
HAL Id: hal-02425179
https://hal.science/hal-02425179

Submitted on 29 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RA2DL: New Flexible Solution for Adaptive
AADL-based Control Components

Farid Adaili, Olfa Mosbahi, Mohamed Khalgui, Samia Bouzefrane

To cite this version:
Farid Adaili, Olfa Mosbahi, Mohamed Khalgui, Samia Bouzefrane. RA2DL: New Flexible Solution for
Adaptive AADL-based Control Components. 5th international conference on Pervasive and embedded
computing and communication systems, Feb 2015, Angers, France. pp.63-77. �hal-02425179�

https://hal.science/hal-02425179
https://hal.archives-ouvertes.fr

RA2DL: New Flexible Solution for Adaptive
AADL-based Control Components

Farid ADAILI1,2, Olfa MOSBAHI1, Mohamed KHALGUI1 and Samia BOUZEFRANE3

1LISI Laboratory, INSAT, University of Carthage, Tunisia
2Tunisia Polytechnic School, University of Carthage, Tunisia

3Conservatoire National des Arts et Métiers, France
Email: {adaili.farid, olfamosbahi, khalgui.mohamed}@gmail.com and samia.bouzefrane@cnam.fr

Abstract—The paper deals with adaptive component-based
control systems following the Architecture Analysis and Design
Language (denoted by AADL). A system is assumed to be
a network of software and hardware AADL components
that share the control of corresponding physical processes.
A component is composed of a set of algorithms encoding
the control after any reception of external events and data
signals. The termination of execution is generally done with
the emission of data and event signals to remote components.
According to various evolutions in environment, the system is
required to be dynamically reconfigured at run-time to adapt its
control functions. We are interested in local reconfigurations of
components dealing with the activation-deactivation-update of
algorithms and/or data-event inputs and outputs. We propose
RA2DL as a solution for reconfigurable AADL components,
and define a hierarchical-based architecture to dynamically
handle all possible reconfiguration scenarios at run-time. We
model and verify this solution and develop a tool for its
simulation by taking a real-case study as a running example.

Index Terms—Control System, Component, AADL, Recon-
figuration, Modelling, Verification, Simulation, Radar.

I. INTRODUCTION

Embedded control systems [1] continue to grow exponen-
tially and has become critical and complex under usually
functional and temporal constraints to be described in user
requirements [2]. According to various evolutions of the
environment due to incidents or also optimization of per-
formance, the system is required to be flexible by adapting
its behavior at run-time. Nevertheless, this adaptation is
not easy to be done since it should generally preserve the
system safety while meeting its constraints. Nowadays, two
reconfiguration policies exist, (i) static reconfiguration [3]
to be generally applied offline: (ii) and dynamic reconfigu-
ration that can be applied at run-time. We generally define
two solutions for the second case: manual reconfigurations
to be applied by users at run-time [4], and automatic
reconfigurations which are generally handled by software
autonomous agents [5]. We are interested in this paper in
automatic reconfigurations of embedded control systems. In
order to reduce their development and consequently their
time to market, these systems are based on the component-
based approach [6]. A component is classically defined as a
software unit to be composed with others in order to form
the general control functions of the whole system [7]. Two
families of components are proposed: the components to be
composed at run-time such as .Net [8], COM-DCOM [9],

Enterprise JavaBeans [10], and the components that should
be composed off-line to check their respect of functional
and temporal constraints such as IEC61131 [11], IEC61499
[12], Metah [13], ACME [14], Rapide [15], Wright [16],
Aesop [17] and AADL [18]. We are interested in this paper
in the AADL technology. AADL component is a software
unit to be encoded with a set of algorithms that implement
its control functions. Each algorithm is activated by corre-
sponding external event-data inputs, and generally produces
the results of its execution on corresponding data-event
outputs. It is well-used in many industrial applications such
as Avionics Software [19], Harmony System Engineering
(Harmony-SE) [20] and M2M [21]. We note that a rich
library is available today to develop applications in this
technology. Nevertheless, these applications are not flexible
and cannot be adapted to their environment since SAE
(Society of Automotive Engineers) [22] does not provide
technical solutions for the possible adaptation of the system
based on AADL components at run-time. Moreover, no
one in all related works deal with the flexibility of AADL
components. We propose in this paper a new concept of
reconfigurable AADL components to be named RA2DL
that allows (1) the activation-deactivation of algorithms
at run-time in order to adapt the control functions, (2)
the activation-deactivation of the corresponding data-event
inputs-outputs, (3) the adaptation of the execution traces
(scheduling) of algorithms in the component, (4) the light
reconfiguration of data according to user requirements. In
order to control the complexity of the problem, we propose a
control unit-based architecture to apply local reconfiguration
scenarios in a RA2DL component.

