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WEATHER TYPES PREDICTION AT
MEDIUM-RANGE FROM ENSEMBLE FORECASTS

Gabriel Jouan1,3, Anne Cuzol2, Valerie Monbet3, Goulven Monnier1

Abstract—Medium-range weather forecasts can be of
high economic value in many fields: agriculture, renew-
able energy production, maintenance operations plan-
ning. Such forecasts can be based on ensembles derived
from weather models, and the postprocessing of such
ensembles is an active research problem in the statistical
weather community. In this work, we try to face the
problem of long forecasting horizons, and focus on the
multivariate case where different meteorological variables
interact. The prediction problem is simplified and defined
as the prediction of a weather type, which is a categorical
variable defined by the interaction of the meteorological
variables. We use machine learning techniques to pre-
dict this weather type from the multivariate ensemble
forecasts. The algorithms are applied to a 5 to 10 days
weather forecasting in the north-west of France, based on
wind and precipitation data from the ECMWF ensemble
system.

I. MOTIVATION

Nowadays, meteorological institutes provide ensem-
ble forecasts like, for instance, the European Center for
Medium-range Weather Forecast (ECMWF) ensemble.
However such ensemble forecasts of surface weather
parameters are known to be under-dispersed and often
biased [1],[2],[3],[4].

To improve the accuracy of such forecasts, statistical
postprocessing has been studied these last years. One of
the most common approach to calibrate the ensemble
for one given variable is based on a regression model
which helps to predict observations of the variable given
a description of the ensemble as input. For example,
the state-of-the-art method, referred to as Ensemble
Model Output Statistics (EMOS) [5], is based on an
heteroscedastic linear regression. More recently, non-
parametric algorithms have been proposed [6], [7],
[8]. Multivariate calibration techniques have also been
developed in order to reproduce dependencies between
variables [9].
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In this article, we focus on multivariate forecasting
for horizon higher than 3 days. Such medium to long-
range forecasts are of high value, for instance for
maintenance operations in many fields, but this problem
is known to be difficult. In this work, the goal will be to
predict weather types from ensemble forecasts, instead
of performing a calibration of the whole multivariate
distribution of the meteorological variables of interest.
The weather type is a categorical variable, described for
instance by ”good”, ”windy”, ”rainy”. Such qualitative
information is sufficient for many applications.

A natural approach to predict such weather types is to
apply direct classification algorithms. A state-of-the-art
non-linear method is the random forest classifier (RFC)
[10] based on the aggregation of tree classifiers [11].
To compare random forest results on multiple weather
types classification, a linear approach can be used:
the multiple logistic regression, also called multinomial
lasso regression (MLR) [12].

Such direct classification algorithms applied to the
ensemble forecasts jointly perform a correction and a
classification, which can be difficult. An other way to
solve the weather type prediction problem is to perform
a multivariate calibration, followed by a transformation
of the output into weather types. The multivariate
calibration consists in applying independent univariate
calibrations for each variable, followed by a reordering
method [13]. This approach will be used as comparison.

The paper is organized as follows. In Section II,
we describe the classification algorithms used for the
prediction of weather types. In Section III part A, the
considered data are introduced and the weather types
are defined. In part B, the performances of the proposed
methods are compared for a forecasting range of 5 days
and 10 days, for a chosen location in the north-west of
France. The paper ends with some concluding remarks
in Section IV.
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II. METHODOLOGY FOR THE PREDICTION OF

WEATHER TYPES

Our aim is to calibrate multivariate medium-range
forecast ensembles for one location. Since qualitative
information is sufficient for some applications, we pro-
pose to tackle the problem of weather types prediction,
each weather type being defined from several meteo-
rological variables. For instance, the weather types can
be defined as ”good”, ”windy”, ”rainy”, ”windy and
rainy”. Our contribution will be to propose classification
algorithms where the inputs are given by a multivariate
ensemble and the output is the weather type.

To solve the classification problem, two approaches
will be considered. The first one is based on a direct ap-
plication of machine learning classification algorithms
(Section A). The second one consists in applying the
weather type definition to the output of classical cali-
bration methods (Section B).

