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Abstract

This work is a combined numerical and analytical investigation of the effective con-
ductivity of strongly nonlinear media in two dimensions. The nonlinear behavior is
characterized by a threshold value for the maximal absolute current. Our main focus
is on random media containing an infinitesimal proportion f � 1 of insulating phase.
We first consider a random conducting network on a square grid and establish a rela-
tionship between the length of minimal paths spanning the network and the network’s
effective response. In the dilute limit f � 1, the network’s effective conductivity scales,
to leading-order correction in f , as ∼ f ν with ν = 1 or ν = 1/2, depending on the direc-
tion of the applied field with respect to the grid. Second, we introduce coupling between
local bonds, and observe an exponent ν ≈ 2/3. To interpret this result, we derive an
upper-bound for the length of geodesics spanning random media in the continuum, rele-
vant to media with a dilute concentration of heterogeneities. We argue that ν = 2/3 for
random composites in the continuum with homogeneously-distributed, monodisperse
particles, in two dimensions.

Keywords: Minimal paths; Homogenization; Composites; Conductivity; Probabilistic
models

1. Introduction

A broad range of physical phenomena in material science involve the emergence of
surfaces or paths of minimal energy. Examples include domain walls in random Ising
systems (Huse and Henley, 1985), current localization in varistors (or non-Newtonian
fluid flow) (Donev et al., 2002), the onset of voltage in polycrystals (Haslinger and Joynt,
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2000), or ductile fracture (De Arcangelis et al., 1989; Bouchaud et al., 1993). It is com-
mon to address these problems using idealized random network models (see Donev et al.
(2002); Duxbury et al. (2006) and references therein). In highly-nonlinear networks,
which are relevant to varistors and superconductors, localized flow paths emerge at spe-
cial points, which act as thresholds for the network’s macroscopic response (Donev et al.,
2002). These paths are the solutions of the “shortest-path” and “minimum-cut” prob-
lems (Duxbury et al., 2006). The equivalence between a network’s effective response
and an optimization problem on graphs is demonstrated by the min-cut/max-flow the-
orem (Elias et al., 1956). Interestingly, the optimal surfaces exhibit, in the presence
of disorder, rich self-affine structures. Their roughness, notably, presents non-standard
scaling laws (Bovier et al., 1986; Alava and Duxbury, 1996).

In a numerical study of an “analog electric network” that mimic perfect-plasticity,
it is argued that minimal surface problems are related to the effective yield stress of
disordered media (Roux and Hansen, 1992). Optimal surfaces are obtained by mini-
mizing the sum of the capacity (analog to the yield stress) taken over each bond that
crosses the surface. The behavior of such minimal surface area with respect to the
spatial distribution of heterogeneities, remains, however, an open problem.

This is especially true when considering a continuum medium, where the hetero-
geneities are characterized by the inclusions shape and their spatial distribution. Con-
sider as a model problem a periodic porous medium in the continuum, in 2D. Using
limit analysis, Drucker (1966) derived bounds on the effective yield stress y0 of periodic
porous media under plane strain. The pores are embedded in a rigid, ideally-plastic ma-
trix with Tresca or Von Mises yield criterion y. Drucker’s bounds demonstrate that the
leading-order term to the effective flow stress scales as ∼ f 1/2 in the limit of vanishingly
small porosity f , i.e.:

y0 = y
[
1− af 1/2 + o(f 1/2)

]
, f → 0, (1)

with prefactor a depending on the geometry of the inclusions. The infinite slope of
the flow stress (∂y0/∂f = ∞) when f = 0 underlines the strong effect of the voids in
this limit. The trial displacement fields used to derive the upper-bound are piecewise-
constant and present surface discontinuities in the matrix (Francescato et al., 2004).
Optimal upper-bounds are thus attained by minimal surfaces. In plane strain, these
surfaces reduce to minimal paths, or in geometrical terms, geodesics. The paths are
minimal in the sense that they have smallest cut in the matrix and span the array
of pores in a direction that depends on the applied macroscopic loading. Examples
for a 2D square array of pores with prescribed “simple” and “pure shear” (45◦-rotated)
loadings are given in (Idiart et al., 2009).