We are interested in this research work in automatic
reconfigurations of RA2DL components which are com-
posed of two Modules: Controller Module that handles
these reconfigurations according to user requirements and
also the run-time evolution of the environment; and the
Controlled Module that represents all the different services
offered by the component. These services are reconfigurable
and implemented by different algorithms to be activated
by external event-data inputs before providing results on
corresponding event-data outputs. To cover all possible
reconfiguration forms while controlling their complexity,
we specify the Controller Unit in three levels (i) Archi-
tecture level that creates/removes or updates algorithms or

input/output data/event, (ii) Composition level that updates
compositions of their internal behaviors and (iii) Data level
that applies light reconfigurations by data. The Controller
Module is modelled by Nested State Machines where states
of a machine correspond to other state machines. We use
the well-known environment UPPAAL [23] to model and
verify the correctness of RA2DL components. The paper’s
contribution is applied to a case study of a radar system
that will be followed as a running example. This system is
deployed on an Arduino microcontroller, and a tool named
RA2DL tool is developed in our LISI Lab at University of
Carthage in Tunisia to implement and simulate this case
study.

We present in the next section the Architecture Analysis
and Design Language (AADL), and define in Section 3
the case study of the radar system. Section 4 proposes the
concept of RA2DL, and Section 5 defines the modelling
and verification where an UPPAAL-based model checking
is applied. We propose in Section 6 an implementation and
simulation of RA2DL tool and conclude the paper in section
7.

II. AADL
The Architecture Analysis and Design Language (AADL)

[24] is an architecture description language used to model
the software and hardware architecture of an embedded,
real-time system. Due to its emphasis on the embedded do-
main, AADL contains constructs for modeling both software
and hardware components (with the hardware components
named "execution platform" components within the stan-
dard). This architecture model can then be used either as a
design documentation, for analyses (such as schedulability
and flow control) or for code generation (of the software
portion) (version 1.0 released in 2004 [25] and version
2.0 released at the end of 2009. [26]). Within the AADL,
a component is characterized by its identity (a unique
name and runtime essence), possible interfaces with other
components, distinguishing properties (critical characteris-
tics of a component within its architectural context), and
subcomponents and their interactions.

AADL defines several categories of components, divided
into three categories:

1) Software Components: (i) Data: represent data struc-
tures which can be stored or exchanged between
components, (ii) Sub-programs: represent fragments
of executable sequence codes, such as call-return and
calls-on methods, (iii) Process: defines memory spaces
in which threads are running, (iv) Threads: active
components that can execute concurrently and be
organized into thread groups. They can be compared
with light processes as defined in the operating sys-
tems, (v) thread group: component abstractions for
logically organizing threads, data, and groups of thread
components within a process,

2) Hardware Components: (i)Processor:schedules and ex-
ecutes threads, (ii) Memory:stores code and data, (iii)
Bus: interconnects processors, memory, and devices,

(iv) Device: represents sensors, actuators, or other
components that interface with the external environ-
ment,

3) System:design elements that enable the integration
of other components into distinct units within the
architecture

The AADL can be used to model and analyze systems
already in use and design and integrate new systems. The
AADL can be used in the analysis of partially defined archi-
tectural patterns (with limited architectural detail) as well as
in full-scale analysis of a complete system model extracted
from the source code (with completely quantified system
property values). AADL supports the early prediction and
analysis of critical system qualities, such as performance,
schedulability, and reliability. For example, in specifying and
analyzing schedulability, AADL-supported thread compo-
nents include the predeclared execution property options of
periodic, aperiodic (event-driven), background (dispatched
once and executed to completion), and sporadic (paced by
an upper rate bound) events. These thread characteristics are
defined as parts of the thread declaration and can be readily
analyzed.

An AADL model specifies how the different components
interact and are integrated to form a complete system. The
AADL standard also describes the run-time mechanisms
for handling messages and events, synchronized accesses
to shared resources, and thread scheduling when several
threads run on the same processor. AADL participates in
several industrial applications such us avionics industry,
[19], transport system [27], Harmony System Engineering
(Harmony-SE) [20], M2M (Machine-to-Machine) platform
[21], ASSERT project3 [28]. We are interested in this
technology because it has useful advantages: AADL offers
the possibility to describe the complete hardware/software
architecture of embedded control systems, it responds to
architectural constraints and can represent multi-modal sys-
tems. AADL Standard prescribes the rules for activation and
deactivation of components during a mode switch, and a rich
library is available today pushing to reuse applications based
on AADL. Nowadays, various books deal with this language.
Various sophisticated tools are completely deployed accord-
ing to this technology: Stood [29] also introduces some
methodological features to facilitate the operational use of
the AADL within industrial projects, OSATE [30] targets
both end users and tool developers. The former provides
a complete textual editor for AADL and a set of simple
analysis tools while the latter provides a full support for
the AADL meta-model on an Eclipse platform. TOPCASED
[31] is a software environment primarily dedicated to the
realization of critical embedded systems including hardware
and/or software. ADes [32] makes possible the evaluation
and analysis of the behavior of a system during its speci-
fication with AADL, for instance by helping in the choice
of dimensioning parameters: what will happen if we enlarge
an execution time? if we change a deadline? if we bind
a task on another processor?, Ocarina [33] is an AADL

tool that generates codes from AADL models. It runs on
Linux, Mac OS X, Windows and Solaris. ADELE [34] has
been created to provide new versions of ADELE editor
and also Osate2 feature. Cheddar [35] is a free real-time
scheduling tool. Although these tools are useful, they do
not provide solutions to develop flexible AADL components
for adaptive embedded systems. We mean by flexibility the
facility to change the behavior of a component according
to user requirements and evolution of the environment. The
current paper proposes new solutions to allow reconfigurable
AADL components called RA2DL which are assumed to be
adaptive at run-time according to user requirements.

