows that ΩI
2r is spanned by the following function:

f :=
∑
w∈W

(−1)i(w)qr−i(w) · 1IwI ∈ C[I\K/I].

Take an irreducible admissible representation π of U2r(F+) such that π|K contains Ω2r. Then it
is a constituent of an unramified principal series. In other words, there exists a unique multi-subset
{s1, . . . , sr} ⊆ C/(log q)−1πi with Re si ≥ 0 such that π is a constituent of

IGPmin

(
| |−s1F � · · ·� | |−srF

)
.

We recall the projection map

P : C[I\K/I]→ IGPmin

(
| |−s1F � · · ·� | |−srF

)I
defined at the beginning of [Cas80, Section 2], which is C[I\K/I]-equivariant. Put φ := Pf .

Now we separate the discussion.
Suppose that we are in the situation of (1). We may assume 0 ≤ Re s1 ≤ · · · ≤ Re sr. Then there

exist a unique nonnegative integer r0 and unique positive integers r1, . . . , rt satisfying r0+· · ·+rt =
r, such that

0 = Re s1 = · · · = Re sr0 < Re sr0+1 = · · · = Re sr0+r1 < · · · < Re sr0+···+rt−1+1 = · · · = Re sr
holds. For every 1 ≤ i ≤ t, put

τi := IGLri
(
| |−sr0+···+ri−1+1
F � · · ·� | |−sr0+···+ri

F

)
⊗ |detri |

Re sr0+···+ri
F
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which is an irreducible tempered representation of GLri(F ). Put G0 := U(V2r0) and P0min :=
G0 ∩ Pmin. As | |−s1F � · · · � | |−sr0F is a discrete series representation of P0min(F+), the parabolic
induction

τ0 := IG0
P0min

(
| |−s1F � · · ·� | |−sr0F

)
is a finite direct sum of irreducible tempered representations of G0(F+). As {s1, . . . , sr0} does
not contain (2 log q)−1πi, τ0 is actually irreducible by [Gol95, Theorem 1.4 & Theorem 3.4]. In
particular, we obtain a Langlands quotient

JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
,

where P is the parabolic subgroup of G containing P0 whose Levi quotient is isomorphic to
G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt . We claim

φ 6= 0 ∈ JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
.(C.3)

Assuming this claim, then π is isomorphic to JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
, the unique

irreducible quotient of IGPmin

(
| |−s1F � · · ·� | |−srF

)
, which is unramified. Thus, (1) follows.

Now we prove (C.3). Let w ∈ W2r be the element acting trivially on V2r0 and switching
e−(r0+···+ri−1+j) with er0+···+ri+1−j for every 1 ≤ j ≤ ri and then every 1 ≤ i ≤ t. By [Kon03,
Corollary 3.2], (C.3) is equivalent to ∫

N(F+)
φ(wn)dn 6= 0(C.4)

in which N is the unipotent radical of P and the integral is absolutely convergent. By [Cas80,
Theorem 3.4], we have for r0 + 1 ≤ i ≤ r that

Twi(φ) = q1−2si − 1
q(1− q−2si) · φ,

which is nonzero as Re si > 0 and si 6= 1
2 . Here, the operator Tw is defined at the beginning of

[Cas80, Section 3]. From this we obtain (C.4) hence (C.3).
Suppose that we are in the situation of (2). Then we may assume s1 = 1

2 and si 6= 1
2 for 2 ≤ i ≤ r.

Let Q be the parabolic subgroup of G stabilizing the flag Fe−r ⊆ · · · ⊆ Fe−r ⊕ · · · ⊕Fe−2, whose
Levi quotient is U(V2) × ResF/F+ GL(Fe2) × · · · × ResF/F+ GL(Fer). Then we have a canonical
inclusion

IGQ
(
Sp2 �| |−s2F � · · ·� | |−srF

)
⊆ IGPmin

(
| |−1/2
F � | |−s2F � · · ·� | |−srF

)
where Sp2 denotes the Steinberg representation of U(V2)(F+). As 1Iw1I acts by −1 on φ, we have

φ ∈ IGQ
(
Sp2 �| |−s2F � · · ·� | |−srF

)
.

In particular, it follows that π is a constituent of IGQ
(
Sp2 �| |−s2F � · · ·� | |−srF

)
.

To proceed, we may assume 0 ≤ Re s2 ≤ · · · ≤ Re sr. Then there exist unique positive integers
r0, . . . , rt satisfying r0 + · · ·+ rt = r, such that

0 = Re s2 = · · · = Re sr0 < Re sr0+1 = · · · = Re sr0+r1 < · · · < Re sr0+···+rt−1+1 = · · · = Re sr
holds. For every 1 ≤ i ≤ t, put

τi := IGLri
(
| |−sr0+···+ri−1+1
F � · · ·� | |−sr0+···+ri

F

)
⊗ |detri |

Re sr0+···+ri
F

which is an irreducible tempered representation of GLri(F ). Put G0 := U(V2r0) and Q0 := G0∩Q.
As Sp2 �| |−s2F � · · ·� | |−sr0F is a discrete series representation of Q0(F+), the parabolic induction

IG0
Q0

(
Sp2 �| |−s2F � · · ·� | |−sr0F

)
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is a finite direct sum of irreducible tempered representations of G0(F+). Let τ0 be the unique
direct summand such that φ is contained in the subspace

IGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
⊆ IGQ

(
Sp2 �| |−s2F � · · ·� | |−srF

)
,

where P is the parabolic subgroup of G containing P0 whose Levi quotient is isomorphic to
G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt . In particular, we obtain a Langlands quotient

JGP
(
τ0 �

(
�t
i=1τi|detri|

−Re sr0+···+ri
F

))
.

By the same proof of (C.3), we obtain

φ 6= 0 ∈ JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
.

Then BC(π) is isomorphic to the unique irreducible quotient of

IGL2r
((
�1
i=tτ

∨c
i |detri |

Re sr0+···+ri
F

)
� BC(τ0) �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
.

However, BC(τ0) is isomorphic to

IGL2r0
(
| |sr0F � · · ·� | |s2F � BC(Sp2) � | |−s2F � · · ·� | |−sr0F

)
' IGL2r0

(
| |sr0F � · · ·� | |s2F � St2 � | |−s2F � · · ·� | |−sr0F

)
which is irreducible. Thus, (2) follows.

The lemma is proved. �

Lemma C.2.4. For every irreducible admissible representation π′ of U′2r(F+) such that (π′)K′2r 6=
{0}, there exists a unique multi-subset {s2, . . . , sr} ⊆ C/(log q)−1πi with Re si ≥ 0 such that if
we arrange them so that 0 ≤ Re s2 ≤ · · · ≤ Re sr holds, then BC(π′) is isomorphic to the unique
irreducible quotient of

IGL2r
(
| |srF � · · ·� | |s2F � St2 � | |−s2F � · · ·� | |−srF

)
.

Proof. We fix a decomposition
Λ′2r = OF e−r ⊕ · · · ⊕OF e−2 ⊕ Λ′2 ⊕OF e2 ⊕ · · · ⊕OF er

in which (e−i, ej) = δij for 2 ≤ i, j ≤ r. For 1 ≤ i ≤ r, put
V′2i := Fe−i ⊕ · · · ⊕ Fe−2 ⊕ Λ′2 ⊗OF F ⊕ Fe2 ⊕ · · · ⊕ Fei

which is a hermitian subspace of V′2r. We take the minimal parabolic subgroup Pmin of G := U′2r
to be the stabilizer of the flag Fe−r ⊆ · · · ⊆ Fe−r ⊕ · · · ⊕ Fe−2. We also fix a Levi subgroup of
Pmin to be U(V′2)× ResF/F+ GL(Fe2)× · · · × ResF/F+ GL(Fer).

Take an irreducible admissible representation π′ of G(F+) such that (π′)K′2r 6= 0. Then it is a
constituent of an unramified principal series. In other words, there exists a unique multi-subset
{s2, . . . , sr} ⊆ C/(log q)−1πi with Re si ≥ 0 such that π′ is a constituent of

IGPmin

(
1′2 � | |

−s2
F � · · ·� | |−srF

)
,

where 1′2 denotes the trivial representation of U(V′2)(F+).
To proceed, we may assume 0 ≤ Re s2 ≤ · · · ≤ Re sr. Then there exist unique positive integers

r0, . . . , rt satisfying r0 + · · ·+ rt = r, such that
0 = Re s2 = · · · = Re sr0 < Re sr0+1 = · · · = Re sr0+r1 < · · · < Re sr0+···+rt−1+1 = · · · = Re sr

holds. For every 1 ≤ i ≤ t, put

τi := IGLri
(
| |−sr0+···+ri−1+1
F � · · ·� | |−sr0+···+ri

F

)
⊗ |detri |

Re sr0+···+ri
F
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which is an irreducible tempered representation of GLri(F ). Put G0 := U(V′2r0) and P0min :=
G0 ∩ Pmin. As 1′2 � | |−s2F � · · · � | |−sr0F is a discrete series representation of P0min(F+), the
parabolic induction

IG0
P0min

(
1′2 � | |

−s2
F � · · ·� | |−sr0F

)
is a finite direct sum of irreducible tempered representations of G0(F+). Let τ0 be the unique
direct summand with nonzero invariants under K′2r∩G0(F+). In particular, we obtain a Langlands
quotient

JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
where P is the parabolic subgroup of G containing P0 whose Levi quotient is isomorphic to
G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt . We claim

JGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))K′2r 6= {0}.(C.5)

Assuming this claim, then BC(π′) is isomorphic to the unique irreducible quotient of

IGL2r
((
�1
i=tτ

∨c
i |detri |

Re sr0+···+ri
F

)
� BC(τ0) �

(
�t
i=1τi|detri|

−Re sr0+···+ri
F

))
.

However, BC(τ0) is isomorphic to

IGL2r0
(
| |sr0F � · · ·� | |s2F � BC(1′2) � | |−s2F � · · ·� | |−sr0F

)
' IGL2r0

(
| |sr0F � · · ·� | |s2F � St2 � | |−s2F � · · ·� | |−sr0F

)
which is irreducible. The lemma follows.

Now we prove (C.5). Let w ∈ G(F+) be the element acting trivially on V′2r0 and switching
e−(r0+···+ri−1+j) with er0+···+ri+1−j for every 1 ≤ j ≤ ri and then every 1 ≤ i ≤ t. Note that we
have a canonical inclusion

IGP
(
τ0 �

(
�t
i=1τi|detri |

−Re sr0+···+ri
F

))
⊆ IGPmin

(
1′2 � | |

−s2
F � · · ·� | |−srF

)
which is G(F+)-equivariant. Let φ be the unique element in the latter space, realized as functions
on G(F+), that takes value 1 on K′2r, which belongs to the former space by our choice of τ0. By
[Kon03, Corollary 3.2], (C.5) is equivalent to∫

N(F+)
φ(wn)dn 6= 0(C.6)

in which N is the unipotent radical of P and the integral is absolutely convergent. By [Cas80,
Theorem 3.1], we have for r0 + 1 ≤ i ≤ r that

Twi(φ) = 1− q−1−2si

1− q−2si
· φ

which is nonzero as Re si > 0. Here, the operator Tw is defined at the beginning of [Cas80,
Section 3]. From this we obtain (C.6) hence (C.5). �

Remark C.2.5. In fact, for π ∈ S and π′ ∈ S ′ in Proposition C.2.2 that correspond to each other,
they also correspond under the local theta correspondence with respect to the unramified additive
character and the trivial splitting character.



170 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

C.3. Results from endoscopic classification. Let F/F+ be a totally imaginary quadratic
extension of a totally real number field in the main text. We state the following proposition,
which summarises all we need from Arthur’s endoscopic classification for unitary groups in this
article. In particular, we will use the notion of local base change for unitary groups defined over
F+
v for every place v of F+, denoted by BC as well, for which we have discussed some special cases

when v is inert in F in Subsection C.1.
Proposition C.3.1. Take a relevant representation (Definition 1.1.3) Π of GLN(AF ). Let V be
a standard definite or indefinite hermitian space over F of rank N and π = ⊗vπv an irreducible
admissible representation of U(V)(AF+). We have

(1) If BC(πv) ' Πv for every place v of F+, then the discrete automorphic multiplicity of π is
1. In particular, (V, π) is a relevant pair (Definition 3.2.7).

(2) If (V, π) is a relevant pair such that BC(π) ' Π,26 then we have BC(πv) ' Πv for every
place v of F+. In particular, the discrete automorphic multiplicity of π is 1 by (1).

(3) If v is archimedean but not τ∞, then BC(πv) ' Πv if and only if πv is the trivial represen-
tation.

(4) If v = τ∞, then BC(πv) ' Πv if and only if πv is the trivial representation (re-
sp. is one of the N discrete series representations with the Harish-Chandra parameter
{1−N

2 , 3−N
2 , . . . , N−3

2 , N−1
2 }) when V is definite (resp. indefinite).

Proof. Parts (1) and (2) are consequences of [KMSW, Theorem 1.7.1] for generic packets. Parts
(3) and (4) follow from (1), (2), and the definition of relevant representations. �

The above proposition has the following two immediate corollaries as two examples of the global
Jacquet–Langlands correspondence.
Corollary C.3.2. Take a finite place p of F+ inert in F . Let V and V′ be a standard definite and a
standard indefinite hermitian space over F , respectively, of even rank N = 2r, satisfying Vv ' V′v
(for which we fix) for every place v of F+ other than τ∞ and p. Let π be a stable automorphic
representation of U(V)(AF+) (Definition 3.2.3) such that π∞ is trivial and πp belongs to the set S in
Proposition C.2.2 (in particular, V⊗F+F+

p admits a self-dual lattice). Consider the representation
π′ := π′τ∞ ⊗ π

′
p ⊗ πτ∞,p of U(V′)(AF+) where

m π′τ∞ is a discrete series representation of U(V′)(F+
τ∞

) with the Harish-Chandra parameter
{r − 1

2 , r −
3
2 , . . . ,

3
2 − r,

1
2 − r}; and

m π′p ∈ S ′ is the representation of U(V′)(F+
p ) corresponding to πp as in Proposition C.2.2.

Then the discrete automorphic multiplicity of π′ is 1.
Proof. Put Π := BC(π). By Proposition C.3.1 and Proposition C.2.2, we have BC(π′v) ' Πv for
every place v of F+. The corollary follows by Proposition C.3.1(1). �

Corollary C.3.3. Take a finite place p of F+ inert in F . Let V and V′ be a standard definite
and a standard indefinite hermitian space over F , respectively, of odd rank N = 2r+ 1, satisfying
Vv ' V′v (for which we fix) for every place v of F+ other than τ∞ and p. Let π′ be a stable
automorphic representation of U(V′)(AF+) such that π′τ∞ is a discrete series representation of
U(V′)(F+

τ∞
) (Definition 3.2.3) with the Harish-Chandra parameter {r, r − 1, . . . , 1− r,−r}; π′τ is

trivial for every archimedean place τ 6= τ∞; and π′p is unramified. Consider the representation
π := πτ∞ ⊗ πp ⊗ (π′)τ∞,p of U(V)(AF+) where

m πτ∞ is trivial; and
m πp is unramified satisfying BC(πp) ' BC(π′p).

26Note that BC(π) exists by Proposition 3.2.8.
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Then the discrete automorphic multiplicity of π is 1.

Proof. Put Π′ := BC(π′). By Proposition C.3.1 and Proposition C.2.2, we have BC(πv) ' Π′v for
every place v of F+. The corollary follows by Proposition C.3.1(1). �

Appendix D. Some trace formulae argument

This appendix has two goals. In Subsection D.1, we remove some conditions in a theorem of
Caraiani and Scholze [CS17]. In Subsection D.2, we prove a formula computing the dimension of
old forms in an L-packet for unitary groups. These two subsections are independent on a logical
level; we collect them together in one appendix mainly because the argument we use are similar,
namely, trace formulae.

We keep the setup in the main text.

D.1. Vanishing of cohomology off middle degree.

Definition D.1.1. Let N ≥ 1 be an integer, and Σ+ a finite set of nonarchimedean places of
F+ containing Σ+

ram. Consider a homomorphism φ : TΣ+
N → κ with κ a field. We say that φ is

cohomologically generic if
Hi

ét(Sh(V,K), κ)TΣ+′
N ∩kerφ = 0

holds for
m every finite set Σ+′ of nonarchimedean places of F+ containing Σ+,
m every integer i 6= N − 1, and
m every standard indefinite hermitian space V over F and every object K ∈ K(V) of the form

KΣ+′ ×∏v 6∈Σ+
∞∪Σ+′ U(Λ)(OF+

v
) for a self-dual ∏v 6∈Σ+

∞∪Σ+′ OFv -lattice Λ in V⊗F AΣ+
∞∪Σ+′

F .

The following definition is essentially [CS17, Definition 1.9].

Definition D.1.2. Let φ : TΣ+
N → κ be a homomorphism with κ a field. For a place w of F+ not

in Σ+ that splits in F , we say that φ is decomposed generic at w if φ(Hw) ∈ κ[T ] has distinct
(nonzero) roots in which there is no pair with ratio equal to ‖w‖.27 Here, Hw ∈ TN,w[T ] is the
Hecke polynomial.

Theorem D.1.3. Let N ≥ 1 be an integer, and Σ+ a finite set of nonarchimedean places of F+

containing Σ+
ram. Let V be a standard indefinite hermitian space over F . Let φ : TΣ+

N → F` be a
homomorphism. Suppose [F+ : Q] > 1. Suppose that there exists a place w of F+ not in Σ+ ∪Σ+

`

that splits in F , such that φ is decomposed generic at w. Then we have
Hi

ét(Sh(V,K),F`)kerφ = 0
for every integer i 6= N − 1, and every object K ∈ K(V) of the form KΣ+ ×∏v 6∈Σ+

∞∪Σ+ U(Λ)(OF+
v

)
for a self-dual ∏v 6∈Σ+

∞∪Σ+ OFv-lattice Λ in V⊗F AΣ+
∞∪Σ+

F .

Proof. When F contains an imaginary quadratic field and every place in Σ+ splits in F (which
implies [F+ : Q] > 1), the statement of the theorem can be deduced from the analogous statement
for the unitary similitude group, namely Case 2 of [CS17, Theorem 6.3.1(2)]. In this subsection,
we will explain how to remove these restrictions.

In the statement of the theorem, let w0 be the underlying rational prime of w. We fix an
isomorphism C ' Qw0 that induces the place w of F . Put G := ResF+/Q U(V). We have the
Deligne homomorphism h: ResC/R Gm → G⊗QR as in Section 3.2. Put Kw0,0 := ∏

v|w0 U(Λ)(OF+
v

),
which is a hyperspecial maximal subgroup of G(Qw0). We fix a character $ : F×\A×F → C× that

27In fact, as pointed out in [CS, Remark 1.4], there is no need to assume that the roots are distinct.
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is unramified outside Σ+ such that $|A×
F+

is the quadratic character ηF/F+ associated to F/F+.
Put Σ := {p | Σ+

p ∩ Σ+ 6= ∅}.
We define a subtorus T ⊆ ResF/Q Gm such that for every commutative Q-algebra R,

T(R) = {a ∈ F ⊗Q R | NmF/F+ a ∈ R×}.

We fix a CM type Φ containing τ∞, and a sufficiently small open compact subgroup KT ⊆ T(A∞)
such that (KT)p is maximal for every p 6∈ Σ. Then Φ induces a Deligne homomorphism
hΦ : ResC/R Gm → T⊗Q R. We also put T := T(A∞,w0)/T(Z(w0))Kw0

T similar to Definition 3.5.5.
Put G̃ := G × T and h̃ := h × hΦ. Then we have the Shimura datum (G̃, h̃), which is of

Hodge type. Its reflex field is the composition F.FΦ ⊆ C. Therefore, for every sufficiently small
open compact subgroup K ⊆ G(A∞), we have the Shimura variety Sh(G̃, h̃)K×KT , which is smooth
projective (as [F+ : Q] > 1) over F.FΦ of dimensionN−1. When K is of the form Kw0Kw0,0, it has a
canonical smooth projective model S (G̃, h̃)Kw0 overW (Fw0) which admits a moduli interpretation
similar to the one introduced in Section 4.1. Note that F.FΦ is contained in W (Fw0)Q under the
isomorphism C ' Qw0 .

