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Abstract: Magnetic Resonance Imaging (MRI) has emerged as the golden reference for cardiac examination. This modality 
allows the assessment of human cardiovascular morphology, functioning, and perfusion. Although a couple of challenging 
issues, such as the cardiac MR image's features and the large variability of images among several patients, still influences 
the cardiac cavities' segmentation and needs to be carried out. In this paper, we have profoundly reviewed and fully 
compared semi-automated segmentation methods performed on cardiac Cine-MR short-axis images for the evaluation of 
the left ventricular functions. However, the number of parameters handled by the synthesized works is limited if not null. 
For the sake of ensuring the highest coverage of the LV parameters computing, we have introduced a parallel watershed-
based approach to segment the left ventricular allowing hence the computation of six parameters (End-Diastolic Volume, 
End-Systolic Volume, Ejection Fraction, Cardiac output, Stroke Volume and Left Ventricular Mass). An algorithm is 
associated with main considered measurements. The experimental results that were obtained through studying twenty 
patients' MRI data base, demonstrate the accuracy of our approach for estimating real values of the maximal set of 
parameters thanks to a faithful segmentation of the myocardium. 

 

1. Introduction 

 

The heart is considered as one of the most sensitive organs 

that plays a crucial role in the body [1]. Thus, any cardiac-

related dysfunction might have heavy consequences on the 

human body such as dyspnea, persistent coughing, build-up 

of excessive fluid in the body tissues and tiredness [2][3]. 

Therefore, the diagnosis of cardiovascular diseases is 
essential and relies on analyzing cardiac images acquired 

using medical imaging modalities. Cardiac Magnetic 

Resonance Imaging (CMRI) is generally known to be one of 

the most important diagnostic tools for the assessment of 

cardiac functions [4]. CMRI allows the acquisition of 3D 

and 4D (3D+time) cardiac image series, thus providing the 

means to perform a detailed analysis of global and local 

cardiac functions by enabling a quantitative assessment of 

functional parameters [5]. Among the cardiac chambers, the 

Left Ventricle (LV) is quite frequently analyzed because it 

provides 80% of the cardiac function.  In fact, its main 
function is pumping oxygenated blood to the entire body to 

ensure any normal activity. Thus, ventricular segmentation 

often refers to LV segmentation trough a manual outlining 

of the LV myocardium. This approach represents the 

standard in the clinical routine despite of all these 

constraints in terms of the potential user error, considerable 

segmentation time and variability between observers [6]. 

 

 Our goal is to faithfully delineate the myocardium 

through epicardial and endocardial contours' extraction. A 

good segmentation will be followed by a qualitative 

evaluation of the cardiovascular function such as measuring 

the left ventricular volume at end-systole and end-diastole. 

Since CMRI produces a large amount of data, processing 

these data becomes very time-consuming, a fastidious, and 

tedious task as well as an elaborate work. So, it is essential 
to speed up the extraction of the myocardium and make a 

full use of the pieces of information contained in these 

images [7]. 

 

Several approaches have been proposed for the LV 

segmentation. Most of them involve the computation of 

regional and global features, from which it is possible to 

detect cardiac dysfunction. Among these approaches, the 

deformable models algorithms and their variants have been 

widely used in cardiac MRI [8-10]. Nandagopalan and al. 

proposed a new approach combining the K-mean clustering 
algorithm and active contour model to detect cardiac borders 

[11]. Furthermore, active contour model based on Kurtosis 

wavelet energy is another promising segmentation 

technique. Since its first application on Synthetic Aperture 

Radar (SAR) images [12], this approach has attracted many 

researchers from different fields who used it for the 

segmentation of lesion structures in MRI images [13]. 

 

Another recent method based on sparse representation 

and dictionary learning has also been developed in the 
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literature and it was applied on CINE and Cardiac Phase-

resolved Blood oxygen level-Dependent (CP-BOLD) MR 
sequences [14]. An interesting algorithm applied to the SAR 

images [15] based on the combination of random subspace 

(RS), linear discriminating analysis, sparse regularization 

(LDASR) for feature space dimensionality reduction, 

supervised feature selection, and learning was used for 

multi-sensor data fusion based on multiple features. The 

main advantage of this technique is the invariance under 

intensity changes.  

 

In addition to the segmentation methods described above, 

Convolutional Neural Network (CNN), is another important 
tool for the detection of LV contours. In the recent years, the 

CNN has revealed a good performance in image 

classification and segmentation in different fields, in 

particular, in SAR and MRI images [16,17]. Tan and al. [18] 

used this approach for the detection of endocardial contours 

in MRI images. Recently, CNN has been combined with 

other algorithms such as multilayer perceptron and 

deformable model to achieve better segmentation and 

classification performances [19,20]. Although CNNs 

algorithms demonstrated great results in different images 

segmentation applications, they still unable to segment 

cardiac structures in the small slices of the heart, especially 
in the apex.  

 

It is important de mention that there are other approaches 

pursued to extract edges combining cellular automata and 

fuzzy rules [21] or local spectral histogram (LSH) [22] 

which are mainly applied on Synthetic Aperture Radar 

(SAR) images but that can be adapted to LV images' 

segmentation due to the high degree of accuracy in contour 

delineation and noise processing.  

 

In latest works, an algorithm in [23] was proposed 
discriminate between objects of interest including a main 

step of shape-based feature extraction that can also be used 

for CMR images. 

 

In this paper, we suggest to compare a set of existing 

methods [26-56] that handle LV segmentation in a short-

MRI axis, and to choose the best one that assumes 

extracting and computing the maximum set of parameters. 

Moreover, we present a full-process of LV myocardium 

segmentation from 3D+time cine-MRI sequences based on a 

parallel watershed transformation [35]. We also define 

several parameters, their formulas, and a semi-algorithm for 
main ones such that End-Diastolic / End-Systolic / Stroke 

volume and Ejection Fraction. Finally, we test our approach 

on an initial data base composed of twenty patients to 

evaluate the accuracy of our work.  

 

The rest of the paper is organized as follows: Section 2 

sets up a comparative study of some existing LV 

segmentation methods. Section 3 advances the process of 

LV segmentation based on a parallel watershed 

transformation. The computation of cardiac function 

parameters is presented in section 4. The obtained results are 
discussed in section 5. A summary of the realised work as 

well as possible extensions are introduced in section 6. 