III. CASE STUDY: AADL-BASED COMPONENTS
FOR A RADAR SYSTEM

We use as a running example in the current paper an
AADL-based radar represented by the STOOD tool [36] as
shown in Fig.1. As described in [37] and detailed as an
archive of Ocarina1, the radar is composed of the following
AADL components: (A) Hardware components represented
by (i) an Antenna component which is a device that simu-
lates the radar environment, (ii) Processor component which
is a part of the execution platform, (iii) Memory component
which hosts the address spaces, (iv) Bus component that
ensures the communication between the antenna and the
main process stored in memory, (v) Motor component which
is a device to rotate constantly the antenna and returns the
angle. (B) Software components assigned to the processing
component which is composed of the following threads:

transmitter → angle_controller → receiver →
analyser → display.

Where: (i) transmitter: a thread that sends the radar
signals to the antenna, (ii) angle_controller: a thread that
computes the angle of the radar, (iii) receiver: a thread that
receives any information from the antenna, (iv) analyser: a
thread that compares the transmitted and received signals
to perform the detection, localization and identification of
objects, finally (v) display: a thread that displays the objects
on the radar screen. The processing component has two
data inputs: (i)get_angle: from the motor position, and (ii)
receive_pulse: from the target detected object. It has also
two event outputs: (i) to_screen , and (ii) send_pulse. Each
internal thread has also data/event inputs and outputs to
support its interaction with remote threads. The reader can
find more details on this radar in [37]. Although this system
is well-tested, it lacks any possible flexibility that can adapt
its behavior at run-time when faults occur, or when the
radar environment evolutes and requires useful changes in
the system’s behavior. This flexibility is well-required for
modern systems and represents a new challenge for the radar
case study. Let us expose some reconfiguration scenarios
that can adapt the radar to its environment at run-time. Let
us suppose that the radar sends M pulses and detects N
objects at a particular time. Let us denote also by (i) pi

1http://aadl.telecom-paristech.fr

the i − th pulse (i ∈ [1,M]) to be sent from the antenna
with a frequency fi, (ii) Oj the j− th (j ∈ [1, N]) detected
object from the radar. It is characterized by a direction ri,
a distance di from the radar, and a surface si, (iii) C is
a radar static parameter to be used for the processing of
areas in m2. It is equal to H_Res if the radar runs with
a high resolution, otherwise L_Res if with low resolution,
(iv) condition_weather a boolean parameter which is equal
to 0 when the weather is bad (snowing or running), and (v)
wind_speed which represents the wind speed. We assume
that the radar has two motors M1 and M2 to rotate the
antenna with two speeds according to the wind speed. Each
motor is controlled by a corresponding software AADL
component. We assume in the current paper that we have
two threads allowing the emission of pulses with two periods
according to the weather conditions: the first sends the pulses
each 6 ms whereas the second each 2 ms. We note that the
calculation of the angle can be done before the reception
of signals or also after that if we want to optimize the
performance of the radar. The calculation of the angle before
the reception of signals is done when the traffic is low,
otherwise it should be done each time a pulse is sent from
the antenna.

1) Reconfiguration 1: If there exists an object Oj (j
∈ [1, N]) such that sj < C, Then the processing
component reconfigures the parameter C from L_Res
to H_Res to allow a possible detection of the object,

2) Reconfiguration 2: If condition_weather == 1,
Then the pulses are periodically sent from the antenna
by a thread EV _T1 each 6 ms,

3) Reconfiguration 3: If condition_weather == 0,
Then the pulses are periodically sent from the antenna
by a thread EV _T2 each 2 ms,

4) Reconfiguration 4: If wind_speed > 100 km/h,
Then the first radar motor M1 rotates 45 tr/mn. We
assume in this case that a particular software AADL
component Rotat1 is executed to control the first
motor,

5) Reconfiguration 5: If wind_speed < 100 km/h,
Then the second radar motor M2 rotates 30 tr/mn.
We assume in this case that a second software AADL
component Rotat2 is executed to control the second
motor.

Although AADL is a well-expressive language, it lacks
useful technical solutions for the reconfiguration of hardware
and software components at run-time. We propose in this
paper to enrich this important language with new solutions
in order to allow more flexible components that can be
reconfigured at run-time. We focus in this paper on the re-
configuration of the AADL software Pocessing Component
which includes a set of sub-components (algorithms).

IV. RA2DL: RECONFIGURATION OF AADL

A. Motivation: Reconfiguration Forms

We define in this section a new concept named RA2DL as
a solution for reconfigurable AADL components where the

Fig. 1. Graphical AADL representation of a radar components [37]

interface of the AADL component contains data/event inputs
and outputs supporting interactions with the environment.
Events are responsible for the activation of the algorithms
while data contain valued information of the AADL compo-
nent. RA2DL is proposed in the current paper to adapt the
AADL to its environment at run-time.

