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Abstract

Effective conductivity and permeability of a versatile, graph-based model of random struc-
tures are investigated numerically. This model, originally introduced in Gaiselmann et al.
(2014) allows one to simulate a wide class of realistic materials. In the present work, an
extensive dataset of two-phase microstructures with wide-ranging morphological features is
used to assess the relationship between microstructure and effective transport properties,
which are computed using Fourier-based methods on digital images. Our main morpholog-
ical descriptors are phase volume fractions, mean geodesic tortuosity, two “hydraulic radii”
for characterizing the length scales of heterogeneities, and a “constrictivity” parameter that
describes bottleneck effects. This additional parameter, usually not considered in homoge-
nization theories, is an essential ingredient for predicting transport properties, as observed
in Gaiselmann et al. (2014). We modify the formula originally developed in Stenzel et al.
(2016) for predicting the effective conductivity and propose a formula for permeability. For
the latter one, different geometrical definitions of the hydraulic radius are compared. Our
predictions are validated using tomographic image data of fuel cells.

Keywords: Permeability, effective conductivity, constrictivity, mean geodesic tortuosity,
predictive simulation, stochastic microstructure modeling.

1. Introduction

It is well-known that the effective properties (e.g. conductivity, permeability) of hetero-
geneous media, for both, porous or composite materials, strongly depend on microstructural
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features such as phase volume fraction or tortuosity [1]. Exact results for the effective prop-
erties of random structures have been obtained in few cases, most of them related to media
with infinitely-many scales (e.g. self-consistent estimates, or the coated-spheres model [2]),
which are hardly representative for real microstructures. In functional materials such as solar
cells [3], batteries [4] and fuell cells [5], most applications are dealing with microstructures
characterized by a narrow distribution of typical scales of the heterogeneities which are,
due to processing constraints, of similar size. Exact analytical upper and lower bounds [1]
correspond to extreme properties and are, in this context, not useful.

Although 3D imaging of materials helps investigating quantitative relationships between
microstructure characteristics and transport properties, as done in [6] for the permeability
of sandstone, this approach suffers from the high costs of 3D imaging, and a limited number
of imaged samples. Alternatively, virtual but otherwise realistic microstructures may be
simulated using methods of stochastic geometry [7] and mathematical morphology [8]. We
refer to [9] for a review of the combined use of stochastic modeling and numerical simulations
of macroscopic properties, which will be called virtual materials testing in the following.
Efforts have focused, notably, on the Boolean model [10], see e.g. [11, 12], on dilated edge
systems of Laguerre tessellations [13, 14], and, recently, on excursion sets of Gaussian random
fields [15]. Moreover, virtual materials testing has been applied in [16] with respect to
effective conductivity, where a large variety of virtual microstructures is generated by means
of a specifically developed stochastic microstructure model. Improvements of the results
obtained in [16] and combinations of virtual materials testing with methods of machine
learning are presented in [17, 18].

In [18], an extensive study making use of 8119 virtual microstructures generated by means
of three different stochastic microstructure models have been conducted. The authors of [18]
proposed to use an “intrinsic constrictivity” parameter β that describes bottleneck effects,
in order to discriminate between poorly- and highly-conducting microstructures that exhibit
otherwise similar phase volume fractions ε and similar lengths of transport paths quantified
by mean geodesic tortuosity τ .1 Note that the definition of constrictivity β is based on
the concept of the so-called continuous phase size distribution [19], strongly related with the
granulometry function of mathematical morphology [8], and thus it takes the size distribution
of the transport phase into account. Regarding the importance of the phase size distribution
for effective transport properties, we refer to, e.g., [13, 20].

In [18], an empirical powerlaw formula has been proposed to predict the effective conduc-
tivity (“M -factor”) as a function of the microstructure characteristics ε, τ and β. The present
study builds on the work of Stenzel et al. [18]. First, we show that the powerlaw formula
of [18] systematically underestimates effective conductivity for well conducting microstruc-
tures and propose a refined empirical formula for conductivity that matches numerical data
with much greater accuracy. Second, virtual materials testing is used to systematically in-
vestigate relationships between permeability and the geometrical charateristics ε, τ and β
using a database of various virtual microstructures. No length scale relevant to the porous

1For the definition of constrictivity and mean geodesic tortuosity, we refer to Section 3.
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phase is accounted for in the parameters ε, τ and β whereas permeability is strongly size-
dependent [21]. Therefore, in the rest of the present paper, we make use of an additional
characteristic, namely a geometrical “hydraulic” radius. Based on [22], we discuss two possi-
ble approaches, where the hydraulic radius is defined by means of the specific surface area or
by a convex combination of characteristic bottleneck sizes and the median of a “continuous
phase size” distribution. The latter approach demonstrates again that the size of bottlenecks
is an important microstructure characteristic with respect to permeability [6, 14, 21, 23]. We
compare our predictive formulas for permeability with the results obtained in [6]. Further-
more, our formulas are validated based on tomographic image data of real microstructures.

The rest of this paper is organized as follows. First, we briefly describe the considered
macroscopic properties, i.e. effective conductivity and permeability, and their numerical
simulation (Section 2). The definitions of the considered geometric microstructure charac-
teristics are presented in Section 3, with a special emphasis on the hydraulic radius. The
simulation of microstructures is recalled in Section 4. A discussion of our results is provided
in Section 5. Finally, Section 6 concludes.

