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Abstract. This work deals with the dynamics of sand ripples which occur on a flat sandy sea 
bed excited with an oscillatory flow in a wave flume. The bathymetry of the bed is reported 
since the first stages of ripple formation with an optical technique. A statistical approach is 
developed to study the dynamical evolution of ripples. With an identical mobility number and 
different Reynolds number, two tests leading to 2D and 3D pattern formation are compared. 
Two stages are detected during ripple formation independently of pattern morphology. 
However, pattern tridimensionality can be detected with statistical tools. 2D and 3D 
equilibrium ripple geometric data are compared with the literature.  

1.  Introduction 
Various ripple patterns are observed in shallow marine environments. Sometimes, sandy non-cohesive 
seabeds are covered with regular two-dimensional ripples, sometimes the patterns appear more 
complex and three-dimensional ripples can be observed. 

When studying the ripples formation from an initial flat bed, two main classes of ripples are 
observed. First, rolling grain ripples appear at the very beginning of ripple formation. The transient 
nature of these small structures is experimentally demonstrated in different geometries (Faraci & Foti 
[1]; Rousseaux & al. [2]). This unstable state is followed by the vortex ripple state where ripples are 
due to the formation and shedding of organized vortices at the crests. Ripples are traditionally 
characterized by their mean length and height. However, even for 2D patterns, the spatial variability of 
ripples formed by a monochromatic gravity wave of high quality in a flume suggests that statistics on 
distributions of ripple geometric data can give further information on ripple patterns formation (Jarno-
Druaux & al. [3]).  

In the case of three-dimensional complex morphologies, theoretical studies have been performed in 
order to explain the formation mechanisms. Particularly concerning brick-pattern ripples, Hara & Mei 
[4] argue that the formation of such longitudinal structures is due to a hydrodynamic instability of the 
Görtler type. Indeed, this centrifugal instability is induced by the curved streamlines and the 
longitudinal vortices erode the ripples perpendicularly to their crest direction. Granular instability has 
been studied by Vittori & Blondeaux [5] and by Roos & Blondeaux [6]. They established, with a 
weakly nonlinear stability analysis of a flat cohesionless bottom subjected to an oscillatory flow, that 
the interactions between 2D and 3D bed perturbations can lead to brick-pattern ripple formation.   

Three dimensional patterns are observed both in-situ and in laboratory but very few experimental 
studies have been conducted to measure and characterize 3D ripples until the recent work conducted 
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by O’Donoghue & al. [7]. It appears, during their full scale experiments, that the grain size is a 
prevailing factor for the formation of 3D pattern. Furthermore, they propose a formulation based on a 
modified Nielsen law [8] for 2D and 3D ripple heights and lengths at the equilibrium state. Three-
dimensional ripple characteristics (height and length) are known to be smaller than those observed 
with 2D ripples, and this change has of course a great influence on sediment transport. However, the 
criteria of appearance of 3D ripples and their way of growth are still misunderstood and need further 
research. 

Herein, a comparison between a 2D and a 3D pattern obtained with a same mobility number is 
reported. The equilibrium dominant geometric ripple lengths and heights for 2D and 3D patterns are 
compared with the literature.   

2.  Experimental set-up 

2.1.  Experimental facilities and test conditions 
The experiments were carried out in a wave flume at LMPG, University of Le Havre. The wave 
channel has a 10m long, 0.5m high and 0.5m wide section. The movable bed is excited by a 
unidirectional oscillatory forcing flow. The tests were carried out with three natural sands with 
different grain-size distributions (d50 = 111 µm, 163 µm, 375 µm, relative density: s = 2.65 and angle 
of repose: ϕ  = 33 °).  The 25 mm depth of sandy bed is overlayed by a 27 cm water layer. The 
experiments were carried out with several flow conditions for each type of sand. The flow conditions 
have been chosen such as the Reynolds number associated to the boundary layer, Rδ =  δ aω /ν,  varies 
in the range 70 < Rδ < 250, where δ is the Stokes layer thickness, a is the fluid-orbital amplitude at the 
edge of the boundary layer, ω denotes the flow frequency and ν is the fluid kinematic viscosity. The 
mobility number ψ is defined as follow: ψ =  ( aω )² / ( s – 1 ) g d50  where d50 is the median grain size 
diameter, and varies between 3 and 38. For each test, the first 6000 cycles of excitation are studied. 

2.2.  Experimental technique and processing 
The measurement technique of ripple bathymetry is based on image acquisition fully detailed by 
Marin & Ezersky [9]. After a chosen number of excitation cycles, the wavemaker is stopped, a scan of 
the bed is performed and a bathymetry picture processed by the software LabView 6.1. The 
dimensions of the observed field are 6 m long and 35 cm width. The spatial resolution on both the 
horizontal and vertical directions is 0.5 mm per pixel. A specific signal processing is developed to get 
ripples geometric characteristics. Every line of the bathymetry picture is taken into account and the 
position of crests and troughs and thus the lengths and heights distributions are obtained applying a 
1D-Hilbert transform on the signal and its “mirror”. For each detected ripple, its length L, height H, 
steepness H / L, and mass M are calculated. Information of the whole pattern are then gathered. This 
leads to distribution function representation of ripple geometrical data, and thus statistics and 
probabilities calculations on the bed morphology are performed. 