Theoretical results suggest that the effective yield stress of 2D random porous me-
dia also exhibits power-laws with non-integer exponents, in the dilute porosity limit
f → 0 (Sab, 1994). In a square lattice model made of broken bonds in proportion f ,
the exponent for the effective yield stress is found to be 1 for minimal paths oriented
along the directions of the lattice, and 1/2 along the diagonal (Roux and François,
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1991). The “second-order” nonlinear homogenization theory predicts a fractional ex-
ponent 2/3 in the dilute limit f → 0, in the plane strain problem (Ponte Castañeda,
2002), which suggests a lower influence of the pores than in the periodic problem. In
this work, we estimate the length of geodesics in random continuum models made of
a dilute concentration of particles. The scaling laws obtained are compared to the
effective conductivity of various resistor networks, computed numerically.

This article is articulated around two main sections. In the first one (Section 2) we
consider a random resistor network on a square grid, in two dimensions, and establish
scaling laws for the effective conductivity with respect to f , the proportion of broken
bonds, in the limiting case f → 0. In the second one (Section 3), we derive an upper-
bound on the length of geodesics for a Boolean model of disks in the continuum, and
interpret the scaling laws for the effective conductivity obtained in Section 2. We
conclude in Section 4.

2. Nonlinear resistor network: the dilute limit

2.1. Resistor network
Consider a resistor network on a square grid (Fig. 1b) with nodes x = (x1, x2) ∈ Z2.

Each node is linked to its four closest neighbours by bonds oriented along e1 and e2

(see Fig. 1a). At each node x lies a potential φ(x), and along each bond (x, x+ei) lies
component Ji(x) of the current and component Ei(x) of the electric field. Following
Kirchhoff’s law:

2∑
i=1

[Ji(x)− Ji(x− ei)] = 0, Ei(x) = − [φ(x+ ei)− φ(x)] , (2)

for all x and i = 1, 2. Each bond in the resistor network is either insulating, in which
case Ji(x) = 0, or conducting. The conducting bonds follow the nonlinear constitutive
law:

Ji(x) =

{
σEi(x) if σ|Ei| ≤ J0,

J0sign(Ei(x)) if σ|Ei| > J0,
(3)

where sign(•) = •/| • | is the sign function, J0 > 0 is the yield current and σ > 0 is a
parameter used for numerical regularization (see Fig. 1c). In the limit σ →∞, Eq. (3)
reads:

Ji = J0 if Ei > 0, (4a)
Ji = −J0 if Ei < 0, (4b)
|Ji| < J0 if Ei = 0. (4c)

This constitutive law is obtained as the limiting behavior of “power-law materials”.
This class of materials, extensively studied in the context of nonlinear homogenization
theories (Ponte Castañeda and Suquet, 1997), is characterized by local potentials which
are power-law of the electric or current fields. In the present case, refered to as “strongly
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Figure 1: (a) Two bonds originating from a node at point x and joining nodes at x + e1,2 (solid
lines); other nearby bonds are represented as dotted lines. (b) 16 × 16-nodes random conducting
network. Conducting bonds shown in black, insulating bonds omitted. (c) Nonlinear constitutive
law (3) satisfied along each conducting bond.

nonlinear”, the potential corresponding to the constitutive law (4) is not strictly convex,
and fields may localize along critical paths (Duxbury et al., 2006).

For numerical purposes, we assume that the medium is periodic in the two directions
and is given by its elementary cell Ω = [0;M − 1]2 made of M2 bonds. A random
configuration of Ω is depicted in Fig. (1b) for M = 16. In domain Ω, the network is
made up of two phases, the phase label following a Bernouilli distribution, that is, a
bond has constitutive law (3) with probability 1− f and is insulating with probability
f . The vector fields E and J are Ω-periodic whereas the potential is the sum of a
periodic and linear function:

φ(x) = −E · x+ φ∗(x), φ∗#, (5)

where E is a remote field applied at infinity and # denotes doubly-periodic fields.
Problem (2)-(3)-(5) is solved exactly on the finite domain Ω using the Fourier-based
method with “discrete” Green operator appropriate to resistor networks (Willot et al.,
2014). As for the iterative algorithm, we make use of the so-called “augmented La-
grangian” scheme (Michel et al., 2001). When applied to materials with nonlinear
threshold law (3), this scheme requires one to solve the equation in E:

σ0E + J(E) = P , (6)

for arbitrary P . Making use of (3), the solution to this problem is straightforward.
In the above, σ0 is the reference conductivity of the homogeneous medium, which we
choose equal to 1. We also choose J0 = 1 and restrict ourselves to |E| = 1, so that the
problem depends on σ, f , M and the direction of the applied field E. Convergence is
obtained when current conservation is observed at all nodes (Eq. 2). Our convergence
criterion is the L2-norm of the divergence of the current field:

|divJ | =

(∑
x∈Ω

2∑
i=1

|Ji(x)− Ji(x− ei)|2
)1/2

< η, (7)
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with η = 10−10. Convergence is somehow erratic but nevertheless obtained (Fig. 2a).
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Figure 2: Random network in a 64× 64 grid. (a) Convergence criterion (7) vs. number of iterations.
(b) Effective conductivity χ0 vs. slope σ, with E = e1.
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Figure 3: (a) Effective scalar conductivity χ0 vs. insulator fraction f , for various grid sizes, with
applied electric E = e1. (b) Fractional part of Mχ0 showing that Mχ0 is an integer.

Define the effective conductivity tensor as:

J = 〈J(x)〉Ω = χ ·E, (8)

where 〈•〉Ω denotes a spatial mean over Ω. We also define the scalar effective conduc-
tivity, that depends on the orientation of the applied field:

χ0 =
J ·E
|E|2

. (9)
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We seek for high values of the slope at origin σ so that χ0 represents the effective yield
current. In the rest of this work, we set σ = 10, so that the effective behavior has
reached its yield value when 〈E〉 = E (Fig. 2b, with E = e1).

2.2. FFT results
Using σ = 10, the effective conductivity is computed on grids of increasing size along

each dimension M = 64, 128 and 256 and insulator fraction f in the range [0; fc] where
fc = 1/2 is the bond-percolation threshold for square lattices (Fig. 3a). We observe
that the effective conductivity χ0 for all FFT data point on this graph is of the form
k/M where 0 ≤ k ≤ M is an integer, up to an error of less than 10−7 (Fig. 3b). A
connection may be established between this property and the onset of a minimal path
(of integer length) along which the electric field localizes. This is illustrated in Figs. (4)
which shows component E1 of the electric field, represented as an image (Fig. 4a), as
well as the grid itself (Fig. 4b). On the dual graph, there exists two paths of minimal
length (Fig. 4b) that span the medium in the direction e2 transverse to the applied
field (horizontal on the image). The length of a path is defined by counting a unit
cost for crossing a conducting bond and 0 for an insulating bond, thereby minimizing
the number of conducting bonds crossed by the path. Using this definition, the two
minimal paths shown in Fig. (4b) have normalized length ξ = 17/M and we notice that
χ0 = ξJ0. It is obvious that ξJ0 is an upper-bound of χ0. Conversely, the existence of a
divergence-free current field with mean ξJ0 is a consequence of the “max-flow min-cut”
theorem (Dantzig and Fulkerson, 2003). Hence, ξ = χ0/J0.

The non-unicity of the electric field is a consequence, in general, of the non-unicity
of minimal paths. Assume that there is a closed loop in the set of minimal paths on
the dual graph such as, for instance, two minimal paths joining at infinity. Along the
bonds crossing the loop, the current field is J0 and the electric field is larger than, or
equal to, J0/σ. Therefore, if the electric component along any of these bonds is larger
than J0/σ + δE with δE > 0, a solution of the problem may be defined by adding a
quantity smaller than δE to the potential φ(x) at each node x located in the interior
of the loop. The electric fields E should be different in each solution, while the current
field J , and the overall energy (1/2)

∑
ΩE · J , is unique.

The length of minimal paths in random lattices is closely related to the “time con-
stant” in first-passage percolation theory (Kesten, 1987). In this problem, domain that
grows with respect to a discrete time t is considered. Growth at each time step is con-
trolled by the value along each bond at the frontier of the domain. After a long time
(t → ∞), the region asymptotically defines a limiting shape (Hoffman, 2008) which
in general, is not a ball (Durrett and Liggett, 1981), due to the anisotropy of the lat-
tice. Thus, if s(x,x′) is the minimal length between two points x and x′, we expect
s(x,x′)/|x−x′| to converge to a finite value when |x−x′| → ∞, which depends on the
direction of x− x′. Equivalently, χ0 depends on the loading direction E in the square
lattice, as expected.