2. Effective transport properties and their numerical simulation

2.1. Effective conductivity

Consider a two-phase microstructure with a conducting and insulating phase. Denote
by σ0 the intrinsic conductivity of the former. The M -factor is the normalized effective
conductivity, i.e.

M = σeff/σ0. (1)

Let J and U denote the current density and the electric potential, respectively. Under steady
state conditions, U and J can be determined by solving:

div J = 0, J = −σ∇U (conducting phase), J = 0 (insulating phase). (2)

where σ denotes the local conductivity (see [1], Sections 13.2 and 16.1). A macroscopic
gradient of the potential field is applied, as: 〈∇U〉Ω = (−1, 0, 0). Assuming periodic boundary
conditions along the frontiers of a domain Ω, the effective conductivity σeff is determined by

〈J〉Ω = −σeff 〈∇U〉Ω, (3)

where 〈·〉Ω denotes an average over the elementary cell Ω. Hereafter we suppose that Ω
is large compared to the size of the heterogeneities and, therefore, is representative for the
microstructure model. Moreover, we identify the tensor σeff with its component σeff

11 , which is
in the following determined by σeff

11 = −〈J1〉Ω/〈∂1U〉Ω. If not stated otherwise, the software
GeoDict [24] is used to compute σeff for voxelized 3D microstructures of two-phase materials.
We recall the formula proposed in [17] for predicting the M -factor:

M̂1 =
ε1.15β0.37

τ 4.39
, (4)

where M̂1 ≈ M is an estimate of the normalized effective conductivity. The definitions for
β and τ are given below.
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2.2. Permeability

We consider viscous flow of incompressible fluids through the pore space of complex
microstructures, which is described by Darcy’s law [1, Section 13.5], i.e.

〈v〉Ω = −κ
η
〈∇p〉Ω, (5)

where 〈v〉Ω, κ, η, 〈∇p〉Ω denote the spatial average of the local fluid velocity v, the perme-
ability of the pore space, the dynamic viscosity and the macroscopic pressure gradient with
respect to the gradient of the pressure field p, respectively. Note that κ quantifies the influ-
ence of microstructure on viscous flow and can be computed from the velocity and pressure
fields. These fields, in turn, are obtained by solving the system of differential equations given
by

η∆v = ∇p, div v = 0, (6)

in the pore space, under the constraints that 〈p〉Ω = 0 and that v vanishes at the pore-
solid interface. The macroscopically applied pressure gradient reads 〈∇p〉Ω = (−1, 0, 0).
For simulating permeability of voxelized 3D microstructures of porous materials, we use the
software GeoDict [24]. We identify the tensorial permeability κ by the component κ11 in the
following, i.e., we consider the direction of the macroscopic pressure gradient. In contrast to
the M -factor, κ (unit: m−2) is not dimensionless.

3. Microstructure characteristics

In order to investigate the influence of microstructure on effective transport properties,
we consider the following characteristics: volume fraction ε, mean geodesic tortuosity τ , con-
strictivity β and hydraulic radius rhc of the transport phase. We emphasize that the volume
fraction ε of the transport phase is the volume fraction of the percolating cluster in that
phase. We focus on these microstructure characteristics since they allow for the explanation
of variations of effective conductivity to a large extent as shown in [16, 17]. A detailed
motivation for the choice of the characteristics ε, τ , and β can be found in [16]. Possible
modifications in the definition of constrictivity are discussed in [17], where it turned out
that the notion of constrictivity considered in [16] is the most meaningful regarding effective
conductivity. With respect to permeability, the results of [21] and [25] let us assume that
permeability can be appropriately predicted by the same microstructure characteristics as
effective conductivity, i.e. by ε, τ, β, and one further microstructure characteristic quanti-
fying the characteristic length scale of the transport phase. The choice of this additional
microstructure characteristic is discussed in Section 3.3.

3.1. Mean geodesic tortuosity

The mean geodesic tortuosity τ quantifies the length of paths through the transport
phase. To compute τ from 3D image data, we compute all shortest paths beginning at the
plane, where transport starts. For this purpose, we use Dijkstra’s algorithm [26] on the
voxel grid. Finally, τ is defined as the average over all shortest path lengths divided by the
thickness of the material [17].
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3.2. Constrictivity

Constrictivity β is a measure for bottleneck effects, which has been introduced for a cylin-
drical transport phase with periodic constrictions in [27] by β = (rmin/rmax)2. Here rmin and
rmax denote the minimum and maximum radius of the cross-section through the transport
phase. A generalization of constrictivity has been introduced in [28], where rmin and rmax are
defined for complex microstructures based on two kinds of phase size distributions. To be
more precise, rmax is defined as the 50%-quantile of the continuous phase size distribution,
while rmin is defined as the 50%-quantile of the MIP-phase size distribution [18] geometri-
cally simulating the mercury intrusion porosimetry [19], where the intrusion is performed in
transport direction. Thus, rmin is a direction-dependent characteristic, which can be con-
sidered as the radius of the characteristic bottleneck of the transport phase. The values of
constrictivity are between 0 and 1 by definition. Values close to 0 indicate strong bottleneck
effects, while values close to 1 mean that there are no bottlenecks within the microstructure.
For a formal definition of mean geodesic tortuosity and constrictivity in the framework of
stationary random closed sets, we refer to [29].