Throughout our study, we concentrate on three hierarchi-
cal reconfiguration levels that we present in the following:

(i) Form 1: Architectural Reconfiguration: modifies the
component architecture when particular conditions are met.
This is done by adding new algorithms, events and data
or removing existing operations in the internal behaviors
of the component. (ii) Form 2: Compositional Reconfigura-
tion: modifies the composition of the internal components
(algorithms) for a given architecture. (iii) Form 3: Data
Reconfiguration: changes the values of variables without
changing the component algorithms.

B. RA2DL Architecture

We define a new architecture for a RA2DL component
(to be denoted by Cmp). This architecture is composed
of a Controller module and a Controlled module, where
the first one is a set of reconfiguration functions applied
in RA2DL, and the second one is a set of input/output
events, algorithms, and data as represented in the four
reconfiguration modules RM in Fig.2:
• IEM (Input Events Module): This module processes

the reconfiguration of input events (IE) stored in
the IEDB database of input events. It defines and
activates at a particular time a subset of events to
execute the corresponding algorithms in RA2DL.

• OEM (Output Events Module): This module pro-
cesses the reconfiguration of output events (OE)
stored in the OEDB database of output events. It
defines and activates at a particular time a subset of
events to be sent once the corresponding algorithms
finish their execution in RA2DL.

• ALM (Algorithms module): This module processes
the reconfiguration of the active algorithms
(addition or removal) at a particular time in order
to be coherent with active input and output events
of IEM and OEM . These algorithms are stored
in the ALDB database of algorithms.

• DM (Data Module): This module processes the
reconfigurations of data in RA2DL in coherence
with the rest of modules. It is stored the DDB
database of data values.

Fig. 2. RA2DL Architecture

Note that each reconfiguration scenario applied by IEM ,
OEM , ALM and DM defines the required sets of input-
output events that activate corresponding algorithms of the
component Cmp with well-defined values of data. A recon-

figuration scenario defines a new execution model of Cmp
to apply required services according to user requirements
and also the evolution of the environment.

C. Formalization

We formalize the new RA2DL component by:

Cmp= (β,R)

Where β is Controlled Module of RA2DL to be described
in the next section, and R is the Controller Module which
is described in the three following levels:

1) First Level: Architectural Level (AL): Deals with the
changes of the architecture of the RA2DL component when
particular conditions are satisfied. In this case, it is possible
to add, remove or also change the internal behavior of the
component in IEM,OEM,ALM and DM . We denote by
ΨCmp the big set in ALDB of all the possible algorithms
involved in the different implementations of the component
Cmp, which is implemented at any particular time t by a
subset ξCmp that represents the set of algorithms involved
in a particular implementation ξCmp ⊆ ΨCmp. We model
the architectural level AL by a finite state machine SAL

such that each state of SAL corresponds to a particular
implementation of IEM,OEM,ALM and DM .

SAL= (ΨCmp, O, δ) , where:
• O is a set of n states in SAL(O={ Si

AL | i ∈ 1..n
}),

• δ is a state-transition function ΨCmp x O→ ΨCmp

x O.
The reconfigurataion in this level is supported by the

Architectural Controller AC.
Running example. We distinguish three architectures of

RA2DL in the radar system as depicted in Fig.3
First architecture : when the weather is
perfect, (IEM = condition_weather ==
1), then we implement the RA2DL according
to the first architecture (ASM1). Second
architecture: when the weather is imperfect
(IEM = condition_weather == 0 and
DM = wind_speed < 100 km/h), then we
implement the RA2DL according to the second
architecture ASM2. Third architecture: when
the weather is perfect and the wind speed is
high (IEM = condition_weather == 0 and
DM = wind_speed > 100 km/h), then we
implement the RA2DL according to the third
architecture ASM3.

2) Second Level: Composition Level (CL): This level
keeps the same architecture in Cmp but just changes the
composition of algorithms, input-output events in order to
adapt the component to its environment. It is formalized by
different Composition State Machines such that each one
CSM corresponds to a particular state in the Architecture
Level SAL. For each state SiAL in SAL, we define in
the second hierarchical level (Composition Level CL) a
particular state machine to be denoted by Si

CL. Each state in

Fig. 3. First Architectural Level of RA2DL

Si,j
CL in Si

CL defines a particular composition of the subset
of algorithms and input-output events. The reconfiguration
in this level is supported by the Composition Controller CC.

Running example. We distinguish two compositions in
the radar system for the first architecture (ASM1): the
calculation of the angle can be done before or after the
reception of signals (Fig.4). In this case, the component has
two compositions CSM1 and CSM2 such that each one
is characterized by the time intervals T1 = 20seconds and
T2 = 60second.