We now perform FFT computations of the effective conductivity χ0 for small values
of f , equal to 10−4, 10−3, 10−2 and 10−1 (Fig. 5). A fit of the data provides χ0 ≈ 1−

√
f ,
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Figure 4: FFT results obtained on a grid Ω of 32 × 32 nodes, with f = 0.2 and E = e1 where e1
is oriented top to bottom. (a) Component E1 of the electric field, each bond being represented by a
voxel. (b) Square grid. Missing bonds are insulating, other bonds are colored according to the value of
the electric field: highest values in dark blue, lowest in green-blue, and intermediate values in yellow.

with nearly unit prefactor, when E is oriented along direction e1 + e2 (red symbols).
FFT results obtained for a macroscopic field oriented along e1, are less conclusive (black
symbols) but point nevertheless to a linear correction χ0 ≈ 1− 2.7f .
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Figure 5: FFT results for the effective conductivity in the random resistor network. Red symbols:
loading in the (1, 1) direction E = e1 + e2. Black symbols: loading in the (1, 0) direction E = e1.

As pointed out by Roux and François (1991), the scaling law correction ∼ f 1/2 in the
(1, 1) direction is related to the rugosity (width in the transverse direction) of minimal
paths. Suppose that a path of minimal length passes through two points x and x′
far from each other with x − x′ parallel to e1 + e2 (Fig. 6). In the absence of broken
bonds, the length of the red and blue paths are the same. Therefore, if any broken bond
appears inside the square [x1;x′1] × [x2;x′2] the length of the path will be reduced by
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1. Accordingly, the length of the minimal path normalized by |x′ − x| will be reduced
by 1/(

√
2|x′1 − x1|) whereas f increases by about 1/L2, thus the normalized length of

the minimal path change by a factor ∼
√
f . In the (1, 0) direction, minimal paths are

mostly flat (Derrida and Vannimenus, 1983; Roux and François, 1991), therefore, the
leading-order correction to χ0 is expected to be linear (∼ f), as would be obtained for
a straight line.

Figure 6: Two minimal paths (red and blue) joining two broken bonds (top-left and bottom-right) in
the square lattice.

2.3. Resistor network with local coupling
Hereafter we consider a resistor network that may be used as a model for a material

in the continuum. The elementary cell Ω is now made of a set of M ×M pixels, rather
than nodes. The electric and current field E(x) and J(x), and the potential field φ(x)
are defined in each pixel. We keep the conservation and admissibility equations (2)
and (5), i.e., we use finite differences, but consider instead of (3) the constitutive law:

Ji(x) =

{
σEi(x) if σ|E(x)| ≤ J0,

J0Ei(x)/|E(x)| if σ|E(x)| > J0,
(10)

where |E(x)|2 = E1(x)2 + E2(x)2. Problem (2)-(5)-(10) is that of a random resistor
network with local coupling between bonds pointing from the same node. As previously
we solve this problem numerically using FFT computations, carried out using σ = 10,
this time on grids of 20482 and 40962 voxels. The augmented Lagrangian scheme is
found to be somehow slow to deal with this problem, and we turn to the “acceler-
ated scheme” (Eyre and Milton, 1999) with “discrete” Green operator (Willot et al.,
2014). The accelerated scheme was originally devised for linear behavior. However, it
is straightforward to extend it to nonlinear behavior, provided one is able to invert an
equation of the type (6). We choose σ0 = 0.01 for the conductivity of the reference
medium. The effective conductivity χ0 is again defined by (9).

We consider the limiting case of a dilute concentration of insulators. FFT results
for the effective behavior are represented in Fig. (7) as a function of the concentration
of insulators, in log-log plot. The leading-order term in f exhibits a power-law scaling
with exponent ≈ 2/3. We interpret this result in the following section.
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3. Length of geodesics in 2D media

In this section, we detail how to construct an upper-bound for the length of minimal
paths in continuum media, restricted to particulate materials with dilute concentration
of heterogeneities. The method has already been introduced by Willot (2015). For
the sake of clarity, we derive it again in a simple way, in the case of a Boolean model
of disks. We compare the bound with numerical results for the length of geodesics in
finite-size systems. We also study in more details the rugosity exponent of the path
used to construct the bound. Finally, we consider as an application binary mixtures
where each phase is characterized by a nonlinear potential with non-zero yield current.
The bound on geodesic is used to obtain estimates for the effective conductivity of such
materials.