The ensemble members can not be used directly as
inputs of the machine learning algorithm because they
are exchangeable [14]. This means that ensemble mem-
bers are invariant under permutation, and consequently
can not be used as predictors. Then, following [6],
[15], the considered features are some statistics of the
ensembles of the precipitation and wind speed, namely
means, standard deviations, kurtosis, skewness, first and
ninth deciles, interquartile range and precipitation prob-
abilities. It is standard to also add the control and the
high resolution members to the features set. The month
and the hour, considered as factor inputs, allow to take
into account the daily and yearly cycles existing in
the data. Finally, since we consider (observed) weather
types as output, we decide to also add to the inputs the
corresponding weather types computed from the raw
(uncalibrated) ensembles.

A. Direct classification

Two classical machine learning algorithms are con-
sidered: random forest and penalized multinomial re-
gression. The random forest is known to be more
flexible and multinomial regression more robust.

Random forest classifier (RFC) was proposed by [11]
and [10]. It combines elementary classification trees,
learned on random samples generated from the data,
to estimate the probability of each weather type. The
principle of each tree is to infer a partition of the input
space by a greedy algorithm. Each part is called a leaf.
At each step of the algorithm, the current leaf is splitted
into two parts if it improves the Gini impurity. At the
end, the probabilities of weather types are obtained
from the mean of all trees.

Penalized multinomial regression (MLR) is described
for instance in [12]. Each multinomial regression model
predicts the probability of one of the K weather types
against the others so that K − 1 models are fitted.
We expect that all input variables are not of the same
importance to help to discriminate the weather types.
So, a Lasso penalty is introduced in the estimation task
which helps to select the most discriminant variables.
The idea is to penalize the log-likelihood by a the
sum of the absolute values of the coefficients of the
regression. It has the consequence to shrink to zero
the coefficients of useless inputs and to lead to a more
robust prediction tool.

B. Classification from multivariate calibration

The direct machine learning classification algorithms
proposed in this paper has to be compared to other
machine learning solutions proposed in the ensemble
forecast calibration literature, in particular [6] which
also used random forests. In [6] and reference therein,
the authors perform univariate calibration with quantile
regression forests [16].

Here, we propose to apply a quantile regression forest
separately for the calibration of each meteorological
variable (wind speed and precipitation for instance).
Then the two independent calibrated ensembles are
combined by a Schaake Shuffle (SS) algorithm [13]
to reproduce the dependent structure existing between
variables. In this reordering algorithm, the marginal
postprocessings are combined to reproduce the
empirical copula estimated from past observations.
One recent improvement, referred to as SimSchaake
([17], [9]), proposes to combine the SS algorithm
with analog approaches. It allows to select past
observations from meteorological configurations
close to the current one and it reduces the bias in
the estimation of the dependence structure. After
applying this reordering procedure, the multivariate
output is transformed into the predefined weather types.

Methods have been applied using the R software with
the ”randomForest” [18], ”glmnet” [19] and ”quantreg-
forest” [20] packages for the RFC, MLR and quantile
regression forests algorithms.

III. APPLICATION

The classification algorithms are now applied to data
from the north-west of France (city of Rennes), de-
scribed in Section A. The performances of the proposed
methods are then compared in Section B.
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A. Data description and weather types definition

Ensemble forecast data of the ECMWF [21] are
collected from the Thorpex interactive grand global
ensemble archive (TIGGE) [2], [1]. The TIGGE archive
includes a minimum of 10 ensemble forecasting sys-
tems on a time-period from 2008 to 2018.The ECMWF
ensemble system is composed of 50 exchangeable en-
semble members generated from the Ensemble of Data
Assimilations (EDA) based perturbations with singular
vectors in the initial conditions and stochastic physics
models [22], [23].

Collected data are composed of observations and
ensemble forecasts of precipitation (Precip, mm) and
wind speed (WS, m.s−1) at forecasting range 5 days
and 10 days, two runs (6 am and 6 pm) for the French
city of Rennes.

