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The Onde Martenot is a classic electronic musical instrument. This paper focuses on the
power-balanced simulation of its ribbon-controlled oscillator, composed of linear, nonlinear as
well as time-varying components. To this end, the proposed approach consists in formulating
the circuit as a Port-Hamiltonian System, for which power-balanced numerical methods are
available. A specificity of the Martenot oscillator is to involve parallel capacitors, one of them
having a capacitance which non-linearly depends on the time-varying ribbon position state. In
the case of linear time-invariant (LTI) capacitors in parallel, an equivalent component can be
deduced using the classic impedance approach. Such a reformulation into a single equivalent
component is required to derive a state-space Port-Hamiltonian representation of a circuit.
One technical result of this paper is to propose a method to determine such an equivalent
component in the non LTI case. This method is applied to the present Martenot oscillator. Then,
power-balanced numerical experiments are presented for several configurations: fixed ribbon
position, realistic and over-speed movements. These results are examined and interpreted from
both the electronic and mechanical points of view.

0 Introduction

As the audio industry is moving towards the digital era,
the question of the preservation of analog machines and in-
struments is paramount. This question is especially relevant
for the Onde Martenot, one of the first electronic musical in-
struments [1] invented in 1928, for it is no longer produced
and some of its components are now obsolete. A satisfying
solution consists in modelling its circuit in order to build
a virtual instrument, so that the community of composers,
musicians and musicologists may at least have access to fac-
simile. To model electronic circuits for audio applications,
the state-space form known as Port-Hamiltonian Systems
(PHS) has proven to be a powerful approach as it guaran-
tees the power balance of the considered system, therefore
preserves the passivity of simulations [2] even when its

components are not linear. It is multi-physical (a system
can be electrical, mechanical, thermal or a mix as well) and
modular (a system made of several connected PHS is still
a PHS). Yet for some circuit configurations, a direct state-
space form cannot be derived - the circuit is said not to be
realizable - and an equivalent circuit must be computed in
order to perform simulations. This is the case with parallel
capacitors which must be replaced by a single equivalent
capacitor. However, when the components involved in the
circuit are not LTI, as some are in the controllable oscillator
of the Onde Martenot, the classic impedance approach is
no longer suitable and equivalent components must be com-
puted through a specifically designed method.
This paper is structured as follows: the Martenot control-
lable oscillator circuit is presented in section 2, with a par-
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ticular attention drawn to the realization problem it poses.
In section 3, the PHS formalism is briefly described. In
section 4, a method to compute equivalent components in
this formalism is developed. A modelling of the complete
oscillator is then derived, and several configurations are
simulated in section 5. Finally the simulation results are
discussed in section 6.

1 Ondes Martenot ribbon-controlled oscillator
and problem statement

1.1 Circuit overview
The Onde Martenot, invented by Maurice Martenot in

1928, is one of the first electronic musical instruments and
is based on heterodyne processing. Heterodyning is a tech-
nique used to shift high frequency signals into the audio
domain. In the Onde Martenot specifically, each one of two
oscillators generate a high frequency quasi-sinusoidal volt-
age (around 80 kHz); one is fixed, and the player controls
the second frequency using a sliding ribbon. The sum of
these two voltages is an amplitude-modulated signal. Its
envelope is detected using a triode vacuum tube, producing
an audible sound, for which the frequency is the difference
between the two oscillators frequencies. The triode vacuum
tube in the detector is a nonlinear component which adds
harmonics to the signal. This enriched signal is then routed
towards special kinds of loudspeakers (called diffuseurs)
selected by the musician, adding another layer of coloration
to the sound. The oscillators are made of an LC circuit cou-

Fig. 1. Schematic of the Onde 169 controllable oscillator (source:
Musée de la Musique, Paris).

pled to a triode vacuum tube (for amplification), through
a transformer. In the controllable oscillator, one of the ca-
pacitors of the LC circuit is variable and controlled by the
ribbon. Fig. 1 shows that the total capacitor is in fact made
of several capacitors connected in parallel, some of them
LTI, but one of them time-varying.

