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Abstract. The paper deals with adaptive component-based control sys-
tems following the Reconfiguration Architecture Analysis and Design
Language (denoted by RA2DL). A system is assumed to be composed
a network of RA2DL in coordination. When a fault occurs in the plant,
RA2DL component will have a lot of problems to solve such as: the
management of the reconfiguration flow, the correction of execution, the
synchronization of reconfiguration with the other RA2DL components
and the coordination between them. A correction is proposed therefore
to improve RA2DL by three layers: the first one is the Middleware re-
configuration (MR) to manage the reconfiguration of RA2DL, the second
one is the Execution Controller(EC) which describes the executable and
reconfiguration part of RA2DL and the third one is the Middleware Syn-
chronization (SM) for synchronous reconfigurations. When the system is
distributed on a network of RA2DL components, we propose a coor-
dination protocol between them using a well-defined matrices to allow
feasible and coherent reconfigurations. A tool is developed to simulate
our approach. All the contributions of this work are applied to a case
study dealing with IEEE 802.11 Wireless LAN.

Keywords: Control System, RA2DL, Reconfiguration, Execution Model,
Coordination, Synchroniztion, Distribution.

1 INTRODUCTION

Nowadays in the academy and manufacturing industry, many research works
have been made to deal with real-time reconfiguration of embedded control sys-
tems. The new generation of these systems are addressing today a new criteria
such as flexibility and agility. To reduce their cost, these systems have to be
changed and adapted to their environment without any disturbance.

In the literature, two reconfiguration policies exist, (i) static reconfigura-
tions [3] to be generally applied offline: (ii) and dynamic reconfigurations that
can be applied at run-time. We generally define two solutions for the second
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case: manual reconfigurations to be applied by users at run-time [18], and au-
tomatic reconfigurations which are generally handled by software autonomous
agents [8]. We are interested in this paper in automatic reconfigurations of em-
bedded control systems. In order to reduce their development and consequently
their time to market, these systems are based on the component-based approach
[25]. A component is classically defined as a software unit to be composed with
others in order to form the general control functions of the whole system [11].
Two families of components are proposed: the components to be composed at
run-time such as .Net [4], Enterprise JavaBeans [12], and the components that
should be composed off-line to check their respect of functional and temporal
constraints such as IEC61131 [7], IEC61499 [9], Metah [15], Rapide [16], Wright
[2] and AADL [23]. We are interested in this work in the AADL technology.
AADL component is a software unit to be encoded with a set of algorithms that
implement its control functions. Each algorithm is activated by corresponding
external event-data inputs, and generally produces the results of its execution on
corresponding data-event outputs. It is well-used in many industrial applications
such as Avionics Software [24]. We note that a rich library is available today to
develop applications in AADL. Nevertheless, these applications are not flexible
and cannot be adapted to their environment since Society of Automotive Engi-
neers (SAE) [19] does not provide technical solutions for the possible adaptation
of the system based on AADL components at run-time. Moreover, no one in all
related works deal with the flexibility of AADL components.

Adaptive systems such as IEEE 802.11 Wireless LAN are composed of net-
worked components. Their logical structure is expressed by an architectural
graph in which nodes represent components, and the arcs represent connections
between components. In such systems, a dynamic reconfiguration means not only
replacing individual components at run-time, but potentially also changing sys-
tem architecture or structure by adding/removing components and/or changing
the patterns of their interconnection between components.

In this work, we are interested in to extender and correct RA2DL by the
execution model which are composed of three layers: (i) Middleware Reconfig-
uration that handles the input reconfiguration flows, (ii) Execution Controller
to control the execution and reconfiguration of RA2DL and (iii) Middleware
Synchronization that controls and manages the synchronization of the reconfig-
uration. In the other hand, we propose a new approach about the coordination
between several RA2DL components in a distributed architecture. We use the
well-known environment UPPAAL [5] to model and verify the correctness of the
RA2DL components with its new features. The paper’s contribution is applied
to a case study of an IEEE 802.11 LAN Wireless system that will be followed
as a running example. A tool called ECReconf is developed in a collaboration
between LISI Lab at University of Carthage in Tunisia and CEDERIC Lab at
CNAM in France to implement and simulate the case study.