2. Left ventricular segmentation methods using 

Short-Axis MR image  

The quantification of global and local cardiac functional 

parameters requires a delineation of endocardial and 

epicardial contours of the LV from cine short-axis (SA) MRI. 

Figure 1 shows a full-size SA - CMR image of the LV and 

its different components. Therefore, many segmentation 

methods are discussed in the literature [7] to be used for the 

above-mentioned purpose. In this section, a synthetic study 

is applied to a set of works that handles the segmentation of 

the left ventricular and either the right endocardial 

ventricular and/or epicardial contours. A presentation of 
several heart functional parameters, useful for the diagnosis 

of cardiovascular diseases, is given as well at the lastpart of 

this section.  

 

 

 

 

 

 

 

 
 

 

 

 

 

The accurate delineation of the endocardial and epicardial 

contours, with less or none user intervention, is a 

challenging task toward for the LV segmentation in cardiac 

CMR Images. In fact, we mainly distinguish two categories 

to classify the existing LV segmentation algorithms. Either 

the algorithm is based on no or a weak (nw)-prior or on a 

strong one. 

2.1 Left Ventricle segmentation based on nw-priors: 

 Generally, LV segmentation approaches based on (weak or 

no) prior knowledge are image driven. Thus, they are mainly 

based on image information and don’t require any intensive 

training. According to the algorithm used for the 

segmentation process, these techniques can be classified as 

image-based methods, pixel classification, and deformable 

models. 

a) Image-Based Methods: Endocardial and epicardial 

contours delineation leads to specific segmentation 

difficulties. Therefore, Image-based methods suggests to 

process them differently and separately following two steps: 

▪ Step 1: The detection of endocardial contour, using 

either thresholding methods, and dynamic programming, 

or mathematical morphology operators. 

▪ Step 2: The epicardium segmentation is performed by 

exploiting the endocardium boundary along with 

myocardial thickness or mathematical morphology 

operators.  

b) Pixel classification: These methods are mostly used to 

deal with multiple images of the same scene especially in 

the case of multiple MRI or Multi-modality images. The 

main axis is to split images into different sections or classes 

having similar features.  

 
Fig. 1. A full size short-axis CMR image and a Region of Interest 

(ROI) identifying the heart: (1) Endocardium, (2) Epicardium  
and (3) Myocardium. 
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c) Deformable models: these methods use active contours 

or snakes and are based on deforming a curve iteratively, to 
minimize the energy consumption.  Active contours have 

been widely used to segment medical images. Similarly to 

image-based methods, these approaches are based mainly on 

image information and don’t require any intensive training 

as already mentioned. 

 

2.2 Left Ventricle segmentation based on strong priors:  

Automatic LV segmentation is generally based on strong 

spatial priors such as statistical shape models or atlases. This 

is useful when the shape of the target region does not change 

significantly from one subject to another, which is a 
reasonable assumption for the LV. Such strong priors might 

reduce the intervention of the user's needs, but 

simultaneously enhance the cost of building a large training 

set manually. Methods belonging to this category are based 

on the models mentioned below: 

a) Shape-driven deformable models: Those models develop 

an active curve/surface for the sake of minimizing the 

energy function and comprise a set of template shapes 

learned before. The evolution equation is computed by the 

minimization of functional energy, which contains a 

statistical shape constraint. 

b) The Active Shape Model (ASM) / Active Appearance 

Model (AAM): According to these models, two steps have to 

be followed: 

▪ Step 1: Building a statistical shape model following a 

Principal Component Analysis (PCA) of a set of aligned 
training shapes. 

▪ Step 2: Finding segmentation in the current image by 

adapting the solution to the learned model then moving 

on to estimate various parameters such as translation, 

scaling or rotation. 

c) Atlas-Based model: Using this model, the segmented 

image is obtained by mapping its coordinate space to that of 

an Atlas, often following a registration process. The main 

idea is to register the labeled Atlas onto the desired image to 

be segmented and then apply the obtained transformations 

onto the Atlas. The obtained results can then be propagated 

over time through the cardiac cycle following the same 

principle. 

 

2.3 Comparative study:  

Within this sub-section, we put forward a comparative 

study of segmentation methods that will be enhanced by 

synthesis tables, for each one of the above-cited categories. 

The classification will be strongly guided by the works 

presented in [7][24][25]. Based on their experimental 

conditions, segmentation methods belonging to the first and 

the second categories are synthesized respectively in Table 

1 and 2. Notations and acronyms used in these two tables 

are explained below: 

▪ Basic method principle: The segmentation method used 

to detect the ventricular contours. 

▪ Author: The person who wrote and performed the 

algorithm. 

▪ LV/RV: indicate whether segmentation's results are 

provided on both LV (resp. RV) epicardial and 
endocardial contours (LV, RV), or only on the 

endocardial (LVv, RVv). 

▪ Magnetic Resonance Image (MRI): the acquisition 

type of cardiac CMRI series: 

- 2D: 2 Dimensions 

- 3D:  3 Dimensions 

- 4D: 4 Dimensions (3D+ time)  

▪ User Interaction (UI): might be used to initialize the 

segmentation. We distinguish three cases: 

- AHL: Automatic Heart Localization; 

- Use 1: The segmentation requires the selection 
of LV center-point or drawing a circle. 

- Use 2: based on manually segmenting of the first 

image of the sequence. 

▪ External Information (EI): External information 

combined during the segmentation process might be a 

weak prior. 

- AM: Anatomic Model such as the circular aspect of 

the LV (Transformation into polar coordinates or 

use of radial lines); Simple spatial relationships 

(RV is positioned on the left side of the LV); Use 

of a bullet shaped, cylinder or an ellipsoid 

volumetric model. 
- SM: Statistic Model namely a set of manually 

drawn borders gathered and synthesized into a 

statistical model, might also be used. 

- Methods making no use of external information are 

specified with a hyphen (-). 

▪ Motion Information (MI): as the heart is a moving 

organ, its motion can be considered in the 

segmentation process. 

- P: approaches that propagate an initial 

segmentation result on the whole cardiac cycle by 

repeating their algorithm on each image. 
- M: approaches that explicitly take motion into 

account. 