As mentioned earlier, the continuous variables are
transformed to define weather types. K = 4 bal-
anced weather types are chosen. The data con-
tains approximately the same number of observa-
tions in each weather type avoiding an unbalanced
classification problem. For an observation vector
y = (yPrecip, yWS)>, and the set of thresholds
{0.02, 2.8, 4}, the φ thresholding function is defined as:

φ(y) =


1 if yPrecip < 0.02, yWS < 2.8

2 if yPrecip < 0.02, yWS ≥ 2.8

3 if yPrecip ≥ 0.02, yWS < 4

4 if yPrecip ≥ 0.02, yWS ≥ 4

(1)

The four weather types are referred to as ”good” if
φ(y) = 1, ”windy” if φ(y) = 2, ”rainy” if φ(y) = 3
and ”rainy and windy” if φ(y) = 4. Other thresholds
could be chosen depending of the application in mind.

B. Results

The classification algorithms performances are eval-
uated and compared using classical scores like the
accuracy, the precision and the recall [24]. All the
scores are computed by cross-validation. For that, the
data set is randomly splitted into 2 subsets. The val-
idation subset contains 912 days, randomly extracted
from the period 2014-2018. The learning subset is
composed of all remaining days over the period 2008-
2018. This is repeated 30 times in order to approximate
the distribution of the scores.

A k-fold cross-validation has been performed (k =
10), and the penalization hyperparameter of the MLR
model has been fixed to 0.03.

The reference result that we seek to improve is the
forecast obtained from the uncalibrated multivariate en-
semble transformed into weather types following rules
(1). This forecast will be referred to as ”Raw” in the
sequel.

Figure 1 shows the accuracy score on the left panel.
It is an overall criteria which is close to 1 if the weather
types are correctly classified. The accuracy is close to
0.6 for all the methods, but the direct classification
algorithms (MLR and RFC) slightly improve both the
”Raw” result and the classification based on multivari-
ate calibration.

The right panel of Figure 1 shows the precision and
the recall which allow to analyze results per weather
type. Precision (also called positive predictive value)
is the fraction of relevant instances among the retrieved
instances, while recall (also known as sensitivity) is the
fraction of relevant instances that have been retrieved
over the total amount of relevant instances. We want
to achieve a good compromise between precision and
recall for each weather type.

We can see on Figure 1 that the ”Raw” forecast at 5
days leads to the highest recall for the ”good” weather
type, but with the lowest precision. On the other hand,
it leads to the lowest recall for the ”rainy” class, while
having the highest precision.

Compared to the ”Raw” result, the RFR/SimSS
method improves the recall of the ”rainy”, but dete-
riorates the precision. On the other hand, the direct
classifications (MLR and RFC) show an improvement
of recall for the ”rainy” and ”windy and rainy” classes,
while maintaining a precision close to the ”Raw” result
for these two weather types. Note that this gain in recall
is higher for RFC, but with a slight decrease in precision
compared to MLR.

It can be observed that all methods lead to a compa-
rable precision for the ”windy” class, but none of the
methods is able to improve the recall obtained by the
”Raw” ensembles for this weather type.

Figure 2 shows the forecast results for a horizon of
10 days. A global decrease of all classification scores
can be observed, due to the increase of the uncertainties
of the numerical weather prediction system. However,
the RFC method is still leading to the highest accuracy
for this long-range forecasting problem. One interesting
point is that the classification obtained from the multi-
variate calibration (RFR/SimSS) is not able to improve
the ”Raw” result obtained from uncalibrated ensembles.

The results of the precision and recall for 10 days
ensemble forecast display higher variations between
the weather types than the 5 days ensemble forecast.
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Fig. 1. Classification scores for a horizon of 5 days. Raw: Forecast
from uncalibrated multivariate ensemble; RFR/SimSS: Classifica-
tion obtained from a multivariate calibration; MLR: Multinomial
lasso regression; RFC: Random forest classifier. Left: Accuracy
scores; Top-right: Precision scores for each weather type; Bottom-
right: Recall scores for each weather type.