We present in the next section the background of RA2DL, and define in
Section 3 the case study of the IEEE 802.11 LAN Wireless. Section 4 proposes
the execution model of RA2DL, Section 5 presents the coherent execution models
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of the communication between RA2DL components, and Section 6 defines the
modelling and verification where an UPPAAL-based model checking is applied.
We propose in Section 7 an implementation and simulation of our solution and
conclude the paper in section 8.

2 BACKGROUND

We defined in a previous paper [1] the concept of RA2DL dealing with the
reconfigurable AADL components. RA2DL is composed of a controller and a
controlled modules where the first one is a set of reconfiguration functions applied
in AADL, and the second one is a set of input/output events, algorithms, and
data as represented in the four reconfiguration modules. We concentrate on three
hierarchical reconfiguration levels in RA2DL: (i) Form 1: Architectural level:
modifies the component architecture when particular conditions are met. This is
done by adding new algorithms, events and data or removing existing operations
in the internal behaviors of the component. (ii) Form 2: Compositional level:
modifies the composition of the internal components (algorithms) for a given
architecture. (iii) Form 3: Data level: changes the values of variables without
changing the component algorithms.

In [14] the authors describe the ADL features which permit the description
of dynamic software architectures in which the organisation of components and
connectors may change during the system execution, taken from Darwin lan-
guage, a language used to describe the distributed system structure. In [6] the
authors expose the RUNES approach (reconfigurable, ubiquitous, and networked
embedded systems) which has the general goal of developing an architecture for
networked embedded systems that encompasses dedicated radio layers, networks.

The other authors do not provide solutions to develop flexible RA2DL com-
ponents of adaptive embedded systems. We mean by flexibility the facility to
change correctly the behavior of a component according to user requirements
and evolution of the environment. The current paper proposes new extension
solutions to a correct execution and reconfiguration of a RA2DL component.
However, in this work we want to extend this study by considering a distributed
system controlled by several interacting RA2DL components.

3 CASE STUDY

IEEE 802.11 Wireless LAN [21] is used as a running example in this paper
in order to highlight the contributions of our work. It represents a collection
of sensor nodes represented by two RA2DL components: RA2DL− sender and
RA2DL−recever , connected by a multihop backbone to a channel described by
a RA2DL− channel component, which is in turn connected to a wired network.
The description of the components of case study is as follows:

RA2DL-sender: is for sending packets in the network. It begins with a data
packet ready to send, and senses the RA2DL− channel. If the channel remains
free, then the RA2DL− sender enters its vulnerable period and starts sending
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a packet (event send), otherwise the RA2DL − sender enters a backoff via an
urgent transition. The time taken to send a packet is nondeterministic (within
Tmin and Tmax).

RA2DL-Channel: plays an intermediary role in the network, as a trans-
mission canal of packets between components in the network. The success of the
transmission depends on whether a collision has occurred, and is recorded by set-
ting the variable status to the value of the RA2DL− channel variable c1. The
RA2DL−sender then immediately tests the RA2DL−channel (represented by
the urgent location TEST C). If the channel is busy, the RA2DL−sender enters
the backoff procedure, otherwise it waits for an acknowledgement. If the packet
was sent correctly (status = 1), then the destination RA2DL−recever waits and
sends the acknowledgement; the RA2DL − sender then receives this acknowl-
edgement. On the other hand, if the packet was not sent correctly (status = 2),
then the destination RA2DL−recever does nothing. In this case, the RA2DL−
sender time out and enters the backoff procedure.