1.2 Problem statement
Two capacitors CA and CB connected in parallel are equiv-

alent to a single capacitor CC (fig. 2). In the case of a Linear

Time-invariant system, the notion of impedance allows to
determine the equivalent capacitor. Indeed, denoting the
capacitors impedances ZA = 1

jCAω
and ZB = 1

jCBω
respec-

tively, Kirchoff’s laws iC = iA + iB and vC = vA = vB yield
the relation

1
ZC

=
1

ZA
+

1
ZB

(1)

This relation characterizes entirely the equivalent compo-
nent CC and gives the value of its capacitance:

jCCω = jCAω + jCBω ⇒ CC = CA +CB (2)

However, this classic impedance approach is no longer suit-
able for non LTI systems: if we were to naively define
impedance by the ratio v/i (transfer function), that of non-
linear capacitors would still depend on the charge q, it-
self time-dependent. By definition, time-varying capacitors
would also yield a time-dependent transfer function. As the
ribbon-controlled capacitance depends on the ribbon posi-
tion, which itself depends on time, an adapted method to
characterize the equivalent capacitor is needed. The PHS
formalism allows to represent an energy-storing component
by its energy function instead of its impedance. We thus
may rely on this notion in a non LTI case, as it is more
general.

2 Port-Hamiltonian Systems: formalism and
examples

This section recalls basics on port-Hamiltonian systems
(PHS).
For detailed presentation, readers can refer to [3] and [4].

2.1 Formalism
Here we rely on a differential-algebraic form adapted to

multi-physical systems [5] [6], which allows to represent
a dynamical system as a network of storage components
with their state variable x and total energy of the state H(x),
dissipative components with their variable w and consti-
tutive law z(w), and connection ports as control inputs u
and their associated outputs y such as uᵀy is the external
power brought to the system. The variables are generally
time-dependent and can be vectors. If such a system is real-
izable [7] [8], the flows and efforts exchanges between the
system components are coupled through a skew-symmetric

Fig. 2. Equivalence between two parallel capacitors and a single
capacitor.
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matrix S = −Sᵀ: dx
dt
w
−y


︸ ︷︷ ︸
F (flows)

= S.

∇H(x)
z(w)

u


︸ ︷︷ ︸

E (efforts)

(3)

The skew-symmetry of S guarantees that the system re-
mains passive, i.e there is no spontaneous creation of energy.
Indeed, from Eq. (3), the scalar product of the efforts and
flows yields

E ᵀF = E ᵀSE = (E ᵀSE )ᵀ = −E ᵀSE

= −E ᵀF = 0,
(4)

meaning that the following power-balance is satisfied

dE
dt︸︷︷︸

∇H(x)ᵀ dx
dt

= Pext︸︷︷︸
uᵀy

− Pdiss︸︷︷︸
z(w)ᵀw ≥ 0

, (5)

where E = H(x) is the energy, Pext is the (incoming) ex-
ternal power and Pdiss ≥ 0 the dissipated power. Appendix
A.2 and [2] describe a numerical scheme preserving those
properties in discrete time.

2.2 Capacitors constitutive laws
For linear time-invariant capacitors, the charge q and the

voltage v are mapped according to a constitutive law q = Cv,
which depends on a unique characteristic constant (capac-
itance C in Farad). The electric power P = i v received by
such a component makes its stored energy E vary as dE

dt = P.
With current i = dq

dt , voltage v = q
C and assuming a zero en-

ergy for a discharged component, a time integration yields
E = H(q) with H(q) = q2

2C . This energy is sometimes ex-
pressed independently of value C as E = qv

2 .
For nonlinear capacitors, the last expression in no longer

true. But a description based on an energy function q 7→
H(q) is still applicable. The constitutive law is described by
the voltage function H ′ (derivative of H), namely,

v = H ′(q), (6)

with power balance v i = H ′(q) dq
dt = dH(q)

dt = dE
dt .