▪ Ventricular Function Evaluation (VFE): A 

qualitative performance of a segmentation method is 

quantified through the validation against a ground truth. 

The precision of the segmentation is also evaluated 

through quantitative measurements such as: 

- S: Surface; 

- EF: Ejection Fraction; 

- SV: Stroke Volume; 

- LVM: LV Mass; 

- CO: Cardiac Output; 
- WT: Wall Thickness; 

- (-): if no clinical parameter is calculated; 

 

Among the different presented algorithms, the one that 

meets our needs will be chosen according to qualitative and 

quantitative criteria based on each algorithm score. Table 3 

represents the top five algorithms based on nw-prior. 

Otherwise, the top three algorithms based on strong priors 

are listed in Table 4.  
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Table 1 Synthesis of LV segmentation methods based on nw-prior 
LV/RV: LEFT AND/OR RIGHT VENTRICLE SEGMENTATION; MRI: MAGNETIC RESONANCE IMAGE; UI: USER INTERACTION,  
EI: EXTERNAL INFORMATION; MI: MOTION INFORMATION; VFE : VENTRICULAR FUNCTION EVALUATION. 

 

 Basic method principle No. Authors LV/RV MRI UI EI MI VFE 

Im
a
g
e 

b
a
se

d
 m

e
th

o
d

s 

Thresholding 

1 Goshtasby and al [26] LVv, RVv 2D/ 3D AHL AM - S 

2 Nachtomy and al [27] LV 2D use 1 AM - EF, SV 

3 Katouzian and al [28] LV, RVv 2D use 1 - - S 

4 Lin and al [29] LVv 3D AHL AM P - 

Dynamic Programming 

5 Geiger and al. [30] LV 2D use 2 - P - 

6 Lalande and al. [31] LV 2D use 1 AM - SV 

7 Liu and al.  [32] RVv 2D use 2 AM - - 

Shortest Path Algorithms 8 Jolly and al [33] LV 4D AHL AM P S 

Mathematical Morphology / 

Watershed transformation 

9 Cousty and al [34] LV 3D/4D use 1 AM M EF, LVM 

10 Mahmoudi and al. [35] LV 3D/4D use 1 AM M - 

Gradient 
11 Lu and al [36] LV 3D AHL AM P EF, MM, V 

12 Waiter and al. [37] LV 3D use 1 - - EF 

Graph Searching 13 Lee and al. [38] LV 3D use 1 AM - EF, V, M 

Pixel  

Classification 

KNN classifier 14 Hadhoud and al [39] LV 3D AHL - - - 

Clustering 15 Cocosco and al. [40] LVv, RVv 3D AHL AM - EF, V 

Neural Networks 16 Stalidis and al. [41] LV 2D use 1 - M - 

Fuzzy KNN + Graph-Cut 17 Kedenburg and al. [42] LV 2D AHL AM - V 

Deformable  

models 

Shape Based Matching 18 Papademetris and al. [43] LV 3D use 1 SM P - 

Active Contours 19 Santarelli and al. [44] LV 2D use 2 - P V, M 

3D Active Contours 20 Heiberg and al.  [45] LV 3D use 1 AM P S 

 

 
Table 2 Synthesis of LV segmentation methods based on strong priors:  

LV/RV: LEFT AND/OR RIGHT VENTRICLE SEGMENTATION, MRI: MAGNETIC RESONANCE IMAGE, UI: USER INTERACTION,  
EI: EXTERNAL INFORMATION; MI: MOTION INFORMATION; VFE: VENTRICULAR FUNCTION EVALUATION. 
 

 Basic method principle No. Authors LV/LR MRI UI EI MI VFE 

Shape-driven 

Deformable  

Model 

Level-Sets + Stochastic 1 Lynch and al. [46] LV 2D use 1 SM - S 

PCA + Bayesian Approach 2 Sun and al. [47] LV 2D use 2 SM M - 

Level-Sets  3 Khalifa and al [48] LV 3D AHL SM - - 

Level-Sets + Deep Belief 

Network 
4 Ngo and al [49] LV 2D use 1 SM M - 

Active Shape /  

Active Appearance 

Models  

AAM + ASM 5 Zhang and al. [50] LV, LRv 4D use 2 SM - V, M 

Principal Component Analysis  6 Inamdar and al. [51] LV 3D use 2 SM M - 

2D + Time AAM 7 Lelieveldt and al. [52] LV 2D AHL SM - V, M 

2D AAM + 3D ASM 8 Zambal and al. [53] LV 2D/ 3D - SM - - 

Atlas  

Based models 

Anatomical Atlas + NRR 9 Lorenzo and al. [54] LV, LRv 4D use 2 SM P V 

Probabilistic Atlas + NRR 10 Lötjönen and al. [55] LV, LRv 3D - SM - - 

Anatomical Atlas + NRR 11 Zhuang and al. [56] LV, LRv 4D - SM - V 
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Table 3: Top five algorithms of LV segmentation based nw-
prior. 

1 Cousty and al (2010) 

2 Mahmoudi and al. (2017) 

3 Jolly and al (2009) 

4 Lu and al. (2013) 

5 Cocosco and al. (2008) 

 
Table 4: Top three algorithms of LV segmentation based on 
strong priors. 

1 Zhuang and al. (2008) 

2 Zhang and al. (2010) 

3 Lorenzo-Valdés and al. (2004) 

 

 

The main criterion to choose the suitable segmentation 

algorithm, is to be simple, easy to implement and have the 
ability of (i) Delineating precisely the endocardial, 

epicardial and myocardial boundaries of left ventricle;        

(ii) Operating on 3D and (3D+t) cardiac MRI sequences;  

(iii) Offering the best performance in terms of execution 

time; and (iv) Computing the maximum number of 

parameters to assess the cardiac function. 
 

According to the comparative study and the above-

mentioned criteria, the spatiotemporal watershed cuts 
method is selected considering the images spatial and 

temporal gradient.  

 

In fact, this method allows producing spatial 

segmentations as well as temporal consistency between the 

successive 3D segmentation sequences obtained over time. 