RA2DL-Recever: represents the component for receiving the packets de-
livered by RA2DL− sender. Messages from RA2DL− sender component need
to be transmitted across the wired network. If the wired network is busy, these
messages should be stored in the RA2DL − channel delaying their processing
and increasing the buffer space requirements in the RA2DL− channel.

The implementation of this case study with the classic RA2DL presents a set
of problems: (i) problem of management of the reconfiguration flow if a compo-
nent receives several reconfigurations at the same time. (ii) Execution problem
to resolve the deadlock and the ambiguity when a reconfiguration execution of
each RA2DL component occurs. (iii) Synchronization problem when synchronous
reconfigurations occur between RA2DL components and (iv) Coordination prob-
lem, when RA2DL components are interconnected and communicated between
them by reconfiguration flows, data and events.

The component RA2DL− channel, receives a set of reconfiguration flows as
input at run-time from RA2DL − sender and RA2DL − recever components.
For example, changing the frequency of sending (Sf ) by giving a maximiza-
tion or a minimization. RA2DL − channel has two variables c1 and c2 which
record respectively the status of the packet being sent by RA2DL− sender and
RA2DL − recever, and which are updated both when a station starts sending
a packet (event send) or finishes sending a packet (event finish). These vari-
ables have the following interpretation:ci = 0 - nothing being sent by a station
i; ci = 1 - packet being sent correctly from station i; ci = 2 - packet being sent
garbled from station i. Let show some reconfiguration scenarios that can adapt
and coordinate RA2DL components of this application to its environment at
run-time. Let suppose that the RA2DL − sender sends M packets received by
RA2DL − recever at a particular time. Let us denote also by (i) Pi the i-th
packet (i ∈[1:M]) to be sent from the RA2DL − recever with a frequency Fi
and a transmission speed TS between Tmin and Tmax. Each Pi has a size
Se at the transfer moment from RA2DL − sender and Sr in reception from
RA2DL − recever (ii) Pi the i-th packet (i∈[1:P]) which passes through the
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RA2DL − channel and has a boolean variable C (0 if busy, 1 if free), and (iii)
we assume in the current paper that we have two threads allowing the emission of
packets with two periods according to the channel conditions: the first sends the
packet each 6ms when the channel is busy (C= 0) whereas the second sends each
2ms when the channel is free (C=1). We assume the following 6 reconfiguration
scenarios:

1. Reconfiguration 1: if RA2DL − sender sends the packet by RA2DL −
channel to RA2DL − recever, then the content of the packet must not
modify or change the RA2DL− channel component.

2. Reconfiguration 2: if the reconfiguration of the RA2DL−channel compo-
nent is synchronous or dependent of RA2DL−sender and RA2DL−recever,

3. Reconfiguration 3: if RA2DL − channel receives conflicting reconfigura-
tions to minimize or maximize frequency sending (Sf ), then the RA2DL−
channel component reconfigures the parameter (Sf ).

4. Reconfiguration 4: if RA2DL− channel is busy (C = 0) then the packet
is periodically sent from the RA2DL − recever by a thread EV − T1 each
6ms.

5. Reconfiguration 5: if RA2DL − channel is free (C = 1) then the packet
is periodically sent from the RA2DL − recever by a thread EV − T2 each
2ms.

6. Reconfiguration 6: if the packet size Se is large when the emission is done,
then Se should be compressed in Sr by the RA2DL− recever.

4 EXTENSION TO RA2DL : New Execution Model of
RA2DL

We define in [1] a new reconfiguration component RA2DL to control and adapt
AADL-based systems to their environment. This RA2DL reacts when an error
occurs in the plant and the decision taken may vary from changing the set of
RA2DL components that constitute the system, adding-modifying-deleting the
internal algorithms/ports, substituting the behavior of some RA2DL compo-
nents by other behaviors or even modifying data. According to these function-
alities, a RA2DL component presents some gaps which remain unresolved like
the management of different reconfigurations, the synchronization, the coordi-
nation and the distribution. In this paper, we enrich RA2DL by an execution
model that undergoes such a failure and to ensure better distribution between
RA2DL components. The execution model is composed of three layers (Middle-
ware reconfiguration, Execution Controller and Middleware synchronization) as
presented in Fig.1.