Remark 1 (Constitutive laws based on q or v). In prac-
tice, constitutive laws are usually formulated (and mea-
sured) with respect to the voltage (effort) rather than the
charge (state). Formally (if possible), such a description cor-
responds to invert v = H ′(q) (= q/C for linear capacitors)
into q = F(v) (= Cv for linear capacitors) with F = H ′−1

and formulates the energy as E = H
(
H ′−1(v)

)
= Cv2

2 . Note
that differentiating this formula yields a (correct) power
balance but more difficult interpretations.

This remark applies to varactors proposed in [9], with
model H ′−1 = F : v 7→ Cv/

√
1 + v/v2. Another example

is tanh type which is of the form q 7→ H ′(q) = v1 tanh( q
q0
).

Fig. 3 shows the voltage functions and the corresponding
energy functions of these different capacitors types (for q0
= 7nC, v1 = 80mV, C = 50nF and v2 = 0.2V).

a©

b©

Fig. 3. (a) Voltage functions H ′ (associated with constitutive law
Eq. (6)) and (b) energy functions H for different capacitors types.

3 Equivalent component description of non-LTI
parallel capacitors

3.1 Method
3.2 Problem statement and hypotheses

Consider two capacitors connected in parallel (fig. 2).
These components are flow-controlled ( dx

dt = q̇ = i, current).
As they are connected in parallel, their dual efforts (volt-
ages) are equal and there is no skew-symmetric matrix S
such that  iA

iB
−V

 = S.

vA
vB
I

 ,

and formulation (3) cannot be retrieved. Replacing those
parallel capacitors by a single equivalent capacitor (with
common voltage vC := vA = vB and total current iC =
iA + iB) allows to restore such a formulation. For linear
time-invariant (LTI) laws, the use of transfer functions of
impedance-type makes this operation straightforward. For
non LTI laws, no characterization can be based on usual
transfer functions. In this case, energy-storing components
are characterized by their energy function to be used in the
PHS formalism.

The purpose of this section is to derive the energy func-
tion HC of the equivalent component from the energy func-
tions Hk (k = A,B) of isolated components, including for
non LTI laws, under the following hypotheses:

(i) the energy function Hk is C 1 positive-definite
(Hk(0) = 0 and Hk(x) > 0 for x 6= 0)

J. Audio Eng. Sco., Vol. , No. , 3
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(ii) the voltage function H ′k (derivative of Hk) is strictly
increasing and definite (H ′k(0) = 0)

According to Eq. (6), this means that the voltage vk =
H ′k(qk),

continuously and strictly increases with the charge qk,
and is zero for a zero charge. In particular, the constitutive
law Eq. (6) makes vk and qk in one-to-one relation, allowing
therefore its invertibility.

3.3 Method
To express the total energy HC as a function of the total

charge qC = qA + qB under the constraint that capacitors in
parallel share the same voltage vA = vB = vC, the method
is decomposed into three steps.

Step 1: express the total charge qC = qA + qB as functions
of the common voltage vA = vB = vC.
From Eq. (6), the charge of isolated components is

qk = H ′k
−1
(vk), for k = A,B, (7)

so that the total charge depends on the common volt-
age as

qC =
[
H ′A
−1

+ H ′B
−1]

(vC). (8)

This function continuously and strictly increases and
is zero at zero.

Step 2: express this common voltage vC as a function of
the total charge qC.

vC =
[
H ′A
−1

+ H ′B
−1]−1

(qC). (9)

Step 3: express the total energy as a function of qC.
The energy values Hk(qk) of elementary components
k = A,B can be reformulated as functions of the total

charge, using the composed functions qC
(9)7−→ vC

(7)7−→
qk. Their sum yields the total energy function, that is,

HC(qC) =
[
HA ◦ H ′A

−1
+ HB ◦ H ′B

−1]
◦
[
H ′A
−1

+ H ′B
−1
]−1(qC). (10)

These steps are detailed on examples in appendix A.3.

Remark 2 (Time-varying case). For capacitors that depend
on other additional state variables (e.g. the time-varying
space variable in Eq. 15, section 4.1.1), steps 1 to 3 are
unchanged (these additional variables are considered as
parameters in this method).

This is applied to the ribbon controlled-oscillator in sec-
tion 4.