Fig. 4. Composition of ASM1

3) Third Level: Data level: This level deals with the
light reconfiguration of data of the RA2DL component. It
is formalized by a set of Data State Machines where each
state of them corresponds to particular values of data. We
define for each state Si

AL of SAL and for each state Si,j
CL of

Si
CL a new state machine Si,j,k

DL where each state corresponds
to new values of data. The reconfiguration in this level is
supported by the Data Controller DC.

Running example. In the radar system, if the weather
problem occurs at run-time, we have to change the value of
the parameter C in DM from L_Res (DSM1) to H_Res
(DSM2). In this case, we will not be interested in any
performance improvement but in the rescue of the whole
system to guarantee a minimal level of safety.

Finally, this classification covers all possible reconfigura-
tion forms to dynamically adapt the RA2DL component to

the evolution in the environment according to user require-
ments.

D. RA2DL behaviors

To analyze the Controlled Module (β) of a RA2DL, we
characterize the corresponding algorithms by worst (resp,
Best) case execution times WCET ’s (resp, BCET). More-
over, we consider that output events can be simultaneously
sent or in exclusion according to user requirements. To vali-
date the temporal behavior of a RA2DL component, we only
focus on input events. We assume, in the rest of this paper, a
complete synchronization between events and data. Indeed,
when an event occurs in the corresponding input, all the
associated data occur at the same time in the corresponding
inputs. The different reconfiguration scenarios applied by the
different controllers, define all possible behaviors in the β
Controlled Module. In this work, we specify these behaviors
by a unique Behavior State Machine (denoted by BSM)
where each state corresponds to a particular behavior of the
RA2DL component.

Running example. We specify in Fig.5 the different be-
haviors of the controlled part that we can follow for all
reconfigurations scenarios. We distinguish five branches of
different behaviors. Branch 1 specifies the system behavior
when Reconfiguration 1 is applied (e.g sj < C), Branch
2 specifies the system behavior when Reconfiguration 2
is applied (e.g condition_weather == 1), Branch 3
specifies the system behavior when Reconfiguration 3 is
applied (e.g condition_weather == 0). Branch 4 specifies
the system behavior when Reconfiguration 4 is applied
(e.g wind_speed > 100 km/h), and Branch5 specifies
the system behavior when the 4Reconfiguration 5 or (e.g
wind_speed < 100 km/h) is applied.

V. MODELLING AND VERIFICATION OF RA2DL

We propose in this section the modelling and verification
of RA2DL by using the UPPAAL tool [23]. We model the
Controller Module of RA2DL by Nested State Machines
such that the Architectural Level is specified by ASM in
which each state corresponds to a particular architecture
of the component. Therefore, each transition of ASM
corresponds to an activation or desactivation of algorithms
and input-output events. A state of ASM corresponds to a
particular state machine in the Composition Level denoted
by CSM . This state machine specifies all the composition
forms of algorithms and input-output events to be activated
in this architecture state of the first level. A state of the
Composition Level corresponds to a state machine in the
Data Level DSM that specifies all possible values of data
in the RA2DL component. The Controller Unit applies
automatically different run-time reconfiguration scenarios
such that each one is denoted by Reconfigurationi where
i ∈ [1.5].

Running example. We present in Fig.6 the nested state
machines of RA2DL component in all levels of reconfig-
uration. The ASM state machine is composed of three

states ASM1, ASM2 and ASM3 corresponding respec-
tively to the first architecture (i.e. perfect weather), the
second architecture (i.e. imperfect weadher) and the third
architecture (i.e. perfect weather and wind speed is high).
ASM1 corresponds in the second level to the nested state
machine CSM1 which is composed of two states CSM11
and CSM12 that specify respectively the cases of perfect
and imperfect weather. ASM2 corresponds to the states
CSM21, CSM22 that specify the wind speed, and CSM23
and CSM24 that specify the weather condition. ASM3
corresponds to the composition CSM31, CSM32 for the
combination between weather and wind conditions. Finally
DSM specifies the reconfiguration of the data processing
component.

In the RA2DL, all the forms of reconfigurations are
given in Fig.7 which has five locations: Reconfiguration 1,
Reconfiguration 2, Reconfiguration 3, Reconfiguration 4, and
Reconfiguration 5 . We initially start by Reconfiguration 1,
which corresponds to a processing component when the
condition S_j < C is assumed. In this case, the processing
component reconfigures the parameter C from L_Res to
H_Res. If the weather situation is normal then the condition
condition_weather == 0 is satisfied. In this case, the
radar system passes to the state Reconfiguration3 after
which the pulses are periodically sent from the antenna
component by a thread component EV _T2 each 2ms in
this state. If wind_speed > 100km/h then the radar system
passes to the state Reconfiguration4 where the first motor
component M1 rotates by 45tr/mn and the component
Rotat1 is executed to control the first motor. Otherwise
when the condition wind_speed < 100km/h is satisfied
then the radar passes to the state Reconfiguration5 where
the second motor component M2 rotates in 30tr/mn and the
component Rotat2 is executed to control the second motor.
The same thing, is repeated for the Reconfiguration2
when the condition condition_weather == 1 is satisfied.