The discussion in [CS17], except in Section 5, is valid for all proper Shimura varieties of Hodge
type including the above one. Thus, we need to modify the argument in [CS17, Section 5] for our
case.

Let µ and µ̃ be the Hodge cocharacters corresponding to h and h̃, respectively. We have the
natural projection map B(G̃, µ̃) → B(G, µ) of Kottwitz sets, which is a bijection. For every
b ∈ B(G, µ), we have the corresponding Kottwitz groups J̃b and Jb, with a canonical isomorphism
J̃b ' Jb × T. For every (sufficiently small) open compact subgroup Kw0 ⊆ G(A∞,w0) and positive
integer m, we have the Igusa variety I b

Mant,Kw0 ,m for the integral model S (G̃, h̃)Kw0 , which is a
T-scheme over Fw0 . Define

[HT,c(I b
Mant,Q`)] :=

⊕
i

(−1)i lim−→
Kw0 ,m

Hi
T,c(I b

Mant,Kw0 ,m,Q`),

which is virtual representation of G(A∞,w0) × Jb(Qw0). The crucial point is that our G is the
honest unitary group, rather than the unitary similitude group. Then [CS17, Theorem 5.2.3] is
modified as

tr
(
φ | HT,c(I b

Mant,Q`)
)

=
∑

(H,s,η)
ι(G,H)STH

e (φH)

where is sum is taken over equivalent classes of elliptic endoscopic triples (H, s, η) of G; and we
use the character $ for the Langlands–Shelstad transfer. This formula can be proved in the same
way as for [Shi10, Theorem 7.2] since our Shimura variety has a similar moduli interpretation as
seen in Subsection 4.1, although the Shimura datum (G̃, h̃) is not of PEL type in the sense of
Kottwitz. We can fix the representatives of the triples (H, s, η) as in [CS17, Page 734] but without
the similitude factor. In particular, [CS17, Corollary 5.2.5] is modified as

tr
(
φ | HT,c(I b

Mant,Q`)
)

=
∑
G~n
ι(G,G~n)STG~n

e (φ~n).

The next statement [CS17, Proposition 5.3.1] or rather [Shi11, Corollary 4.7], namely,

IG~nθgeom(f~nθ) = τ(G~n)−1STG~n
e (φ~n)

holds as long as f~n and φ~n are associated in the sense of [Lab99, 3.2]. Here, G~n is the group
ResF/Q GL~no{1, θ}. Note that, for rational primes in Σ, we do not have explicit local base change
transfer. However, we will see shortly that there are enough associated pairs at these primes to
make the remaining argument work, following an idea in [Shi].
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For the test function φ ∈ C∞c (G(A∞,w0)× Jb(Qw0)) in [CS17, Theorem 5.3.2], if we assume φ =
φΣ ⊗ φΣ in which φΣ is the characteristic function of some open compact subgroup KΣ ⊆ G(QΣ),
then for every G~n, φ~n is associated to some function f~n in the sense above. This is shown in the
claim in the proof of [Shi, Proposition 1.4]. In particular, for such φ, we have

tr
(
φ | HT,c(I b

Mant,Q`)
)

=
∑
G~n
ι(G,G~n)IG~nθspec(f~nθ)

in view the above identities and [CS17, (5.3.2)]. The remaining argument toward [CS17, Theo-
rem 5.5.7] is same as it is on the GL-side, for which it suffices to use the above test functions φ.
In fact, our case is slightly easier as we do not have the similitude factor.

The argument towards Theorem D.1.3 or [CS17, Theorem 6.3.1(2)] only uses [CS17, Theo-
rem 5.5.7]. Therefore, Theorem D.1.3 holds. �

Corollary D.1.4. Let the situation be as in Subsection 6.1. Suppose [F+ : Q] > 1. Then for all
but finitely many primes λ of E, the composite homomorphism

TΣ+

N

φΠ−→ OE → OE/λ(D.1)

is cohomologically generic (Definition D.1.1).

Proof. As pointed out in the proof of [CH13, Proposition 3.2.5], we can choose a nonarchimedean
place w of F such that Πw is unramified with distinct Satake parameters. Let {α1, . . . , αN} be
the Satake parameter of Πw, which are algebraic integers. Since Πw is generic, we have αi/αj 6∈
{1, ‖w‖} for i 6= j. Thus, for every sufficiently large rational prime `, we have αi/αj 6∈ {1, ‖w‖} for
i 6= j even in F`. Let λ be a prime of E above such a rational prime `. Applying the Chebotarev
density theorem to any residual Galois representation ρ̄Π,λ of ρΠ,λ, we conclude that there are
infinitely many nonarchimedean places w of F+ not in Σ+∪Σ+

` that splits in F , such that (D.1) is
decomposed generic at w (Definition D.1.2). Thus, (D.1) is cohomologically generic by Theorem
D.1.3. The corollary follows. �

D.2. Dimension of old forms. Let N = 2r be an even positive integer. We consider
m a relevant representation Π of GLN(AF ),
m two disjoint finite sets Σ+

min and Σ+
lr of nonarchimedean places of F+ such that Σ+

min contains
Σ+

ram; Σ+
min ∪ Σ+

lr contains Σ+
Π (Notation 3.1.4); and every place in Σ+

lr is inert in F ,
m a finite set Σ+ of nonarchimedean places of F+ containing Σ+

min ∪ Σ+
lr ,

m a standard definite or indefinite hermitian space V over F of rank N such that Vv is not
split for v ∈ Σ+

lr ,
m a self-dual ∏v 6∈Σ+

∞∪Σ+
min∪Σ+

lr
OFv -lattice Λ in V⊗F AΣ+

∞∪Σ+
min∪Σ+

lr
F ,

m an object K ∈ K(V) of the form

K =
∏

v∈Σ+
min∪Σ+

lr

Kv ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr

U(Λ)(OF+
v

),

satisfying that Kv is special maximal for v ∈ Σ+
lr .

We have the homomorphism
φΠ : TΣ+

N → Q`

given by Π. Fix an isomorphism ι` : C ∼−→ Q`.

Definition D.2.1. Let v be a nonarchimedean place of F+. We say that an open compact
subgroup Kv of U(V)(F+

v ) is transferable if the following two conditions are satisfied.
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(1) For every endoscopic group H of U(Vv), if we let fH
Kv be the endoscopic transfer of 1Kv ,

then there exists a compactly supported smooth function φH
Kv on H(Fv) such that 1Kv and

φH
Kv are associated in the sense of [Lab99, 3.2].

(2) When H is the quasi-split unitary group of rank N , we can take φH
Kv to be supported on

GLN(OFv) once we identify H(Fv) with GLN(Fv).
We call the function φH

Kv in (2) an inertial transfer of Kv if Kv is transferable, and will drop the
superscript H in practice.

Lemma D.2.2. Let v be a nonarchimedean place of F+.
(1) If v splits in F , then every open compact subgroup Kv is transferable.
(2) If v is not in Σ+

∞ ∪ Σ+
min ∪ Σ+

lr , then the hyperspecial maximal subgroup U(Λ)(OF+
v

) is
transferable which admits 1GLN (OFv ) as an inertial transfer.

(3) If v is in Σ+
min∪Σ+

lr , then every sufficiently small open compact subgroup Kv is transferable.

Proof. Part (1) is trivial. Part (2) is the combination of the endoscopic fundamental lemma and
the base change fundamental lemma.

For (3), for sufficiently small Kv, condition (1) in Definition D.2.1 is proved in [Mor10, Lem-
ma 8.4.1(1)]; and condition (2) can be achieved by [Lab99, Proposition 3.1.7(2)] (see the proof of
[Lab99, Proposition 3.3.2]). �

Proposition D.2.3. Suppose that Kv is transferable for v ∈ Σ+
min. For every v ∈ Σ+

lr , let cv be
equal to 1 (resp. 0) if one can (resp. cannot) find purely imaginary complex numbers s2, . . . , sr
such that Πv is isomorphic to the induction

IGL2r
(
| |srF � · · ·� | |s2F � St2 � | |−s2F � · · ·� | |−srF

)
(see Subsection C.1 for the notation of induced representations). Then we have the identities

dimQ`[Sh(V,K)][ι`φΠ] =

∣∣∣∣∣∣∣
∏

v∈Σ+
min

tr(Πv(φKv) ◦ AΠv)
∏
v∈Σ+

lr

cv

∣∣∣∣∣∣∣ ,
dim HN−1

ét (Sh(V,K)F ,Q`)[ι`φΠ] = N

∣∣∣∣∣∣∣
∏

v∈Σ+
min

tr(Πv(φKv) ◦ AΠv)
∏
v∈Σ+

lr

cv

∣∣∣∣∣∣∣ ,
when V is definite and indefinite, respectively, for any inertial transfer φKv for Kv and any nor-
malized intertwining operator AΠv for Πv [Shi11, Section 4.1], for v ∈ Σ+

min.

Proof. We only prove the case where V is indefinite, and leave the case where V is definite (which
is slightly easier) to the readers.

By Proposition 3.2.4(1), we know that Π is tempered everywhere. Moreover, every discrete
automorphic representation of U(V)(AF+) whose global base change is isomorphic to Π has to be
cuspidal as well. Thus, we have Hi

ét(Sh(V,K)F ,Q`)[ι`φΠ] = 0 for i 6= N − 1.
If there exists v ∈ Σ+

lr such that cv = 0, then by Lemma C.2.4 and the above fact that Πv

is tempered, we have HN−1
ét (Sh(V,K)F ,Q`)[ι`φΠ] = 0. Thus, the proposition follows. In what

follows, we assume cv = 1 for every v ∈ Σ+
lr .

By Proposition C.3.1 and Lemma C.2.4, we have

dim HN−1
ét (Sh(V,K)F ,Q`)[ι`φΠ] = N

∏
v∈Σ+

min

∑
BC(πv)'Πv

dim(πv)Kv ,
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where the sum is taken over isomorphism classes of irreducible admissible representations πv of
U(V)(F+

v ) such that BC(πv) ' Πv (for v ∈ Σ+
min). Thus, our goal is to show

∏
v∈Σ+

min

∑
BC(πv)'Πv

dim(πv)Kv =

∣∣∣∣∣∣∣
∏

v∈Σ+
min

tr(Πv(φKv) ◦ AΠv)

∣∣∣∣∣∣∣ .(D.2)

Now for v ∈ Σ+
lr , we replace Kv by a smaller subgroup (with the same notation) that is trans-

ferable by Lemma D.2.2(3).28 Let K′ ∈ K(V) be the correspondent product. So we have

dim HN−1
ét (Sh(V,K′)F ,Q`)[ι`φΠ] = N

∏
v∈Σ+

min∪Σ+
lr

∑
BC(πv)'Πv

dim(πv)Kv .

On the other hand, by [Shi, (1.8) & (1.9)]29 with j = 0 and ξ the trivial representation, we have

dim HN−1
ét (Sh(V,K)F ,Q`)[ι`φΠ] = N

∣∣∣∣∣∣∣
∏

v∈Σ+
min∪Σ+

lr

tr(Πv(φKv) ◦ AΠv)

∣∣∣∣∣∣∣ ,
where φKv is any inertial transfer for Kv and AΠv is any normalized intertwining operator for Πv,
for v ∈ Σ+

lr . Since
∑

BC(πv)'Πv dim(πv)Kv ≥ 1 for every v ∈ Σ+
lr , (D.2) will be implied by

∏
v∈Σ+

lr

∑
BC(πv)'Πv

dim(πv)Kv =

∣∣∣∣∣∣∣
∏
v∈Σ+

lr

tr(Πv(φKv) ◦ AΠv)

∣∣∣∣∣∣∣ .(D.3)

For this, we choose an imaginary quadratic number field E ⊆ C satisfying
m E is not included in F ;
m if a rational prime p underlies Σ+

min, then p splits in E;
m if a rational prime p underlies Σ+

lr , then p is inert in E;
m the quadratic base change of Π to F̆ := F.E, denoted by Π̆, remains cuspidal (hence

relevant).
Let F̆+ ⊆ F̆ be the maximal totally real subfield; let Σ̆+

lr be the set of places of F̆+ above Σ+
lr ; and

let Σ̆+ the (finite set) of nonarchimedean places v̆ of F̆+ not in Σ̆+
lr such that Π̆v̆ is ramified. By

our choice of E, F̆ /F̆+ is everywhere unramified; every place in Σ̆+ splits in F̆ ; and every place in
Σ+

lr splits into two places of F̆+ both inert in F̆ . Let V̆ be the standard definite hermitian space
over F̆ of rank N such that V̆v̆ (for a nonarchimedean place v̆) is not split if and only if v̆ ∈ Σ̆+

lr .
Take an object K̆ ∈ K(V̆) of the form K̆ = ∏ K̆v̆ satisfying

m K̆v̆ is hyperspecial maximal if v̆ is inert in F̆ and not in Σ̆+
lr ;

m K̆v̆ is given by Kv for v̆ ∈ Σ̆+
lr , where v ∈ Σ+

lr underlies v̆;
m π̆v̆ has nonzero K̆v̆ invariants if v̆ splits in F̆ , where π̆v̆ is the descent of Π̆v̆ to an irreducible

admissible representation of U(V̆)(F̆+
v̆ ).

Then we have
dimQ`[Sh(V̆, K̆)][ι`φΠ̆] =

∏
v̆∈Σ̆+∪Σ̆+

lr

∑
BC(π̆v̆)'Π̆v̆

dim(π̆v̆)K̆v̆ .(D.4)

28We expect that the special maximal subgroup Kv is already transferable; but we do not need to address this
issue.

29Strictly speaking, Shin’s formulae are stated for unitary similitude groups and assuming F containing an
imaginary quadratic subfield. However, we can modify his argument to honest unitary groups and without the
constrain on F by our moduli interpretation as we did in the proof of Theorem D.1.3.
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On the other hand, by [Shi, (1.8) & (1.9)], we have

dimQ`[Sh(V̆, K̆)][ι`φΠ̆] =

∣∣∣∣∣∣∣
∏

v̆∈Σ̆+∪Σ̆+
lr

tr(Π̆v̆(φK̆v̆) ◦ AΠ̆v̆)

∣∣∣∣∣∣∣ .(D.5)

Here, for v̆ ∈ Σ̆+, we take φK̆v̆ to be 1K̆v̆ ⊗ 1K̆v̆ ; and for v̆ ∈ Σ̆+
lr , we take φK̆v̆ to be φKv where v is

place of F+ underlying v̆. Then it is easy to see that for v̆ ∈ Σ̆+, we have∣∣∣tr(Π̆v̆(φK̆v̆) ◦ AΠ̆v̆)
∣∣∣ =

∑
BC(π̆v̆)'Π̆v̆

dim(π̆v̆)K̆v̆ ≥ 1(D.6)

(in fact, the sum is taken over a singleton). Combining (D.4), (D.5), and (D.6), we obtain

∏
v̆∈Σ̆+

lr

∑
BC(π̆v̆)'Π̆v̆

dim(π̆v̆)K̆v̆ =

∣∣∣∣∣∣∣
∏
v̆∈Σ̆+

lr

tr(Π̆v̆(φK̆v̆) ◦ AΠ̆v̆)

∣∣∣∣∣∣∣ ,
which is nothing but ∏

v∈Σ+
lr

∑
BC(πv)'Πv

dim(πv)Kv


2

=

∣∣∣∣∣∣∣
∏
v∈Σ+

lr

tr(Πv(φKv) ◦ AΠv)

∣∣∣∣∣∣∣
2

.

Thus, (D.3) follows. The proposition is proved. �

Appendix E. Deformation of Galois representations

We consider a subfield F ⊆ C that is a CM number field. We adopt the notation concerning
ground fields in Subsection 1.3; and we put η := ηF/F+ for short. The main objective of this
appendix is to generalize results in [CHT08] and [Tho12] concerning the relation between the Galois
deformation algebra and the Hecke algebra, informally known as R=T theorems. In Subsection
E.1, we collect some facts concerning essentially conjugate self-dual representations, which is also
frequently used in the main text. In Subsection E.2, we recall the notion and facts of lifting
and deformation of Galois representations. In Subsection E.3, we study Fontaine–Laffaille local
deformations. In Subsection E.4, we study representations of tame groups, which will be used in
the next two subsections. In Subsection E.5, we study minimally ramified local deformations. In
Subsection E.6, we study local deformations related to the level raising. In Subsection E.7, we
state and prove our R=T theorem for both unitary Shimura sets and unitary Shimura varieties. In
Subsection E.8, we study the rigidity property for reduction of automorphic Galois representations,
in the sense of Definition E.7.1.

In this appendix, we shall slightly change our notation system from Section 2 to fit the one used
in [CHT08]. We fix an odd prime ` and an isomorphism ι` : C ∼−→ Q`. Consider a finite extension
Eλ of Q` inside Q`. Let O (rather than Oλ in Section 2) be the ring of integers of Eλ, λ the
maximal ideal of O, and k := O/λ the residue field. Following [CHT08], we denote by C f

O the
category of commutative local Artinian O-algebras with residue field k, and let CO be the category
of topological local O-algebras whose objects are inverse limits of objects of C f

O . For an object R
of CO , we shall denote by mR its maximal ideal. For an O-valued character, we will use the same
notation for its induced R-valued character for every object R of CO .

Take an integer N ≥ 1.
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E.1. Extension of essentially conjugate self-dual representations. In this subsection, we
collect some notion and facts on the extension of essentially conjugate self-dual representations.

Notation E.1.1. We recall the group scheme GN from [CHT08, Section 1]. Put
GN := (GLN ×GL1) o {1, c}

with c2 = 1 and
c(g, µ)c = (µ tg−1, µ)

for (g, µ) ∈ GLN ×GL1. In what follows, we will often regard GLN as a subgroup of GN via the
embedding g 7→ (g, 1, 1). Denote by ν : GN → GL1 the homomorphism such that ν|GLN ×GL1 is the
projection to the factor GL1 and that ν(c) = −1. We have the adjoint action ad of GN on MN ,
given by

ad(g, µ)(x) = gxg−1, ad(c)(x) = − tx

for x ∈ MN and (g, µ) ∈ GLN ×GL1.

Let Γ̃ be a topological group, and Γ ⊆ Γ̃ a subgroup of index at most two.

Notation E.1.2. Let R (rather than L in Section 2) be a commutative topological Z`-algebra.
For a continuous homomorphism

r : Γ̃→ GN(R)
such that the image of r|Γ is contained in GLN(R)×R×, we denote

r\ : Γ→ GLN(R)×R× → GLN(R)
the composition of r|Γ with the projection to GLN(R).

Lemma E.1.3. Suppose [Γ̃ : Γ] = 2. Let R be a commutative topological Z`-algebra and χ : Γ̃ →
R× a continuous character. We have

(1) If r : Γ̃ → GN(R) is a continuous homomorphism satisfying r−1(GLN(R) × R×) = Γ and
ν ◦ r = χ, then for every γ ∈ Γ̃ \ Γ, we have

r\,γ = B ◦ χr\,∨ ◦B−1,

where A is given from r(γ) = (B,−χ(γ), c).
(2) Let ρ : Γ → GLN(R) be a continuous homomorphism, γ an element in Γ̃ \ Γ, and B ∈

GLN(R) such that ργ = B ◦ χρ∨ ◦B−1 and B tB−1 = µBχ(γ)−1ρ(γ2) for some µB ∈ {±1}.
Then there exists a unique continuous homomorphism

r : Γ̃→ GN(R)
satisfying r|Γ = (ρ, χ|Γ, 1) and r(γ) = (B, µBχ(γ), c).