3.1. Boolean model of disks
Hereafter, a Boolean set (Matheron, 1975; Serra, 1981) of disks in R2, of surface

fraction 0 ≤ f ≤ 1 is considered. The disks have constant diameter D > 0 and may
interpenetrate. Their centers follow a homogeneous Poisson point process. Disks are
crossed at no cost whereas the embedding medium is crossed at a unit cost. The distance
between two points A and B therefore reads:

d(A,B) = inf
p∈K

∫ 1

0

dt χ(p(t)) ||∂tp(t)|| , (11)

χ(M ) =

{
0 if M lies inside a disk,
1 otherwise,

9



where χ is the indicator function of the embedding medium, || · || is the Euclidean norm
and:

K =
{
p ∈ C

(
[0; 1],R2

)
, p(0) = A, p(1) = B

}
(12)

is the set of continuous curves from A to B. Some immediate properties of the function
d(·, ·) follow from (11). For all points A, B and C:

d(A,A) = 0, d(A,B) = d(B,A) ≥ 0, (13a)
d(A,B) ≤ d(A,C) + d(B,C), d(A,B) ≤ ||B −A||, (13b)

so that d is a pseudo-distance. Also from (11), it is clear that any continuous portion
p′ of the path p is a minimal path between its extremal points. Accordingly, if the
path p′ lies entirely in the embedding medium (χ(p′(t)) ≡ 1), it is necessarily straight.
Therefore, minimal paths are unions of segments joining disk centers. Assume, for
convenience, that the end points of the line segments are (A;C1; ...;CN ;B) (N ≥ 0)
where the Ci are disk centers of coordinates (Ci

1;Ci
2).

We now focus on the limiting behavior of the normalized distance:

ξ =
d(A,B)

L
, L = ||A−B|| → ∞. (14)

Without loss of generality, we assume that A is the center of a disk at the origin of a
Cartesian coordinate system (e1; e2) and that the line joining A and B is parallel to
e1. When A is fixed and L → ∞, the computation of ξ amounts to study the limit
shape of the set:

St =

{
1

t
B; d(A,B) ≤ t

}
,

1

t
B =

(
B1

t
;
B2

t

)
, (15)

as t→∞. The above can be regarded as a growth process in the continuum (Howard
and Newman, 1997; Deijfen, 2003). In the present work, an isotropic Boolean set of
disks is considered, and so the limiting shape S∞ of St is a disk with radius limL→∞(1/ξ).

In the rest of this work, we study the behavior of limL→∞ ξ in the dilute limit f → 0,
and more exactly its leading-order correction in f . In effect, this amount to take the
double limit:

lim
f→0

lim
L→∞

ξ. (16)

The two limits are not interchangeable, for ifA andB are fixed and f → 0, the minimal
path between A and B is almost surely a straight line and ξ = 1. Therefore, in the
rest of this work f � 1 is fixed and L� D is chosen sufficiently large that the minimal
path between A and B passes through a very large number of disks (N � 1).

3.2. Three discs
Consider three non-intersecting discs, identified by their centers U , V and W .

We denote by V ′ the projection of V onto the line (UW ) and set ` = ||U − V ′||,
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m = ||V − V ′|| and r = ||U −W || (see Fig. 8). We are interested in the condition
under which a path of minimal length joiningU toW must pass through V . Inequality:

||U − V || −D + ||V −W || −D ≤ ||U −W || −D

yields:

m ≤
√
D(D + 2r)(D + 2r − 2`)(D + 2`)

2(D + r)
. (17)

In the dilute limit f → 0, taking r � D and `� D, (17) reduces to:

m ≤
√

2D`(1− `/r). (18)

Assuming that U and W are fixed, equation (17) defines a domain of interest where
disks may be looked for, in order to construct paths with small length. The surface of
domain (18), scales as:

S = 2

∫ r

0

√
2D`(1− `/r)d` =

πr
√
Dr√
8

. (19)

The width of this domain grows as ∼
√
r, which suggests a power-law behavior for the

length of minimal paths in the dilute limit, in the continuum, following the argument
of Roux and François (1991). This is detailed hereafter by the derivation of an upper-
bound on ξ.