4.1 Middleware Reconfiguration layer

The Middleware Reconfiguration layer (MR) is dedicated to receive all the re-
configuration Flows (RF ) from the input port (IRF ). Each RF has a token RT
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Fig. 1. Execution Model of RA2DL

containing the necessary information such as the address of RA2DL destination
DA, a binary variable V (V = 1 if the reconfiguration is synchronous, otherwise
V = 0 ) and a priority factor PF gave by the user. Secondly this layer repre-
sents the RA2DL manager; it decides whether the RF is associate for it or not,
if not associated, it sends to its successor by ORF output. In the case it receives
concurrent or contradictory RF , the layer decides which reconfiguration will be
accepted using the PF .

Running Example: We suppose two reconfiguration scenarios RS1 and
RS2. RS1 is assumed to amplify frequency Fs for RA2DL− channel and RS2
is assumed to minimize the size of the packet for the RA2DL − recever. The
token RT is represented in Table 1.

DA (Destination Address) Synchronous Asynchronous PF

RS1 RA2DL-recever 0 1 1

RS2 RA2DL-channel 1 0 3

RR RA2DL-channel 0 1 2

RC RA2DL-sender 0 1 4
Table 1. Token Informtion

According to Table 1, we have two problems: (i) two contradictory reconfig-
urations appear at the same time in RA2DL − channel: RS2 from RA2DL −
sender to amplify frequency Fs and RR from RA2DL−recever to minimize Fs.
In this case, RM compares the two priority factors PF (RS1 = 3) > PF (RR =
2). RS1 will be accepted and RR will be rejected. (ii) We have synchronous and
asynchronous reconfigurations. When the packet is well transmitted, the recon-
figuration is asynchronous when RA2DL − channel changes the variable c1 to
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Fig. 2. RA2DL components

c2. And when the reconfiguration RC2 adds a new byte in RA2DL − sender,
this reconfiguration should be synchronized by also adding a byte with RS1 in
RA2DL− receiver and automatically passes to the middleware synchronization
that will be explained later.

4.2 Execution Controller layer

The ExecutionController (EC) layer is responsible of the reconfiguration ex-
ecution part of RA2DL having two input/output ports (the first for data flow
and the second for events flow) and algorithms (Alg) of RA2DL. The EC is
assumed to be encoded in three hierarchical levels (a) Architecture Level (to be
denoted by AL), (b) Composition Level (to be denoted by CL), and (c) Data
Level (to be denoted by DL). We define in AL, all the possible architectures
that can implement the RA2DL component at run-time. An architecture in AL
is a set of algorithms (Alg) that perform control activities. A reconfiguration
scenario can change the architecture of the RA2DL component by adding or
also removing algorithms. For each architecture in AL, we need to define an
execution model of the corresponding algorithms. A composition is then defined
in CL to affect a priority to each algorithm. For each architecture and for each
composition of the corresponding algorithm, we define also in Data level, all the
possible corresponding values of data to be handled at run-time.

Running Example: We have two architectures in the IEEE 802.11 Wireless
LAN as depicted in Fig.3. The first one is when the RA2DL− channel is busy
(C = 0), and is implemented with the first architecture (ASM1). The second
one is when the RA2DL− channel is free (C = 1) and is implemented with the
second architecture (ASM2).
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Fig. 3. Architecture Level

4.3 Middleware Synchronization layer

The reconfiguration of each RA2DL component in each round is independent of
the other RA2DL components and the output generated by a RA2DL component
in a round is the input of the next round. In RA2DL technology, such RA2DL
components should be executed asynchronously. However, since the RA2DL com-
ponents are independent in each round, the final states in each round are the
same in both asynchronous and synchronous reconfigurations. This layer has
a Synchronization Token (ST ). If the reconfiguration is synchronized with the
other RA2DL components, ST sends with the address, the RA2DL components
involved in the reconfiguration pass to semaphore state (S). If the reconfigura-
tion is asynchronous, this layer is not considered.