(3) Suppose in (2) that R is a field and ρ is absolutely irreducible. If ργ and χρ∨ are conjugate,
then ρ induces a homomorphism r : Γ̃ → GN(R) satisfying r|Γ = (ρ, χ), unique up to
changing the GLN(R)-component of r(γ) by a scalar in R×.

Proof. Part (1) is a special case of [CHT08, Lemma 2.1.1].
For (2), we check that

r(γ2) = (B, µBχ(γ), c) · (B, µBχ(γ), c) = (µBχ(γ)B tB−1, χ(γ2), 1) = (ρ(γ2), χ(γ2), 1).
Since Γ̃ is generated by Γ and γ, we obtain a unique continuous homomorphism r : Γ̃→ GN(R) as
in (2).

For (3), by Schur’s lemma, the element B is unique up to scalar in R×, which implies the
existence and also the uniqueness of µB. Thus, (3) follows immediately. �
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E.2. Deformation problems. In this subsection, we introduce the notion of deformation prob-
lems. Let Γ̃ be a topological group, and Γ ⊆ Γ̃ a subgroup of index at most two.
Notation E.2.1. We consider a pair (r̄, χ), where

m r̄ : Γ̃→ GN(k) is a homomorphism,
m χ : Γ̃→ O× a continuous homomorphism, known as the similitude character,

subject to the relation r̄−1(GLN(k)× k×) = Γ and ν ◦ r̄ = χ.
The following definition slightly generalizes [CHT08, Definition 2.2.1].

Definition E.2.2. A lifting of r̄ to an object R of CO is a continuous homomorphism r : Γ̃ →
GN(R) satisfying rmodmR = r̄ and ν ◦ r = χ. We say that two liftings are equivalent if they are
conjugate by an element in 1 + MN(mR) ⊂ GLN(R) ⊂ GN(R). By a deformation of r̄, we mean
an equivalence class of liftings of r.30

Now suppose that Γ is topologically finitely generated. Then there exists a universal lifting
runiv : Γ̃→ GN(Rloc

r̄ )
of r̄ to an object Rloc

r̄ of CO such that, for every object R of CO , the set of liftings of r̄ to R is in
natural bijection with HomCO

(Rloc
r̄ , R). Since Γ is topologically finitely generated, it is well-known

that Rloc
r̄ is Noetherian; and there exists natural isomorphisms

Homk

(
mRloc

r̄
/(m2

Rloc
r̄
, λ), k

)
' HomCO

(
Rloc
r̄ , k[ε]/(ε2)

)
' Z1(Γ̃, ad r̄),

where Z1(Γ̃, ad r̄) denotes the group of 1-cocycles of Γ̃ with values in the adjoint representation
(ad r̄,MN(k)). Explicitly, for φ ∈ Z1(Γ̃, ad r̄), the corresponding lifting of r̄ to k[ε]/(ε2) is given by

rφ(g) = (1 + εφ(g))r̄(g)
for every g ∈ Γ̃. For two cocycles φ1, φ2 ∈ Z1(Γ̃, ad r̄), the corresponding liftings rφ1 and rφ2 are
equivalent if and only if there exists an element x ∈ MN(k) such that

φ1(g)− φ2(g) = (1− ad r̄(g))(x)
for every g ∈ Γ̃. Thus, the equivalence classes of liftings of r̄ to k[ε]/(ε2) is in natural bijection
with H1(Γ̃, ad r̄).
Definition E.2.3. A local deformation problem of r̄ is a closed formal subscheme D of Spf Rloc

r̄

that is invariant under the conjugate action by 1 + MN(mRloc
r̄

).

By the moduli interpretation of Rloc
r̄ , giving a local deformation problem of r̄ is equivalent to

giving a collection of liftings of r̄ to objects in CO satisfying certain conditions (see [CHT08,
Definition 2.2.2 & Lemma 2.2.3]).
Definition E.2.4. For a local deformation problem D of r̄, we define the tangent space of D ,
denoted by L(D), to be the image of the subspace

L1(D) := Homk

(
mRloc

r̄
/(m2

Rloc
r̄
,I , λ), k

)
⊆ Z1(Γ̃, ad r̄)

under the natural map Z1(Γ̃, ad r̄)→ H1(Γ̃, ad r̄), where I ⊆ Rloc
r̄ is the closed ideal defining D .

Note that we have the identity
(E.1) dimk L1(D) = N2 + dimk L(D)− dimk H0(Γ̃, ad r̄).

30Strictly speaking, a lifting or a deformation of r̄ depends on the similitude character χ. But we choose to
follow the terminology in [CHT08] by not spelling the characters out, as the relevance on the similitude character
is always clear from the context.
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Remark E.2.5. Later, when we consider a nonarchimedean place v of F+ and take Γ̃ = ΓF+
v
, the

subgroup Γ we implicitly take is always ΓF+
v
∩ ΓF .

Now we apply Notation E.2.1 and Definition E.2.2 to the case where Γ̃ = ΓF+ and Γ = ΓF .

Definition E.2.6. A global deformation problem is a tuple (r̄, χ, S, {Dv}v∈S), where
m (r̄, χ) is a pair as in Notation E.2.1;
m S is a finite set of nonarchimedean places of F+ containing all `-adic places and those

places v such that r̄v is ramified;
m Dv is a local deformation problem of r̄v (Remark E.2.5) for each v ∈ S.

We take a global deformation problem S := (r̄, χ, S, {Dv}v∈S). For v ∈ S, we denote by Iv the
closed ideal of Rloc

r̄v defining Dv. For a subset T ⊆ S, put

Rloc
S ,T :=

⊗̂
v∈TRloc

r̄v /Iv,(E.2)

where the completed tensor product is taken over O. Recall from [CHT08, Definition 2.2.1] that
a T-framed lifting of r̄ to an object R of CO is a tuple (r; {βv}v∈T), where r is a lifting of r̄ to
R (Definition E.2.2), and βv ∈ 1 + MN(mR) for v ∈ T. Two T-framed liftings (r; {βv}v∈T) and
(r′; {β′v}v∈T) of r̄ to R are said equivalent, if there exists x ∈ 1+MN(mR) such that r′ = x−1 ◦ r ◦x
and β′v = x−1βv for every v ∈ T. A T-framed deformation of r̄ is an equivalence class of T-framed
liftings of r̄. We say that a T-framed lifting (r; {βv}v∈T) is of type S if rv belongs to Dv for every
v ∈ S, and is unramified for every v /∈ S. Note that being of type S is a property invariant under
the conjugate action by 1 + MN(mR). Thus it makes sense to speak of T-framed deformation of
type S . Let Def�T

S : CO → Set be the functor that sends an object R to the set of T-framed
deformations of r̄ to R of type S .

Let ΓF+,S be the Galois group of the maximal subextension of F/F+ that is unramified outside
S. Recall the cohomology group Hi

S ,T(ΓF+,S, ad r̄) for i ≥ 0 introduced after [CHT08, Defini-
tion 2.2.7]. By [CHT08, Lemma 2.3.4], these are finite dimensional k-vector spaces, and satisfy
Hi

S ,T(ΓF+,S, ad r̄) = 0 for i > 3.

Proposition E.2.7. Assume that r̄|ΓF is absolutely irreducible. Then for every subset T ⊆ S, the
functor Def�T

S is represented by a Noetherian O-algebra R�T
S in CO . Put Runiv

S := R�∅
S . We further

have
(1) There is a canonical isomorphism

Homk

(
mR�T

S

/(m2
R�T

S

, λ,mRloc
S ,T

), k
)
' H1

S ,T(ΓF+,S, ad r̄),

where we regard mRloc
S ,T

as its image under the tautological homomorphism Rloc
S ,T → R�T

S .
Moreover, if H2

S ,T(ΓF+,S, ad r̄) = 0 and for v ∈ S \ T, Dv is formally smooth over O, then
R�T

S is a power series ring over Rloc
S ,T in dimk H1

S ,T(ΓF+,S, ad r̄) variables.
(2) The choice of a lifting runiv

S : ΓF+ → GN(Runiv
S ) in the universal deformation determines an

extension of the tautological homomorphism Runiv
S → R�T

S to an isomorphism

Runiv
S [[Xv;i,j]]v∈T;1≤i,j≤N

∼−→ R�T
S

such that, for every v ∈ T, the universal frame at v is given by βv = 1 + (Xv;i,j)1≤i,j≤N .

Proof. These are exactly [CHT08, Proposition 2.2.9 & Corollary 2.2.13] except that they consider
only local deformation problems at split places (that is, they assume that all places in S are split
in F ). However, the same argument can be applied to the general case without change. �
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E.3. Fontaine–Laffaille deformations. In this subsection, we study Fontaine–Laffaille defor-
mations at `-adic places. We take a place v of F+ above `; and let w be the place of F above
v induced by the inclusion F ⊆ F+

v . We assume that ` is unramified in F , and denote by
σ ∈ Gal(Fw/Q`) the absolute Frobenius element.

Definition E.3.1. We say that Eλ is F -inclusive if Eλ contains the image of all embeddings of
F into Q`.

We first suppose that Eλ is F -inclusive, and put Σw := HomZ`(OFw ,O). Following [CHT08],
we use a covariant version of the Fontaine–Laffaille theory [FL82]. Let MFO,w be the category of
OFw ⊗Z` O-modules M of finite length equipped with

m a decreasing filtration {FiliM}i∈Z byOFw⊗Z`O-submodules that areOFw-direct summands,
satisfying Fil0M = M and Fil`−1M = 0, and

m a Frobenius structure, that is, σ⊗ 1-linear maps Φi : FiliM →M for i ∈ Z, satisfying the
relations Φi|Fili+1 M = `Φi+1 and ∑i∈Z Φi FiliM = M .

Let MFk,w be the full subcategory of MFO,w of objects that are annihilated by λ.
For an object M of MFO,w, there is canonical decomposition

M =
⊕
τ∈Σw

Mτ ,

whereMτ := M⊗OFw⊗Z`O,τ⊗1O. Then we have FiliM = ⊕
τ∈Σw FiliMτ with FiliMτ = Mτ∩FiliM ,

and that Φi induces O-linear maps
Φi
τ : FiliMτ →Mτ◦σ−1 .

We put
griMτ := FiliMτ/Fili+1 Mτ , gr•Mτ :=

⊕
i

griMτ , gr•M :=
⊕
τ∈Σw

gr•Mτ .

We define the set of τ -Fontaine–Laffaille weights of M to be
HTτ (M) := {i ∈ Z | griMτ 6= 0}.

We say that M has regular Fontaine–Laffaille weights if griMτ is generated over O by at most one
element for every τ ∈ Σw and every i ∈ Z.

For every integer a satisfying 0 ≤ a ≤ ` − 2, let MF[0,a]
O,w be the full subcategory of MFO,w

consisting of objects M satisfying Fila+1M = 0. In particular, we have MF[0,`−2]
O,w = MFO,w by

definition. There is a duality functor D[0,a] on the category MF[0,a]
O,w such that for every object M

of MF[0,a]
O,w , the object D[0,a](M) is defined as follows:

m the underlying OFw ⊗Z` O-module of D[0,a](M) is HomOFw
(M,Fw/OFw);

m Fili D[0,a](M) = HomOFw
(M/Fila+1−iM,Fw/OFw);

m for f ∈ Fili D[0,a](M) and m ∈ FiljM , we have

Φi(f)(Φj(m)) =
{
`a−i−jf(m)σ if i+ j ≤ a;
0 if i+ j > a.

It is easy to see that D[0,a](M) is a well-defined object of MFO,w (see [CHT08, Page 34]), and that
D[0,a](D[0,a](M)) = M .

Let O[ΓFw ]f.l. be the category of O-modules of finite length equipped with a continuous action
of ΓFw . In [CHT08, 2.4.1], the authors defined an exact fully faithful, covariant O-linear functor

Gw : MFO,w → O[ΓFw ]f.l.
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whose essential image is closed under taking sub-objects and quotient objects.31 The length of an
object M in MFO,w as an O-module equals [Fw : Q`] times the length of Gw(M) as an O-module.
If M belongs to MF[0,a]

O,w , then we have

Gw(D[0,a](M)) = Gw(M)∨(−a),
where Gw(M)∨ := HomO(Gw(M), Eλ/O) with the dual Galois action. For two objects M1,M2 of
MFO,w, we have a canonical isomorphism

HomMFO,w
(M1,M2) ∼−→ H0(Fw,HomO(Gw(M1),Gw(M2)))

and a canonical injective map
Ext1

MFO,w
(M1,M2) ↪→ Ext1

O[ΓFw ]f.l.(Gw(M1),Gw(M2)),

where the target is canonically isomorphic to H1(Fw,Homk(Gw(M1),Gw(M2))) ifM1,M2 are both
objects of MFk,w.

Example E.3.2. For an integer a satisfying 0 ≤ a ≤ `−2 and an object R of C f
O , we have an object

R{a} of MFO,w defined as follows: the underlying OFw⊗Z` O-module is simply ((Fw/OFw)⊗R)ea,
with the filtration given by

FiliR{a} =
{((Fw/OFw)⊗R)ea if i ≤ a;

0 if i > a.
Finally, the Frobenius structure is determined by Φa(ea) = ea. Then we have

Gw(R{a}) ' R(−a)
as O[ΓFw ]-modules, where (−a) denotes the Tate twist, and D[0,b](R{a}) ' R{b − a} for every
integer b satisfying a ≤ b ≤ `− 2.

Construction E.3.3. We construct a functor �σ : MFO,w →MFO,w as follows: for an object M
of MFO,w, the underlying OFw ⊗Z` O-module of Mσ is OFw ⊗OFw ,σ M with the induced filtration
and Frobenius structure. Then we have Mσ

τ = Mτ◦σ−1 for every τ ∈ Σw, and that Gw(Mσ) is
isomorphic to Gw(M) but with the action of ΓFw twisted by the absolute Frobenius of Fw: if we
denote by ρ and ρσ the actions of ΓFw on Gw(M) and Gw(Mσ), respectively, then they satisfy

ρσ(g) = ρ(σ̃−1gσ̃),
where σ̃ ∈ Gal(F+

v /Q`) is a lift of the absolute Frobenius.
We now let �c : MFO,w →MFO,w be the [F+

v : Q`]-th iteration of the functor �σ constructed
above. Take an object M of MFO,w. Suppose that M is finite free over OFw ⊗ R for some object
R of C f

O . Then giving an isomorphism M ' D[0,a](Mc) is equivalent to giving a perfect pairing
〈 , 〉 : Mc ×M → R{a}

in the category MFO,w, where R{a} is the object in Example E.3.2. The latter is equivalent to
giving, for each τ ∈ Σw, an R-bilinear perfect pairing 〈 , 〉τ : Mτc ×Mτ → (Q`/Z`)⊗R satisfying
that

(1) for every i, j ∈ Z and every x ∈ FiliMτ and y ∈ FiljMτ , 〈Φi
τcx,Φj

τy〉τ equals `a−i−j〈x, y〉τ
(resp. 0) if i+ j ≤ a (resp. i+ j > a); and

(2) for every i ∈ Z, the annihilator of FiliMτ under 〈 , 〉τ is Fila+1−iMτc ; in particular, 〈 , 〉τ
induces an R-linear isomorphism griMτ ' HomR(gra−iMτc , (Q`/Z`)⊗R).

31In fact, if US is the contravariant functor from MFO,w to O[ΓFw ]f.l. defined in [FL82], then we have Gw(M) '
US(D[0,`−2](M))(2− `).
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Definition E.3.4. Let R be an object of C f
O , and ρ : ΓFw → GLn(R) a continuous representation.

We say ρ is crystalline with Fontaine–Laffaille weights in [0, a] for some 0 ≤ a ≤ ` − 2 if (Rn, ρ)
lies in the essential image of the functor Gw : MF[0,a]

O,w → O[ΓFw ]f.l.; in this case, we say that ρ has
regular Fontaine–Laffaille weights if so does G−1

w (ρ).
Now we consider a pair (r̄, χ) from Notation E.2.1 with Γ̃ = ΓF+

v
and Γ = ΓF+

v
∩ΓF = ΓFw . We

do not assume that Eλ is F -inclusive. We choose an F -inclusive finite unramified extension E ′λ of
Eλ, with the ring of integers O ′ and the residue field k′.
Assumption E.3.5. There exist an integer a satisfying 0 ≤ a ≤ `− 2 and an element b ∈ Z/2Z
such that

(1) χ = ηbvε
−a
`,v ; and

(2) r̄\ ⊗k k′ is crystalline with regular Fontaine–Laffaille weights in [0, a].
Definition E.3.6. Under Assumption E.3.5, we define DFL to be the local deformation problem
of r̄ that classifies the liftings r : ΓF+

v
→ GN(R) of r̄ to objects R of CO such that for every Artinian

quotient R′ of R⊗O O ′, r\ ⊗R R′ is crystalline with Fontaine–Laffaille weights in [0, a] (Definition
E.3.4).
Remark E.3.7. It is straightforward to check that Assumption E.3.5 and Definition E.3.6 do not
depend on the choice of E ′λ.
Lemma E.3.8. Suppose ` > N and assume Assumption E.3.5. We have

dimk L(DFL)− dimk H0(F+
v , ad r̄) = [F+

v : Q`] ·
N(N − 1)

2 .

Proof. We may assume Eλ = E ′λ.
Suppose first that v is split in F . Then we have Fw = F+

v , and that a lifting r in DFL(R) of r̄ is of
the form r = (ρ, ε−a`,v ) : ΓFw → GLN(R)×R× such that for every Artinian quotient R′ of R, ρ⊗RR′
lies in the essential image of the functor Gw. Then the lemma is exactly [CHT08, Corollary 2.4.3].

Suppose now that v is inert in F ; and denote by Γw/v the Galois group of the quadratic extension
Fw/F

+
v . Then the restriction map induces an isomorphism

H1(F+
v , ad r̄) ∼−→ H1(Fw, ad r̄)Γw/v .

Put M := G−1
w (r̄\). Then the deformations of r̄ to k[ε]/(ε2) that lie in the essential image of

Gw are classified by Ext1
MFk,w

(M,M), which is canonically a Γw/v-stable subspace of H1(Fw, ad r̄).
Therefore, we have

L(DFL) = Ext1
MFk,w

(M,M) ∩ H1(Fw, ad r̄)Γw/v = Ext1
MFk,w

(M,M)Γw/v .

In fact, the induced action of Γw/v on Ext1
MFk,w

(M,M) can be described as follows. Recall the
functor �c in Construction E.3.3. Then Gw(Mc) is isomorphic to r̄\,c|ΓFw . Since r̄

\,c and r̄\,∨(−a)
are conjugate, we haveM ' D[0,a](Mc). We fix such an isomorphismM ' D[0,a](Mc) hence obtain
a pairing 〈 , 〉 (with R = k) as in Construction E.3.3. Then for an element [E] ∈ Ext1

MFk,w
(M,M)

represented by an extension 0 → M → E → M → 0, the image of [E] under the action of the
(unique) non-trivial element in Γw/v is obtained by applying the functor D[0,a](�c) to 0 → M →
E →M → 0.

To compute Ext1
MFk,w

(M,M)Γw/v , we recall first the following long exact sequence in [CHT08,
Lemma 2.4.2]:

0 // EndMFk,w
(M) // Fil0 HomOFw⊗Z`O

(M,M) α // HomOFw⊗Z`O,σ⊗1(gr•M,M) β // Ext1
MFk,w

(M,M) // 0,

(E.3)
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where
m Fil0 HomOFw⊗Z`O

(M,M) denotes the OFw ⊗Z` O-submodule of HomOFw⊗Z`O
(M,M) of en-

domorphisms that preserve the filtration;
m the map α takes an element f ∈ Fil0 HomOFw⊗Z`O

(M,M) to (fΦi − Φif)i∈Z; and
m the map β is defined as follows: if ϕ = (ϕi)i∈Z is a σ ⊗ 1-linear map from gr•M to M ,

then β(ϕ) is given by the extension class of E = M ⊕ M with the filtration FiliE =
FiliM ⊕ FiliM and the Frobenius structure

Φi
E :=

(
Φi ϕi

0 Φi

)
.