3.3. Upper-bound in the dilute limit
We identify U with the center Ci of the ith disk on a path (C1; ...;CN) and W as

the “first” disk encountered in the direction e1 starting from U , if the path was straight.
The choice Ci+1 = W amounts to follow closely direction e1 and is not advantageous,
unless there exists no disk V satisfying (17), an event that has a low probability. Hence,
we consider instead the disk V satisfying (18) with minimal value of `. Clearly, `� r
and condition (18) becomes:

m ≤
√

2D`. (20)

The above property suggests the following iterative procedure for constructing a path
(C0;C1; ...;CN) starting with the point C0. Knowing Ci, Ci+1 is the disk in the
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Figure 9: Method for choosing the disk Ci+1, knowing Ci.

domain delimited by two curves of equation x2 = Ci
2 ±

√
2D|x1 − Ci

1|, with minimal
coordinate x1 along e1 (see Fig. 9):

Ci+1 = arginfC∈K′C1, (21)

K′ =

{
C a disk center; C1 > Ci

1, |C2 − Ci
2| ≤

√
2D|C1 − Ci

1|
}
.

This procedure may be compared to that used by Lee (1997) who derived a bound
on the minimal length of self-avoiding paths in random lattices by selecting a series of
points which move “as directly as possible” from one vertex to another. In the present
method, however, we consider a continuum medium and the geodesics must follow a
privileged direction.

Let us first replace condition (21) by:

Ci+1 = arginfC∈K′′C1, (22)

K′′ =

{
C a disk center; C1 > Ci

1 +D, |C2 − Ci
2| ≤ α

√
D|C1 − Ci

1|
}
,

where α > 0 is a constant to be optimized on. We also request that Ci
1 > C1 +D so that

the disks do not overlap. This technical assumption simplifies the analytical treatment,

Figure 10: Path (A;C1; ...;CN ;B) defined by (22) and used to deliver an upper-bound on the length
of geodesics.
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and has no effect in the dilute limit where disks are “almost always” far from each other.
Starting from C0 = A, we construct the path (A;C1; ...;CN ;B) where the number N
is chosen so that CN+1 is the first disk center with coordinate along e1 larger than B1,
i.e. CN+1

1 > B1 and CN
1 ≤ B1. As in Section 3.2, we set `i = |Ci

1−Ci−1
1 |, mi = Ci

2−Ci−1
2

(i ≥ 1). The path (22) provides the following upper bound on ξ = d(A,B)/L:

ξ ≤

∑N
i=1

(√
`2
i +m2

i −D
)

+ Z∑N
i=1 `i

, (23)

where Z = ||CN −B|| is the Euclidean distance from CN to B (see Fig. 10). Rewrite
(23) as:

1− ξ ≥

N∑
i=1

(
D + `i −

√
`2
i +m2

i

)
− Z∑N

i=1 `i
≈

N∑
i=1

[D −m2
i /(2`i)]− Z∑N
i=1 `i

. (24)

To evaluate the above, we determine the mean of the `i and of m2
i /`i. The mi are

uniform random variables in the interval [−α
√
`iD;α

√
`iD]. The probability P {`i > `}

is the probability that the domain delimited by the two curves in Fig. (9) and enclosed
by the lines x1 = Ci−1

1 +D and x1 = Ci−1
1 +`i contains no disk center. This probability is

given by the Choquet capacity of a Poisson point process (Matheron, 1972) as exp(−θV )
where V is the size of the domain and θ = −4 log(1− f)/(πD2) is the intensity of the
Poisson point process (i.e. the disks centers) used to build the Boolean set. We compute
V and obtain:

P {`i ≤ `} = 1− (1− f)16α/(3π)[(`/D)3/2−1], (25)

as the cumulative probability function of the random variable `i in [D;∞). The above
yields, for the average of the `i, using the variable change η = (D/`)3/2:

1

DN

N∑
i=1

`i ≈
1

D

∫
`≥D

` P {` ≤ `i ≤ `+ d`} (26)

= 1 +
2

3
(1− f)−

16α
3π E1/3

(
−16α log(1− f)

3π

)
=

(
π

4α
√

6f

)2/3

Γ

(
2

3

)
+ o(1),

where E1/3(t) =
∫ 1

0
dη e−t/ηη−5/3 is the exponential integral function of parameter 1/3.