3.  Results 

3.1.  Observation of ripple pattern formation 
The tests begin from rest with a flat sandy bed. Ripples appear either uniformly over the test section or 
from nucleation sites according to the flow and sediments conditions. However, ripple patterns always 
formed uniformly over the test section for previous tests (Jarno-Druaux & al., [3]) which were carried 
out with plastic powder (PolyVinyl Chloride; PVC) in the same wave flume as for present tests. Using 
PVC powder, a rolling grain ripple stage could be clearly characterized. In the present work performed 
with sand, the rolling of grains is observed but an organized rolling grain ripple pattern is not always 
detected partly due to its rapidity of conversion into vortex ripples.  

In the particular case of flow and sand conditions that lead to 3D pattern, during the very beginning 
of excitation load, the sandy bed could be covered with different ripple patches which have not the 
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same geometric characteristics (height or length) and even not the same morphologies (2D or 3D), 
(figure 1). 
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Figure 1. Bathymetry of a 1m long and 25cm width section of the bed at t=500 cycles (ψ= �9 and Rδ=132). 

3.2.  The two stages in pattern evolution  
In this section are compared two tests for which the mobility number is the same (ψ =  9), but with 
different Reynolds number Rδ. A change of the value of Rδ for a given value of ψ  is obtained varying 
the wave conditions (an increase of the wave period or of the wave height leads to higher Reynolds 
numbers). The main difference between the patterns observed in those experiments is that one of them 
leads to a 2D ripple geometry (for Rδ = 98) and the other leads to a 3D morphology (for Rδ = 132). 
Similarities are first observed concerning the global trend of ripple geometrical characteristics 
evolution. Indeed, two main stages are detected. The first one is a rapid growth stage and has a typical 
duration of 700 cycles. Ripples characteristics grow, at a local scale, until they reach almost 90% of 
their equilibrium value (figure 2a). At the same time, the adimensioned standard deviation Σ (ratio 
between the standard deviation and dominant value of the studied repartition) strongly decreases and 
reaches its minimum at the end of this first stage (figure 2b), leading to the most regular pattern during 
the ripples formation. Afterwards, the growth rate of ripple data is weak. Dominant values are kept 
quite constant but distributions still undergo changes that are captured by the standard variation. In 
particular, we notice an increase of Σ  at the very beginning of the second stage suggesting that the 
pattern slightly ‘dilate’ while organizing at the global flume scale.  

 
Figure 2a. Evolution with time of L/a and H/a for 2D          Figure 2b. Evolution with time of ΣL and ΣH  for 2D  
 and 3D patterns(ψ = 9, Rδ(2D) = 98, Rδ(3D) = 132).          and  3D patterns(ψ = 9, Rδ(2D) = 98, Rδ(3D) = 132). 
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Furthermore, the values of Σ  are much higher for the 3D case than for the 2D. This result suggests 
that despite an evident uniformization of the pattern at the end of the first stage, the diversity in ripple 
length and height for the 3D rippled bed remains considerable.  

3.3.  Equilibrium state 
Figure 3 reports our results for the dominant values of ripple height and length at the equilibrium state; 
the values of the ranges of the hydrodynamic and sedimentary parameters are given in section 2.1.  
Nielsen [8] and O’Donoghue & al. [7] formulae are also plotted on this figure. O’Donoghue & al. 
introduced two modified Nielsen formulae for 3D and 2D ripple patterns. Let us note that our 
experiments are performed with small values of ψ and Rδ, whereas O’Donoghue & al. focused their 
work on experimental conditions leading to higher values of ψ and Rδ.  
 

 
Figure 3. Equilibrium values of H/a and L/a  for every test and comparison with experimental laws. 

 
As expected, the ripples geometric dimensions are smaller in the case of 3D patterns than in the 

case of 2D patterns. The prediction of O’Donoghue & al. for 3D ripples gives a good correspondence 
with our results for the present high values of ψ. However, a strong increase of the equilibrium values 
of ripple heights and lengths is clearly shown at smaller values of ψ, which is not predicted by 
O’Donoghue & al. law. Moreover, it is observed that, for the tested parameters ranges, ripple length at 
the equilibrium depends on two control parameters: the mobility number and the Reynolds number 
associated to the flow. For a given value of ψ, the ripple length decreases for increasing values of 
Rδ, with a stronger influence of the Reynolds number at low values of ψ. Concerning the appearance 
of 2D or 3D ripple patterns, it clearly depends on both flow and sediment properties. However, no 
critical value of Rδ  and ψ could be determined with the present tests.   

4.  Conclusions  
 
This study considers the formation of 2D and 3D sand ripples in a wave flume. Two different stages of 
ripple pattern formation are identified by a statistical analysis of ripple heights and lengths. The first 
one corresponds to a rapid growth stage at a local scale and the second one traduces a global 
organization of the pattern. These observations are made for 2D and 3D patterns even if the 2D cases 
highlight more clearly the behaviors of the pattern. Studying the pattern evolution since the first stages 
of ripple formation, it is observed that the pattern geometry (2D/3D) is not necessary the same at the 
beginning of the test and at its end. In some cases, pattern is first 2D and, after the rapid growth stage, 
it turns to 3D pattern, coming with a global reorganization of the pattern (traduced by an increase in 
standard deviation of geometrical data). For a given mobility number, 3D ripples are obtained with 
higher values of Reynolds number than for 2D ripples. The dimensions of 3D ripples at the 
equilibrium state are smaller than in the 2D cases, at fixed mobility number. Considering 2D and 3D 
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patterns, equilibrium values of lengths depend not only on the mobility number, but also significantly 
on the Reynolds number at low mobility number. Finally, the present results suggest that an exclusive 
estimation of dominant geometric parameters looks insufficient to capture the main features of 3D 
patterns. 
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