To prove the lemma, we need to derive an analogous long exact sequence similar to (E.3) but with
the last term Ext1

MFk,w
(M,M)Γw/v . For the first term, note that we have a canonical isomorphism

EndMFk,w
(M) ' H0(Fw, ad r̄), which contains H0(F+

v , ad r̄) as a submodule. For the second term,
let Fil0 HomOFw⊗Z`O

(M,M)+ be the submodule of Fil0 HomOFw⊗Z`O
(M,M) consisting of elements

f = (fτ )τ∈Σw such that −fτc is the adjoint of fτ under the pairing 〈 , 〉τ for every τ ∈ Σw. For the
third term, let HomOFw⊗Z`O,σ⊗1(gr•M,M)+ denote by the submodule of HomOFw⊗Z`O,σ⊗1(gr•M,M)
consisting of ϕ = (ϕi)i∈Z such that
(E.4) 〈Φi

τc(x), ϕa−iτ (y)〉τ + 〈ϕiτc(x),Φa−i
τ (y)〉τ = 0

is satisfies for every x ∈ griMτc and y ∈ gra−iMτ .
Then (E.3) induces an exact sequence

0 // H0(F+
v , ad r̄) // Fil0 HomOFw⊗Z`O

(M,M)+ α // HomOFw⊗Z`O,σ⊗1(gr•M,M)+ β // Ext1
MFk,w

(M,M)Γw/v // 0

of k-vector spaces. We now compute the dimension of the middle two terms. From the description
of Fil0 HomOFw⊗Z`O

(M,M)+, it is clear that fτc is determined by fτ for every τ ∈ Σw. On the
other hand, for each fixed τ , all the possible choices of fτ form a k-vector space of dimension
N(N+1)

2 . Thus, we have

dimk Fil0 HomOFw⊗Z`O
(M,M)+ = [F+

v : Q`] ·
N(N + 1)

2 .

For HomOFw⊗Z`O,σ⊗1(gr•M,M)+, we first note that the map⊕
i

Φi
τ : gr•Mτ →Mτ◦σ−1

is an isomorphism for every τ ∈ Σw. It follows from (E.4) that ϕτc := ⊕
i ϕ

i
τc is determined by

ϕτ := ⊕
i ϕ

i
τ . On the other hand, for each fixed τ , all the possible choices of ϕτ : gr•Mτ →Mτ◦σ−1

form a k-vector space of dimension N2. Thus, we have
dimk HomOFw⊗Z`O,σ⊗1(gr•M,M)+ = [F+

v : Q`] ·N2.

The Lemma follows immediately. �

Proposition E.3.9. Suppose ` > N and assume Assumption E.3.5. The local deformation prob-
lem DFL is formally smooth over Spf O of pure relative dimension N2 + [F+

v : Q`] · N(N−1)
2 .

Proof. By Lemma E.3.8, it suffices to show that DFL is formally smooth over O. We may again
assume Eλ = E ′λ. When v is split in F/F+, the proposition has been proved in [CHT08, Lem-
ma 2.4.1].

Now we suppose that v is inert in F . Fix a subset Σ+
w ⊂ Σw so that Σw = Σ+

w

∐Σ+,c
w . Let R be

an object of C f
O and I ⊂ R an ideal satisfying mRI = (0). Let r be a lifting of r̄ to R/I, and put
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M := G−1
w (r\). Note that M is an object of MF[0,a]

O,w , and that for every τ ∈ Σv, Mτ is free of rank
N over R/I and FiliMτ is a R/I-direct summand of Mτ .

Recall the functor �c in Construction E.3.3. Then Gw(Mc) is isomorphic to r̄\,c|ΓFw . Since r̄
\,c

and r̄\,∨(−a) are conjugate, we haveM ' D[0,a](Mc). We fix such an isomorphismM ' D[0,a](Mc)
hence obtain a pairing 〈 , 〉 (with R = R/I) as in Construction E.3.3. In view of Assumption
E.3.5(2), let mτ,1 < · · · < mτ,N be the τ -Hodge–Tate weights of M for every τ ∈ Σw. Then there
exists a basis eτ,1, . . . , eτ,N of Mτ over R/I satisfying Filmτ,N+1−iMτ = ⊕i

j=1(R/I)eτ,j for every
1 ≤ i ≤ N . By duality, we have mτc,i + mτ,N+1−i = a. Then we may choose the basis (eτ,i) such
that 〈eτc,i, eτ,j〉τ = δi,N+1−j for every τ ∈ Σ+

w and every 1 ≤ i, j ≤ N .
We now define an object M̃ = ⊕

τ∈Σw M̃ τ of MFO,w that reduces to M , whose underlying
OFw ⊗ O-module is free over OFw ⊗ R, and an isomorphism M̃ ' D[0,a](M̃c) that reduces to the
previous isomorphism M ' D[0,a](Mc), as follows. As an R-module, we take M̃ τ = R⊕N with
the basis (ẽτ,i) that lifts the basis (ẽτ,i) of Mτ . We lift 〈 , 〉τ to an R-bilinear perfect pairing
M̃ τc × M̃ τ → R such that 〈ẽτc,i, ẽτ,j〉τ = δi,N+1−j still holds for every τ ∈ Σ+

w and every 1 ≤ i, j ≤
N . For the filtration, we put Film M̃ τ := ⊕i

j=1Rẽτ,j for m satisfying mτ,N−i < m ≤ mτ,N+1−i.
Then M̃ ⊗R R/I is isomorphic to M as filtered OFw ⊗ R/I-modules; and the condition (2) in
Construction E.3.3 holds for M̃ as well. For the Frobenius structure on M̃ , we first define maps
Φ̃mτ,i
τ : Filmτ,i M̃ τ → M̃ τ◦σ−1 for τ ∈ Σ+

w by the recursive induction on i. For i = N , we take Φ̃mτ,N
τ

to be an arbitrary lift of Φmτ,N
τ : Filmτ,N Mτ → Mτ◦σ−1 for τ ∈ Σ+

w . For i ≤ N − 1, we take Φ̃mτ,i
τ

to be a lift of Φmτ,i
τ : Filmτ,iMτ → Mτ◦σ−1 that restricts to `mτ,i−mτ,i+1Φ̃mτ,i+1

τ on Filmτ,i+1 M̃ τ . By
Nakayama’s lemma, we have

M̃ τ◦σ−1 =
∑
i

Φ̃mτ,i
τ (Filmτ,i M̃ τ )

for every τ ∈ Σ+
w . Finally, we define Φ̃i

τc : M̃ τc → M̃ τc◦σ−1 for τ ∈ Σ+
w to be the unique R-linear

map satisfying the condition (1) in Construction E.3.3 for M̃ . This finishes the construction of M̃
and the isomorphism M̃ ' D[0,a](M̃c), which together give rise to a lifting r̃ of r̄ to R that reduces
to r. Thus, DFL is formally smooth over O.

The proposition is proved. �

E.4. Representations of the tame group. In this subsection, we will study conjugate self-dual
representations of the tame group, and define the notion of minimally ramified deformations of
such representations.

Definition E.4.1. Let q ≥ 1 be a positive integer coprime to `. We define the q-tame group,
denoted by Tq, to be the semidirect product topological group tZ` o φẐ

q where φq maps t to tq,
that is, φqtφ−1

q = tq. For every integer b ≥ 1, We identify Tqd as a subgroup of Tq topologically
generated by t and φqb = φbq.

We consider a reductive group G over O, together with a surjective homomorphism ν : G→ H
over O, where H is an algebraic group over O of multiplicative type. Consider a pair (%̄, µ) in
which %̄ : Tq → G(k) and µ : Tq → H(O) are continuous homomorphisms satisfying ν ◦ %̄ = µ̄ and
µ(t) = 1. Similar to the case in Subsection E.2, let Rloc

% be the O-algebra in CO that parameterizes
liftings % of %̄ satisfying ν ◦ % = µ.32 The following proposition generalizes the tame case of
[Sho18, Theorem 2.5].

32Here, once again we omit the similitude character µ in the ring Rloc
% , in order to be consistent with the previous

convention.
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Proposition E.4.2. The ring Rloc
%̄ is a local complete intersection, flat and of pure relative di-

mension d over O, where d is the relative dimension of the kernel of ν over O.

Proof. We follow the same line as in the proof of [Sho18, Theorem 2.5]. Let G0 and G1 be the fibers
at 1 and µ(φq) of the homomorphism ν, respectively. Define the subscheme M (G, q) ofG0×Spec OG1
such that for every object R of CO , M (G, q)(R) consists of pairs (A,B) ∈ G0(R)×G1(R) satisfying

BAB−1 = Aq.(E.5)

It suffices to show that M (G, q) is a local complete intersection, flat and of pure relative dimension
d over O, since Rloc

%̄ is the completion of M (G, q) at the k-point (%̄(t), %̄(φq)).
First, we show that every geometric fiber of M (G, q)→ Spec O is of pure dimension d. Consider

the natural projection
p : M (G, q)→ G0

to the first factor. Take a geometric point SpecK → Spec O. For a pointA0 ∈ G0(K) in the image
of p(K), let Z(A0) be the centralizer of A0 in G0,K as a closed subscheme of G0,K , and C(A0)
the conjugacy class of A0, which is a locally closed subscheme of G0,K isomorphic to G0,K/Z(A0).
Then C(A0) lies in the image of pK . For every point A ∈ C(A0)(K), the fiber p−1

K (A) is a torsor
under the group Z(A), which is conjugate to Z(A0). Thus, p−1

K (C(A0)) is irreducible of dimension
dim p−1

K (C(A0)) = dimC(A0) + dimZ(A0) = dimG0,K = d.

To continue, we choose an embedding e : GK → GLm,K of algebraic groups over K for some integer
m ≥ 1. By (E.5), the image of e(K)◦p(K) consists only of matrices whose generalized eigenvalues
are (qm! − 1)-th roots of unity, hence finitely many conjugacy classes in GLm(K). We claim that
the image of p(K) consists of finitely many conjugacy classes in G0(K) as well, which implies that
M (G, q)K is of pure dimension d. In fact, we have the following commutative diagram

G0(K)//G0(K) //

��

GLm(K)//GLm(K)

��
(G0,K//G0,K)(K) // (GLm,K //GLm,K)(K)

of sets, in which the bottom map is finite since the morphism G0,K//G0,K → GLm,K //GLm,K is;
and the left map is also finite due to the finiteness of unipotent conjugacy classes [Lus76]; it follows
that the upper map is finite as well.

The above discussion shows that the morphism M (G, q)→ Spec O is of pure relative dimension
d. Now we take a closed point (Ā, B̄) of M (G, q), which induces a homomorphism

OM (G,q),(Ā,B̄) → OG0,Ā⊗̂OOG1,B̄

of corresponding complete local rings. As both G0 and G1 are smooth over O of pure relative
dimension d, both OG0,Ā and OG1,B̄ are power series rings over O in d variables. The relation
(E.5), or equivalently, the relation A = B−1AqB, is defined by d equations in OG0,Ā⊗̂OOG1,B̄. In
other words, M (G, q) is a local complete intersection hence Cohen-Macaulay. Therefore, M (G, q)
is flat over O. The proposition is proved. �

Take an integer n ≥ 1. Now we apply the above discussion to the homomorphism ν : Gn → GL1
in Notation E.1.1. Consider a pair (%̄, µ) from Notation E.2.1 with Γ̃ = Tq and Γ = Tq2 , such that
µ(t) = 1. In particular, %̄ : Tq → Gn(k) is a homomorphism and µ : Tq → O× is a (continuous)
similitude character. Write

%̄(t) = Ā = (Ā, 1, 1), %̄(φq) = B̄ = (B̄,−µ(φq), c)(E.6)
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for Ā, B̄ ∈ GLn(k). For a lifting % of %̄ to an object R of CO , we write %(t) = A = (A, 1, 1) and
%(φq) = B = (B,−µ(φq), c). Then the pair (A,B) reduce to (Ā, B̄), and satisfy the relation
(E.7) B tA−1B−1 = Aq.

Corollary E.4.3. The ring Rloc
%̄ is a local complete intersection, flat and of pure relative dimension

n2 over O.

Proof. This follows immediately from Proposition E.4.2 since the kernel of ν : Gn → GL1 is of
dimension n2. �

From now till the end of this subsection, we assume l ≥ n. Denote by Nn (resp. Un) the closed
subscheme of Mn (resp. GLn) defined by the equation Xn = 0 (resp. (A − 1)n = 0). For every
object R of CO , we have the truncated exponential map exp: Nn(R) → Un(R) defined by the
formula

expX = 1 +X + · · ·+ Xn−1

(n− 1)! ,

which is an bijection. Its inverse is given by the truncated logarithm map log : Un(R) → Nn(R)
defined by the formula

logA =
n−1∑
i=1

(−1)i−1 (A− 1)i
i

.

Let Pn be the set of partitions of n. By the classification of nilpotent orbits in GLn, for K = k,Eλ,
we have canonical surjective maps π : Nn(K)→ Pn such that the fibers of π are exactly the orbits
in Nn(K) under the conjugate action of GLn(K).

By the continuity of %̄, we know that Ā in (E.6) is unipotent, which implies Ā ∈ Un(k). Put
X̄ := log Ā ∈ Nn(k). Following [Boo19, Definition 3.9], we define the functor NilX̄ : CO → Set that
sends an object R of CO to the set of elements X ∈ Nn(R) that reduce to X̄ and are of the form
CX0C

−1, where X0 is an element in Nn(O) satisfying π(X0) = π(X̄) and C ∈ GLn(R), where we
regard X0 as an element in Nn(Eλ) in the notation π(X0).

Definition E.4.4. We say that a lifting % of %̄ to an object R of CO is minimally ramified if there
exists an element X ∈ NilX̄(R) such that %\(t) = expX.

Let Dmin
%̄ be the local deformation problem of %̄ (Definition E.2.3) that classifies minimally

ramified liftings of %̄.

Proposition E.4.5. The local deformation problem Dmin
%̄ is formally smooth over Spf O of pure

relative dimension n2.

Proof. We follow the approach of [Boo19, Proposition 5.6], where a similar result for symplectic
or orthogonal representations was proved.

Consider the morphism α : Dmin
%̄ → NilX̄ that sends a lifting % to logA if %\(t) = A. In the

definition of NilX̄ , we may fix the nilpotent element X0 ∈ Nn(O). Moreover, up to conjugation in
GLn(O), we may assume

X0 =


Jn1

. . .

Jnr

 ,
where n = n1+· · ·+nr, and Jni is the Jordan block of size ni-by-ni as in Subsection 1.3. Let Zn(X0)
be the centralizer of X0 in GLn,O , which is a closed subscheme of GLn,O . By [Boo19, Remark 4.18],
Zn(X0) is smooth over O. By [Boo19, Lemma 3.11], NilX̄ is represented by a formal power series
ring over O in n2 − dimO Zn(X0) variables, where dimO Zn(X0) denotes the relative dimension
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of Zn(X0) over O. Thus, it suffices to show that α is represented by a formal scheme formally
smooth of pure relative dimension dimO Zn(X0) over NilX̄ .

Take a lifting % of %̄ to an object R of CO . Then %(φq) has the form (B,−µ(φq), c) with
B ∈ GLn(R) that reduces to B̄ and satisfies
(E.8) B tXB−1 = −qX
by (E.7). For each given X ∈ NilX̄ , if there exists B ∈ GLn(R) that reduces to B̄ and satisfies
(E.8), then the set of all elements B form a torsor under the group

Ẑn(X)(R) := {g ∈ 1 + Mn(mR) | gXg−1 = X},
which is isomorphic to the group of R-valued points of the formal completion of the group scheme
Zn(X0) along the unit section. Thus, to finish the proof, it suffices to show that the equation (E.8)
admits at least one solution for B that reduces to B̄.

Assume first X = X0 in Nn(R). Then

B0 :=


An1

. . .

Anr

 , where Ani :=


(−q)ni−1

. .
.

−q
1

 ,
is a solution to (E.8). In the general case, we write X = CX0C

−1 for some C ∈ GLn(R). Then
B := CB0

tC satisfies the equation (E.8). Up to multiplying C by an element in Zn(X0)(R) from
the right, we can make B ∈ GLn(R) to reduce to B̄. This finishes the proof of the proposition. �

Recall from Definition E.2.4 that L(Dmin
%̄ ) ⊆ H1(Tq, ad %̄) is tangent space of the local deforma-

tion problem Dmin
%̄ .

Corollary E.4.6. We have dimk L(Dmin
%̄ ) = dimk H0(Tq, ad %̄).

Proof. Suppose Dmin
%̄ = Spf Rmin

%̄ . By (E.1), we have
dimkmRmin

%̄
/(λ,m2

Rmin
%̄

) = dimk L(Dmin
%̄ ) + n2 − dimk H0(Tq, ad %̄).

From this, the corollary follows immediately from Proposition E.4.5. �

To end this subsection, we record the following lemma concerning decomposition of representa-
tions of the q-tame group, in which part (1) will be used later and part (2) is only for complement.

Lemma E.4.7. Let (ρ̄, M̄) be an unramified representation of Tq = tZ` o φẐ
q over k of dimension

N . Suppose that M̄ admits a decomposition
M̄ = M̄1 ⊕ · · · ⊕ M̄s

stable under the action of ρ̄(φq) such that the characteristic polynomials of ρ̄(φq) on Mi are mu-
tually coprime for 1 ≤ i ≤ s. Let (ρ,M) be a lifting of (ρ̄, M̄) to an object R of CO . Then we
have

(1) There is a unique decomposition
M = M1 ⊕ · · · ⊕Ms

of free R-modules, such that Mi is stable under the action of ρ(φq) and it is a lifting of M̄i

as a φq-module.
(2) Write ρ(t) = (ρ(t)i,j) with ρ(t)i,j ∈ HomR(Mj,Mi). Suppose that q is not an eigenvalue for

the canonical action of φq on Homk(M̄j, M̄i) for all i 6= j. Then we have ρ(t)i,j = 0 for all
i 6= j; in other words, the decomposition in (1) is stable under the whole group Tq.



188 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

Proof. For (1), let P (T ) ∈ R[T ] be the characteristic polynomial of ρ(φq) on M . By Hensel’s
lemma, P (T ) admits a unique decomposition

P (T ) =
s∏
i=1

Pi(T )

such that Pi(T ) modmR is the characteristic polynomial of ρ̄(φq) on M̄i for 1 ≤ i ≤ s. We put
Qi(T ) = ∏

j 6=i Pj(T ) for 1 ≤ i ≤ s. We put Mi := Qi(φq)M and Ni := Pi(φq)M . Then both Mi

and Ni are both stable under φq; Mi is annihilated by Pi(φq); Ni is annihilated by Qi(φq); hence
Mi ∩ Ni = {0}. Using Nakayama’s lemma, it is easy to see that (Pi(T ), Qi(T )) = R[T ]. Thus,
there exist polynomials Fi, Gi ∈ R[T ] such that FiPi +GiQi = 1 in R[T ]. We then obtain

Fi(φq)Ni +Gi(φq)Mi = M,

hence M = Mi ⊕ Ni. To complete the proof of (1), it suffices to show that Ni = ⊕
j 6=iMj. By

definition, it is clear that Mj ⊆ Ni for every j 6= i, hence ⊕j 6=iMj ⊆ Ni. The inverse inclusion
follows from the fact that the ideal of R[T ] generated by Qj for j 6= i is same as the ideal generated
by Pi.