In Fig.6, we present the automata of the controlled module
describing the bevahior of the radar system represented by
algorithms, input-output events/data. Fig.7 models all the
reconfiguration to be performed by the controller module.

We check the correctness of the system’s behavior after
any reconfiguration scenario in order to avoid any unpre-
dictable execution.

Running example. In the assumed radar component, we
check simple reachability, safety, liveness and deadlock-free
properties. The simple reachability properties are checked if
a given location is reachable:

••• • P1= A[]RA2DL.(Reconfiguration2 or Reconfiguration3
or Reconfiguration4 or Reconfiguration5) :the radar
system should work in all weather conditions,

• P2= A[]RA2DL.Reconfiguration4.M1: The Motor M1
turns when the condition wind_speed > 100km/h is
satisfied,

• P3= A[]RA2DL.Reconfiguration5.M2: The Motor M2
turns when the condition wind_speed < 100km/h is
satisfied.

Fig. 5. Behaviors of the controlled module

The following safety properties must be held for all
reachable states:

• P4= A[]RA2DL.Reconfiguration4.r=45: In bad climate
conditions the Motor M1 must rotate with a well-
defined speed equal to 45 tr/mn.

• P5= A[]RA2DL.Reconfiguration5.r=30: In good climate
conditions the Motor M2 must rotate with a well-
defined speed equal to 30 tr/mn.

The liveness properties are specified as follows:
• P6= A[](RA2DL.ASM1 implies

RA2DL.Reconfiguration3.x<=2) and (Radar.ASM2
implies RA2DL.Reconfiguration2.x<=6): Bounded
Liveness: A RA2DL will reconfigure the sending signal
in maximum within 2 seconds in Reconfiguration3 and
6 seconds in Reconfiguration2.

• P7= RA2DL.Reconfiguration3 implies
RA2DL.Reconfiguration4: Whenever wind_speed >
100km/h, the corresponding M1 will eventually turn.

• P8= RA2DL.Reconfiguration3 implies
RA2DL.Reconfiguration5: Whenever a wind_speed <
100km/h, the corresponding M2 will eventually turn.

Property Result Time (sec) Memory (Mo)
P1 Yes 16.37 4.45
P2 Yes 4.48 4.03
P3 Yes 12.20 4.20
P4 Yes 10.34 4.20
P5 Yes 3.44 4;03
P6 Yes 8.50 4.20
P7 Yes 13.16 4.45
P8 Yes 7.12 4.20
P9 Yes 4.23 4.03

TABLE I
EVALUATION OF THE VERIFICATION

The deadlock-free property is described as follows:

• P9= A[]RA2DL not deadlock :the system is deadlock-
free.

The verification of these properties is summarized in Table
I.

Fig. 6. Nested State Machines of RA2DL

Fig. 7. Modeling of the Controller module

VI. SIMULATION

We present in this section the simulator RA2DLtool and
the radar system that we developed in LISI Laboratory at
INSAT Institute of University of Carthage in Tunisia. First,
we present some interfaces of the simulator RA2DLtool.
Second we show a simulation of the RA2DL-based radar
system implemented in Arduino Uno microcontroller with
ATMega32 processor (8 bits) and SRAM 2KB, the antenna
is represented by an ultrasound sensor hc-SR04 and the
motor is represented by Servomoteur df05bb with a power
supply of 160mA (4.8V), speed 0.17 seconds/60 degrees.
The implementation and simulation of the radar system are
represented in Fig.8.

Fig. 8. Radar System

The RA2DL tool offers the possibility to create all re-
configuration scenarios of the RA2DL component (addi-
tion,removal and update of algorithms, events and data)
when any weather problem occurs (Fig.9).

Fig. 9. Interface for Reconfiguration Architecture in IEM

Running example. In the radar system (Fig.11), we as-
sume that the perfect-weather mode is applied. To verify the
interaction between the controller and controlled modules

when a problem imperfect-weather appears, we change the
state of the rotor and antenna component. Consequently, the
AC decreases or changes the time of sending the signals,
angles and rotations of the rotor. AC studies the feasibility of
this new reconfiguration in order to accept the composition
change of the system. In this case, the AC controller sends
a final confirmation to officially apply this new reconfigura-
tion. The result of this reconfiguration is displayed on the
screen of radar as in Fig.10.

Fig. 10. Result after reconfiguration

Fig. 11. Example of reconfiguration

The RA2DL is a solution for the run-time reconfiguration
of the AADL component in the radar system. By this
solution the AADL component has become dynamic and
flexible. None of the existing works has treated the dynamic
reconfiguration of the AADL components as our method did.