Furthermore:

1

N

N∑
i=1

m2
i

`i
≈
∫
`≥D

∫ α
√
`D

m=0

m2

`
P {` ≤ `i ≤ `+ d`} dm

α
√
`D

=
Dα2

3
. (27)

At lowest order in f :

ξ ≤ 1− 2α2/3 (6− α2)

3Γ
(

5
3

) (
2

3π

)2/3

f 2/3 +O(f 4/3) +
Z∑N
i=1 `i

, (28)
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where Γ is the Gamma (or extended factorial) function. Furthermore, (26) entails
mi ∼ f−1/3 and:

Z =

∣∣∣∣∣
N∑
i=1

mi

∣∣∣∣∣ ∼ √Nf−1/3 ∼
√
L. (29)

Accordingly the term Z/
∑N

i=1 `i ∼ 1/
√
L in (28) is negligible when L is large. The

choice α =
√

3/2 in (28) then yields:

ξ ≤ 1− 3

Γ
(

2
3

) (3f

2π

)2/3

+O(f 4/3) ≈ 1− 1.3534f 2/3. (30)

We compare this dilute limit expansion to numerical results (see Appendix A for
a description of our algorithm). The difference between the two paths is illustrated
in Fig. (11) which shows the exact minimal path between two opposite corners of a
square domain and the path predicted by bound (30) in a realization. Our numerical
computations are carried out on random configurations containing on average 10, 000
disks at increasing surface fractions f = 10−7, ..., 10−1. For each value of f , 20 random
configurations are averaged. We also compute numerically the bound (23). Results,
indicated in Fig. (12), show an excellent agreement between bound (23) and expansion
(30) (solid lines and black dots). A power-law fit on the numerical data for the exact
minimal path length provides ξ ∼ 1− 1.85f 0.67. This result, together with the asymp-
totic bound (30), suggests a scaling law with exponent exactly 2/3 for the length of
minimal path in the dilute regime f → 0. It also provides a geometric interpretation of
the exponent ≈ 2/3 observed in Section 2.3 for the effective conductivity of the random
resistor network with local coupling.

We close this section by a discussion of the rugosity of the minimal path and that of
the path used to derive bound (30). The mi are independent variables with zero mean
and finite variance:

〈m2
i 〉 =

(
π

12f

)2/3

Γ

(
2

3

)
D2

2
= 〈`i〉

D

2
=
LD

2N
, (31)

hence, by the Central Limit theorem, (1/N)
∑

imi is Gaussian for N large. Accordingly,
Z follows the probability distribution function:

P{z < Z < z + dz} 1

dz
=

2√
LDπ

e−z
2/(LD). (32)

We have simulated the probability distribution function for Z on 40, 000 configurations
each containing 15, 000 disks, with f = 0.01 fixed. The value of Z is estimated at various
values of L/D and compared with that obtained for the shortest path (Fig. 13). For
the later, Z is defined to be the deviation along the direction transverse to propagation,
i.e. it is equal to |x2| where x lies on the shortest path such that x1 = L, the origin of
the shortest path being 0 by convention. The data points for the numerical estimates
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Figure 11: Boolean set of discs with surface fraction f = 10% and 103 disks (in red). Yellow line:
minimal path joining two opposite corners. White line: path used to derive bound (23).
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Figure 12: Leading-order correction to the length of geodesics ξ vs. disk concentration f , in log-log
plot. Black dots: numerical computation of bound (23); black solid line: analytical estimate (30); blue
triangles: numerical computation of ξ using the exact shortest path on finite-size systems; blue solid
line: power-law fit of the latter; dotted lines: power-law corrections ∼ f and ∼ f1/2.
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Figure 13: Probability distribution function for the random variable Z, representing the deviation
transverse to the direction of propagation, computed numerically (symbols) and analytically (solid
lines). Black and green data points: path used in bound (30). Blue data point: shortest path. Blue
solid line: fit with a folded Gaussian distribution (32).

of Z are in excellent agreement with (32). We also observe that the distribution of the
variable Z for the exact shortest path, at given value of L/D, is much wider than that
of the bound (symbols in blue, Fig. 13). We study the width of the distribution of Z
hereafter.

Consider the path transverse fluctuations w = (〈Z2〉 − 〈Z〉2)1/2 as a function of
L, for fixed value of f = 10−2, 10−3 and 10−4. It has been shown (Huse and Henley,
1985; Kardar and Zhang, 1987) that the minimal path is very rough with scaling law
w ∼ L−2/3 as L becomes large (see numerical computations, Fig. 14). As expected,
this is not so for the path used to derive bounds (30) which exhibits a much more
common scaling law ∼ L−1/2 (black line, Fig. 14). Thus, the exponent 2/3 obtained in
bound (30) is not directly linked to the “roughness exponent” related to the scaling law
for w.