Running Example: The reconfiguration of the RA2DL− channel compo-
nent is synchronous or dependent with RA2DL−sender and RA2DL−recever,
when the RA2DL− channel has collision problems. In this case, a synchronous
flow of reconfiguration is sent to RA2DL − sender and RA2DL − recever to
inform for a new reconfiguration to apply. Automatically, RA2DL− sender and
RA2DL− receiver pass to semaphore state (S).

Semaphore (RA2DL-sender, RA2DL-receiver)

RA2DL-sender(s:)

RA2DL-receiver(s):

n(s) := n(s) - 1;

if n(s)<0 then;

State(RA2DL-sender) := blocked;

State(RA2DL-recever) := blocked;

enter (RA2DL-sender, f(s))

enter (RA2DL-recever, f(s))

5 COHERENT RECONFIGURABLE EXECUTION
MODELS IN DISTRIBUTED ARCHITECTURES

In this section, we define a new component named RA2DL − coordinator for
the coordination between all RA2DL components. Each RA2DL is specified by
nested state machines that support all reconfiguration forms. Nevertheless, the
coordination between execution models in this distributed architecture is ex-
tremely mandatory because any uncontrolled automatic reconfiguration applied
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in a RA2DL can lead to critical problems. To guarantee safe distributed recon-
figurations, we define the concept of Coordination Matrix (CM) that defines
correct reconfiguration scenarios.

5.1 Distributed RA2DL architecture

Let Sys be a distributed reconfigurable system composed of n RA2DL compo-
nents, and let RA2DL1, ..., RA2DLn be n RA2DL components to handle auto-
matic distributed reconfiguration scenarios of these components. We denote in
the following by Reconfigurationaia,ja,ka a reconfiguration scenario applied by
RA2DLn (a∈[1,n]) as follows: (i) the corresponding ASM state machine is in
the state ASMia. Let condaia be the set of conditions to reach this state, (ii) the
CSM state machine is in the state CSMja. Let condaja be the set of conditions to
reach this state, (iii) the DSM state machine is in the state DSMka. Let condaka
be the set of conditions to reach this state. To handle coherent distributed re-
configurations that guarantee safe behaviors of the whole system Sys, we define
the concept of Coordination Matrix of size (n,3) that defines coherent scenar-
ios to be simultaneously applied by different RA2DL components as presented
in Fig.4 . Let CM be such a matrix that we characterize as follows: each line
a(a ∈ [1;n]) corresponds to a reconfiguration scenario Reconfigurationaia,ja,ka
to be applied by RA2DLa as follows:

CM [a, 1] = ia;CM [a, 2] = ja;CM [a, 3] = ka

Fig. 4. Coordination Matrix

5.2 Coordination Between Distributed RA2DL components

We propose a new architecture for control systems following the Standard RA2DL
to handle automatic distributed reconfigurations of components. To guaran-
tee a coherent behavior of the whole distributed system, we define RA2DL −
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coordinator (denoted by CR(Ω(Sys))) which handles the Coordination Matrices
of Ω(Sys) to control the rest of RA2DL components (i.e. RA2DLa ∈[1:n]) as
follows: when a particular RA2DLa (a∈[1:n]) should apply a reconfiguration sce-
nario Reconfigurationaia,ja,ka (i.e. under well-defined conditions), it sends the
following request to CR(Ω(Sys)) to obtain the authorization.

request(RA2DLa, CR(Ω(Sys)), Reconfigurationaia,ja,ka)