In the right panel of the Figure 2, RFR/SimSS model
is highly overestimating the ”rainy” type and shows a
poor probability of detection of ”good” and ”windy
and rainy” types. Direct classification algorithms
(MLR and RFC) lead to the best recall for ”good” and
”windy and rainy”, while maintaining a comparable
level of precision. However, there is a decrease of
performance over the ”Raw” result for the ”windy”
and ”rainy” weather types.

Fig. 2. Classification scores for a horizon of 10 days. Raw: Forecast
from uncalibrated multivariate ensemble; RFR/SimSS: Classifica-
tion obtained from a multivariate calibration; MLR: Multinomial
lasso regression; RFC: Random forest classifier. Left: Accuracy
scores; Top-right: Precision scores for each weather type; Bottom-
right: Recall scores for each weather type.

IV. CONCLUDING REMARKS

Compared to the reference result obtained from the
uncalibrated multivariate ensemble of forecasts, direct
classification models lead to a small improvement
in prediction accuracy. This is not the case for the
classification obtained after a multivariate calibration.
However, the study of precision and recall scores show
that this improvement is not observed for all weather
types. For instance, direct classification models increase
the probability of detection of ”rainy” and ”windy
and rainy” weather types for a horizon of 5 days.
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For a longer horizon (10 days), these models lead to
better detections for ”good” and ”rainy and windy”
weather types. A study of variables importance in the
classification models (not shown in this paper) can help
understanding the differences in performance between
weather types.

In [6] and [15], the quantile regression forest has
been compared to linear approaches for short-range en-
semble forecast. A comparison of linear approaches on
the wind speed and cumulative rainfall with ensemble
forecast at 5 days and 10 days is needed. The recent
EMOS models of [25] for calibration of wind speed
and [26] for calibration of precipitation will be applied.

Other ensembles with a shorter medium-range (3
days) will be tested and compared to assess the classi-
fication results obtained at 5 days and 10 days. Also,
the weather types prediction problem needs to be in-
vestigated on other spatial locations.

ACKNOWLEDGEMENTS

This research was supported by funding from Scalian
group and IRMAR.

REFERENCES

[1] P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge, D. H.
Chen, B. Ebert, M. Fuentes, T. M. Hamill, K. Mylne, et al.,
“The thorpex interactive grand global ensemble,” Bulletin of
the American Meteorological Society, vol. 91, no. 8, pp. 1059–
1072, 2010.

[2] Y.-Y. Park, R. Buizza, and M. Leutbecher, “Tigge: Preliminary
results on comparing and combining ensembles,” Quarterly
Journal of the Royal Meteorological Society, vol. 134, no. 637,
pp. 2029–2050, 2008.

[3] T. M. Hamill and S. J. Colucci, “Verification of eta–rsm short-
range ensemble forecasts,” Monthly Weather Review, vol. 125,
no. 6, pp. 1312–1327, 1997.

[4] T. M. Hamill and J. S. Whitaker, “Probabilistic quantitative
precipitation forecasts based on reforecast analogs: Theory
and application,” Monthly Weather Review, vol. 134, no. 11,
pp. 3209–3229, 2006.

[5] T. Gneiting, A. E. Raftery, A. H. Westveld III, and
T. Goldman, “Calibrated probabilistic forecasting using en-
semble model output statistics and minimum crps estimation,”
Monthly Weather Review, vol. 133, no. 5, pp. 1098–1118,
2005.

[6] M. Taillardat, O. Mestre, M. Zamo, and P. Naveau, “Cali-
brated ensemble forecasts using quantile regression forests and
ensemble model output statistics,” Monthly Weather Review,
vol. 144, no. 6, pp. 2375–2393, 2016.

[7] S. Scher and G. Messori, “Predicting weather forecast un-
certainty with machine learning,” Quarterly Journal of the
Royal Meteorological Society, vol. 144, no. 717, pp. 2830–
2841, 2018.

[8] J. B. Bremnes, “Constrained quantile regression splines for
ensemble postprocessing,” Monthly Weather Review, vol. 147,
no. 5, pp. 1769–1780, 2019.
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