3.3. Hydraulic radius

In the case of viscous flow through tubes with constant cross-section, the hydraulic radius
rhc is defined as the ratio of the area of the cross-section and its perimeter [30]. Note that, due
to the constant cross-sections, this ratio coincides with the ratio of the volume fraction of the
tube and the wetted surface area. For circular cross-sections with radius r0, it is rhc = r0/2.
In this case, the permeability κ can be analytically computed [31, Paragraph 17] and we have
κ = r2

0/8 = r2
hc/2, i.e., the permeability can be expressed in terms of the hydraulic radius.

Since the only limitations of viscous flow in a circular tube arise from friction at the tube
walls, the hydraulic radius is considered as a characteristic length scale of the pore space
describing the strength of flow limitations caused by friction at the boundary [32, 33]. The
concept of the hydraulic radius can be transfered to complex microstructures via rhc,I = ε/S,
see e.g. [34], where S denotes the specific surface area of the pore space, i.e. the mean
surface area of the pore-solid interface per unit volume. Note that for the estimation of S
from discretized model realizations or tomographic image data, we use the method described
in [35]. Alternatively, it was suggested in [21] to define the characteristic length of the pores
in the context of viscous flow by means of a quantity describing the characteristic bottleneck
of the pore space. Following this idea of [21], in [22] the characteristic length scale of the pores
is geometrically defined by rhc,II = (rmin + rmax)/2. Moreover, it was shown in [23] that the
expression Mr2

hc,II/8 correlates strongly with numerically simulated values of permeability
in gas-diffusion layers of polymer electrolyte fuel cells (PEFC). Note that it is not a priori
clear, why rhc,II is defined as the average of rmin and rmax. In Section 5.2 we define rhc,II as
the convex combination

rhc,II = armin + (1− a)rmax, (7)

where 0 < a < 1 is optimized such that rhc,II is meaningful regarding permeability. Analo-
gously, we introduce a scaling factor b > 0 in the definition of rhc,I, i.e.,

rhc,I = b ε/S. (8)
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The optimization of the parameters a and b is performed on the basis of virtual microstruc-
tures generated by stochastic modeling.

4. Generation of virtual microstructures

For the generation of virtual microstructures, we use the stochastic graph-based model
introduced in [16]. This model is able to simulate virtual microstructures for a wide range
of microstructure characteristics ε, τ and β. The idea of the model is as follows. To begin
with, a random geometric graph model is used to define a completely connected network,
which is then locally dilated, i.e., the edges of the network are dilated by random dilation
radii. The intensity of vertices in the network, the anisotropy of the orientation of edges as
well as the mean and the variance of the random dilation radii can be adjusted by the aid of
model parameters. This means, in turn, that the microstructure characteristics ε depending
on the mean dilation radius, τ depending on the anisotropy of edges, and β depending of
the variance of the dilation radii can be controlled by the model parameters [16]. Thus, we
use the dilated network as the transport phase in the following. Note that, depending on
whether we are interested in effective conductivity or in permeability, the transport phase is
either the conductive phase or the phase, in which the fluid flows.

Three virtual microstructures generated by the stochastic graph-based model described
above for different values of model parameters are visualized in Figure 1. One can observe
that the constrictivity can be varied strongly in the model. In the microstructure depicted in
Figure 1 (c), the transport phase consists of large regions which are connected by very thin
channels. Thus many narrow constriction appear resulting in the small value of β = 0.01.

(a) (b) (c)

Figure 1: Visualization of virtual microstructures generated by the stochastic graph-based model. The
transport phase is represented in blue. The corresponding microstructure characteristics are ε = 0.31, β =
0.48, τ = 1.40 (a), ε = 0.21, β = 0.29, τ = 2.12 (b), and ε = 0.51, β = 0.01, τ = 1.27 (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Microstructure characteristics of the 66 virtual microstructures considered to investigate the
influence of microstructure on permeability.
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To derive quantitative relationships between microstructure characteristics and effective
transport properties, we consider virtual microstructures generated by the stochastic graph-
based model described above. Note that in a previous study, 8119 virtual microstuctures
have been simulated to investigate the influence of microstructure on effective conductiv-
ity [18]. In the present paper we use the 8119 microstructures when investigating effective
conductivity and restrict ourselves to a selection of 66 virtual microstructures in the case of
flow since the numerical simulations of permeability are more time-consuming than the ones
of effective conductivity. This means that the prediction formulas for effective conductivity
are more reliable, since they are obtained on the basis of a larger data set. Nevertheless, the
quantitative relationships derived for permeability also admit appropriate predictions for real
microstructures the morphology of which differs from the 66 selected virtual microstructures,
see Figure 8 and Section 5.2.