A parallel topological watershed algorithm is introduced in 

[35] and it can be seen as an extension of the introduced 

watershed transformation presented in [34] that is suitable 

for shared memory parallel machines. It will be used on the 

LV segmentation process that will be developed in the next 

section.  
 

In the remainder of this section, we will try to establish a 

link between the previous segmentation techniques 

announced and the in-depth learning technique, which is 

increasingly demonstrating its effectiveness in the analysis 

of cardiac MR images. This technique is mainly based on 

the use of 2D convolutional neural networks (CNN) and the 

analysis of MRI data, cut by cut.  

 

In the remainder of this section, we will try to establish a 

link between the previous segmentation techniques 
announced and the in-depth learning technique, which is 

increasingly demonstrating its effectiveness in the analysis 

of cardiac MR images. This technique is mainly based on 

the use of 2D convolutional neural networks (CNN) and the 

analysis of MRI data, cut by cut.  

 

Indeed, some studies describe an in-depth learning 

framework to extract the characteristics relevant to 

segmentation. For example, Kong and al. [57] developed a 

temporal regression framework to identify tele-diastolic and 

tele-systolic occurrences of the cardiac cycle by integrating 
a 2D CNN into a recurrent neural network (RNN). The CNN 

was used to code the spatial information, while the RNN 

was used to decode the temporal information. Other work, 

Emad and al. [58], uses a CNN per patch to locate the VG in 

cardiac MRI sections. Finally, Zhang and al. [59] introduce 
a simple CNN to automatically detect missing sections 

(apical and basal) during cardiac examinations to evaluate 

the quality of MRI acquisitions.  

 

The literature also describes other studies that use in-depth 

learning methods combined with conventional cardiac 

segmentation tools, such as Yang and al. [60] who have 

developed a combined CNN and multi-atlas approach to 

performing VG segmentation. In particular, a deep 

architecture has been formed to learn in-depth 

functionalities offering optimal performance for the label 
merging operation typically involved in multi-atlas 

segmentation. Ngo and al. [61] use a deep belief network 

(DBN) to accurately initialize and guide a level-set model to 

segment the left ventricle.  

 

Other techniques, introduced by Rupprecht and al. [62], 

integrate a "patch-based CNN" into a semi-automatic active 

contour (snake) to segment the contours of the heart. 

Alternatively, Avendi and al [20] propose an approach 

combining the deeplearning model and the deformable 

model to automatically segment the left ventricle of the 

heart. The introduced approach [20] launches a simple CNN 
that locates and cuts the VG before the presegmented shape 

is refined with a deformable model. It is important to note 

that there is an intermediate phase of pre-segmentation of 

the VG based on auto-encoders.    

 

Finally, very few publications introduce only in-depth 

learning techniques to segment the ventricles of the heart. A 

commun architecture is the totally deep convolutional neural 

network architecture to segment both the right and left 

ventricles. The recurring network [63] is also a good 

example. Indeed, this fully convolutional network (RECR) 
learns image representations from the complete stack of 2D 

sections, while the derived architecture makes it possible to 

take advantage of spatial dependencies between the slices 

using internal memory units. For more precise image 

analysis, there is another super-image resolution approach, 

based on a residual convolutional neural network model [64], 

which proposes the reconstruction of high-resolution 3D 

volumes from stacks of 2D images.   

 

Although they can provide specific results, in-depth 

learning methods face many limitations, mainly the large 

number of images they require during learning.  Sharing this 
data often raises many legal issues related to the protection 

of patients' privacy. It is also important to note that there is 

no standard for automatic data learning algorithms without 

forgetting the fact that there is no way to correct their output 

in case of error. In addition, the formation of a system 

capable of treating healthy and pathological cases from 

cardiac MRI images remains an open question for all 

previously presented techniques due to the absence of large 

annotated data sets on pathological cases. 
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3. Left ventricular segmentation  

In this section, we present the principles and the 

different steps of LV segmentation based on a parallel 

watershed transformation [35] before moving to considered 

algorithms for functional parameters computed in the next 

step. The Left Ventricular Myocardium (LVM), which is the 

object of interest, is surrounded by the epicardial (∂Ep) and 

the endocardial (∂En) boundaries, as shown in Figure 2. 

These two borders form the left ventricular chamber (LVC). 

The LVC myocardium (LVCM) is delimited (∂En) and 

surrounded by the left ventricular background (LVB) [39]. 

 

 

 

 

 

 

 

 
 

 

3.1. Automatic endocardial border detection:  

The segmentation of the endocardium depends on 

segmenting the LV cavity (LVC), by extracting different 

features such that gradient magnitude, largest eigenvalue, 

the output of the median filter and gray value. Figure 3 

illustrates the different endocardial segmentation steps 

described below:  

▪ First, the recognition process involves finding a marker 

for the LVC which is a subset made of points that 

certainly belong to the LVC.  

▪ Second, the delineation is performed by dilating this 

marker in a mask made of points that possibly belongs to 

the LVC. 

▪ Following the geometric properties of (∂En), we do not 

apply any smoothing to the object obtained after 

delineation. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

3.2. Automatic epicardial border detection: 

The LVCM segmentation is performed while preserving 

some LVC anatomical constraints such that the left 

ventricular myocardium that does not have any hole. This 

leads to the following constraint: EpB ∩ EnB = ∅.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The LVCM segmentation process, as represented in Figure 4, 

is ensured by a Parallel Topological (PT) watershed-based 

transformation [35] and performed following three steps: 
  

▪ The recognition step consists in finding markers for 

both LVCM and LVB in order to separate them. 

Two markers named mLVCM and mLVB are used 

respectively to mark LVCM and LVB.  

▪ Then, the delineation is performed by the PT-

watershed algorithm using the above-selected 

markers as inputs. 

▪ The segmentation is followed by a smoothing post-

processing based on the alternating sequential filter 

to regularize the ∂Ep and to restore a correct shape 

of the intensity information. 

3.3.  Automatic myocardial border detection:  

The last step of the LV segmentation process is to 

automatically detect the myocardial borders. The main task 

is joining two images obtained from Epi / Endo-cardium in 

previous steps. A special function is used to subtract an 
image from another one. The myocardial segmentation's 

steps, as well as results, are shown in Figure 5. 