3.3.1 Generalizations
This method can also be extended to K non-LTI capaci-

tors connected in parallel, leading to

Htot(qtot) =

[
K

∑
k=1

Hk ◦ H ′k
−1

]
◦

[
K

∑
k=1

H ′k
−1

]−1

(qtot) (11)

In this case, the charge of each component k is

qk = H ′k
−1
(vC)

= H ′k
−1 ◦

[
K

∑
k=1

H ′k
−1

]−1

(qtot)
(12)

This method is adapted to other types of storage compo-
nents that poses similar realization problems. For instance,
it is suitable for coils in series, for which the state is the
magnetic flux φ , i = H ′(φ) provides the current law and the
voltage is v = φ̇ . Moreover, when the constitutive laws of
the components are not well known, this method can still be
used with laws interpolated from measurements. An imple-
mentation of the method using piecewise linear functions is
available in the PyPHS library [10].

4 Simulation of the ribbon-controlled oscillator

4.1 Ribbon-controlled oscillator modelling
Constitutive laws of components R1, L, C1, C2, C13 and

C14 are supposed to be linear and described in table 4, in
appendix A.1. The transformer is also supposed to be lin-
ear, and of ratio M. The remaining components models are
described in the next section.

4.1.1 Equivalent variable capacitor
The ribbon slides between the faces of a comb-shaped

capacitor. As it slides, its conductive part hides and acti-
vates complementary parts of the teeth that compose the
capacitor, according to the ribbon position (fig. 4). Section
4.2 validates that the LTI capacitors C13 and C14 and the
variable capacitor C15 connected in parallel are equivalent
to a single variable capacitor. In order to evaluate how the
equivalent capacitor behaves with respect to its charge q and
the ribbon position x, the position is mapped with the heard
frequency. The ribbon follows a dummy piano keyboard on
which the width

x0 = 11.10−3m (13)

is a semitone [11].

Fig. 4. Variable capacitor of the Onde Martenot with its ribbon
control. h is the ribbon height, l is the width of a tooth, x is the
ribbon position and d the distance between the ribbon and the
capacitor.

4 J. Audio Eng. Sco., Vol. , No. ,
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Denoting n the semitone number where the reference
is A1 (110 Hz, n = 0), we roughly have x = nx0 (except
when the ribbon slides between a B and a C or between an
E and a F where the displacement is greater). The Onde
Martenot is tuned on equal temperament, therefore the heard
frequency from A1 is fm = A12

x
12x0 . Denoting F the carrier

frequency, the actual oscillator frequency is f = F − fm
and the corresponding capacitance of the LC circuit for a
static configuration is (ignoring the dissipative effects of the
triode vacuum tube for simplicity):

C(x) =
1

4π2(F − A12
x

12x0 )2L
. (14)

Fig. 5 shows C in function of x with L = 2mH and F =
10kHz.

Fig. 5. Capacitance of the variable oscillator in function of the
ribbon position from A1 to A6.

Based on the linear electric behaviour v = q
C(x) observed

for any static position x, the total energy of the electro-
mechanical component has the form H(q,x) = H(q =

0,x) +
∫ q

0
ξ

C(x) dξ . Moreover, the discharged component
(then purely mechanical) applies no force F on the ribbon
whatever the position x. This means that F = ∂H

∂x is zero
at any state (q = 0,x), leading to H(q = 0,x) = H(q =
0,x = 0) = 0: the discharged component stores no pure me-
chanical energy. Finally, the internal energy of the electro-
mechanichal component is given by (see also fig. 6)

Hcap(q,x) =
q2

2C(x)
. (15)

Remark 3 (Energy time-variation). The total energy E =
H(q,x) varies as dE

dt = Pe + Pm where

r Pe =
∂H
∂q (q,x)

dq
dt accounts for the incoming electrical

power due to current dq
dt and voltage v = ∂H

∂q (q,x) =
q

C(x) ,r Pm = ∂H
∂x (q,x)

dx
dt accounts for the incoming mechanical

power due to velocity dx
dt and a spring reaction force

F = ∂H
∂x (q,x) = −

C′(x)q2

2C(x)2 , induced by the capacitance
variation.