For (2), we choose a basis of M over R adapted to the decomposition of M in (1). We identify
ρ(t) and ρ(φq) with their matrices under this basis. We have ρ(φq)i,j = 0 for i 6= j since each Mi

is stable under ρ(φq). Let J ⊂ R be the ideal generated by the coefficients of ρ(t)i,j for i 6= j. We
have to show that J = 0. By Nakayama’s lemma, it suffices to show that J = mRJ . As

ρ(t)q = (1 + (ρ(t)− 1))q = 1 + q(ρ(t)− 1) +
∑
a≥2

(
q

a

)
(ρ(t)− 1)a,

and ρ(t) ≡ 1 modmR, we have
(ρ(t)q)i,j ≡ qρ(t)i,j mod mRJ

for i 6= j. The relation φqt = tqφq implies that
ρ(φq)i,iρ(t)i,j = (ρ(t)q)i,jρ(φq)j,j ≡ qρ(t)i,jρ(φq)j,j mod mRJ.

It follows that
ρ(t)i,jPi(qρ(φq)j,j) ≡ Pi(ρ(φq)i,i)ρ(t)i,j ≡ 0 mod mRJ

for i 6= j. By assumption, if ᾱ is an eigenvalue of ρ̄(φq)i,i, then q−1ᾱ is not an eigenvalue of ρ̄(φq)j,j.
It follows that Pi(qρ(φq)j,j) is invertible, hence ρ(t)i,j ≡ 0 modmRJ .

The lemma is proved. �

E.5. Minimally ramified deformations. In this subsection, we define and study the minimally
ramified deformations at places coprime to `. Thus, we take a nonarchimedean place v of F+ that
is not above `.

When v is split in F , the problem has been studied in [CHT08, 2.4.4]. So we assume that v is
nonsplit in F . Let w be the unique prime of F above v. Let IF+

v
⊆ ΓF+

v
be the inertia subgroup,

and PF+
v

the maximal closed subgroup of IF+
v

of pro-order coprime to `. Put Tv := ΓF+
v
/PF+

v
.

Similarly, we have ΓFw , IFw , PFw , and Tw. Finally, put T+
w := ΓF+

v
/PFw .

Remark E.5.1. The group Tv is a ‖v‖-tame group (Definition E.4.1). When w is unramified over
v, we have PFw = PF+

v
, T+

w = Tv, and that the subgroup Tw of Tv is a ‖v‖2-tame group. When w
is ramified over v, we have PF+

v
/PFw ' Z/2Z, that the natural map Tw → Tv is an isomorphism,

and a canonically split short exact sequence
1→ PF+

v
/PFw → T+

w → Tv → 1.
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We recall some facts about extensions of representations of PFw from [CHT08]. For an irreducible
representation τ of PFw with coefficients in k, we put

Γτ := {σ ∈ ΓFw | τσ ' τ},
where we recall from Subsection 1.3 that τσ denotes the representation given by τσ(g) = τ(σgσ−1)
for g ∈ PFw . Let Tτ be the image of Γτ in Tw = ΓFw/PFw . As PFw is normal in ΓF+

v
, we may

similar define
Γ+
τ := {σ ∈ ΓF+

v
| τσ ' τ},

and denote by T+
τ its image in T+

w .

Lemma E.5.2. We have the following properties for τ :
(1) the dimension of τ is coprime to `; and τ has a unique deformation to a representation τ̃

of PFw over O;
(2) τ̃ in (1) admits a unique extension to a representation of Γτ∩IFw over O whose determinant

has order coprime to `;
(3) there exists an extension of τ̃ in (2) to a representation of Γτ over O.

Proof. This is [CHT08, Lemma 2.4.11]. �

Now we consider a pair (r̄, χ) from Notation E.2.1 with Γ̃ = ΓF+
v
and Γ = ΓF+

v
∩ΓF = ΓFw . Our

first goal is to define the notion of minimally ramified liftings of r̄ (Definition E.5.8).
Recall from Notation E.1.2 that we have the induced homomorphism r̄\ : ΓFw → GLN(k). For

an irreducible representation τ of PFw with coefficients in k, we put
Mτ (r̄) := Homk[PFw ](τ, r̄\).

Then τ⊗kMτ (r̄) is canonically the τ -isotypic component of r̄\. As τ extends to a representation of
Γτ , the k-vector space Mτ (r̄) is equipped with a natural action by Tτ ; and τ ⊗kMτ (r̄) is equipped
with a natural action by Γτ .

We denote by T = T(r̄) the set of isomorphism classes of irreducible representations τ of PFw

such that Mτ (r̄) 6= 0. Then ΓFw acts on T by conjugation, whose orbits we denote by T/ΓFw . For
τ ∈ T, we write [τ ] for its orbit in T/ΓFw .

Definition E.5.3. We say that Eλ is r̄-inclusive if every τ ∈ T(r̄) is absolutely irreducible.

We first suppose that Eλ is r̄-inclusive. Let Ẽλ be an unramified quadratic extension of Eλ,
with the ring of integers Õ and the residue field k̃.

Choose an element γ ∈ ΓF+
v
\ ΓFw . By Lemma E.1.3, the homomorphism r̄ is determined by an

element Ψ̄ ∈ GLN(k) satisfying

r̄\,γ = Ψ̄ ◦ χr̄\,∨ ◦ Ψ̄−1, Ψ̄ tΨ̄−1 = −χ(γ)−1r̄\(γ2).
In what follows, we will adopt the following simplified notation: for a representation τ of a

subgroup of ΓF+
v
, we write τ ∗ for χτ∨. Due to the existence of Ψ̄, we know that if τ ∈ T, then

τ γ,∗ ∈ T as well. As γ2 ∈ ΓFw , the assignment τ 7→ τ γ,∗ induces an involution on the set T/ΓFw ,
which does not depend on the choice of γ.

Construction E.5.4. We now would like to construct a ΓFw-stable partition T = T1 t T2 t T3.
For each subset Ti, we will specify, for every τ ∈ Ti, an extension of τ̃ in Lemma E.5.2(2) to a
representation of Γτ with coefficients in O (Õ if i = 3) in a compatible way, specified below.

We start from the following observation. Suppose [τ ] = [τ γ,∗] in T/ΓFw . Then there exists an
element h ∈ ΓFw , unique up to left multiplication by an element in Γτ , such that τ γ,∗ ' τh

−1 , or
equivalently, τhγ ' τ ∗. Then we have (hγ)2 ∈ Γτ but hγ 6∈ Γτ . Denote by Γ̃τ the subgroup of ΓF+

v
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generated by Γτ and hγ, which contains Γτ as a subgroup of index two. Let T̃τ be the image of
Γ̃τ in T+

w , which contains Tτ as a subgroup of index two.

(1) We define T1 to be the subset of T consisting of τ such that [τ ] 6= [τ γ,∗]. We choose a subset
T♥1 ⊆ T1 such that {τ, τ γ,∗ | τ ∈ T♥1 } is a set of representatives for the Γτ -action on T1. For
each element τ ∈ T♥1 , we choose an extension of τ̃ in Lemma E.5.2(2) to a representation
of Γτ with coefficients in O, which we still denote by τ̃ . For a general element τ ∈ T1,
there are two cases. If τ ' τh1 for (unique) τ1 ∈ T♥1 and some h ∈ ΓFw , then we choose τ̃
to be τ̃h1 , as the extension to Γτ = h−1Γτ1h. If τ ' (τh1 )γ,∗ for (unique) τ1 ∈ T♥1 and some
h ∈ ΓFw , then we choose τ̃ to be (τ̃h1 )γ,∗, as the extension to Γτ = γ−1h−1Γτ1hγ.

(2) We define T2 to be the subset of T consisting of τ such that [τ ] = [τ γ,∗], and that the images
of Γτ and Γ̃τ in ΓF+

v
/IF+

v
are different. We choose a subset T♥2 ⊆ T2 of representatives for

the Γτ -action on T2. For each element τ ∈ T♥2 , we choose an extension τ̃ from Lemma
E.5.6(1) below to a representation of Γτ with coefficients in O. For τ ∈ T2 in general, we
have τ ' τh2 for (unique) τ2 ∈ T♥2 and some h ∈ ΓFw ; and we choose τ̃ to be τ̃h2 , as the
extension to Γτ = h−1Γτ2h.

(3) We define T3 to be the subset of T consisting of τ such that [τ ] = [τ γ,∗], and that the images
of Γτ and Γ̃τ in ΓF+

v
/IF+

v
are the same. We choose a subset T♥3 ⊆ T3 of representatives

for the Γτ -action on T3. For each element τ ∈ T♥3 , we choose an extension τ̃ from Lemma
E.5.6(2) below to a representation of Γτ with coefficients in Õ. For τ ∈ T3 in general, we
have τ ' τh3 for (unique) τ3 ∈ T♥3 and some h ∈ ΓFw ; and we choose τ̃ to be τ̃h3 , as the
extension to Γτ = h−1Γτ3h.

In addition, we put T♥ := T♥1 t T♥2 t T♥3 .

Remark E.5.5. The partition T = T1 t T2 t T3 does not depend on the choice of γ. Moreover, if
T3 is nonempty, then w is ramified over v.

Lemma E.5.6. Let τ ∈ T be an element of dimension d.

(1) If τ ∈ T2, then the representation τ̃ in Lemma E.5.2(2) extends to a representation of Γτ
with coefficients in O such that τ̃ γ′ ' τ̃ ∗ still holds for every γ′ ∈ Γ̃τ \ Γτ .

(2) If τ ∈ T3, then the representation τ̃ in Lemma E.5.2(2) extends to a representation of Γτ
with coefficients in Õ such that τ̃ γ′ ' τ̃ ∗ still holds for every γ′ ∈ Γ̃τ \ Γτ .

Proof. We fix a splitting ΓF+
v
' PF+

v
oTv and an isomorphism Tv ' Tq = tZ`oφẐ

q with the q-tame
group (Definition E.4.1) where q = ‖v‖. Then we have the induced splitting Γτ ' PFwoTτ , where
Tτ = tZ`τ o φẐ

τ is a subgroup of Tq, with tτ = t`
a and φτ = φbq for unique integers a ≥ 0 and b > 0.

To extend τ̃ in Lemma E.5.2(2) to a representation of Γτ , it suffices to specify τ̃(φτ ).
For (1), there are two cases.
First, we suppose that w is unramified over v. Then b is even; and T̃τ is the image of Γ̃τ

in Tv. Then T̃τ is generated by Tτ and an element γ′ ∈ Tv of the form (t̃τ , φb/2q ) such that
γ′2 = (t̃qb/2+1

τ , φbq) lies in Γτ . As [τ ] = [τ γ,∗], we have τ γ′ ' τ ∗. We choose a basis of τ hence
regard τ as a homomorphism τ : PFw → GLd(k). By Lemma E.5.2(1,2), we have a continuous
homomorphism τ̃ : Γτ ∩ IFw → GLd(O) such that τ̃ |PFw is a lifting of τ , unique up to conjugation
in 1 + Md(λ). In particular, there is an element A ∈ GLd(O), unique up to scalar in O×, such that
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τ̃ γ
′(g) = Bτ̃ ∗(g)B−1 for every g ∈ Γτ ∩ IFw . Since φτ = t̃−q

b/2−1
τ γ′2, we have

τ̃(φτgφ−1
τ ) = τ̃(t̃−qb/2−1

τ γ′
2
gγ′
−2
t̃q
b/2+1
τ ) = τ̃(t̃−qb/2−1

τ )τ̃(γ′2gγ′−2)τ̃(t̃qb/2+1
τ )

= τ̃(t̃−qb/2−1
τ )Bτ̃ ∗(γ′−1

gγ′)B−1τ̃(t̃qb/2+1
τ )

= τ̃(t̃−qb/2−1
τ )(B tB−1)τ̃(g)(tBB−1)τ̃(t̃qb/2+1

τ )

for every g ∈ Γτ ∩ IFw . We put τ̃(φτ ) := −χ(φb/2q )τ̃(t̃−qb/2−1
τ )(B tB−1). Then we obtain the desired

extension as in (1).
Second, we suppose that w is ramified over v. By the definition of T2, the image of Γ̃τ in

ΓF+
v
/IF+

v
contains φẐ

τ as a subgroup of index two. Thus, there exists an element γ′ ∈ Γ̃τ \ Γτ such
that γ2 = hφτ for some h ∈ Γτ ∩ IFw . The remaining argument is same to the above case.

For (2), by the definition of T3, the image of Γ̃τ in ΓF+
v
/IF+

v
coincides with φẐ

τ . In particular,
we can find an element γ′ ∈ Γ̃τ \ Γτ contained in IF+

v
\ IFw . By Lemma E.5.2(1,2), we have a

continuous homomorphism τ̃ : Γτ ∩ IFw → GLd(O) such that τ̃ |PFw is a lifting of τ , unique up to
conjugation in 1 + Md(λ). As we have τ γ′ ' τ ∗ and τφτ ' τ , there are elements A,B ∈ GLd(O)
such that

τ̃ γ
′(g) = Aτ̃ ∗(g)A−1,(E.9)

τ̃φτ (g) = Bτ̃(g)B−1,(E.10)

for every g ∈ Γτ ∩ IFw . It follows from (E.9) that the desired element τ̃(φτ ) ∈ GLd(Õ) has to
satisfy the equation

χ(φτ )A tτ̃(φτ )−1A−1 = τ̃(γ′φτγ′−1) = τ̃(γ′φτγ′−1
φ−1
τ )τ̃(φτ ),(E.11)

where we note that γ′φτγ′−1φ−1
τ ∈ Γτ ∩ IFw . However, by (E.10), we have

τ̃ γ
′φτγ′

−1
(g) = (τ̃(γ′φτγ′−1

φ−1
τ )B)τ̃(g)(τ̃(γ′φτγ′−1

φ−1
τ )B)−1

for every g ∈ Γτ ∩ IFw . On the other hand, by (E.9) and (E.10), we have

τ̃ γ
′−1φτγ′(g) = (A tB−1A−1)τ̃(g)(A tB−1A−1)−1

for every g ∈ Γτ ∩ IFw . Since τ is absolutely irreducible, it follows that there exists β ∈ O× such
that

A tB−1A−1 = β · τ̃(γ′φτγ′−1
φ−1
τ )B.

Take an element α ∈ Õ× such that α2 = βχ(φτ ). Then it is clear that τ̃(φτ ) = αB ∈ GLd(Õ) is a
solution to (E.11).

The lemma is proved. �

Using Construction E.5.4, we now discuss the structure of liftings of r̄. We replace Eλ by Ẽλ so
that every representations τ̃ in Construction E.5.4 have coefficients in O. Let r : ΓF+

v
→ GN(R)

be a lifting of r̄ to an object R of CO . By Lemma E.1.3, to give such a lifting r is equivalent to
giving an element Ψ ∈ GLN(R) that reduces to Ψ̄ and satisfies

r\,γ = Ψ ◦ χr\,∨ ◦Ψ−1, Ψ tΨ−1 = −χ(γ)−1r\(γ2).
For every τ ∈ T, put

Mτ (r) := HomR[PFw ](τ̃ ⊗O R, r
\),

which is a finite free R-module equipped with the induced continuous action by Tτ . Denote by
mτ ≥ 1 the rank of Mτ (r). Let τ ′ ∈ T be the unique element such that τ γ ' τ ′∗. Choose an
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isomorphism ιτ : τ γ ∼−→ τ ′∗, which, by construction E.5.4, lifts to an isomorphism ιτ̃ : τ̃ γ ∼−→ τ̃ ′∗ of
representations of Γτ ′ . Then we have isomorphisms
Mτ (r)γ ∼−→ HomR[PFw ](τ̃ γ ⊗O R, r

\,γ) ∼−→ HomR[PFw ](τ̃ ′∗ ⊗O R, r
\,∗) ∼−→ HomR[PFw ](r\, τ̃ ′ ⊗O R),

where the second isomorphism is induced by ιτ̃ and Ψ. As τ ′ is absolutely irreducible, we obtain
a perfect R-bilinear pairing

Mτ (r)γ ×Mτ ′(r)→ EndR[PFw ](τ̃ ′ ⊗O R) = R,

which induces an isomorphism
θτ̃ ,r : Mτ (r)γ ∼−→Mτ ′(r)∨ := HomR(Mτ ′(r), R)

of R[Tτ ′ ]-modules. In particular, we have

r\ '
(⊕

τ∈T♥1

(
IndΓFw

Γτ (τ̃ ⊗O Mτ (r))⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O Mτ (r)γ,∨)

))⊕(⊕
τ∈T♥2 tT

♥
3

IndΓFw
Γτ (τ̃ ⊗O Mτ (r))

)(E.12)

as representations of ΓFw .
Now for every τ , we fix an isomorphism bτ : Mτ (r̄) ∼−→ k⊕mτ of k-vector spaces, and let %̄τ : Tτ →

GLmτ (k) be the induced homomorphism. There are two cases.
(a) Suppose τ ∈ T1. Then Mτ ′(r) is determined by Mτ (r). If we choose an isomorphism

Mτ (r) ' R⊕mτ of R-modules that reduces to bτ , then we obtain a continuous homomor-
phism

%τ : Tτ → GLmτ (R)
that reduces to %̄τ .

(b) Suppose τ ∈ T2 t T3. Let h be element from Construction E.5.4. Then θτ̃ ,r induces an
isomorphism Mτ (r)hγ ∼−→ Mτ (τ)∨ of R[Tτ ]-modules. Applying Lemma E.1.3 to r = r̄, we
obtain a homomorphism

%̄τ : T̃τ → Gmτ (k)
satisfying %̄−1(GLmτ (k) × k×) = Tτ and ν ◦ %̄τ = ηµτv for some µτ ∈ Z/2Z determined by
τ̃ .33 In general, if we choose an isomorphism Mτ (r) ' R⊕mτ of R-modules that reduces bτ ,
then we obtain a continuous homomorphism

%τ : T̃τ → Gmτ (R)
that reduces to %̄τ and satisfies ν ◦ ρτ = ηµτv .

The following proposition is the counterpart of [CHT08, Corollary 2.4.13] when v is nonsplit in
F .

Proposition E.5.7. We keep the choices of γ ∈ ΓF+
v
\ ΓFw , those in Construction E.5.4, ιτ , and

bτ . We also recall that Eλ now is an unramified quadratic extension of a r̄-inclusive extension of
Q`. For every object R of CO , the assignment

r 7→ (%τ )τ∈T♥
establishes a bijection between deformations of r̄ to R and equivalence classes of tuples (%τ )τ∈T♥
where

(a) for τ ∈ T♥1 , %τ : Tτ → GLmτ (R) is a continuous homomorphism that reduces to %̄τ ;
(b) for τ ∈ T♥2 tT♥3 , %τ : T̃τ → Gmτ (R) is a continuous homomorphism that reduces to %̄τ and

satisfies ν ◦ ρτ = ηµτv .

33In fact, when τ ∈ T2, one can always modify τ̃ to make µτ = 0; but when τ ∈ T3, µτ is determined by τ .
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Here, two tuples (%τ )τ∈T♥ and (%′τ )τ∈T♥ are said to be equivalent if %τ and %′τ are conjugate by
elements in 1 + Mmτ (mR) for every τ ∈ T♥.

Proof. We now attach to every tuple (%τ )τ∈T♥ as in the statement a lifting r explicitly. Denote by
Mτ the R[Tτ ]-module corresponding to %τ . Consider

M :=

⊕
τ∈T♥1

(
IndΓFw

Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )

)⊕
 ⊕
τ∈T♥2 tT

♥
3

IndΓFw
Γτ (τ̃ ⊗O Mτ )

 ,
which is a free R-module of rank N , equipped with a continuous action by ΓFw . Moreover, we
have M ⊗R R/mR ' r̄\ as representations of ΓFw by (E.12). Thus, we may fix an isomorphism
M ' R⊗N such that the induced continuous homomorphism ρ = ρM : ΓFw → GLN(R) reduces
to r̄\. Thus, by Lemma E.1.3, to construct the desired lifting r from ρ, it amounts to finding an
element Ψ ∈ GLN(R) satisfying

ργ = Ψ ◦ χρ∨ ◦Ψ−1, Ψ tΨ−1 = −χ(γ)−1ρ(γ2).(E.13)

We will construct Ψ as a direct sum of Ψτ for τ ∈ T♥.
For τ ∈ T♥1 , we note that τ̃(γ−2)⊗ %τ (γ−2) induces an isomorphism

Indγ−2 : IndΓFw
Γ
τγ

2 (τ̃ γ2 ⊗O M
γ2

τ ) '
(
IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ )

)γ,∗ ∼−→ IndΓFw
Γτ (τ̃ ⊗O Mτ ).