3.4. Application: binary mixture with non-zero yield currents
Assume that the constitutive law in each phase is of type (10) with yield current J0

in the matrix and J1 in inclusions, i.e.:

J = min(σ|E|, Jc)
E

|E|
, (33)

with Jc = 1 in the matrix and Jc = J1 (0 ≤ J1 ≤ 1) in inclusions. According to the min-
cut, max-flow theorem, we now seek for a minimal path spanning the microstructure,
with unit cost for the distance function in the matrix and cost J1 in the inclusions. The
same method as developed in Section 3.3 provides an upper-bound on the length of
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power-law fit of the data.

geodesics of such materials (Willot, 2015). The path definition (22) remains unchanged,
however (24) now becomes, after neglecting Z:

ξ ≤ 1−

N∑
i=1

[(1− J1)D −m2
i /(2`i)]∑N

i=1 `i
. (34)

Estimates for 〈`i〉 and 〈m2
i /`i〉 (Eqs. 26, 27) remain unchanged and we obtain, after

optimization on α:

ξ ≤ 1− 3(1− J1)4/3

Γ
(

2
3

) (
3f

2π

)2/3

+O(f 4/3) ≈ 1− 1.3534(1− J1)4/3f 2/3, (35)

in the dilute limit f → 0.
We carry out FFT computations of the effective conductivity of a random network

containing two nonlinear phases obeying (33). Results, shown in Fig. (15), are compared
to the analytical bound (35). Making use of this formula and of the results presented
in Section 2.3, we also plot the estimate ξ ≈ 1 − 1.6(1 − J1)4/3f 2/3 (dotted line). The
bound (35) appears meaningful as it displays the same concavity as the FFT data,
although FFT results are quite sensitive to the size of the elementary cell Ω.

4. Conclusion

The present work examines how one may characterize the effective behavior of a
binary mixture made of an insulating phase embedded in a conducting nonlinear phase
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characterized by a yield current. The problem is addressed in the context of a random
resistor network in two dimensions. We observe that the network’s effective conductivity
is given by the length of the minimal path defined on the dual lattice. The path spans
the network in the direction transverse to the applied field and its length is weighted
by the yield current along each bond.

For a dilute concentration of insulating phase, the effective conductivity exhibits
singular power-law behavior when the applied macroscopic field is oriented transverse
to the directions of the lattice, or if local coupling, that mimic an isotropic law, is
introduced between the nodes and the applied field is parallel to the lattice directions.
In these two cases, the responses are characterized by a correction ∼ f ν with expo-
nent ν equal to 1/2 and 2/3 respectively. Furthermore, we derive an upper-bound
for the length of geodesics spanning a composite in the continuum, a Boolean set of
disks. This bound exhibits an exponent 2/3 in the dilute limit, consistently with nu-
merical data. These results suggest a leading-order correction ∼ f 2/3 for the effective
conductivity of nonlinear composite materials containing a dilute concentration f of
homogeneously-distributed, monodisperse, insulating particles. Other problems of in-
terest include hierarchical microgeometries, some of which are exactly solvable (Idiart
and Ponte Castañeda, 2013). As noted by Willot (2015), the present approach may
be extended to multiscale structures in the continuum, such as Cox-Boolean random
structures. This is currently being investigated.

The present results hold in conductivity as well as in antiplane shear, and are very
much similar to the predictions of certain nonlinear homogenization theories for rigid,
ideally-plastic porous media under plane strain (Ponte Castañeda, 2002). Indeed, these
theories predict that the leading-order correction to the effective yield stress scales as
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∼ f 2/3 as well in the dilute limit f → 0. In the dual problem of an ideally-plastic
media reinforced by rigid particles, strong connections have also been reported between
geodesics and shear bands (Jeulin et al., 2008), highlighting the links between effective
flow stress, geodesics and the localization patterns of the shear bands (Poliakov et al.,
1994).

Appendix A. Algorithm for computing shortest paths in a Boolean model
of discs

Consider a domain containing M disks of centers C1, ..., CM and diameter D and
set dij = max (0; ||Ci −Cj|| −D). The distances d1 = d(A,C1), ..., dM = d(A,CM)
between a given point A and any disc is computed by the following algorithm:

(i) Set di := max (0; ||Ci −A|| −D/2).

(ii) For all i, j, set di := min (di, dj + dij).

(iii) If any value of di has been changed in step (ii) GOTO (ii), otherwise STOP.

This algorithm is implemented in a vectorial manner. The lists of coordinates of the
disk centers and the list of current di are saved in memory, while the distances dij are
computed on the fly.
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