4.1.2 Triode
The triode vacuum tube is modelled with an enhanced

Norman Koren model [12]. This gives the anode current ipc
and grid current igc in function of the voltages vpc and vgc:

ipc =

{
2EEx

1 /Kg if E1 ≥ 0
0 else

(16)

igc =

{
0 if vgc < Va
vgc−Va

Rgk
else

(17)

with

E1 =
vpc

Kp
ln(1 + exp(Kp(

1
µ

+
vgc +Vct√
Kvb + v2

pc

)))

The parameters set θ = (µ,Ex,Kg,Kp,Kvb,Vct ,Va,Rgk) is
retrieved from the datasheet [13] through a least squares
minimization. This allows the modelling of the triode as
a dissipative component in the PHS formalism, with w =(

vpc
vgc

)
and zθ (w) =

(
ipc
igc

)
.

4.1.3 Transformer and feedback loop
The oscillation starts with a voltage noise Vstart at the tri-

ode grid, which is amplified and filtered by the LC circuit at
the triode plate before being re-injected in the grid through
a transformer of ratio M. Under open circuit (negligible
influence of the following stages) and small-signal (possi-
ble linearization around an operating point) hypotheses, the
oscillator can be represented as a system of input Vstart and

Fig. 6. Energy function of the variable capacitor.

Fig. 7. Constitutive law of the variable capacitor.

J. Audio Eng. Sco., Vol. , No. , 5
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output Vout (fig. 8, with µ the triode amplification factor and
ra the anode resistor). The plate load is constituted by a LC
parallel circuit, with impedance (s is the Laplace variable)

Z =
sL

1 + s2LC
(18)

Moreover, as Vbias is constant, ∆Vout = −
[
Z/(Z + ra)

]
∆vpc

where operator ∆ denotes variations around the operating
point. Considering the triode amplification factor defini-
tion, this yields ∆Vout =

[
Z/(Z + ra)

]
µ(M∆Vout +Vstart),

so that
∆Vout

Vstart
=

Zµ

Z(1− µM) + ra
. (19)

The poles of transfer function (19) are found to be the roots
(in s) of the characteristic equation

s2 + s
1− µM

raC
+ ω

2
0 = 0 (20)

with ω2
0 = 1

LC . The condition for the system to start oscil-
lating is that a complex pole has a positive real part. This
leads to

1
µ
≤ M <

1
µ

+
2ω0C

gm
(21)

where gm = µ/ra is the triode transconductance. The closer
to 1/µ is chosen M, the more stable is the oscillation am-
plitude.

Fig. 8. Schematic of the simplified oscillator.

4.1.4 Interconnection
Replacing parallel capacitors C1//C2 with equivalent ca-

pacitor C3 and C13//C14//C15 with equivalent capacitor C8,
the oscillator is realizable and can be represented as the
following PHS:

vL
iC8
iC3
vR1
vpc
vgc
−Ibias
−Istart


=



0 1 0 0 0 0 0 0
−1 0 0 0 1 −M 0 0
0 0 0 −1 1 1 0 0
0 0 1 0 0 0 0 0
0 −1 −1 0 0 0 1 0
0 M −1 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0


.



iL
vC8
vC3
iR1
ipc
igc

Vbias
Vstart



4.2 Numerical experiments
We now simulate the complete variable oscillator, sliding

the ribbon from A1 to A6. The simulation is performed ac-

cording to the power-balanced numerical scheme presented
in [2] (see also the PyPHS library [10]). In order to ob-
serve the frequency changes, we choose a carrier frequency
F = 10kHz (instead of the actual 80 kHz) and perform
the sweep in 2 ms (vel1) or in 0.5s (vel2). The simulation
parameters are presented in table 1. Due to important nonlin-
earities of some components, a large sample-rate is chosen
to avoid any aliasing. Table 2 recaps the components values.
We denote C1//C2 = C3 and C13//C14//C15 = C8. Figs. 9 and

FFFsss FFF vvveeelll111 vvveeelll222

768kHz 10kHz 385 m/s 1.54 m/s
Table 1. Simulation parameters.