Thus, we obtain an isomorphism

(
IndΓFw

Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )

)γ,∗ ∼−→ IndΓFw
Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ )

(E.14)

as the composition of the canonical isomorphism(
IndΓFw

Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )

)γ,∗ ∼−→ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )⊕

(
IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ )

)γ,∗
,

and the isomorphism

IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )⊕

(
IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ )

)γ,∗ ∼−→ IndΓFw
Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ )

given by the matrix
(

0 −χ(γ) Indγ−2

1 0

)
. We now let Ψτ be the matrix representing the isomor-

phism(
IndΓFw

Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )

)∗ ∼−→ (
IndΓFw

Γτ (τ̃ ⊗O Mτ )⊕ IndΓFw
Γτγ (τ̃ γ,∗ ⊗O M

γ,∨
τ )

)γ
induced from (E.14) by duality.

For τ ∈ T♥2 tT♥3 , let h be the element in Construction E.5.4. Put γ′ := hγ, which is an element
in Γ̃τ \ Γτ . The homomorphism %τ : : T̃τ → Gmτ (R) induces an isomorphism Mγ′

τ
∼−→ M∨

τ by
Lemma E.1.3(1), which induces an isomorphism Mγ,∨

τ
∼−→ Mh−1

τ . On the other hand, by Lemma
E.5.6, we have an isomorphism τ̃ γ,∗ ' τ̃h

−1 . Thus, we obtain an isomorphism(
IndΓFw

Γτ (τ̃ ⊗O Mτ )
)γ,∗ ∼−→ IndΓFw

Γτ (τ̃ ⊗O Mτ )(E.15)

as the composition of the canonical isomorphism(
IndΓFw

Γτ (τ̃ ⊗O Mτ )
)γ,∗ ∼−→ IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ ),

the isomorphism
IndΓFw

Γτγ (τ̃ γ,∗ ⊗O M
γ,∨
τ ) ∼−→ IndΓFw

Γ
τh
−1 (τ̃h−1 ⊗O M

h−1

τ )
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specified above, and the isomorphism

IndΓFw
Γ
τh
−1 (τ̃h−1 ⊗O M

h−1

τ ) ∼−→ IndΓFw
Γτ (τ̃ ⊗O Mτ )

given by the action of h−1. We now let Ψτ be the matrix representing the isomorphism(
IndΓFw

Γτ (τ̃ ⊗O Mτ )
)∗ ∼−→ (

IndΓFw
Γτ (τ̃ ⊗O Mτ )

)γ
induced from (E.15) by duality.

Finally, we put Ψ := ⊕
τ∈T♥ Ψτ . Then (E.13) follows by construction. In other words, we have

assigned a lifting r from the tuple (%τ )τ∈T♥ . It is straightforward to check that such assignment is
inverse to the assignment in the proposition. The proposition follows. �

From now till the end of this subsection, we assume l ≥ N . Using Proposition E.5.7, we can
define minimally ramified liftings of r̄. We now do not assume that Eλ is r̄-inclusive. We choose
an unramified quadratic extension E ′λ of an r̄-inclusive unramified extension of Eλ, with the ring
of integers O ′ and the residue field k′. We also keep the choices of γ ∈ ΓF+

v
\ ΓFw , those in

Construction E.5.4, ιτ , and bτ , as in Proposition E.5.7 (with respect to E ′λ).

Definition E.5.8. We say that a lifting r of r̄ to some object R of CO is minimally ramified if
in the tuple (%τ )τ∈T♥ corresponding to the composition ΓF+

v

r−→ GN(R) → GN(R ⊗O O ′), every
homomorphism %τ is a minimally ramified lifting of %̄τ in the following sense.

(1) For τ ∈ T♥1 , minimally ramified liftings of %̄τ is defined in the sense of [CHT08, Defini-
tion 2.4.14].

(2) For τ ∈ T♥2 , note that T̃τ is isomorphic to the qτ -tame group for some power qτ of ‖v‖
under which the subgroup Tτ is the q2

τ -tame group. Thus, we may define minimally ramified
liftings of %̄τ using Definition E.4.4 (with respect to the similitude character ηµτv , which is
trivial on Tτ );

(3) For τ ∈ T♥3 , note that T̃τ ' Tτ × Z/2Z. Then, by Lemma E.1.3, we may regard the
homomorphism %τ as a continuous homomorphism %τ : Tτ → G(R), whereG is a symplectic
(resp. orthogonal) group of rank mτ if µτ is 0 (resp. 1). Thus, we may define minimally
ramified liftings of %̄τ using [Boo19, Definition 5.4].

Remark E.5.9. It is straightforward to check that Definition E.5.8 do not depend on the choice of
E ′λ, γ ∈ ΓF+

v
\ ΓFw , those in Construction E.5.4, ιτ , and bτ .

Now we allow v to be a nonarchimedean place of F+ that is not above `, but not necessarily
nonsplit in F . Again, we consider a pair (r̄, χ) from Notation E.2.1 with Γ̃ = ΓF+

v
and Γ = ΓF+

v
∩ΓF .

Definition E.5.10. We define Dmin to be the local deformation problem of r̄ that classifies
minimally ramified liftings in the sense of Definition E.5.8 (resp. [CHT08, Definition 2.4.14]) when
v is nonsplit (resp. split) in F .

Proposition E.5.11. We have
(1) The ring Rloc

r̄ is a reduced local complete intersection, flat and of pure relative dimension
N2 over O.

(2) Every irreducible component of Spf Rloc
r̄ is a local deformation problem (Definition E.2.3).

(3) If ` ≥ N , then Dmin is an irreducible component of Spf Rloc
r̄ and is formally smooth over

Spf O of pure relative dimension N2.

Proof. We may assume Eλ = E ′λ.
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For (1), when v splits in F , this is [Sho18, Theorem 2.5]. Thus, we may assume that v is nonsplit
in F . By Proposition E.5.7, Rloc

r̄ is a power series ring over⊗̂
τ∈T♥

Rloc
%̄τ .

We now claim that for every τ ∈ T♥, Rloc
%̄τ a local complete intersection, flat and equidimensional.

Indeed, for τ ∈ T♥1 , this is [Sho18, Theorem 2.5]; for τ ∈ T♥2 , this is Corollary E.4.3; for τ ∈ T♥3 , this
is Proposition E.4.2 for G a symplectic or orthogonal group with the trivial similitude character.
On the other hand, by [BG19, Theorem 3.3.2] or [BP, Theorem 1], we know that Rloc

r̄ [1/`] is
reduced and of pure dimension dim GN = N2. Thus, Rloc

r̄ is a local complete intersection, flat and
of pure relative dimension N2 over O. Since Rloc

r̄ is generically reduced and Cohen–Macaulay, it
is reduced. (1) is proved.

For (2), take an irreducible component D of Spf Rloc
r̄ , and let LN be the formal completion of

GLN,O along the unit section. Then the conjugation action induces a homomorphism LN ×Spf O

D → Spf Rloc
r̄ whose image contains D . Since LN is irreducible, the image is irreducible hence has

to be D . In other words, D is a local deformation problem.
For (3), since Dmin is Zariski closed in Spf Rloc

r̄ from its definition, it suffices to show that
Dmin is formally smooth over Spf O of pure relative dimension N2. When v splits in F , this is
[CHT08, Corollary 2.4.21]. Thus, we may assume that v is nonsplit in F . For τ ∈ T♥, let Dmin

%̄τ be
the local deformation problem of %̄τ classifying minimally ramified liftings of %̄τ in various cases
in Definition E.5.8. By Proposition E.5.7 and Definition E.5.8, Dmin is formally smooth over∏

τ∈T♥
Dmin
%̄τ .

We claim that for every τ ∈ T♥, Dmin
%̄τ is formally smooth over Spf O. Indeed, for τ ∈ T♥1 , this

is [CHT08, Lemma 2.4.19]; for τ ∈ T♥2 , this is Proposition E.4.5; for τ ∈ T♥3 , this is a part of
[Boo19, Theorem 1.1]. Thus, Dmin is formally smooth over Spf O.

It remains to compute the dimension. By (E.1), it suffices to show that
dimk L(Dmin) = dimk H0(F+

v , ad r̄).(E.16)

For every τ ∈ T♥, let L(Dmin
%̄τ ) be the tangent space of the deformation problem Dmin

%̄τ , which is a
subspace of H1(Tτ , ad %̄) (resp. H1(T̃τ , ad %̄)) if τ ∈ T♥1 (resp. τ ∈ T♥2 tT♥3 ). By Proposition E.5.7,
we have

dimk L(Dmin) =
∑
τ∈T♥

dimk L(Dmin
%̄τ ).(E.17)

We claim that

dimk L(Dmin
%̄τ ) =

dimk H0(Tτ , ad %̄τ ) if τ ∈ T♥1 ;
dimk H0(T̃τ , ad %̄τ ) if τ ∈ T♥2 t T♥3 .

(E.18)

Indeed, for τ ∈ T♥1 , this is [CHT08, Corollary 2.4.20]; for τ ∈ T♥2 , this is Corollary E.4.6; for
τ ∈ T♥3 , this is a part of [Boo19, Theorem 1.1] as dimk H0(T̃τ , ad %̄τ ) = dimk H0(Tτ , ad0 %̄τ ). From
(E.12) for r̄, we have

H0(F+
v , ad r̄) '

⊕
τ∈T♥1

H0(Tτ , ad %̄τ )

⊕
 ⊕
τ∈T♥2 tT

♥
3

H0(T̃τ , ad %̄τ )

 .
Together with (E.17) and (E.18), we obtain (E.16).

The proposition is proved. �
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Now we discuss one example of minimally ramified liftings, which is used in Proposition
8.1.5. Consider an elliptic curve A over F+

v . For every rational prime `, we fix an isomorphism
H1

ét(AαF ,Z`) ' Z⊕2
` , hence obtain a continuous homomorphism ρA,` : ΓF+

v
→ GL2(Z`). Suppose

N ≥ 2. We obtain a continuous homomorphism
rA,` : ΓF+

v
→ GN(Z`) = (GLN(Z`)× Z×` ) o {1, c}

by the formula rA,`(γ) = (SymN−1 ρA,`(γ), ηN−1
v ε1−N`,v (γ), c(γ)), where c(γ) = c if and only if γ ∈

ΓF+
v
\ ΓF . Denote by r̄A,` the composition of rA,` and the projection GN(Z`)→ GN(F`).

Proposition E.5.12. For all but finitely many rational primes ` ≥ N , every lifting of r̄A,` to
an object R of CZ` (with respect to the similitude character ηNv ε1−N`v

) is minimally ramified in the
sense of Definition E.5.8.
Proof. For simplicity, we only prove the proposition for v nonsplit in F . The split case is similar
and easier, which we leave to readers. Thus, let w be the unique place of F above v. Fix a finite
extension F ′w of Fw in F+

v so that A′ := A⊗F+
v
F ′w has either good or split multiplicative reduction.

We further request that F ′w/Fw is totally ramified if A′ has good reduction. Let T′w be the image
of the Gal(F+

v /F
′
w) of ΓFw in Tw = ΓFw/PFw . We fix an isomorphism Tw ' Tq = tZ` o φẐ

q with
the q-tame group, where q = ‖w‖. We now assume ` > [F ′w : Fw]. Then T′w is generated by t and
φbq for a unique integer b > 0. We then also assume ` ≥ qb·N !(> N). Let T = T(r̄A,`) be the set of
isomorphism classes of absolutely irreducible representations of PFw appearing in r̄\A,` as before.

We first consider the case where A′ has split multiplicative reduction. Let u be the valuation
of the j-invariant j(A) in F ′w, which is a negative integer. Assume further that ` is coprime to u.
Then ρA′,`(t) is conjugate to ( 1 1

0 1 ) in GL2(Z`), which implies that SymN−1 ρA′,`(t) is conjugate to
1+JN in GLN(Z`). It follows that T is a singleton, say {τ}; and every lifting %τ of %̄τ is minimally
ramified. Thus, every lifting r of r̄A,` is minimally ramified.

We then consider the case where A′ has good reduction. Then T′w = Tw hence b = 1. Let
α, β ∈ Q` be the two eigenvalues of ρA′,`(φq). Then α, β are Weil q−1/2-numbers in Q, which
depend only on A′, not on `. We further assume that ` satisfies that α, β ∈ Z×` , and that
the image of the set {(α/β)N−1, (α/β)N−3, . . . , (α/β)3−N , (α/β)1−N} in F×` does not contain q. It
follows that for every τ ∈ T, every lifting %τ of %̄τ is actually unramified, hence minimally ramified.
Thus, every lifting r of r̄A,` is minimally ramified.

Since in both cases, we only exclude finitely many rational primes `, the proposition follows. �

More generally, we would like to propose the following conjecture. As in the initial setup of
Subsection 6.1, let Π be a relevant representation of GLN(AF ) (Definition 1.1.3), and E ⊆ C a
strong coefficient field of Π (Definition 3.2.5). Then for every prime λ of E, we have a continuous
homomorphism ρΠ,λ : ΓF → GLN(Eλ).

E.6. Level-raising deformations. In this subsection, we discuss level-raising deformations. As-
sume ` ≥ N ≥ 2. We take a nonarchimedean place v of F+ that is inert in F and not above `.
Let w be the unique place of F above v. Recall that we have Tv = ΓF+

v
/PF+

v
and Tw = ΓFw/PFw .

Then Tv is isomorphic to the q-tame group and the subgroup Tw is the q2-tame group (Definition
E.4.1), where q = ‖v‖.

We consider a pair (r̄, χ) from Notation E.2.1 with Γ̃ = ΓF+
v

and Γ = ΓF+
v
∩ ΓF = ΓFw , such

that r̄ is unramified and χ = ηµv ε
1−N
`,v for some µ ∈ Z/2Z. Then by Lemma E.5.2(1), every lifting

r of r̄ to an object R of CO factors through Tv. In particular, we may apply the discussion in
Subsection E.4 to the pair (r̄, χ).

Now assume ` - (q2 − 1) and that the generalized eigenvalues of r̄\(φw) in F` contain the pair
{q−N , q−N+2} exactly once. By Lemma E.4.7(1), for every lifting r of r̄ to an object R of CO , we
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have a canonical decomposition
R⊕N = M0 ⊕M1(E.19)

of free R-modules such that if we write P0(T ) for the characteristic polynomial for r\(φw), then
P0(T ) ≡ (T − q−N)(T − q−N+2) modmR.

Definition E.6.1. Let (r̄, χ) be as above. We define Dmix to be the local deformation problem
of r̄ (Definition E.2.3) that classifies liftings r to an object R of CO such that

m the decomposition (E.19) is stable under the action of r\(IFw);
m the action of r\(IFw) on M1 is trivial;
m for every t ∈ IFw , the characteristic polynomial of r\(t) on M0 is (T − 1)2.

We define
(1) Dunr to be the local deformation problem contained in Dmix so that the action of r\(IFw)

on M0 is also trivial;
(2) D ram to be the local deformation problem contained in Dmix so that P0(T ) = (T−q−N)(T−

q−N+2) in R[T ].

It is clear that Dunr coincides with Dmin from Definition E.5.10.

Proposition E.6.2. Suppose ` - (q2 − 1) and that the generalized eigenvalues of r̄\(φw) in F`
contain the pair {q−N , q−N+2} exactly once. Then the formal scheme Dmix is formally smooth
over Spf O[[x0, x1]]/(x0x1) of pure relative dimension N2− 1 such that the irreducible components
defined by x0 = 0 and x1 = 0 are Dunr and D ram, respectively. In particular, D ram is formally
smooth over Spf O of pure relative dimension N2.

Proof. We fix an isomorphism Tv ' Tq = tZ` o φẐ
q so that φw = φ2

q. We write k⊕N = M̄0 ⊕ M̄1

so that r̄\(φ2
q) has eigenvalues q−N and q−N+2 on M̄0. Without lost of generality, we may assume

that M̄0 is spanned by the first two factors and M̄0 is spanned by the last N − 2 factors. Thus,
we obtain two unramified homomorphisms r̄0 : Tq → G2(k) and r̄1 : Tq → GN−2(k). Let D0 be the
local deformation problem of r̄0 classifying liftings r0 of r̄0 so that the characteristic polynomial
of r\0(t) is (T − 1)2. Let D1 be the local deformation problem of r̄1 classifying unramified liftings.

Suppose N ≥ 3. We say that lifting r of r̄ to an object R of CO is standard if

r\(t) =
(
A0 0
0 1N−2

)
, r(φq) =

((
B0 0
0 B1

)
, (−1)µ+1q1−N , c

)
for some A0, B0 ∈ GL2(R) and B1 ∈ GLN−2(R). Let Dmix

0,1 ⊆ Dmix be the locus of standard liftings.
Then we have a natural isomorphism

Dmix
0,1 ' D0 ×Spf O D1

of formal schemes over Spf O.
For n ≥ 1, denote by Ln the formal completion of GLn,O along the unit section. Then LN acts

on Dmix by conjugation. We claim that Dmix
0,1 generates Dmix under the action of LN . For this, it

suffices to show that for every lifting r of r̄ to an object R of CO , the maps
B : M0 → R⊕N →M1, B : M1 → R⊕N →M0

induced by B from Lemma E.1.3(1) for γ = φq, are both zero. Since the two maps intertwine the
actions r\ and r\,∨⊗ε1−N` of Tq2 , it suffices to show that the generalized eigenvalues of r\,∨0 ⊗ε1−N` (φ2

q)
and the generalized eigenvalues of r\1(φ2

q) are disjoint. However, this follows from the condition
that the generalized eigenvalues of r̄\(φw) in F` contain the pair {q−N , q−N+2} exactly once.
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The above claim induces a canonical isomorphism
Dmix

0,1 ×Spf O (L2 ×Spf O LN−2\LN) ∼−→ Dmix.

By Proposition E.4.5, D1 is formally smooth over Spf O of pure relative dimensions (N−2)2. Since
L2×Spf O LN−2\LN is formally smooth over Spf O of pure relative dimension N2− (N − 2)2− 4,
it suffices to prove the proposition for N = 2.

Now we assume N = 2. After changing a basis, we may assume

r̄(φq)(B̄, (−1)µ+1q1−N , c), B̄ =
(

0 (−1)µ+1

q 0

)
.

Then we have
r̄\(φ2

q) = (−1)µ+1q1−N B̄
t
B̄−1 =

(
q−N 0

0 q−N+2

)
.

For every object R of CO , the set Dmix(R) is bijective to the set of pairs (B,X) where B ∈ GL2(R)
and X ∈ M2(R) satisfying B ≡ B̄modmR, X ≡ 0 modmR, that the characteristic polynomial of
X is T 2, and the relation

B tXB−1 = −qX.(E.20)

Indeed, the bijection is given by r(φq) = (B, (−1)µ+1q1−N , c) and r\(t) = 12 +X. We let Dmix
0 be

the subscheme of Dmix defined by the condition that r\(φ2
q) = (−1)µ+1q1−NB tB−1 is a diagonal

matrix. Take a lifting r ∈ Dmix
0 (R) corresponding to the pair (B,X); we must have

B =
(

0 (−1)µ+1(1 + x)
q(1 + y) 0

)
, r\(φ2

q) =
(
q−N(1 + x)(1 + y)−1 0

0 q−N+2(1 + y)(1 + x)−1

)
for some x, y ∈ mR. Then by (E.20), X = ( 0 0

x0 0 ) for some x0 ∈ mR satisfying (x− y)x0 = 0. Put
x1 := x− y. Then we obtain an isomorphism

Dmix
0 ' Spf O[[x0, x1, y]]/(x0x1)

such that
m x0 = 0 if and only if r is unramified;
m x1 = 0 if and only if P0(T ) = (T − q−N)(T − q−N+2), where P0 is the characteristic

polynomial of r\(φw) = r\(φ2
q).