The microstructure characteristics ε, S, rmax, rmin, β, τ of the selected 66 virtual microstru-
ctures are shown in Figure 2. On the one hand, S and β can be varied independently of ε, i.e.,
there exist microstructures having a large value of both, ε and β. For these microstructures,
Equation (4) leads to an underestimation of M , which is discussed in detail in Section 5.1. On
the other hand, τ, rmax and rmin can not be varied independently of ε. It is not surprising that
for increasing ε the values of rmax and rmin increase. Furthermore, with decreasing volume
fraction the length of transport paths through the material typically increases and thus τ
increases for decreasing values of ε. For a visualization of the microstructure characteristics
of all 8119 virtual microstructures, we refer to Figure 5 in [18].

5. Results and discussion

In this section, we present and discuss our results regarding quantitative microstructure-
property relationships for effective conductivity (Section 5.1) and permeability (Section 5.2).
Finally, a summary of the main results is given (Section 5.3).

5.1. Prediction of effective conductivity using geometrical microstructure characteristics

Based on virtual microstructures, generated with the same model as described in Sec-
tion 4, Equation (4) has been proposed in [17] to estimate the M -factor. In particular,
in [17], it has also been shown that Equation (4) is appropriate to predict the M -factor of
microstructures in solid-oxide fuel cell (SOFC) anodes and ceramic diaphragms which have
been reconstructed by tomographic 3D imaging. For these materials, effective conductivity
has been determined with numerical simulation and also with experimental characteriza-
tion (from electrical four-point-measurements). The predictions by Equation (4) match well
with experimental results from the same materials. Note that for such microstructures the
numerical values of M are less than 0.2. The goodness-of-fit of Equation (4) for the 8119
virtual microstructures, which is visualized in Figure 3, reveals the following. On the one
hand, a mean absolute percentage error (MAPE) of 13.6 % and a coefficient of determination
R2 = 0.984 have been computed. This can be considered as a good fit, taking into consid-
eration that the M -factor of many different microstructures is approximated by only three
aggregated microstructure characteristics. For comparison, the best prediction of M by ε, τ
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and β obtained by random forests (RF) leads to a MAPE of 8.5 % and R2 = 0.999 [18]. On
the other hand, as shown in Figures 3a and 3c, Equation (4) tends to underestimate effective
conductivity for large M -factors. This effect has also been observed when using Equation (4)
to predict effective diffusivity2 in the pore space of silica monoliths based on tomographic
image data [36]. In the following, we investigate the behavior of Equation (4) in the dilute
limit, i.e. in the case when the non-conductive phase vanishes, and compare it to theoretical
results.

(a) (b)

(c) (d)

Figure 3: Top row: comparison of geometrically predicted and numerically simulated M -factor using the
prediction formula presented in [17] (a) and the refined prediction formula (b), see Equations (4) and (10).

Bottom row: mean of the relative error (M̂i −M)/M for i = 1 (c) and i = 2 (d) and the corresponding
0.975- and 0.025-quantiles over the M -factor, i.e., the maximum relative error of 95% of the considered
virtual structures.

In the dilute limit ε → 1, we expect the following asymptotic expansion for the M -

2Fickian diffusion in porous silica monoliths is considered in [36]. Fickian diffusion is mathematically
analogous to electric conduction. Thus prediction formulas for the M -factor can be used to predict effective
diffusivity.
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factor [1, Section 19.1]:
M = 1− c (1− ε) +O((1− ε)2), (9)

where c > 0 is a constant depending on the shape of the obstacles. This behavior is clearly
not recovered by Equation (4) if, for instance, the constrictivity β does not tend to 1 in the
dilute limit. Consider, e.g., conduction in the three-dimensional space with non-conductive
spherical inclusions located on the cubic grid δZ3, where δ > 0 and Z denotes the set
of integers. Formally, the conducting phase is then given by Ξ = R3 \ (δZ3 ⊕ B(o, ρ)),
where B(o, ρ) denotes the sphere centered at the origin with radius ρ > 0 and ⊕ denotes
Minkowski addition [7]. If the radius ρ of the spherical inclusions tends to zero, we obtain
limρ→0 rmin = δ/

√
2 and limρ→0 rmax = δ

√
3/2. Since rmin is the maximum radius r such

that 50% of the conducting phase can be filled by spheres of radius r, rmin is the radius of
the largest sphere which can go through a bottleneck between four grid points forming a
square (see Figure 4a). This radius is δ/

√
2 if ρ tends to 0. The radius rmax is the maximum

radius such that the conducting phase can be covered by spheres of radius rmax, which
are completely contained in the conducting phase. The complete conducting phase can be
covered by the union of spheres centered at the translated grid δ(Z+1/2)3 with radius δ

√
3/2,

which is illustrated in Figure 4b. Since the maximum distance from an arbitrary point in
the three-dimensional space to a grid point of δZ3 is δ

√
3/2, we have limρ→0 rmax = δ

√
3/2.

Consequently, limρ→0 β = 2/3, which is the limiting value of the constrictivity when δ →∞
(ε→ 1). Thus, estimate (4) is too sensitive on the constrictivity in the dilute regime. As a

result, M̂1 underestimates M when M is large.