 

 

 

 

 

 

 

 
Fig. 2. Objects of interest in left ventricle image 

    
              (a)                                                   (b)                           

   
              (c)                                   (d)  

Fig. 3.  Automatic endocardial border detection: 
(a) Original short-axis view image; (b) Result from edge 

detection; (c) Endocardial border after edge detection;         
(d) Final result. 

 

 
                           (a)                         (b)                         (c)                                    

 
                            (d)                        (e)                         (f)               

 
                                                        (g) 

Fig. 4.  Automatic epicardial border detection: 
(a) Original short-axis image, (b) mLVCM selection, 

(c) mLVB selection, (d) Result from PT-watershed algorithm, (e) 

Result from edge detection, (f) Epicardial border after edge 

detection, (g) Final result. 

 
   (a)                         (b)                         (c)                         (d)      

Fig. 5.  Automatic myocardial border detection: 
(a) Original short-axis view image; (b) Result from edge detection; (c) 

Myocardial border after edge detection; 

 (d) Final result. 
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4. Heart function evaluation 

4.1. Global parameters computing 

According to [65] and [66], the performance of the 

segmentation algorithm is evaluated following both 

quantitative and qualitative points of view. Towards a 

quantitative evaluation of the detected endocardial and 

epicardial contours during the end-diastole (ED) and end-
systole (ES) phases of all slices, several measurements are 

assessed allowing global and regional analyses of cardiac 

function from CMR images. In this section, we introduce 

main clinical parameters that can be computed after accurate 

delineation of endocardial and epicardial contours of the LV. 

4.1.1. Left ventricular volumes:  

Left ventricular volume [67] is measured for each 

phase by multiplying the contour area, the sum of the slice 

thickness, and the slice gap. The end-diastolic volume (EDV) 

is obtained after the R-wave from the first phase. The end-

systolic volume (ESV) is measured in the phase where the 

smallest endocardial volume appears. Formula (1) and 
algorithm (1) describe volume computation.  
 

 
iV Zx S=    

- V is expressed in ml. 

- Z is the slice thickness in cm. 

- 𝑆𝑖 is the surface of the cavity on the slice i, (cm²). 

Algorithm 1: Volume Computing 

Data:  

Im_inputt[]: t original MRI 3d images ; 
Im_cavityt[]: t binary 3D images of the segmented cavity; 

t: number of 2D+t sequences; 

N: number of images per 2D+t sequence; 

Ps: pixel spacing (along x and y axis) of the 2D images; 

Th: thickness of the 2D images; 

sumPixels[]: list of the t pixel values sum; 

Vol[]: list of the t calculated volumes; 

Im_depth: number of planes per 3D image; 

 

Result:  

EDV: end-diastolic volume; 
ESV: end-systolic volume; 

SV: stroke volume; 

EF: ejection fraction; 

Tsys: systolic time; 

Tdias: diastolic time; 

 

1. for i =1 to t do 

2.      Im_cavityi cavity_segmentation(Im_inputi); 

3.      sumPixelsi volume(Im_cavityi) ; 

4.      //volume(in) returns (in the list out.list) the sum of 

5.      the pixel values of the input 3D image// 

6.      Vol[i]sumPixelsi=255=1000=Im_depth×Ps2×Th; 

7. end_for 

8. ESV Vol[1]; 

9. EDV Vol[1]; 

10. for i= 1 to t do 

11.     if (ESV > Vol[i] ) then 

12.       ESV Vol[i]; 

13. Tsys i ; 

14. end 

15.    if (EDV < Vol[i]) then 

16.      EDV Vol[i]; 

17.      dias i ; 

18.    end_if 

19. end_for 

20. SV EDV −ESV; 

21. EF  (SV=EDV)×100  

4.1.2. Stroke Volume :  
 

The stroke volume (SV) [68] is simply defined as the 

difference between End-Diastolic Volume (EDV) and End-

Systolic Volume (ESV). It can be obtained by formula (2) 

and algorithm (2). 

 

ESVEDVSV −=          

4.1.3. Ejection Fraction :  

The ejection fraction (EF) is defined as the amount of 

blood ejected during the heart cycle. It is expressed as a 

fraction of the telediastolic volume and can be represented 

by the following equation (3). Different modalities for 
ejection fraction measurement are introduced in [69]. 

Authors introduce also the potential errors sources that can 

influence FE computation.   

100
)(

)()(
(%) 

−
=

Dendo

SendoDendo

tV

tVtV
EF    

- endoV is the volume of the endocardium. 

- )]([max)( tVtV endotDendo = is the end-diastolic volume 

- )]([min)( tVtV endotSendo =  is the end-systolic volume 

Algorithm 2: Systolic and Diastolic Volume, Stroke 

Volume and Ejection Fraction Computing 

Data:  

volume []: volumes resulting array from algorithm (1),  

n: size of volume table 

 
Result:  

ESV: end-systolic volume;  

EDV: end-diastolic volume;  

SV: stroke volume;  

EF: ejection fraction; 

 

1. ESV Volume [1] 

2. EDV  Volume [1] 

3. for i=1 to n do 

4.       if (Volume[i] < ESV) then  

5.                 ESV Volume[i] 

6.       end_if 

7.       if (Volume[i] > EDV) then  

8.                 EDV Volume[i] 

9.       end_if   

10. end_for 

11. SV  EDV – ESV  

12. EF  (SV / EDV) * 100  

13. return (EDV, ESV, SV, EF) 

(1) 

(2) 

(3) 
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4.1.4. Cardiac Output :  

 
Cardiac output (CO) is defined by the amount of blood 

that heart pumps per unit of time. The unit used is mL/min. 

It is given by the following formula (4). A detailed review 

of the different techniques available for cardiac output 

measurement is presented in [70]. 

)( ESVEDVxFCO heart −=  

-   𝐹ℎ𝑒𝑎𝑟𝑡 is the cardiac frequency. 

4.1.5. Left ventricular mass:  

The left ventricular mass (LVM) [71] is calculated in each 

phase by multiplying the left ventricular wall volume and 

the specific density of myocardium like shown by formula 

(5). 

)()( ESVEDVgLVM −=      

-   is the density of the myocardium (1.05 g/ml). 