6F5 µ Ex Kg Kp Kvb

98 1.6 2614 905 1.87

Vct Va Rgk

0.5 0.33 1300

RRR111 LLL CCC111//CCC222 CCC13//CCC14 VVV bias MMM

7.5kΩ 2mH 0.22µF 440pF 90V 1
µ

Table 2. Components parameters values.

10 show the observed flows and efforts of the oscillator as
the ribbon slides. Figs. 11 and 12 show the states of the dif-
ferent storage components, reflecting the frequency changes.
Figs. 14 and 15 show the power balance of the complete sys-
tem during the simulation. Fig. 13 shows the spectrogram of
the output voltage, suggesting that the harmonic distortion
is sufficiently negligible. It is also worth noting that the PHS
formalism gives access to other physical parameters of the
ribbon, which would otherwise prove difficult to measure.
Indeed, the quantity

∇xHcap(x,q) =
−q2C′(x)

2C2(x)
(22)

is the force produced by the ribbon displacement (see Re-
mark 3) ; figs. 16 and 17 show that the values taken by this
force during the sweep are negligible no matter the sweep
velocity.

qqqCCC333rrreee fff qqqCCC888rrreee fff φφφrrreee fff

vel1 4.60.10−6C 3.13.10−8C 4.60.10−6Wb

vel2 4.58.10−6C 4.76.10−8C 4.58.10−6Wb
Table 3. Reference values.

5 Interpretation and discussion

Due to the nature of the Ondes Martenot instrument (rare,
fragile and expensive), setting up extensive measurements
to evaluate the accuracy of the oscillator model is a complex
operation which is still ongoing. However, a preliminary ob-
servation is that with the chosen parameters, the oscillation
is quasi-sinusoidal (less that 0.1 % harmonic distortion for

6 J. Audio Eng. Sco., Vol. , No. ,
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the second harmonic), which corresponds to observations
made in [14] : ”on the whole ribbon range, the sinusoidal
quality of the signal produced by the oscillator is excel-
lent”. Moreover, the behaviours of the components are not
affected by the ribbon displacement speed and there is no
latency between the ribbon displacement and the frequency
changes. This suggests that for future simulations of the
complete circuit, the oscillator could be modelled with a
frequency-controlled sinusoidal voltage generator, which
would save computation time. It can be noted though that
the output voltage of the oscillator slightly decreases as

Fig. 9. Velocity vel1 = 384 m/s: simulated flows and efforts of the
storage components, for a carrier frequency F = 10kHz, during a
sweep from A1 to A6.

Fig. 10. Velocity vel2 = 1.54 m/s: simulated flows and efforts
of the storage components, for a carrier frequency F = 10kHz,
during a sweep from A1 to A6 zoomed on the first 2ms.

Fig. 11. Velocity vel1 = 384 m/s: simulated states of the storage
components during a sweep from A1 to A6. Table 3 shows the
reference values.

Fig. 12. Velocity vel2 = 1.54 m/s: simulated states of the storage
components during a sweep from A1 to A6 zoomed on the first
2ms. Table 3 shows the reference values.

Fig. 13. Spectrogram of the output voltage during a sweep from
A1 to A6.

Fig. 14. Velocity vel1 = 384 m/s: power balance of the system
during a sweep from A1 to A6.

Fig. 15. Velocity vel2 = 1.54 m/s: power balance of the system
during a sweep from A1 to A6 zoomed on the first 2ms.

J. Audio Eng. Sco., Vol. , No. , 7
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the heard frequency increases, which is not the case in real
Ondes Martenot. Real instruments have a higher frequency
carrier, therefore frequency modulations are relatively less
important. The oscillator capacitance varies less and con-
sequently the triode amplification, which depends on its
load, is stable during the whole sweep. A second observa-
tion is that consistently with the PHS formalism, the power
balance is preserved despite the nonlinearities of some com-
ponents. A third observation is that the mechanical force
produced by the ribbon displacement is extremely low (less
than 10nN), thus presumably not detectable by the musician.
This is likely to be what Maurice Martenot intended as the
interaction between the player and the instrument should be
as smooth as possible.