(a) (b)

Figure 4: Conduction obstructed by non-conductive spherical inclusions (red) located on the cubic grid δZ3.
Only spheres with a radius smaller than δ/

√
2 can move through the structure (a), while the conducting

phase can be covered by a union of spheres with radius δ
√

3/2 such that these spheres are contained within
the conducting phase (b).
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We modify formula (4) accordingly, where we keep the dependency on ε and τ as power-
laws, but let the exponent vary slowly with constrictivity:

M̂2 =
ε1.67−0.48β

τ 5.18
. (10)

This formula is obtained by assuming that M = εα1+α2βτα3 for some parameters α1, α2, α3 ∈
R and fitting these parameters by linear regression to the numerically computed M -factors of
the 8119 virtual microstructures. Note that Equation (10) fulfills the theoretical requirement

that M̂2 tends to 1 in the dilute limit, since ε and τ tend to 1 in this case. For structures
approaching the dilute limit under the additional conditions that (i) limε→1 τ/ε

−γ = 1 for
some 0 < γ < 1.19/5.18 ≈ 0.23, (ii) the limit β? of β exists in the dilute limit and (iii) the

derivative of β with respect to ε exists and is bounded, the prediction M̂2 in Equation (10)
behaves as M in Equation (9). In this case one can show that the constant c in Equation (9)
is given by c = 1.67 − 5.18γ − 0.48β? > 0. In order to get a better understanding of
Condition (i), the relationship between τ and ε is visualized in Figure 5b for large volume
fractions, together with the curve τ = ε0.23.

(a) (b)

Figure 5: Mean geodesic tortuosity τ over volume fraction ε for those virtual microstructures of the 8119
ones, which have values of ε close to 1 (a) and comparison of predicted and computed properties for ex-
perimental image data representing “SOFC” and “PEFC” microstructures (b). Additionally, we show the
results regarding the three virtual microstructures, which have a completely different morphology than the
ones used for model fitting (b).

The predictions obtained by applying Equation (10) on the 8119 virtual microstructures
are visualized in Figure 3b and d. Note that using Equation (10), the M -factor is not
underestimated, nor overestimated on average, when M > 0.4. But, the M -factor is slightly
overestimated whenever 0.05 < M < 0.4. Note that for M between 0 and 0.2, the M -factor
is also overestimated by M̂1, see Figure 3c. The MAPE of M̂2 is about 18.28%, which is
significantly larger than the MAPE of M̂1. However, this can be attributed to large errors
for low values of M . If we only consider structures, where the M -factor is larger than 0.05,
then the MAPE of M̂2 is 10.14% which is more accurate than the MAPE of M̂1, which is
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10.33% in that case. The higher the value of M , the better the prediction of M̂2. Moreover,
Figure 3c suggests that the prediction by M̂1, is biased not only for simulated M -factors
close to 1. Due to these results and the fact that M̂2 converges to 1 in the dilute limit, the
prediction by Equation (10), i.e. by M̂2, is more reliable and more accurate in the most cases

and thus a refinement of the prediction by M̂1 given in Equation (4).
A further interesting result regarding Equation (10) is obtained when having a closer

look on those structures for which the relative prediction error is below 1%, see Figure 6.
One can observe that for those structures the upper bound of M corresponds well to the
theoretical bound for the M -factor in the Boolean model with spherical grains, i.e.

M ≤ 2zε

1− ε+ 2z
(11)

where z ≈ 0.56, see [37, 38]. Note that this bound is obtained using a general third-
order bound [1, Equation (21.34)] for effective conductivity, which depends on the three-
point coverage probability function of the conducting phase. This observation suggests that
Equation (10) leads to good predictions for microstructures exhibiting common features with
realizations of the Boolean model with spherical grains in terms of the three-point coverage
probability function.

Figure 6: Relationship between ε and M for those virtual microstructures the M -factor of which is predicted
with a relative error of less than 1 % by Equation (10)(green). For comparison, the results of the remaining
microstructures are also included in the plot (blue). Furthermore, the theoretical upper bound for M in case
of the Boolean model is drawn in red.

We now use Equation (10) to estimate effective conductivity for tomographic image data
of real microstructures. We consider electric and ionic conduction in microstructures con-
sisting of nickel and yttrium-stabilized zirconia (YSZ), which are used as anode material
in SOFC. The microstructures are investigated based on image data obtained by FIB-SEM
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tomography. For detailed information regarding these microstructures, we refer to [18, 39],
where these microstructures have also been considered for the validation of Equation (4).
Furthermore, we compare geometrically predicted M -factors with numerically simulated ones
of the solid phase of microstructures appearing in gas-diffusion layers of PEFC. Note that
3D imaging of these microstructures is performed by X-ray synchrotron tomography where
they have been analyzed with respect to ε, τ and β in [25]. The results of the validation are
visualized in Figure 5. Except of two outliers for the SOFC microstructures, both, Equa-
tions (4) and (10), are appropriate to predict the M -factor of SOFC microstructures. While

M̂1 leads to a MAPE of 19.5 % for the considered real microstructures and overestimates M
for the PEFC microstructures, which exhibit relatively high volume fractions of the trans-
port phase, the prediction by M̂2 is better with a MAPE of 16.2 %. In particular, no trend
of over- or underestimation can be observed for the prediction by M̂2. Thus, the refinement
of predicting M by M̂2 instead of M̂1 is also reflected when considering real microstructures
used in fuel cells.