4.1.6. Shortening Fractional:  

 

The shortening fractional (SF) examines the shortening 

degree of the left ventricular diameter between the end-

diastolic and the end-systolic. It is given by the following 

formula (6). The recommended calculations for LV function 

assessment [72], using changes in the LV dimensions and 

volumes between LV diastole and systole, are mainly FS, 

EF, SV and CO. 
 

100(%) x
EDD

ESDEDD
SF

−
=  

- EDD is the End-Diastole-Diameter.  

- ESD is the End-Systole-Diameter.  

 

4.1.7. Peak Ejection and Filling Rate:  

 

The peak ejection rate (PER) is defined as the maximum 

decrease of left ventricular volume per unit of time. The 

time to peak ejection rate (TPER) is defined as the time 
offset from the moment of PER to the R-wave. Similarly, 

the peak filling rate (PFR) is defined as the maximum 

increase of left ventricular volume per unit of time. The time 

to peak filling rate (TPFR) is defined as the time offset of 

the moment of PFR from the moment of end-systole. Both 

PER and PFR were expressed in EDV/s [73][74]. 

Unfortunately, at this stage, we have not found in the 

literature a mathematical formulation to deduce or calculate 

these two parameters.  
 

 

 

 

 

 

Algorithm 3: Wall Thickness Computing 

 

Data: 

Im_i: image of the binarized myocardial wall; 
PS: pixel spacing; 

n: number of the images; 

Tsys: systolic time 

Tdias: diastolic time 

Th: Im_i thickness (z_voxel size) 

xs: Im_i width (x_voxel size) 

ys: Im_i height (y_voxel size) 

 

Result:  

SWT: systolic wall thickness; 

DWT: diastolic wall thickness; 
WT: percent wall thickening; 

 

1. Im_sys extractpale(im_Tsys, Th,xy) 

//extract the basal  plane 2D xy at Tsystole time// 

2. d _sys crop(Im_sys,0,xs/2,ys/2,1) 

// extracts the rectangle with upper left corner (0xs), 

of width ys/2 and height 1 from the input image 

Im_sys// 

3. Im_dyas  extractpale(im_Tdyas, Th,xy) 

//extract the basal  plane 2D xy at Tsystole time// 

4. d _dyas crop(Im_dyas,0,xs/2,ys/2,1) 

// extracts the rectangle with upper left corner (0xs), 

of width ys/2 and height 1 from the input image 

Im_dyas//  

5.  SWT  volume(d _sys)/255*Ps 

6.  DWT  volume(d _dyas)  /255*Ps 

//volume calculates the sum of pixels that’s why we 

divide by 255// 

7. WT= ((SWT-DWT) / DWT) *100 

8. return (SWT, DWT, WT) 

 

4.1.8. Wall Thickness: 

The wall thickness (WT) is defined by the distance 

between the endocardial and epicardial contours. This is 

usually obtained by a method called "Center-line" which 

consists in computing the distance between the two edges 

along the normal line to the surface of the two contours. The 

percentage of wall thickening [75] (WTP) is obtained from 

the end-systolic wall thickness (ESWT) and the wall 

thickness of end-diastolic (EDWT) as given by formula (7) 

and algorithm (3). 

( )
( )

% 100
EST EDT

WTP x
EDT

− 
=  
 

                                       

 

 

 

 

 

 

(5) 

(6) 

(4) 

(7) 
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5. Results and Discussion  

In this section, we start by presenting a qualitative and 
quantitative validation of left ventricular segmentation based 

on a parallel watershed transformation [35].  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

In order to test the accuracy of the proposed algorithm 

for the segmentation of myocardial borders, a commercially 

available cardiac MRI analysis software (CVi42, version 

5.5.1, Circle Cardiovascular Imaging Inc., Calgary, Canada) 

was used to automatically delineate the endocardial and 

epicardial contours. An expert radiologist (9 years of CMRI 
experience) reviewed the segmentation protocol and 

validated the results. If needed, a manual contour adjustment 

was applied: Myocardial contours were segmented from 

base to apex using 20 data sequences in a short axis view. 

The papillary muscles were excluded from the left 

ventricular mass. Figure 6 illustrates an example of 

myocardial contours' delineation using two segmentation 

methods, applied on cine MRI image at a diastolic instant. 

The results show an agreement between the two algorithms' 

performances.  

 
In addition, the visual inspection of myocardial 

segmentation shows that the proposed algorithm is more 

accurate in segmenting myocardial borders in regions where 

the different structure intensities are very similar. Another 

observation is the ability of myocardial segmentation 

algorithm that is based on watershed transformation [35] to 

correctly delineate the endocardial contour with the presence 

of trabeculae and papillary muscles. This qualitative 

assessment is also confirmed if we compare the 

segmentation results of the second approach, see figure 7, 

for two patients considered pathological and healthy 

respectively. Cuts are extracted from three zones: basal, 
intermediate and apex. They show suitably identifiable 

boundaries of the myocardium. 

 

As the cross-sections used by the two approaches were 

not the same, it proved very difficult to apply a quantitative 

comparison between the two resulting images, show in 

figure 6, using Mean Absolute Distance (MAD), Hausdorff 

Distance (HD) or Dice Coefficient (DC) [76]. To overcome 

this obstacle and maintain a quantitative assessment, we 

move on to the assessment of the calculated parameters. 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Indeed, several global LV parameters including end-

diastolic volume, end-systolic volume, stroke volume, 

ejection fraction, and myocardial mass were measured using 

the same software.  Measurements were obtained using 20 

sequences of patient’s MR images (20-25 images per 

sequence) gathered from University Hospital Fattouma 

Bourguiba Monastir. The image which corresponds to the 

end diastolic was selected as the first image of the series 
while the end systolic image was chosen as the smallest LV 

volume.  
 

As an additional quantitative assessment, the clinical 

measurements obtained from the proposed approach, see 

table 5, were compared to those derived from the automated 

segmentation, see table 6, using Cardiac MRI analysis 

software. The values that are most relevant in Table 5 are 

those of the WT. Indeed, for a healthy patient, the 

myocardium thickens during the systole. On the other hand, 

for a pathological patient, the myocardium shows a decrease 

in this thickening or even a thinning. Thus the percentage of 

thinning must be positive (above 17%) for a healthy patient. 