Finally, not that L2 acts on Dmix by conjugation, which induces a canonical isomorphism
Dmix

0 ×Spf O (L1 ×Spf O L1\L2) ∼−→ Dmix.

The proposition (for N = 2) follows as L1 ×Spf O L1\L2 is formally smooth over Spf O of pure
relative dimension 2. The entire proposition is now proved. �

E.7. An almost minimal R=T theorem. In this subsection, we prove a version of the R=T
theorem for a global Galois representation. Assume ` > N ≥ 2 and that ` is unramified in F .

We consider a pair (r̄, χ) from Notation E.2.1 with Γ̃ = ΓF+ and Γ = ΓF , in which χ = ηµε1−N`

for some µ ∈ Z/2Z. We take two finite sets Σ+
min and Σ+

lr of nonarchimedean places of F+ such
that

m Σ+
min, Σ+

lr , and Σ+
` are mutually disjoint;

m Σ+
min contains Σ+

ram;
m every place v ∈ F+ is inert in F and satisfies ` - (‖v‖2 − 1).

Definition E.7.1. We say that r̄ is rigid for (Σ+
min,Σ+

lr ) if the following are satisfied:
(1) For v in Σ+

min, every lifting of r̄v is minimally ramified.
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(2) For v in Σ+
lr , the generalized eigenvalues of r̄\v(φw) in F` contain the pair {‖v‖−N , ‖v‖−N+2}

exactly once, where w is the unique place of F above v.
(3) For v in Σ+

` , r̄\v is crystalline with regular Fontaine–Laffaille weights in [0, N−1] (Definition
E.3.4).

(4) For a nonarchimedean place v of F+ not in Σ+
min ∪ Σ+

lr ∪ Σ+
` , the homomorphism rv is

unramified.

Suppose now that r̄ is rigid for (Σ+
min,Σ+

lr ). Consider a global deformation problem (Definition
E.2.6)

S := (r̄, ηµε1−N` ,Σ+
min ∪ Σ+

lr ∪ Σ+
` , {Dv}v∈Σ+

min∪Σ+
lr∪Σ+

`
)

where
m for v ∈ Σ+

min, Dv is the local deformation problem classifying all liftings of r̄v;
m for v ∈ Σ+

lr , Dv is the local deformation problem D ram of r̄v from Definition E.6.1;
m for v ∈ Σ+

` , Dv is the local deformation problem DFL of r̄v from Definition E.3.6.
Then we have the global universal deformation ring Runiv

S from Proposition E.2.7.

Remark E.7.2. It is possible that r̄ is rigid for two pairs (Σ+
min,Σ+

lr ) and (Σ+′
min,Σ+′

lr ). Then Runiv
S

and Runiv
S ′ are different in general, where S ′ denotes the corresponding global deformation problem

for (Σ+′
min,Σ+′

lr ).

Now we state an R=T theorem. Let V be a standard definite or indefinite hermitian space
(Definition 3.2.1) over F of rank N , such that Vv is not split for v ∈ Σ+

lr . We fix a self-dual∏
v 6∈Σ+

∞∪Σ+
min∪Σ+

lr
OFv -lattice Λ in V ⊗F AΣ+

∞∪Σ+
min∪Σ+

lr
F , and an element K ∈ K(V) (Definition 3.1.11)

of the form
K =

∏
v∈Σ+

min∪Σ+
lr

Kv ×
∏

v 6∈Σ+
∞∪Σ+

min∪Σ+
lr

U(Λ)(OF+
v

)

in which Kv is special maximal for v ∈ Σ+
lr .

Let Σ+ be a finite set of nonarchimedean places of F+ containing Σ+
min ∪ Σ+

lr ; so we have the
abstract unitary Hecke algebra TΣ+

N (Definition 3.1.9). Let φ : TΣ+
N → k be a homomorphism such

that
m for every nonarchimedean place v of F+ not in Σ+ ∪ Σ+

` that induces one place w of F ,
we have φ|TN,v = φα (Construction 3.1.8) where α = (α1, . . . , αN) is the unitary abstract
Hecke parameter at v (Definition 3.1.3) satisfying that {α1‖v‖N−1, . . . , αN‖v‖N−1} are the
generalized eigenvalues of r̄\v(φ−1

w ) in F`;
m for every nonarchimedean place v of F+ not in Σ+∪Σ+

` that splits into two places w1 and w2
of F , we have φ|TN,v = φα (Construction 3.1.8) whereα = ((α1,1, . . . , α1,N); (α2,1, . . . , α2,N))
is the unitary abstract Hecke parameter at v (Definition 3.1.3) satisfying that for i = 1, 2,
{αi,1

√
‖v‖

N−1
, . . . , αi,N

√
‖v‖

N−1
}34 are the generalized eigenvalues of r̄\v(φ−1

wi
) in F`.

We write m for the kernel of φ.

Theorem E.7.3. Suppose Σ+
lr = ∅ if N is odd. Under the above setup, we further assume

(D1): ` is unramified in F , and ` ≥ 2(N + 1);
(D2): r̄\|Gal(F/F (ζ`)) is absolutely irreducible;
(D3): r̄ is rigid for (Σ+

min,Σ+
lr ) (Definition E.7.1);

(D4): φ is cohomologically generic (Definition D.1.1) when V is indefinite.
34Recall that we have fixed an isomorphism ι` : C ∼−→ Q` at the beginning of this section. Thus, for every positive

integer q coprime to `, √q is a well-defined element in Z` hence in F`.
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Let T be the image of TΣ+
N in EndO(HN−1

ét (Sh(V,K)F ,O)) (resp. EndO(O[Sh(V,K)])) when V is
indefinite (resp. definite). If Tm 6= 0, then we have the following:

(1) There is a canonical isomorphism Runiv
S

∼−→ Tm of local complete intersection O-algebras.
(2) When V is indefinite (resp. definite), HN−1

ét (Sh(V,K)F ,O)m (resp. O[Sh(V,K)]m) is a finite
free Tm-module.

(3) We have µ ≡ N mod 2.

The rest of this subsection is devoted to the proof of the theorem. We will use the Taylor–
Wiles patching argument following [CHT08] and [Tho12]. Put S := Σ+

min ∪ Σ+
lr ∪ Σ+

` . To prove
the theorem, we may replace Eλ by a finite unramified extension. Thus, we may assume that k
contains all eigenvalues of matrices in r\(ΓF ).

Remark E.7.4. By (D1), we know that F is not contained in F+(ζ`). Thus, by [Tho12, Theo-
rem A.9], (D1) and (D2) imply that r̄(Gal(F/F+(ζ`))) is adequate in the sense of [Tho12, Defini-
tion 2.3].

Recall that a prime v of F+ is called a Taylor–Wiles prime for the global deformation problem
S if

m v /∈ S; v splits in F ; and ‖v‖ ≡ 1 mod `;
m r̄v is unramified;
m r̄\v(φw) is not a scalar and admits an eigenvalue ᾱv ∈ k, called special eigenvalue, such that

r̄\v(φw) acts semisimply on the generalized eigenspace for ᾱv, where w is the place of F
above v induced by the inclusion F ⊆ F+

v .
A Taylor–Wiles system is a tuple (Q, {ᾱv}v∈Q) where Q is a finite set of Taylor–Wiles primes, and
ᾱv is a special eigenvalue for every v ∈ Q. For such a system, we write r\v = r•v ⊕ r◦v for every
v ∈ Q, where r•v (resp. r◦v) is the generalized eigenspace for ᾱv (resp. for generalized eigenvalues
other than αv). Then we have another global deformation problem (see [Tho12, Definition 4.1])

S (Q) := (r̄, ηµε1−N` , S ∪Q, {Dv}v∈S∪Q)
where Dv is the same as in S for v ∈ S; and for v ∈ Q, Dv is the local deformation problem of r̄v
that classifies liftings rv so that r\v is of the form r•v ⊕ r◦v in which r•v is a lifting of r̄•v on which IFw
acts by scalars, and r◦v is an unramified lifting of r̄◦v.

We now discuss the existence of Taylor–Wiles systems. For each v ∈ S, we have the tangent space
L(Dv) ⊆ H1(F+

v , ad r̄) from Definition E.2.4. Let L(Dv)⊥ ⊆ H1(F+
v , ad r̄(1)) be the annihilator of

L(Dv) under the local Tate duality induced by the perfect pairing ad r̄ × ad r̄(1) → k(1) sending
(x, y) to tr(xy). Recall that ΓF+,S is the Galois group of the maximal subextension of F/F+ that
is unramified outside S. For every subset T ⊆ S, we define H1

L⊥,T(ΓF+,S, ad r̄(1)) to be the kernel
of the natural map

H1(ΓF+,S, ad r̄(1))→
⊕
v∈S\T

H1(F+
v , ad r̄(1))/L(Dv)⊥.

Recall the O-algebras Rloc
S ,T (E.2) and R�T

S (Q) from Proposition E.2.7. Moreover, R�T
S (Q) is naturally

an algebra over Rloc
S ,T.

Lemma E.7.5. Let the situation be as in Theorem E.7.3. Let T be a subset of S. For every
integer b ≥ dimk H1

L⊥,T(ΓF+,S, ad r̄(1)) and every integer n ≥ 1, there is a Taylor–Wiles system
(Qn, {ᾱv}v∈Qn) satisfying

(1) |Qn| = b;
(2) ‖v‖ ≡ 1 mod `n;
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(3) R�T
S (Qn) can be topologically generated over Rloc

S ,T by

gb,T := b−
∑

v∈T∩Σ+
`

[F+
v : Q`]

N(N − 1)
2 −N [F+ : Q]1 + (−1)µ+1−N

2

elements.

Proof. By (E.1), Proposition E.3.9(3), Proposition E.5.11, and Proposition E.6.2, we have for
every v ∈ S that

dimk L(Dv)− dimk H0(F+
v , ad r̄(1)) =

[F+
v : Q`]N(N−1)

2 if v | `;
0 if v - `.

Then the lemma follows from [Tho12, Proposition 4.4]35 in view of Remark E.7.4. �

Now we take a Taylor–Wiles system (Qn, {ᾱv}v∈Qn) as in the above lemma. For each v ∈ Qn,
we

m put dv := dimk r̄
•
v;

m let Pdv ⊆ GLN be the standard upper-triangular parabolic subgroup corresponding to the
partition (N − dv, dv);

m let κv be the residue field of F+
v , and ∆v the maximal quotient of κ×v of `-power order;

m fix an isomorphism Kv ' GLN(OF+
v

) and denote by Kv,0 ⊆ Kv the parahoric subgroup
corresponding to Pdv ;

m let Kv,1 be the kernel of the canonical map

Kv,0 → Pdv(κv)→ GLdv(κv)
det−→ κ×v → ∆v.

We then
m put ∆Qn := ∏

v∈Qn ∆v; and let aQn be the augmentation ideal of O[∆Qn ];
m write mQn for the kernel of the composite homomorphism TΣ+∪Qn

N → TΣ+
N

φ−→ k;
m or i = 0, 1, put

Ki(Qn) =
∏
v 6∈Qn

Kv ×
∏
v∈Qn

Kv,i,

which are subgroups of K.
In particular, K1(Qn) is a normal subgroup of K0(Qn); and we have a canonical isomorphism

K0(Qn)/K1(Qn) ∼−→ ∆Qn .(E.21)
Now we introduce some patching module from automorphic input. For every open compact

subgroup k ∈ {K,K0(Qn),K1(Qn)}, we put

Hk :=
{

O[Sh(V, k)] if V is definite;
HN−1(Sh(V, k)(C),O) if V is indefinite.

Here, HN−1 stands for the singular homology for complex manifolds. By (E.21), HK1(Qn) is canon-
ically a module over O[∆Qn ].

Lemma E.7.6. Let the situation be as in Theorem E.7.3. The O[∆Qn ]-module HK1(Qn),mQn
is a

finite and free. Moreover, the canonical map
HK1(Qn),mQn

/aQn → HK0(Qn),mQn

is an isomorphism.
35Strictly speaking, the set S in [Tho12, Proposition 4.4] consists of only places split in F . But the same

argument works in our case as well.
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Proof. Note that by Definition 3.1.11, every open compact subgroup k ∈ {K,K0(Qn),K1(Qn)} is
neat; in particular, t−1U(V)(F+)t ∩ k has no torsion elements for every t ∈ U(V)(A∞F+).

When V is definite, the lemma (even without localization at mQn) follows by the same argument
for [Tho12, Lemma 6.4].

Suppose now that V is indefinite. For an abelian group A, we let C•(Sh(V, k)(C), A) be the
complex of singular chains for the complex manifold Sh(V, k)(C) with coefficients in A. By Artin’s
comparison theorem between the singular cohomology and the étale cohomology, the dual complex
HomA(C•(Sh(V, k)(C), A), A) calculates H•ét(Sh(V, k)C, A). Now take A = O/λm for integers
m ≥ 1. By (D4), we know that

Hi(Sh(V, k)(C),O/λm)mQn
= Hi(C•(Sh(V, k)(C),O/λm))mQn

= 0

for every i 6= N − 1. On the other hand, by [KT17, Lemma 6.9], for every m ≥ 1,
C•(Sh(V,K1(Qn))(C),O/λm) is a perfect complex of free O/λm[∆Qn ]-modules; and there is a
canonical isomorphism

C•(Sh(V,K1(Qn))(C),O/λm)⊗O[∆Qn ] O[∆Qn ]/aQn ' C•(Sh(V,K0(Qn))(C),O/λm).

Then the lemma follows easily by taking the homology group and passing to the limit for m →
∞. �

Proof of Theorem E.7.3. When V is indefinite, by (D4) and Artin’s comparison theorem be-
tween the singular cohomology and the étale cohomology, we have a canonical isomorphism
HK,m ' HomO(HN−1

ét (Sh(V,K)F ,O)m,O), under which Tm is identified with the image of TΣ+
N

in EndO(HK,m). Thus, in both cases, HK,m is a finite free O-module.
First, we need to construct a canonical homomorphism Runiv

S → Tm. It is well-known that
Tm[1/`] is a reduced finite Eλ-algebra. As HK,m is a finite free O-module, Tm is a reduced finite
flat O-algebra. Every point x ∈ Spec Tm[1/`] corresponds to a relevant representation Πx of
GLN(AF ) (Definition 1.1.3) such that

m the associated Galois representation ρΠx,ι` from Proposition 3.2.4(2) is residually isomor-
phic to r̄\ ⊗k F` (hence residually absolutely irreducible by (D2));

m there exists a cuspidal automorphic representation of U(V)(AF+) satisfying BC(π) ' Π
and πK 6= {0}.

In fact, ρΠx,ι` comes from a continuous homomorphism

ρx : ΓF → GLN(Tx),

which is a lifting of r̄\. By a theorem of Carayol [Car94, Théorème 2], the product homomorphism∏
x∈Spec Tm[1/`]

ρx : ΓF → GLN(
∏
x

Tx)

is conjugate to some continuous homomorphism ρm : ΓF → GLN(Tm) that is a lifting of r̄\. More-
over, by Proposition 3.2.4(2), we know that ρm is (1−N)-polarizable (Definition 2.4.7). Thus, by
Lemma E.1.3, we obtain a continuous homomorphism

rm : ΓF+ → GN(Tm)

satisfying r\m = ρm, which is a lifting of r̄. We claim that rm satisfies the global deformation problem
S . Indeed, since Πx,w is unramified for nonarchimedean places w of F not above Σ+

min ∪ Σ+
lr , we

know that r̄m,v belongs to DFL
v for v ∈ Σ+

` by [CH13, Theorem 3.2.3(b,c)]; and r̄m,v is unramified
for v 6∈ S by Proposition 3.2.4(2). By Lemma C.2.4 and Proposition 3.2.4(2), r̄m,v belongs to D ram

v
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for v ∈ Σ+
lr .36 Therefore, by the universal property of Runiv

S , we obtain a canonical homomorphism

ϕ : Runiv
S → Tm(E.22)

of O-algebras. Moreover, it is clear that our homomorphism rm satisfies [CHT08, Proposi-
tion 3.4.4](2,3) as well, which implies that ϕ is surjective. Thus, it remains to show that ϕ is
injective.

We follow the strategy for [Tho12, Theorem 6.8]. We take an integer n ≥ 1, and a Taylor–Wiles
system (Qn, {ᾱv}v∈Qn) from Lemma E.7.5. For each v ∈ Qn, we

m let Artv : F×v → Γab
F+
v
be the local Artin map;

m let $v ∈ F+
v be the uniformizer such that Artv($v) coincides with the image of φ−1

v in
Γab
F+
v
;

m let pr$v be the commuting projection defined in [Tho12, Propositions 5.9 & 5.12];
m for every α ∈ O×

F+
v
, let Vαv ∈ Z[Kv,1\Kv,0/Kv,1] be the characteristic function of the double

coset

Kv,1

(
1N−1 0

0 α

)
Kv,1

.
For i = 0, 1, we put

Mi,Qn :=
 ∏
v∈Qn

pr$v

HKi(Qn),mQn
,

and let Ti,Qn be the image of TΣ+∪Qn
N in EndO(Mi,Qn). We also put

M := HK,m.

Then the canonical map M → HK,mQn
is an isomorphism, hence we obtain canonical surjective

homomorphisms
T1,Qn � T0,Qn � Tm

of O-algebras. Similar to Tm, we obtain a continuous homomorphism

ri,Qn : ΓF+ → GN(Ti,Qn),

which is a lifting of r̄, for i = 0, 1. We have the following two claims:
(1) For every v ∈ Qn, there is a continuous character vv : O×

F+
v
→ T×1,Qn such that

(a) for every α ∈ O×
F+
v
, the actions of Vαv and vv(α) on M1,Qn coincide;

(b) r\1,Qn,v has a (unique) decomposition r•1,Qn,v ⊕ r◦1,Qn,v such that r•1,Qn,v is a lifting of r̄•v
on which IF+

v
acts via the character vv ◦ Art−1

v , and r◦1,Qn,v is an unramified lifting of
r̄◦v.

(2) The composite map

M = HK,mQn
→ HK0(Qn),mQn

∏
v∈Qn

pr$v−−−−−−−→M0,Qn

is an isomorphism. In particular, the canonical homomorphism T0,Qn → Tm is an isomor-
phism; and r0,Qn and rm are equivalent liftings of r̄.

36This is not correct if N is odd, which is the only reason that we suppose Σ+
lr = ∅ if N is odd in the statement

of the theorem.
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Indeed, these claims follow easily from [Tho12, Propositions 5.9 & 5.12].
It follows from (1) that r1,Qn satisfies the global deformation problem S (Qn), which induces a

canonical surjective homomorphism
ϕn : Runiv

S (Qn) � T1,Qn

of O-algebras. Now we claim that ϕn is naturally a homomorphism of O[∆Qn ]-algebras. Indeed,
take a universal lifting runiv

S (Qn) for r̄ over Runiv
S (Qn). Then for each v ∈ Qn, there is a unique character

vuniv
v : ∆v → (Runiv

S (Qn))× such that IF+
v
acts on runiv,•

S (Qn),v via the character

IF+
v

Art−1
v−−−→ O×

F+
v
→ κ×v → ∆v

vuniv
v−−−→ (Runiv

S (Qn))×.