VII. CONCLUSION

The paper deals with new solutions for a required flexibil-
ity of adaptive control systems. It is applied to a radar system

following the AADL language. We classify all possible
reconfiguration scenarios of a component into three forms:
The first deals with the component architecture, the second
with the internal composition of algorithms as well as input-
output events and the third with the reconfiguration of data.
We propose a new concept named RA2DL to enrich the
AADL Language by adding the flexibility criterion to its
components. RA2DL is composed of a Controller module
that allows all forms of reconfigurations, and a Controlled
module that encodes all possible reconfigurable services to
be offered by the component. The Controller module is
modelled by Nested State Machines to control the complex-
ity of the reconfiguration problem, whereas the Controlled
module is modelled by a multi-branches state machines
where each branch corresponds to a particular reconfigu-
ration scenario. We plan in the future works to study the
reconfiguration of several RA2DL components that should
be coherent after any reconfiguration scenario to avoid any
faults of interoperability. This work will be extended for the
reconfiguration of distributed systems where new RA2DL
components should be defined to allow feasible and coherent
distributed reconfigurations on different devices.

REFERENCES

[1] C. Lozoya, M. Velasco, and P. Marti, “The one-shot
task model for robust real-time embedded control sys-
tems,” Industrial Informatics, IEEE Transactions on,
vol. 4, no. 3, pp. 164–174, Aug 2008.

[2] Z. Peng, L. Ma, and F. Xia, “A low-cost embedded
controller for complex control systems,” in Embedded
and Ubiquitous Computing, 2008. EUC ’08. IEEE/IFIP
International Conference on, vol. 1, Dec 2008, pp. 23–
29.

[3] C. Angelov, K. Sierszecki, and N. Marian, “Design
models for reusable and reconfigurable state machines,”
in in L.T. Yang et al. (Eds.): Proc. of EUC 2005, LNCS
3824, 2005, pp. 152–163.

[4] M. N. Rooker, C. Sünder, T. Strasser, A. Zoitl,
O. Hummer, and G. Ebenhofer, “Zero downtime re-
configuration of distributed automation systems: The
εcedac approach,” in Proceedings of the 3rd
International Conference on Industrial Applications of
Holonic and Multi-Agent Systems: Holonic and Multi-
Agent Systems for Manufacturing, ser. HoloMAS ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 326–
337.

[5] M. Khalgui, “Nces-based modelling and ctl-based ver-
ification of reconfigurable embedded control systems,”
Comput. Ind., vol. 61, no. 3, pp. 198–212, Apr. 2010.

[6] L. Zhu, X. Li, H. Ouyang, Y. Wang, W. Liu, and
K. Shao, “Research on component-based approach load
modeling based on energy management system and
load control system,” in Innovative Smart Grid Tech-
nologies - Asia (ISGT Asia), 2012 IEEE, May 2012,
pp. 1–6.

[7] J. Lee and J.-S. Kim, “A methodology for developing
component-based software with generation and assem-

bly processes,” in Advanced Communication Technol-
ogy, 2004. The 6th International Conference on, vol. 2,
Feb 2004, pp. 696–699.

[8] B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. Le Traon,
“Automatic test case optimization using a bacteriologi-
cal adaptation model: application to .net components,”
in Automated Software Engineering, 2002. Proceed-
ings. ASE 2002. 17th IEEE International Conference
on, 2002, pp. 253–256.

[9] F. Luders, “Adopting a software component model in
real-time systems development,” in Software Engineer-
ing Workshop, 2003. Proceedings. 28th Annual NASA
Goddard, Dec 2003, pp. 114–119.

[10] Y. Liu, I. Gorton, A. Liu, and S. Chen, “Evaluating
the scalability of enterprise javabeans technology,” in
Software Engineering Conference, 2002. Ninth Asia-
Pacific, Dec 2002, pp. 74–83.

[11] M. de Sousa, “Data-type checking of iec61131-3 st
and il applications,” in Emerging Technologies Factory
Automation (ETFA), 2012 IEEE 17th Conference on,
2012, pp. 1–8.

[12] M. Khalgui, “Distributed reconfigurations of au-
tonomous iec61499 systems,” ACM Trans. Embed.
Comput. Syst., vol. 12, no. 1, pp. 18:1–18:23, Jan. 2013.

[13] N. Medvidovic and R. N. Taylor, “A classification
and comparison framework for software architecture
description languages,” IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[14] Y.-J. Seo, Y.-J. Song, and H.-Y. Jeong, “Acme-based
connector interface considering component important
factor,” in SKG International Conference on Semantics,
Knowledge and Grid (SKG 2005), 27-29 November
2005, Beijing, China. IEEE Computer Society, 2005,
p. 54.

[15] K. Palma, Y. Eterovic, and J. M. Murillo, “Extending
the rapide adl to specify aspect oriented software
architectures,” in SEDE, 2006, pp. 170–167.

[16] R. Allen, R. Douence, and D. Garlan, “Specifying and
analyzing dynamic software architectures,” 1998.

[17] D. Kimpe, P. H. Carns, K. Harms, J. M. Wozniak,
S. Lang, and R. B. Ross, “Aesop: Expressing concur-
rency in high-performance system software,” in NAS,
2012, pp. 303–312.

[18] T. Vergnaud, L. Pautet, and F. Kordon, “Using the aadl
to describe distributed applications from middleware to
software components,” in Proceedings of the 10th Ada-
Europe International Conference on Reliable Software
Technologies, ser. Ada-Europe’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 67–78.