Additionally, we simulate the effective conductivity for three virtual structures, where
the transport phase is either given by a system of spheres itself or by its complement. In
particular, the morphology of these structures completely differs from the structures, given by
randomly dilated graphs, which have been used to empirically derive Equations (4) and (10)
and which are described in Section 4. For these three structures, we choose microstructures
which lead to a high M -factor despite of a relatively low volume fraction and vice versa.
The first microstructure is given by a system of non-overlapping, equally sized spheres,
where the complement of the spheres (ε = 0.66) is considered as the conducting phase.
Such a structure, defined as the complement of a sphere packing, can be considered as a
foam-like structure, which is well-connected and has a large M -factor. The remaining two
microstructures are designed to yield a low effective conductivity, i.e., the structures consist
of systems of slightly overlapping spheres with constant diameter d > 0, where the union of
spheres is considered as the conducting phase. The midpoints are distributed completely at
random under the condition that the distance between midpoints of spheres is larger than
0.86d and 0.9d for the second and third structure (ε = 0.51, ε = 0.44), respectively. The
intensity of spheres is chosen such that we get volume fractions of ε = 0.51 and ε = 0.44,
respectively. Note that strong bottleneck effects occur in these two structures. Effective
conductivity of these structures is simulated as described in [40]. The results are included
in Figure 5 b. The estimation of effective conductivity by Equation (10) leads to relative
errors of 7 %, 66 % and 100 %, respectively. The corresponding relative errors regarding
Equation (4) are significantly smaller (9 %, 19 % and 27 %). These results show that the
more the microstructures deviate from the ones in Section 4, the higher are the errors when
relating the M -factor to ε, τ and β by Equation (10) and Equation (4). Note that this effect
is less pronounced when using Equation (4) in the case of low M -factors.

5.2. Prediction of permeability by geometrical microstructure characteristics

Based on 66 virtual microstructures, which are generated as described in Section 4, a
prediction formula for effective permeability κ is derived by regression analysis. We follow [21]
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and [23], and consider the approximation κ̂ for κ given by

κ̂ =
r2

hc

8
M. (12)

Provided that geometrical prediction formulas for M are available, prediction of κ means
that rhc has also to be predicted by suitable microstructure characteristics. In the following,
we empirically derive prediction formulas for rhc of the types rhc,I and rhc,II introduced in
Section 3.3, i.e., we fit the parameters a and b appearing in Equations (7) and (8) on the
basis of the 66 virtual microstructures. For the prediction of M , we consider Equations (4)
and (10), as well as the neural network (NN) and the RF trained with the 8119 virtual
microstructures and provided as supplementary material in [18]. In a further step we re-
fitted the parameters of Equations (4) and (10) in order to improve the fit with respect to
permeability. To be more precise, M in Equation (12) is assumed to take either the form
M = εθ1 βθ2 τ θ3 or M = εα1+α2βτα3 , where θi, αi ∈ R for i = 1, 2, 3 are parameters which are
fitted, in order to obtain the best fit for κ. Table 1 shows the result of our fitting procedure
for the different model types, denoted by I.A, . . . , I.F, II.A, . . . , II.F. The fitted parameters
as well as the goodness-of-fit in terms of the mean-squared error (MSE) on the log-scale and
the MAPE are given. The goodness-of-fit for the model types I.B, I.E, II.E, II.F is visualized
in Figure 7.

Figure 7 shows that the relationship between microstructure characteristics and perme-
ability is well reflected by all proposed models, even if we use the model type I.B, i.e., the
model type with the worst fit among all considered model types. One can also observe that
the other model types shown in Figure 7 (I.E, II.E, II.F) are in particular better than model
type I.B for microstructures, where κ is between 10−15 m−2 and 10−12 m−2.

Results are listed in Table 1. First, comparing the pairs of model types I.A-I.F, for
which M is predicted in the same way, the model type using rhc,II instead of rhc,I leads to
better results. Accordingly, using rmin and rmax to determine a geometrical hydraulic radius
leads to more accurate predictions with respect to permeability than the use of the specific
surface area S and the volume fraction ε. Note that the fitted values of the parameters a
and b are similar for the model types I.A,. . . ,I.F and II.A,. . . ,II.F. The parameters a and
b are only clearly different for the model types I.E and II.E. The fitted value of b is larger
than 1 for all model types, i.e., in order to predict κ appropriately using rhc,I the term ε/S
has to be scaled by a factor larger than 1. For the model types II.A-II.F, the fitted value
of a is larger than 0.8. It can therefore be concluded that rmin is the dominating part,
when the hydraulic radius for complex microstructures is defined by a convex combination
of rmin and rmax. In other words, the radius of the characteristic bottleneck is an important
quantity with respect to permeability. This result is in good accordance with previous studies
investigating the relationship between microstructure and permeability based on experiments
and simulations [6, 21]. Different formulas relating microstructure with permeability of
sandstone are discussed in [6], where one of the formulas leading to a good approximation κ̂
of κ regarding the MSE on the log-scale is

κ̂ = ϑ r2
c M. (13)
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(a) (b)

(c) (d)

Figure 7: Comparison of geometrically predicted and numerically simulated values for permeability, where
the model types I.B (a), I.E (b), II.E. (c) and II.F (d) are used for the prediction of κ.