When CRΩ(Sys) receives this request that corresponds to a particular co-
ordination matrix CM ∈ Ω(Sys) and if CM has the highest priority between
all matrices of Ω(Sys), then CRΩ(Sys) informs the Control RA2DL that it
should react simultaneously with RA2DL as defined in the CM . The following
information is sent from CRΩ(Sys):

For each RA2DLb, b ∈ [1, n] \{a} and CM [b, i] 6= 0 ∀ i,∈ [1, 3]:

reconfiguration ((CRΩ(Sys)), RA2DLb,Reconfiguration
b
(CM [b,1],CM [b,2],CM [b,3]))

Running example: In the communication IEEE 802.11 Wireless LAN, we
distinguish three kinds of participating components:

– The RA2DL− sender (station 1): it starts the communication and when an
error occurs in a specific plant, the associate RA2DL− recever tries to cor-
rect it and if it decides the necessity of reconfiguration in the whole network
(i.e. the other RA2DL components must be aware of this modification) it
informs the RA2DL− coordinator.

– The RA2DL − coordinator(CR): it is the main component which aims to
coordinate between the different RA2DL components. When it receives a
reconfiguration request, it searches the list of RA2DL components which
should be informed. It sends a request to these RA2DL components and
waits for their response.

– The RA2DL − recever (station 2): it is the component that receives a re-
configuration request from the RA2DL− coordinator component. Firstly, it
checks the possibility to apply a reconfiguration. If it is possible, it sends a
positive answer, otherwise it sends a negative answer.

Fig.5 shows the coordination between these three RA2DL components when
the packet size is large. In this case, the CR uses the Matrix CM to compress
the size of packets in the RA2DL− recever.

6 MODELING AND VERIFICATION OF
DISTRIBUTED ARCHITECTURE RA2DL

We propose in this section the modelling and verification of RA2DL by using
UPPAAL. Firstly, we model the execution model of RA2DL with the three layers
(RM, EC, SM) by Nested State Machines. Secondly, we model the coordination
part with CR and the coordination matrix CM . Thirdly, we check a set of
properties to ensure the security and flexibility of our case study.
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Fig. 5. Coordination between the RA2DL-sender and RA2DL-recever

Modelling of the execution model The modelling of the execution model
with the three layers is described by the state machine presented in Fig.6.

The states of execution model are described as follows: start to start the
reconfiguration, test to test the condition condition− IRF entering at the port
IRF , RT state to test the reconfiguration acceptance with the reconfiguration
token in MR if it corresponds to the greatest priority factor PF . EC state cor-
responds to the execution controller layer with EM for events and DM data
of RA2DL, Reconfiguration state to apply the reconfiguration request. It tests
whether if the reconfiguration is synchronous or asynchronous. SM state de-
scribes the middleware synchronization. If the reconfiguration of the current
component is synchronous with another RA2DL component, the semaphore (S)
is used in waiting state. St is a state to send the reconfiguration to the target
component. ORF corresponds to the final state of the execution model.

6.1 Modeling coordination

We present in Fig.7 the modeling of the RA2DL coordinator between the RA2DL
components, and the communication process between them. RA2DL − server
state describes the packet transmission and RA2DL − recever state describes
the packet receiving when an error occurs in RA2DL− server. This component
sends a reconfiguration request to RA2DL − coordinator. The latter with the
coordination matrix CM ensures the passage of the requests between the two
components while a reconfiguration is executing.

6.2 Verification

We check a set of properties for the correct behavior of the execution model and
better coordination between the RA2DL components in the systems after any
reconfiguration scenario in order to avoid any unpredictable execution.
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Fig. 6. Modeling of Execution Model

Fig. 7. Coordination between RA2DL-server and RA2DL-recever

Running Example: In the assumed IEEE 802.11 Wireless LAN, we check
simple reachability, safety, liveness and deadlock-free properties. The simple
reachability properties are checked if a given location is reachable:

Property 1: RT [].PF !.maxPF (RF ): the execution model has to manage
competition reconfigurations according to the PF and has to decide which re-
configuration should be executed the first.