For pathological cases with acute cardiomyopathy, zero or 
even negative percentages can be obtained (parietal thinning 

in systole). The percentage 0% for patients (P1, P11, P18) 

indicates that the parietal thickness is the same in systole 

and diastole, so the myocardium is abnormal. For the 

evaluation of other parameters, a Bland-Altman analysis 

was used to evaluate the degree of agreement between Left 

ventricular volumes and ejection fraction measurements 

derived from left ventricular segmentation based on a 

parallel watershed transformation and those from the 

automated segmentation. All statistical analyses were 

performed using IBM-SPSS Statistics (Windows, version 
21.0). 

    
                    (a)                                     (b) 

Fig. 6.  End diastolic cine-MRI images illustrating the 
results of automatic myocardial contours detection using 

(a) cardiac MRI analysis software and (b) parallel 

watershed transformation. 

 

 
 

 

 

 

 

 

(a)                                     (b) 
Fig. 6.  End diastolic cine-MRI images illustrating the 

results of automatic myocardial contours detection using 
(a) cardiac MRI analysis software and (b) parallel 

watershed transformation. 
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 (a) (b) 

Fig. 7.  T diastolic cine-MRI images illustrating the results of 
automatic myocardial contours detection using parallel watershed 

transformation for (a) Patient considered pathological and (b) 
Patient considered healthy 
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The results of bland Altman analysis for left ventricular 

ejection fraction measurements, as shown in table 7 and 

figure 8, reveal that the mean difference is very close to 
zero, which demonstrates that the myocardial contours 

segmentation based on watershed transformation gives 

unbiased automated measurement of global parameters. 

Also, the obtained LVEF values are in line with those 

derived from literature. In addition, the LV volumes 

measurements derived from the watershed transformation 

algorithm are in agreement with those derived from cardiac 

MRI analysis software with a little discrepancy between the 

EDV values obtained by the two methods. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

For the latter values, we will study the homogeneity of 

variances for both approaches when computing EDV. We 

use the Hartley test [77][78] since the number of patients is 

the same. This is essential to ensure that if the variation 

factor used in the experiment influenced the data, it did 

induce a change in mean, but not in variance. We consider 

the following two hypotheses:  

 

H0: The variances of the samples are homogeneous 

H1: At least one of the variances is significantly different 
from the others 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
2

max
max 2

min

1,87
s

F
s

= =  

 

According to table 7, the standard deviation when 

computing EDV values is 88 using the LV segmentation 
based on parallel watershed transformation, while it does not 

exceed 47 for the automated myocardial segmentation 

approach. Thus, we can calculate the ratio between 

maximum and minimum variances of the two samples as 

shown in formula (8). 

 

In this study, we treat two populations ( 2)k = . The 

number of patients per population is twenty, so the degree of 

freedom is 19.  With a 95% confidence level, the Hartley 

table shows an
tabF value greater than 2.46. 

 

So we can conclude that max( )tabF F , which makes the 

H0 hypothesis correct; it means that the variances have 
values close enough to each other that we accept the 

hypothesis that they are all homogeneous. 

 

We also propose a second left ventricular volumes 

evaluation. The latter will be based on the median and 

interquartile range instead of mean and standard deviation. 

As shown in table 8, it maintains the correlation previously 

introduced between the results of the two approaches even if 

the disparity between measurements is large. The same 

mean differences mentioned above are maintained in all 

measurements.  
 

 

 

 

 

 

 

 

Table 5. Experimental results using PT-Watershed segmentation. 
 

 EDV   ESV   EF CO  SV LVM SWT DWT WT 

P1 153,5 85 44,63 3,63 68,5 143,9 17.71  17.7  0 
P2 85,6 29 66,12 3,42 56,6 189,3 8.85  15.9  80 
P3 146,3 59 59,67 5,40 87,3 115,4 5.47  8.25  12 
P4 115 61 46,96 3,40 54 131,9 10.62  17.7  67 
P5 188,8 83 56,04 6,82 105,8 156,1 15.04  24.4  62 
P6 157,3 85 45,96 4,41 72,3 98,1 13.86  19.8  43 
P7 290 231,2 20,3 5,23 58,8 147,1 8.85  10.6  20 
P8 183,3 130 29,1 4,37 53,3 115,3 10.62  17.7  67 
P9 119 38,1 67,98 5,01 80,9 145,4 8.85  14.1  60 
P10 236 160,9 31,8 5,63 75,1 106,4 11.60  14.5  25 
P11 101,4 44,5 56,11 3,12 56,9 122,2 8.85  8.85  0 
P12 217 100 53,92 7,01 117 143,3 8.85  10.6  20 
P13 187,5 93,4 50,19 5,80 94,1 56,2 11.88  15.8  33 
P14 156,2 59,1 62,16 8,91 97,1 78,6 8.85  12.4  40 
P15 187 87,6 53,16 6,84 99,4 76,1 10.62  15.9  50 
P16 197 127,7 35,2 5,60 69,3 130,7 15.94  21.2  33 
P17 189 128 32,3 4,45 61 115,0 15.94  21.2  33 
P18 155 63,9 58,77 5,60 91,1 59,1 8.30  8.30  0 
P19 130,8 58,4 55,35 4,91 72,4 111,3 11.20  12.4  18 
P20 173,9 96 44,80 5,53 77,9 106,5 30.35  9.60  20 

 
 

 
 
 

 

Table 6. Experimental results using Cardiac MRI analysis software 
 

 EDV  ESV EF CO   SV LVM 

P1 154,97 85,66 44,66 3,67 69.3 144 
P2 88,1 30,2 66 3,5 57.9 189 
P3 148,67 58,68 60 5,57 99 116 
P4 117 62 47 3,46 55 132 
P5 191,2 84,1 56 6,9 107.1 156 
P6 159,6 86,3 45,9 4,47 73.3 98 

P7 292,4 232,8 20,4 5,3 59.6 148 
P8 185,5 131,7 29 4,41 53.8 115 
P9 120,7 38,9 67,8 5,07 81,8 145 
P10 238 162 32 5,7 76 107 
P11 103,82 45,42 56 3,2 47.82 122 
P12 217,83 100,6 53,8 7,02 117,2 143 
P13 189 94,5 50 5,82 91 56 
P14 157 60 61,7 8,9 81,8 78 

P15 188,7 88,4 53,1 6,9 100,3 76 
P16 198,24 129 35 5,6 69.24 130 
P17 189,5 128,32 32 4,46 61.18 114 
P18 156,4 64,6 58,7 5,64 91,8 59 
P 19 133 58,9 55,7 5,03 74.1 112 

P20 175,1 96,9 44,6 5,55 78,2 106 

 
 
 
 
 

 

Table 7. The results of the comparison between the two 
segmentation approaches using mean and standard deviation.   
 