Here rc denotes the radius of the characteristic bottleneck and ϑ = 0.03 is a fitted parameter.
Note that Equation (13) coincides with Equation (12) if the hydraulic radius is defined via
rhc = rc and if ϑ = 1/8. Equation (13) is empirically derived based on the pore space of
real microstructures, for which M can be well approximated via a modified Archie’s law
M = 2.31ε2.29. The definition of rc is similar to the one of rmin. To be precise, rc is defined
as the maximum radius such that a sphere can pass through the transport phase. If we
substitute rc by rmin and M by M̂2, which is a function of ε, τ and β, then we obtain
ϑ = 0.126 by fitting the parameter ϑ in Equation (13) to the 66 virtual microstructures
considered in the present paper. For the corresponding MSE on the log-scale and MAPE,
the values of 0.77 and 36.38 % are obtained, respectively. Note that the MSE on the log10-
scale for the structures in [6] is 0.062, which is equivalent to a MSE on the log-scale of 0.33.
The best prediction formula obtained in [6] is given by

κ̂ = 0.094 ε0.81 r2
c M

1.88 (14)

leads to a MSE on the log-scale of 0.24 for the sandstone structures, which is only slightly
worse than the best prediction formulas in the present paper. Nevertheless, by the stochastic
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Table 1: Results of fitting the different prediction models to the numerically simulated permeabilities of 66
virtual microstructures. Recall that rhc,I = bε/S, rhc,II = armin + (1 − a)rmax, see Equations (8) and (7),
respectively. The fitted parameters and errors are given.

model type fitted parameters goodness-of-fit

name rhc M a, b (resp.) α, θ (resp.) MSE (log-scale) MAPE

I.A rhc,I ε1.15β0.37τ−4.39 1.33 0.35 56.35 %

I.B rhc,I ε1.67−0.48βτ−5.18 1.37 0.43 65.32 %

I.C rhc,I NN 1.25 0.30 50.65 %

I.D rhc,I RF 1.26 0.29 49.61 %

I.E rhc,I εθ1βθ2τ θ3 2.08 (3.56, 0.78, -1.67) 0.18 34.50 %

I.F rhc,I εα1−α2βτα3 1.37 (2.71, -2.29, -3.05) 0.21 38.50 %

II.A rhc,II ε1.15β0.37τ−4.39 0.80 0.28 47.57 %

II.B rhc,II ε1.67−0.48βτ−5.18 0.82 0.32 43.82 %

II.C rhc,II NN 0.86 0.17 32.29 %

II.D rhc,II RF 0.86 0.16 31.06 %

II.E rhc,II εθ1βθ2τ θ3 0.94 (2.14, -0.05, -2.44) 0.17 34.54 %

II.F rhc,II εα1−α2βτα3 0.85 (2.08, 0.13, -2.49) 0.21 39.56 %

graph-based model, see Section 4, we generate virtual microstructures for a large range of
different characteristics. In particular, the M -factor of these structures can not be predicted
via a modified Archie’s law as M = 2.31ε2.29 [16]. From this point of view we claim that our
prediction formulas are more universal than the ones empirically derived in [6]. Moreover,

when substituting rc by rmin,M by either M̂1 or M̂2, and fitting the numerical values in
Equation (14) to the 66 virtual microstructures described in Section 4, we are nearly in the
same situation of model type II.E and II.F, compare Table 1.

Furthermore, the best fit of permeability is obtained by model type II.D. Recall that
in model type II.D, we predict M in Equation (12) by the RF trained in [18] without any
modification. The model types I.E and II.E are only negligibly worse. On the one hand, it
turned out that a refitting of the parameters α and θ is necessary to significantly increase the
goodness-of-fit compared to predicting M by either Equation (4) or Equation (10). On the
other hand, such parametric results have the advantage that they are better interpretable
than the prediction formulas obtained by methods of machine learning (I.C, I.D, II.C, II.D).
Note that the best parametric prediction formulas for κ are obtained by model type I.E
leading to

κ̂ = 0.54
ε5.56 β0.78

S2 τ 1.67
(15)

and model type II.E resulting in

κ̂ =
(0.94 rmin + 0.06 rmax)2

β0.05

ε2.14

8 τ 2.44
. (16)
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Equation (15) does not depend on the specific values of rmin and rmax. The effect of bottle-
necks is represented only in terms of the dimensionless characteristics β. The length scale
is captured by the specific surface area, the unit of which is m−1. In Equation (16), the
length scale is taken into account by rmin and rmax, while the specific surface area does not
appear. It is counterintuitive that β0.05 appears in the denominator of Equation (16) since
κ̂ increases with smaller values of constrictivity. An optimization of parameters for model
type II.E with the constraint θ2 > 0 gives a = 0.94 and θ = (2.12, 0, 2.46) leading to nearly
the same errors. The same effect occurs for model type II.F. Under the constraint α2 < 0,
we obtain α2 = 0, i.e., model types II.E and II.F coincide and Equation (16) changes to

κ̂ = (0.94 rmin + 0.06 rmax)2 ε2.14

8 τ 2.44
. (17)

Note that the equations resulting from model types I.E and II.E reflect the importance of
narrow bottlenecks for permeability, which is in good accordance with the results obtained
in [6, 21, 23, 14].