Property 2: EC[].DM ! and EM !(ASM.CSM.DSM): when a reconfigura-
tion RF is selected in the RM layer, we must specify the architecture, compo-
sition and data levels in the execution controller level EC.

Property 3:Reconfiguration[].apply!: if the reconfiguration is synchronous,
it passes to the SM layer otherwise it will be sent to the input port of the next
RA2DL component.

Property 4: SM [].semaphore(s) ⇒ St[]: if the reconfiguration is asyn-
chronous, the SM must necessarily send a token to block the target with a
semaphore(S).
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Property 5:RA2DL−server[].error−occurs⇒ RA2DL−coordinator: this
property means that when an error occurs in RA2DL, the RA2DL−coordinator
is informed.

Property 6:NOT (RA2DL−sender[] AND RA2DL−recever[]) This prop-
erty means that we could not receive two different notifications from theRA2DL−
coordinator at the same time (i.e. notification that the other RA2DL− recever
accept or refuse the new reconfiguration).

Property 7: (RA2DL−sender[] ANDRA2DL−coordinator[] ANDRA2DL−
recever[]) not deadlock: the system is deadlock-free.

The verification of these properties is summarized in Table.2

Property Result Time (sec) Memory (Mo)

Property 1 True 12.03 5.34

Property 2 True 5.9 3.56

Property 3 True 10.23 5.78

Property 4 True 11.34 4.23

Property 5 True 7.24 3.96

Property 6 True 8.12 3.45

Property 7 True 14.39 6.78
Table 2. Verification result

7 IMPLEMENTATION AND SIMULATION

To simulate the behavior of a distributed Architecture RA2DL, we develop a
prototype tool called ECReconf. First, we present the different graphical inter-
faces of the ECReconf with the execution model and its three layers as presented
in Fig.8.

We start by showing the simulations of the coordination and the communica-
tion between the different RA2DL components, the RA2DL− coordinator and
the coordination−matrix in Fig.9.

Second, we present a graph showing gains compared to the old RA2DL in
response time and how the RA2DL component becomes correct. The result of
the simulation after using the execution model is represented in Fig.10.

Runing Example: In IEEE 802.11 Wireless LAN, theRA2DL−coordinator
applies the reconfiguration for minimizing the packet size from Se in RA2DL−
sender to Sr in RA2DL− recever, the result is shown in Fig.11.

8 CONCLUSION

The paper deals with new solutions for a required flexibility of adaptive control
systems. Firstly, we define an execution model which represents a correct model
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Fig. 8. ECReconf Tool

Fig. 9. Coordination RA2DL

of RA2DL in three-layer: (i)Middleware Reconfiguration (MR), Execution con-
troller (EC) and Middleware Synchronization (MS). Secondly, we propose a
coordination and communication between execution models for each RA2DL
for the distributed reconfigurations, In this case, we define an RA2DL architec-
ture where each RA2DL (associated to a defined component) controls the envi-
ronment evolution and applies automatic reconfigurations when errors occur at
run-time to guarantee a functional safety. Besides, the Coordination RA2DL is
responsible for the interaction between each RA2DL component of the system in
order to ensure a mutual agreement with the others by the applied reconfigura-
tion. These components use the coordination matrix to define for each RA2DL
the applied reconfiguration according to predefined conditions. The model check-
ing is used to prove the correctness of the execution model. The coordination
model is represented by Nested state machine. Finally, the ”ECReconf” tool is
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Fig. 10. Result of simulation

used to simulate the execution model with the three layers and the coordination
between RA2DL components, it is applied to an IEEE 802.11 Wireless LAN.

The future works will deal with the security of RA2DL-based systems where
the reconfigurable security will be an issue to be discussed on RA2DL.
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