⃰ = calculated as mean ±standard deviation (SD). 

App(1)= Automated myocardial segmentation 

App(2)= LV segmentation based on parallel watershed transformation 

 

 EDV *(ml) ESV *(ml) EF*(%) 

App(1) 170.23 ±47 91.94±45 48.433 ±12 

App(2) 168.97±88 91.21±46 48.70 ± 13.4 

Mean 

Differences 

 

1.441 0.70 -0.271 

 

 
 
 

 

(8) 
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Furthermore, to demonstrate the clinical application of our 

algorithm, we investigated the association between global 
parameters computed from the proposed algorithm and a 

regional index of LV contractility derived from [79]. The 

regional parameter used in this study is the amplitude of 

contraction. For more details about the regional feature 

computation, the reader should be referred to [79]. Linear 

regression analysis was performed to evaluate the 

correlation between LVEF measurements and regional 

index of   LV contractility for the same 20 patients.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9 shows an example of regional assessment of 

cardiac wall motion abnormalities using parametric imaging 

for patient with myocardial infarction at the inferoseptal and 

anteroseptal walls (P16). The global parameters 

measurements computed after myocardial contours 

segmentation based on watershed transformation applied on 

the same patient's data, reveal a reduced LV ejection fraction 

with a value of 35.2%. The corresponding parametric image 

shows a decrease of amplitude contraction at the 

anteroseptal and inferoseptal walls indicating the presence 
of LV dysfunction which is consistent with LVEF 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig.8 . The bland-Altman plots of the clinical 

measurements: (a)EDV values; (b) ESV values and (c) 
LVEF (solid lines indicatemean differences; dashed 

lines indicate limits of agreement). 
 

 

 
 

Fig. 10. The regression analysis plots illustrating the 
correlation between LVEF measurements derived from 
the watershed transformation algorithm and the regional 

index of LV contractility from parametric images. 

 
 

Table 8. The results of the comparison between the two 
segmentation approaches using median and interquartile range.   
  

⃰ = calculated as median [25th-75th percentile]. 
App(1)= Automated myocardial segmentation 

App(2)= LV segmentation based on parallel watershed transformation 

 

 EDV *(ml) ESV *(ml) EF* (%) 

App(1) 165.67 [134.6-188.9] 85.0 [59-120.2] 51.67 [32.5-58.1] 

App(2) 167.35 [136.9-190.7] 85.9 [59.1-121.3] 51.55 [37.4-58.0] 

 

 
 
 

 

 
Fig. 9 Regional assessment of LV dysfunction using 

parametric images for patient (P16) with myocardial infarction 
at the septal wall. 
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The regression analysis shows a good correlation between 

LVEF measurements derived from the watershed 

transformation algorithm and the regional index of LV 

contractility from parametric images with a Pearson’s 

correlation coefficient r = 0.983 (for p < 0.01). The diagram 

of regression analysis is shown in figure 10. 

 

Previous experimental results demonstrate that the 
distinguished segmentation approach allows not only the 

computation of the highest number of parameters but also 

provides a satisfying measurement as close as conceivable 

to the actual values in accordance with normal values of 

various global and regional functional parameters. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

It is important to note that our segmentation approach may 

face major difficulties, see figure 11, if the 2D cutting series 

suffers from a high signal-to-noise ratio. Indeed, the 

presence of noise will disorient the LPE algorithm even 
though watershed transformation approach is using two-

selected markers as inputs: 

 

▪ To extract the first marker, LV endocardium is dilated 

considering LV morphological prior (the thickness of the 

myocardium cannot be zero). 

 

▪ The second marker is obtained by applying a second 

dilation considering the following prior: "the thickness 

of the left ventricular myocardium cannot exceed a 

certain threshold". 
 

Watershed transform is strongly sensitive to image noise. 

Therefore, we use markers to reduce its sensitivity, but we 

cannot eliminate it. 

 

6. Conclusion and perspectives 

The present work introduces an advanced approach to 
assessing cardiac function. The first step is to extract the 

myocardium through left ventricular segmentation based on 

parallel watershed transformation. Thanks to a good 

segmentation quality, a second step is launched to estimate 

the global and regional parameters of the left ventricle in 

3D+t cine-MRI sequences. More than six clinical 

parameters, such that (End-Diastolic Volume (EDV), End-

Systolic Volume (ESV), Stroke volume (SV) , Ejection 

Fraction (EF), Left Ventricular Mass (LVM) and  Cardiac 

Output (CO)), associated to the left ventricle function, are 

extracted with optimal computation time. The obtained 

results were compared to those returned by the Circle 

Cardiovascular Imaging tool. Degree of agreement between 
left ventricular volumes and ejection fraction measurements 

was evaluated using IBM-SPSS Statistics. An investigation 

on the association between global parameters computed 

from the proposed algorithm and a regional index of LV 

contractility has been also introduced. All results 

demonstrate the efficiency of our segmentation method for 

accurate myocardium detection and consequently enhance 

LV functional quantification. 

 

Nevertheless, there is much to do; future work [80] might 

include the support of right ventricular (RV) segmentation 
and extraction of associated parameters. However, many 

challenges can affect the performance of the right 

ventricular segmentation. First, there are qualitative 

problems with cardiac MRI images due to the low contrast 

intensity of the right heart portion, which makes it difficult 

to accurately determine if a pixel belongs to the hollow area 

of the RV, its outlines or its background. In addition, RV 

segmentation is influenced by its morphology and structure 

in the cardiac cycle (from baseline to apex, from systole to 

diastole), and the enormous variation between acquired 

series from one patient to another, whether he is a healthy 

patient or is subject to a pathology. 
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