Then Runiv
S (Qn) becomes an O[∆Qn ]-algebra via the character ∏v∈Qn vuniv

v : ∆Qn → (Runiv
S (Qn))×. More-

over, ϕn is a homomorphism of O[∆Qn ]-algebras. By (2) and Lemma E.7.6, we obtain a canonical
commutative diagram

Runiv
S (Qn)/aQn

∼ //

ϕn/aQn
��

Runiv
S

ϕ

��
T1,Qn/aQn

∼ // T0,Qn
∼ // Tm

of O-algebras where all horizontal arrows are isomorphisms.
Now we fix a subset T ⊆ S of cardinality t. Choose universal liftings

runiv
S : ΓF+ → GN(Runiv

S ), runiv
S (Qn) : ΓF+ → GN(Runiv

S (Qn))

for r̄ over Runiv
S and Runiv

S (Qn), respectively, such that runiv
S = runiv

S (Qn) mod aQn . By Proposition
E.2.7(2), we obtain isomorphisms

Runiv
S [[Xv;i,j]]v∈T;1≤i,j≤N

∼−→ R�T
S , Runiv

S (Qn)[[Xv;i,j]]v∈T;1≤i,j≤N
∼−→ R�T

S (Qn)

of O-algebras. In particular, we have a surjective homomorphism R�T
S → Runiv

S , which makes Runiv
S

an algebra over Rloc
S ,T.

We put
S∞ := O[[Xv;i,j]]v∈T;1≤i,j≤N [[Y1, . . . , Yb]];

and let a∞ ⊆ S∞ be the augmentation ideal. Put
R∞ := Rloc

S ,T[[Z1, . . . , Zgb,T ]]

where gb,T is the number appeared in Lemma E.7.5. Applying the usual patching lemma (see the
proof of [BLGG11, Theorem 3.6.1], or [Tho12, Lemma 6.10]), we have the following:

m There exists a homomorphism S∞ → R∞ of O-algebras so that we have an isomorphism
R∞/a∞R∞ ' Runiv

S of Rloc
S ,T-algebras.

m There exist an R∞-module M∞ and an isomorphism M∞/a∞M∞ 'M of Runiv
S -modules.

m As an S∞-module, M∞ is finite and free.
In particular, we have

depthR∞(M∞) ≥ dimS∞ = 1 + |T|N2 + b.

On the other hand, by Proposition E.3.9, Proposition E.5.11(3), and Proposition E.6.2, we know
that Rloc

S ,T is a formal power series ring over O in

|T|N2 +
∑

v∈T∩Σ+
`

[F+
v : Q`]

N(N − 1)
2
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variables. It follows that R∞ is a regular local ring of dimension

1 + |T|N2 +
∑

v∈T∩Σ+
`

[F+
v : Q`]

N(N − 1)
2 + gb,T = 1 + |T|N2 + b−N [F+ : Q]1 + (−1)µ+1−N

2 .

As dimR∞ ≥ depthR∞(M∞), we obtain Theorem E.7.3(3). By the Auslander–Buchsbaum the-
orem, M∞ is a finite free R∞-module. Thus, M is a finite free Runiv

S -module. In particular, the
surjective homomorphism ϕ (E.22) is injective hence an isomorphism. Theorem E.7.3(1,2) are
proved. �

E.8. Rigidity of automorphic Galois representations. In this subsection, we study the rigid-
ity property for reduction of automorphic Galois representations. Let us take the initial setup of
Subsection 6.1, hence let Π be a relevant representation of GLN(AF ) (Definition 1.1.3) for N ≥ 2,
and E ⊆ C a strong coefficient field of Π (Definition 3.2.5). Then for every prime λ of E, we have
a continuous homomorphism ρΠ,λ : ΓF → GLN(Eλ).

Conjecture E.8.1. Let Π and E be as above. Fix a finite set Σ+ of nonarchimedean place of F+

containing Σ+
Π (Notation 3.1.4). Then for all but finitely many primes λ of E, we have

(1) ρΠ,λ is residually absolutely irreducible (so we have the residual homomorphism ρ̄Π,λ and
may put r̄Π,λ := ρ̄Π,λ,+ from Remark 6.1.6), with the similitude character χλ := ηNF/F+ε

1−N
` ;

(2) ρ̄Π,λ|Gal(F/F (ζ`)) is absolutely irreducible, where ` is the underlying rational prime of λ;
(3) r̄Π,λ is rigid for (Σ+

Π, ∅) (Definition E.7.1).

Remark E.8.2. When N = 2, Conjecture E.8.1 is not hard to verify. In fact, if the coefficient field
of Π is Q, then it follows from Proposition E.5.12 and Serre’s theorem on the image of residual
Galois representations of elliptic curves [Ser72].

Concerning Conjecture E.8.1(1), we have the following lemma.

Lemma E.8.3. Let Π and E be as above. Suppose that there exists a nonarchimedean place w of
F such that Πw is supercuspidal. Then there exists a finite set Λ1 of primes of E depending on
Πw only, such that for every λ 6∈ Λ1, ρΠ,λ is residually absolutely irreducible.

Proof. Let WFw be the Weil group of Fw. Since Πw is supercuspidal, we have the induced con-
tinuous representation ρΠw : WFw → GLN(C) via the local Langlands correspondence, which is
irreducible. Fix an arithmetic Frobenius element φw in WFw . We have a natural quotient map
WFw → Z sending φw to 1. For every integer b ≥ 1, let Wb

Fw be the inverse image of bZ. Then
there exist an absolutely irreducible representation τ of IFw and a character χ of Wb

Fw , such that
the underlying representation of ρΠw is isomorphic to IndWFw

Wb
Fw

τ⊗χ, where b is the smallest positive
integer satisfying τφbw ' τ . We may choose a finite extension E ′ of E inside C, and a finite set
Λ′ of primes of E ′, such that both τ and χ are defined over OE′,(Λ′). In particular, the image of
ρΠw is contained in GLN(OE′,(Λ′)), up to conjugation. We claim that there exists a finite set Λ′1 of
primes of E ′ containing Λ′, such that the composite map

ρΠw : WFw → GLN(OE′,(Λ′))→ GLN(OE′/λ
′)

is absolutely irreducible for λ′ 6∈ Λ′1. Now let Λ1 be the set of primes of E underlying Λ′1. Then
the lemma follows by Proposition 3.2.4(2).

It remains to show the claim. In fact, let Λ′1 be the smallest set of primes of E ′ containing Λ′
such that every λ′ 6∈ Λ′1 satisfies

m the underlying rational prime does not divide b|IFw/ ker ρΠw |;
m τ̄λ′ := τ ⊗OE′,(Λ′) OE′/λ

′ remains absolutely irreducible;
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m b remains the smallest positive integer that satisfies τ̄φ
b
w

λ′ ' τ̄λ′ .
Then Λ′1 is a finite set, meeting the requirement in the claim. The lemma is proved. �

Concerning the entire Conjecture E.8.1, we have the following theorem.
Theorem E.8.4. Let Π and E be as above. Suppose that there exist two nonarchimedean places
wc and ws of F such that Πwc is supercuspidal and Πws is a twist of the Steinberg representation,
respectively, in which ws is not above Σ+

ram. Then Conjecture E.8.1 holds for Π and E.

The rest of this subsection is devoted to the proof of the theorem. Let vc and vs be the primes
of F+ underlying wc and ws, respectively, both of which are in Σ+

Π. Without lost of generality, we
may assume that wc and ws are induced by the embedding F ↪→ F+

vc and F ↪→ F+
vs , respectively.

Let ps be the underlying rational prime of ws, which is then unramified in F .
Lemma E.8.5. Under the situation of Theorem E.8.4, there exists a finite set Λ2 of primes of E
containing Λ1 such that for every λ not in Λ2, the restriction ρ̄Π,λ|Gal(F/F (ζ`)) remains absolutely
irreducible, where ` is the underlying rational prime of λ.

Proof. By twisting Π with a Dirichlet character, we may assume that Πws is just the Steinberg
representation.

We first use the integral model of certain Shimura variety to compute the reduction of the
monodromy operator at ws. Choose a finite extension F ⊆ F̆ ⊆ C satisfying

m F̆ is a CM field, with F̆+ := F̆ c=1;
m F̆ /F is Galois and soluble;
m F̆ contains an imaginary quadratic field;
m [F̆+ : Q] is even;
m ps is unramified in F̆ ;
m the extension F̆ /F̆+ is unramified at all nonarchimedean places;
m every place of F̆+ above p splits in F̆ if p underlies Σ+

Π;
m wc splits completely in F̆ ;
m for every prime w of F not above vc, the local base change of Πw to F̆w̆ has nonzero Iwahori

fixed vectors for every prime w̆ of F̆ above w.
Let w̆s be the prime of F̆ induced by the embedding F̆ ↪→ F+

vs which is above ws, and v̆s the prime
of F̆+ underlying w̆s. Let Π̆ be the base change of Π to F̆ by [AC89], which is again a relevant
representation of GLN(AF̆ ). Moreover, we have ρΠ̆,λ = ρΠ,λ|Gal(F/F̆ ) for every prime λ of E, and
that ρΠ̆,λ is absolutely irreducible for every λ not in Λ1 from Lemma E.8.3 (with w = wc).

We fix following data
m a central division algebra B over F̆ of dimension N2 as in [HT01, Section I.7], whose

invariants at w̆s and w̆c
s are 1/N and −1/N , respectively, and that splits at all other places

of F̆ ;
m an element β ∈ B× as in [HT01, Lemma I.7.1] with τ the default archimedean place, which

gives rise to a reductive group G := Gβ over Q;
m a cuspidal automorphic representation π of G(A) (as in [HT01, Theorem VI.2.1]) satisfying

– for every rational prime p not underlying Σ+
Π, πp is unramified;

– BC(π) = (ψ, Π̆B), where Π̆B is the Jacquet–Langlands transfer of Π̆ to (Bop)×, and ψ
is a Dirichlet character that is unramified at ps;

– π∞ is defined over E (by possibly replacing E by a finite extension in C);
m a decomposable open compact subgroup U of G(A∞) satisfying

– U is neat;
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– πU 6= {0};
– Up is hyperspecial maximal for p not underlying Σ+

Π;
– Ups is of the form Z×ps×Uv̆s×U

v̆s
ps in which Uv̆s is the maximal open compact subgroup

of B×w̆s .
Then we obtain a Shimura variety XU over F̆ as in [HT01, Section III.1], which is projective
and smooth of relative dimension N − 1. Moreover, XU ⊗F̆ F̆w̆s admits a natural projective
integral model XU over OF̆w̆s

, which is strictly semistable, whose strata on the special fiber
are strata of the reduced subscheme of Drinfeld’s formal upper half space of relative dimension
N − 1 (see, for example, [Tho14, Theorem 6.2]). For every prime λ of E, we have the associated
weight spectral sequence Ep,q

s,λ converging to Hp+q
ét (XU ⊗F̆ F ,Oλ), together with a monodromy map

µλ : E•,•1,λ → E•+2,•−2
1,λ . Now since strata of the reduced subscheme of Drinfeld’s formal upper half

space satisfy [Ito05, Assumption 2.1] by the proof of [Ito05, Theorem 1.1], we have a canonical
finite bicomplex Ep,q

1 of finite free OE-modules with only horizontal differentials together with a
monodromy map µ : E•,•1 → E•+2,•−2

1 , such that for every prime λ of E, Ep,q
1,OE⊗OEOλ is canonically

isomorphic to Ep,q
1,Oλ as bicomplexes in Mod(Oλ), under which µ⊗OE Oλ coincides with µλ. Let Ep,q

2
be the cohomology of Ep,q

1 (under horizontal differentials). Let Λmot be the support of the finite
OE-module ⊕p,q(Ep,q

2 )tor, which is a finite set of primes of E. Then for every prime λ 6∈ Λmot, the
spectral sequence Ep,q

s,λ degenerates at the second page by the incompatibility of weights, similarly
to the proof of [Tho14, Proposition 6.5]. Moreover, if we put

Hn
mot(XU , OE) :=

⊕
p+q=n

Ep,q
2

with the induced monodromy map µmot : Hn
mot(XU , OE)→ Hn

mot(XU , OE), then for every λ 6∈ Λmot,
we have a canonical isomorphism Hn

mot(XU , OE)⊗OEOλ ' Hn
ét(XU⊗F̆ F ,Oλ) such that there exists

a topological generator tλ in the Z`-quotient of IF̆w̆s whose action on Hn
ét(XU ⊗F̆ F ,Oλ) is given

by 1 + µmot.
Put Hn

mot(XU ,C) := Hn
mot(XU , OE)⊗OE C. Note that the Hecke algebra Z[Up\G(A∞,p)/Up] act-

s on Ep,q
1 hence on Hn

mot(XU ,C). Let Hn
mot(XU ,C)[π] be the π∞,p-isotypic part of Hn

mot(XU ,C),
and put Hn

mot(XU , OE)[π] := Hn
mot(XU ,C)[π] ∩ Hn

mot(XU , OE). For every λ 6∈ Λmot, we put
Hn

mot(XU , Oλ)[π] := Hn
mot(XU , OE)[π] ⊗OE Oλ, which is a subspace of Hn

ét(XU ⊗F̆ F ,Oλ) stable
under the action of Gal(F/F̆ ), and is nonzero if and only if n = N − 1. Now we characterize
Hn

mot(XU , Oλ)[π] as an Oλ[Gal(F/F̆ )]-module for λ 6∈ Λ1 ∪ Λmot. For λ 6∈ Λ1 ∪ Λmot, ρΠ̆,λ is resid-
ually absolutely irreducible, for which we may fix a Gal(F/F̆ )-stable lattice Rλ, which is a free
Oλ-module of rank N . Now we let Rψ

λ be the Oλ[Gal(F/F̆ )]-module on which Gal(F/F̆ ) acts
by ρΠ̆,λ twisted by the character res(ψ)|−1

Gal(F/F̆ ) as in [HT01, Corollary VII.1.10], which is again
residually absolutely irreducible. By [HT01, Corollary VII.1.10], we obtain an isomorphism

Hn
mot(XU , Oλ)[π]⊗Oλ Eλ ' (Rψ

λ ⊗Oλ Eλ)⊕m(E.23)

of Eλ[Gal(F/F̆ )]-modules, for some positive integer m independent of λ. Since Π̆w̆s is the Stein-
berg representation and res(ψ)|−1

Gal(F/F̆ ) is unramified at ps, by Proposition 3.2.4(2), the restriction
endomorphism 1 + µmot of Hn

mot(XU , OE)[π] is conjugate to (1 + JN)⊕m. Thus, there exists a
finite set Λ2 of primes of E containing Λ1 ∪ Λmot and all those λ whose underlying rational
prime ramifies in F̆ , such that for every λ 6∈ Λ2, the reduction of 1 + µmot as, an endomor-
phism of Hn

mot(XU , OE)[π] ⊗OE OE/λ, is again conjugate to (1 + JN)⊕m. By (E.23), R̄ψ
λ is an

Oλ/λ[Gal(F/F̆ )]-submodule of Hn
mot(XU , OE)[π]⊗OE OE/λ. Thus, the image of Gal(F/F̆ (ζ`)) in

End(R̄ψ
λ ), hence ρ̄Π̆,λ(Gal(F/F̆ (ζ`))), contain a unipotent matrix that is conjugate to 1 + JN . In
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particular, ρ̄Π̆,λ|Gal(F/F̆ (ζ`)) is absolutely indecomposable. On the other hand, since Gal(F/F̆ (ζ`)) is
a normal subgroup of Gal(F/F̆ ) of finite index, ρ̄Π̆,λ|Gal(F/F̆ (ζ`)) is absolutely semisimple, hence has
to be absolutely irreducible. Thus, ρ̄Π,λ|Gal(F/F (ζ`)) remains absolutely irreducible for λ 6∈ Λ2. �

Proof of Theorem E.8.4. Let Λ2 be the set in Lemma E.8.5. It suffices to study (3) in Theorem
E.8.4. We take a prime λ of E not in Λ2, whose underlying rational prime ` does not underlie Σ+,
and satisfies ` ≥ 2(N + 1). In particular, we have

(a) ` is unramified in F ;
(b) Πw is unramified for every place w of F above `;
(c) ρ̄Π,λ|Gal(F/F (ζ`)) is absolutely irreducible, which implies that r̄Π,λ(Gal(F/F+(ζ`))) is ade-

quate by Remark E.7.4;
(d) Proposition E.3.9 holds for the local deformation problem DFL of r̄Π,λ,v for every v ∈ Σ+

` ;
(e) Proposition E.5.11 holds for r̄Π,λ,v for every v ∈ Σ+.

For a collection DΣ+ = {Dv | v ∈ Σ+} in which Dv is an irreducible component of Spf Rloc
r̄Π,λ,v

for
v ∈ Σ+, we define a global deformation problem (Definition E.2.6)

S (DΣ+) := (r̄Π,λ, η
µ
F/F+ε

1−N
` ,Σ+ ∪ Σ+

` , {Dv}v∈Σ+∪Σ+
`

)

where for v ∈ Σ+, Dv is the prescribed irreducible component (which is a local deformation
problem by Proposition E.5.11(2)) in DΣ+ ; and for v ∈ Σ+

` , Dv is the local deformation problem
DFL of r̄Π,λ,v from Definition E.3.6. Now by (a–e), and the same proof of [Tho12, Theorem 10.1]
(which assumes that Σ+∪Σ+

` consists only of places split in F ), we know that the global universal
deformation ring Runiv

S (DΣ+ ) is a finite O-module. Moreover, we have µ ≡ N mod 2. By (d,e), and
the same proof of [Gee11, Lemma 5.1.3] (which assumes that Σ+ ∪ Σ+

` consists only of places
split in F ), we know that the Krull dimension of Runiv

S (DΣ+ ) is at least one. Thus, Runiv
S (DΣ+ )[1/`] is

nonzero. By choosing a Q`-point of Spec Runiv
S (DΣ+ )[1/`], we obtain a relevant representation Π(DΣ+)

of GLN(AF ) satisfying
m Π(DΣ+) is unramified outside Σ+;
m for every place w of F above Σ+, there is an open compact subgroup Uw of GLN(Fw)

depending only on Πw, such that Π(DΣ+)Uww 6= {0};
m ρΠ(DΣ+ ),ι` and ρΠ,λ ⊗Eλ Q` are residually isomorphic.

In fact, the second property is a consequence of Proposition E.5.7. Note that there are only finitely
relevant representations of GLN(AF ) up to isomorphism, satisfying the first two properties. By
the strong multiplicity one property for GLN [PS79], we know that for ` large enough, Π is the
only relevant representation of GLN(AF ) up to isomorphism, satisfying all the three properties.

Now we claim that for two different collections DΣ+ and D ′Σ+ , the relevant representations
Π(DΣ+) and Π(D ′Σ+) are not isomorphic. Assuming this claim, then for ` large enough, we have
only one collection, which is {Dmin

v | v ∈ Σ+}, that is, r̄Π,λ is rigid for (Σ+
Π, ∅). The theorem is

proved.
For the claim itself, we take a place v ∈ Σ+. Then the local components of Π(DΣ+) above v

give rise to a continuous homomorphism r : ΓF+
v
→ GN(Q`), which corresponds to a Q`-point xr

in Spec Rloc
r̄Π,λ,v

[1/`]. Now the dimension of the tangent space of Spec Rloc
r̄Π,λ,v

[1/`] at xr is equal to

N2 + dimQ` H1(F+
v , ad r)− dimQ` H0(F+

v , ad r) = N2 + dimQ` H2(F+
v , ad r)

= N2 + dimQ` H0(F+
v , (ad r)(1)) ≤ N2 + dimQ` H0(Fw, (ad r\)(1)),

where w is the place of F induced by the embedding F ↪→ F+
v . However, since Π(DΣ+)w is generic,

we have dimQ` H0(Fw, (ad r\)(1)) = 0 by [BLGGT14, Lemma 1.3.2(1)]. Thus, by Proposition
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E.5.11(1), Spec Rloc
r̄Π,λ,v

[1/`] is smooth at xr, which implies that xr can not lie on two irreducible
components. The claim then follows. �

Remark E.8.6. In fact, using the same proof, one can obtain Theorem E.8.4 for Π satisfying a
weaker condition, namely, by asking Π to be regular algebraic rather than Definition 1.1.3(3).
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