[19] Y. Wang, D. Ma, Y. Zhao, L. Zou, and X. Zhao, “An
aadl-based modeling method for arinc653-based avion-
ics software,” in Computer Software and Applications
Conference (COMPSAC), 2011 IEEE 35th Annual, July
2011, pp. 224–229.

[20] T. teng Zhang, J. min Wu, L. Qi, and H. yu Xu,
“Architecture analysis and design language amp; har-

mony system engineering process,” in Digital Avionics
Systems Conference (DASC), 2012 IEEE/AIAA 31st,
Oct 2012, pp. 7D2–1–7D2–12.

[21] A. Prijic, Z. Prijic, D. Vuc-kovic, and A. Stanimirovic,
“Aadl modeling of m2m terminal,” in Microelectronics
Proceedings (MIEL), 2010 27th International Confer-
ence on, May 2010, pp. 373–376.

[22] SAE, “Architecture analysis & design language
(standard sae as5506),” September 2004. [Online].
Available: http://www.sae.org

[23] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
W. Yi, “Uppaal;a tool suite for automatic verification
of real-time systems.” Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1996, pp. 232–243.

[24] C. Yang, Y. Dong, F. Zhang, E. Ahmad, and B. Gu,
“Formal semantics of aadl models with machine-
readable csp,” Computer and Information Science,
ACIS International Conference on, vol. 0, pp. 565–571,
2012.

[25] P. Feiler, B. A. Lewis, and S. Vestal, “The sae archi-
tecture analysis & design language (aadl) a standard
for engineering performance critical systems,” in Com-
puter Aided Control System Design, 2006 IEEE In-
ternational Conference on Control Applications, 2006
IEEE International Symposium on Intelligent Control,
2006 IEEE, 2006, pp. 1206–1211.

[26] G. Lasnier, L. Pautet, J. Hugues, and L. Wrage, “An im-
plementation of the behavior annex in the aadl-toolset
osate2,” in Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference
on, 2011, pp. 332–337.

[27] I. Perseil, L. Pautet, J. Rolland, M. Filali, D. De-
lanote, S. Baelen, W. Joosen, Y. Berbers, F. Mallet,
D. Bertrand, S. Faucou, A. Zitouni, M. Boufaida,
L. Seinturier, J. Champeau, T. Abdoul, P. Feiler,
C. Mraidha, and S. Gerard, “An efficient modeling
and execution framework for complex systems devel-
opment,” in Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference
on, April 2011, pp. 317–331.

[28] M. Aniche, G. Oliva, and M. Gerosa, “What do the
asserts in a unit test tell us about code quality? a study
on open source and industrial projects,” in Software
Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, March 2013, pp. 111–120.

[29] V. Gaudel, A. Plantec, F. Singhoff, J. Hugues, P. Dis-
saux, and J. Legrand, “Enforcing software engineering
tools interoperability: An example with aadl subsets,”
in Rapid System Prototyping (RSP), 2013 International
Symposium on, Oct 2013, pp. 59–65.

[30] M. Kerboeuf, A. Plantec, F. Singhoff, A. Schach, and
P. Dissaux, “Comparison of six ways to extend the
scope of cheddar to aadl v2 with osate,” in Engineering
of Complex Computer Systems (ICECCS), 2010 15th
IEEE International Conference on, March 2010, pp.
367–372.

[31] N. Pontisso and D. Chemouil, “Topcased combining
formal methods with model-driven engineering,” in
Automated Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM International Conference on, Sept 2006,
pp. 359–360.

[32] J.-F. Tilman, “Building tool suite for aadl,”
in Architecture Description Languages, ser. IFIP
The International Federation for Information
Processing, P. Dissaux, M. Filali-Amine, P. Michel,
and F. Vernadat, Eds. Springer US, 2005,
vol. 176, pp. 197–207. [Online]. Available:
http://dx.doi.org/10.1007/0-387-24590-1_13

[33] B. Zalila, L. Pautet, and J. Hugues, “Towards automatic
middleware generation,” in Object Oriented Real-Time
Distributed Computing (ISORC), 2008 11th IEEE In-
ternational Symposium on, May 2008, pp. 221–228.

[34] H. Liu and D. P. Gluch, “Formal verification of
aadl behavior models: A feasibility investigation,” in
Proceedings of the 47th Annual Southeast Regional
Conference, ser. ACM-SE 47. New York, NY,
USA: ACM, 2009, pp. 36:1–36:6. [Online]. Available:
http://doi.acm.org/10.1145/1566445.1566495

[35] A. Gharbi, M. Khalgui, and S. Ben Ahmed, “The
embedded control system through real-time task,” in
Modeling, Simulation and Applied Optimization (ICM-
SAO), 2013 5th International Conference on, April
2013, pp. 1–8.

[36] P. Dissaux, “Using the aadl for mission critical soft-
ware development,” 2nd European Congress ERTS,
EMBEDDED REAL TIME SOFTWARE, 2004.

[37] J. Hugues and F. Singhoff, “Développement de sys-
tèmes à l’aide d’aadl- ocarina/cheddar,” in Tutoriel
présenté à l’école d’été temps réel, Sep. 2009.