6 Conclusion and perspectives

In this paper, a refined simulation of the ribbon-controlled
oscillator of the Ondes Martenot has been proposed, allow-
ing a numerical investigation of this circuit. It is based on
an energy-balanced modelling adapted to LTI (capacitors,
resistor, inductor) and non LTI (vacuum tube and the multi-
physical time-varying capacitor mechanically-driven by a
ribbon) components. One contribution of this paper is the de-
sign of a method to compute equivalent energy functions of
groups of components when required, to derive a PHS state-
space realization of a global circuit. This method reveals
that LTI and variable capacitors in parallel build an equiva-

Fig. 16. Velocity vel1 = 384 m/s: mechanical flow and effort
during a sweep from A1 to A6.

Fig. 17. Velocity vel2 = 1.54 m/s: mechanical flow and effort
during a sweep from A1 to A6.

lent bi-variate capacitor, depending on an electric state (total
charge) and a space state (ribbon position). As a second con-
tribution, the ideal energy function for the ribbon-controlled
equivalent capacitor is derived in correspondence with the
target keyboard designed by Martenot. Numerical experi-
ments on the nonlinear time-varying circuit lead to expected
observations: (1) the combination of the triode amplification
and the LC-resonator produces a quasi-sinusoidal oscilla-
tion with a stable amplitude for a static configuration; (2)
the mechanical force produced by the variable capacitor due
to the ribbon displacement is undetectable by the musician
(less than 10nN) for over-speed movement ( 300m/s); (3)
the latency between the instantaneous frequency and the
ribbon position is also undetectable. This corroborates that
the Martenot’s ribbon-controlled circuit is close to an ideal
oscillator.

Further work aims to model and simulate the complete
Martenot instrument, including all its stages and the dif-
fuseurs. Furthermore, for real-time sound synthesis pur-
poses, the examination of anti-aliasing methods [15] could
be profitable to handle the nonlinear heterodyne process at
reasonable sampling rates.
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[6] Falaize, A. and Hélie, T., “Passive guaranteed simu-
lation of analog audio circuits: A port-Hamiltonian
approach,” Applied Sciences, 6(10), p. 273, 2016.

[7] Brockett, R. W., Finite dimensional linear systems,
volume 74, SIAM, 2015.

8 J. Audio Eng. Sco., Vol. , No. ,



PAPERS REFERENCES

[8] Van der Schaft, A., “A realization procedure for sys-
tems of nonlinear higher-order differential equations,”
IFAC Proceedings Volumes, 20(5), pp. 85–90, 1987.

[9] Sarti, A. and De Poli, G., “Toward nonlinear wave dig-
ital filters,” IEEE Transactions on Signal Processing,
47(6), pp. 1654–1668, 1999.
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8 Appendix

A.1 PHS formalism : example
Consider a linear parallel RLC circuit (fig.18). The ca-

Fig. 18. Parallel RLC

pacitor C and the inductor L are storage components whose
states are given by the variables q (charge) and φ (magnetic
flux) respectively ; the resistor R is a dissipative component
described by Ohm’s law. The system is current (flow) con-
trolled, its associated output is a voltage (effort). Table 4
recaps the variables and the constitutive laws of the three

x dx
dt H(x) ∇H(x)

C q q̇ = iC
q2

2C
q
C = vC

L φ φ̇ = vL
φ2

2L
φ

L = iL

w z(w)

R vR
vR
R = iR

Table 4. State variables and constitutive laws for a linear parallel
RLC circuit.

components. Kirchoff’s laws in receptor convention yield
iC
vL
vR
−V

 =


0 −1 −1 1
1 0 0 0
1 0 0 0
−1 0 0 0

 .


vC
iL
iR
I


Currents are flows and voltages are efforts, therefore their
products are powers. Eq. (5) is thus naturally retrieved. Note
that in this simple example, the matrix S is sparse with con-
stant coefficients, but the properties of the PHS formalism
hold for nonlinear or coupled systems which yield more
complex matrices.