The prediction formulas are validated by considering tomographic image data of five
sponge-like structures, where flow in the pore space is simulated in all three main direc-
tions. In doing so, we obtain 15 values of permeability which we relate to the corresponding
microstructure characteristics. The porosities, i.e. the volume fractions of the transport
phase, of the structures range from 0.66 to 0.86. In these sponge-like structures, bottlenecks
occur due to small holes in the pore walls, which connect much larger cellular pore bodies.
Therefore, rmax is much larger than rmin and thus the values of β are all below 0.05.

Figure 8 shows a comparison between the geometrically predicted and numerically simu-
lated values of permeability. Here one can observe that model type II.D and Equation (17)
obtained by model types II.E and II.F lead to a relatively good prediction for κ, while model
type I.E underestimates κ for each of the considered microstructures. Here we want to
emphasize that the sponge-like structures considered for validation exhibit a different mor-
phology than the virtual microstructures for which parameter fitting is performed. Moreover,
for some of the sponge-like structures, the values of κ are larger than the maximum value
of κ simulated for the selected virtual microstructures, see Figure 7. Thus, the good accor-
dance between permeabilities predicted by model type II.D and Equation (17) shows their
predictive power.

5.3. Summary of main results

The main results regarding the prediction of effective conductivity in terms of the M -
factor and the prediction of permeability are given. For convenience of the reader, the
proposed formulas are summarized in Table 2. To predict the M -factor, Equation (4) of
[17] is modified resulting in Equation (10), which is – in contrary to the previous prediction
formula – consistent with theoretical results in the dilute limit, i.e., in the case that the
non-conductive phase vanishes. Equation (10) leads to a better prediction of M except for
the case in which M < 0.05. Since M ≤ ε, see [1], we particularly recommend to use
Equation (4) if ε < 0.05. For permeability two parametric prediction formulas are obtained
in Equations (15) and (17), which lead to a nearly identical goodness-of-fit, see Table 1.
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(a) (b)

Figure 8: Comparison of geometrically predicted and numerically simulated permeability for tomographic
image data representing the pore space in sponge-like structures, where predictions are performed by model
type II.D, I.E and Equation (17) resulting from model types II.E and II.F (a). Zooming in the cloud of data
points (b).

Table 2: Overview of formulas for the prediction of M -factor and permeability.

effective property Eq. prediction formula

M -factor (4) M̂ = ε1.15β0.37τ−4.39

M -factor (10) M̂ = ε1.67−0.48βτ−5.18

permeability (15) κ̂ = 0.54 ε5.56β0.78S−2 τ−1.67

permeability (17) κ̂ = (0.94 rmin + 0.06 rmax)2 ε2.14τ−2.44/8

While Equation (15) predicts κ by means of ε, β, τ and S, Equation (17) uses ε, rmin, rmax

and τ . This means that instead of the surface area S, detailed information of rmin and rmax

is taken into account in Equation (17). In Equation (15), the values rmin and rmax appear
in an aggregated form as β = r2

min/r
2
max. Finally, note that all these formulas are empirically

derived based on extensive simulations of the microstructure model described in Section 4.
Limitations of the prediction formulas for microstructures exhibiting a completely different
morphology are discussed at the end of Section 5.1 with respect to effective conductivity.

6. Conclusions

In the present paper, we investigate microstructure-property relationships with respect
to effective conductivity and permeability by virtual materials testing, i.e., we propose geo-
metrical prediction formulas for these transport properties. Regarding effective conductivity,
we refine a prediction formula proposed in [17], which quantifies the relationship between
the M -factor, i.e. the ratio of effective and intrinsic conductivity, and the microstructure
characteristics volume fraction, mean geodesic tortuosity and constrictivity. In contrast with
previous works, the new formula is able to capture the behavior of effective conductivity in
the dilute limit, i.e. in the case when the non-conducting phase vanishes. Our formula also
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leads to a better prediction for the virtual microstructures outside of the percolating limit
for the conducting phase, i.e., as long as the M -factor is larger than 0.05. Moreover, our
prediction formula has been validated on tomographic image data of real microstructures,
where we obtain a mean absolute percentage error of 16.2%. Limitations of the refined pre-
diction formula are discussed at the example of virtual structures, the morphology of which
differs strongly from the ones which have been used for fitting the formula.

Furthermore, we also address permeability and investigate several prediction formulas,
based on two geometrical definitions of the hydraulic radius entering the formulas. Numerical
results show that the prediction formulas give accurate estimates when the M -factor is
predicted by volume fraction, mean geodesic tortuosity and constrictivity using the random
forest method trained in [18] and defining the hydraulic radius by means of the radius of
the characteristic bottleneck. Moreover, parametric prediction formulas with a comparable
accuracy are obtained, when the proportionality between permeability and the M -factor is
loosened. These parametric prediction formulas have the advantage that they allow for a
better interpretability. It is also shown that the proposed prediction formulas are able to
predict permeability for real microstructures observed in tomographic image data. Overall,
our results reveal that the characteristic bottleneck of a microstructure strongly influences
its permeability.
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