A.2 PHS : numerical scheme for simulations
The PHS formalism guarantees the passivity of the sys-

tem in continuous time. Introducing discrete gradient in
the numerical scheme [16] allows to preserve this passivity
property in discrete time, therefore granting the stability of
the simulation as well. Here a one-step numerical scheme
is used, yielding

x(k + 1) = x(k) + δx(k) (23)

In the mono-variate storage component case (H(x) =
∑

N
n=1 Hn(xn) where N is the storage components number),

the discrete gradient [∇̄H(x,δx)]n is defined by

[∇̄H(x,δx)]n =

{
Hn(xn+δxn)−Hn(xn)

δxn
if δxn 6= 0,

H ′n(xn) else.
(24)

The discrete energy variation is retrieved by chain deriva-
tion:

δE(k)
ts

= ∇̄H(x,δx(k))ᵀ
δx(k)

ts
(25)

where ts is the sampling period. The simulation is achieved
replacing dx

dt with δx(k)
ts

and ∇H(x) with ∇̄H(x,δx) in (3).
This yields a dynamic equation of the form

δx(k) = ts fk(x(k),δx(k)) (26)

where fk is a function depending on H, z, u and S. Its solv-
ing (using Newton-Raphson method for instance) allows to
compute x(k + 1) and y(k).

A.3 Equivalent component method : examples
The method steps (sec. 3) are detailed on two examples:

(LTI) linear time-invariant capacitors with capacitances Ck,
(in order to illustrate how the standard results of section 2
are restored, and to be compared at each step to)
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a©

b©

Fig. 19. (NL) Energy functions Hk (top) and voltage functions H ′k
(bottom) for various degrees α (q0 = 0.9.10−8C and Vk = 0.5V).

(NL) capacitors with homogeneous laws of common de-
gree α > 0 (nonlinear for α 6= 1, see Fig.19).

Label Energy function Hk Voltage function H ′k

LTI Hk(qk) =
q2

k
2Ck

vk =H ′k(qk) =
qk
Ck

NL Hk(qk) = Ek

∣∣∣∣qk

q0

∣∣∣∣1+α

vk =H ′k(qk) = Vk

[
qk

q0

]α

In the model (NL), [x]α = sign(x) |x|α denotes the signed
power function and constant values q0 (charge), Ek (energy)
and Vk (voltage) are related by

Vk = (1 + α)Ek/q0. (27)

This leads to the following sequence of derivations.
Step 1. Eq. (7) yields qk = H ′k

−1(vk) with

(LTI): H ′k
−1
(vk) = Ckvk, (28)

(NL): H ′k
−1
(vk) = q0

[
vk

Vk

]1/α

, (29)

and Eq. (8) yields qC = QC(vC) with QC(vC) :=
[
H ′A
−1+

H ′B
−1](vC),

(LTI): QC(vC) = (CA +CB)vC (30)

(NL): QC(vC) = q0

[
vC

VA

]1/α

+ q0

[
vC

VB

]1/α

= q0

[
vC

VC

]1/α

, (31)

with VC =
[
V−1/α

A +V−1/α

B

]−α

.

Step 2. Eq. (9) yields vC = Q−1
C (qC) with

(LTI): Q−1
C (qC) =

qC

CA +CB
(32)

(NL): Q−1
C (qC) = VC

[
qC

q0

]α

. (33)

Step 3. Eq. (10) yields

(LTI): HC(qC) =
( CAqC

CA+CB
)2

2CA
+

( CBqC
CA+CB

)2

2CB

=
q2

C
2(CA +CB)

(34)

(NL): HC(qC) = ∑
k=A,B

Ek

∣∣∣∣∣∣∣∣∣
q0

[
VC

[
qC
q0

]α

Vk

]1/α

q0

∣∣∣∣∣∣∣∣∣
1+α

= EC

∣∣∣∣qc

q0

∣∣∣∣1+α

(35)

where EC is found to be related to VC as Ek to Vk in Eq. (27).
Note that the equivalent laws for (LTI) and (NL) have the

same expression. This is not the case in general.
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