
HAL Id: hal-02425166
https://hal.science/hal-02425166v1

Submitted on 29 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Architecture for multi-environment Mobile
Cloud Services

Fatiha Houacine, Samia Bouzefrane, Aghiles Adjaz

To cite this version:
Fatiha Houacine, Samia Bouzefrane, Aghiles Adjaz. Service Architecture for multi-environment Mo-
bile Cloud Services. International Journal of High Performance Computing and Networking, 2016,
�10.1504/IJHPCN.2016.077830�. �hal-02425166�

https://hal.science/hal-02425166v1
https://hal.archives-ouvertes.fr

Service Architecture for multi-environment

Mobile Cloud Services

Fatiha Houacine1, Samia Bouzefrane 2, Aghiles Adjaz

CEDRIC Lab, Conservatoire National des Arts et Métiers – CNAM Paris, France

1houcin_f@auditeur.cnam.fr, 2samia.bouzefrane@lecnam.net

Abstract

The growth of connected devices, mostly due to the

large number of Internet of Things (IoT)

deployments and the emergence of mobile Cloud

services, introduces new challenges for the design

of service architectures in Mobile Cloud Computing

(MCC).

An MCC framework should provide elasticity and

scalability in a distributed and dynamic way while

dealing with limited environment resources and

variable mobile contexts (Web applications, real-

time, enterprise services, mobile to mobile, hostile

environment, etc.) that may include additional

constraints impacting the design foundation of

Cloud services.

We show in this work how Service Oriented

Architecture (SOA) can be a key solution to

provide distributed mobile Cloud services and how

OSGi platform can be an adaptive and efficient

framework to provide such implementation.

We adapt the proposed MCC framework to

different architecture contexts. The first one is a

traditional centric model, where mobile devices are

reduced to consuming services. The second one is a

distributed model where the power of mobile-to-

mobile interaction offers unlimited value-services

opportunities, and finally three-tier architecture is

considered with the introduction of the Cloudlet

notion. For each context, we explore the

performance of our service oriented framework, and

contrast it with alternative existing solutions.

Key words: Mobile Cloud Computing, Service

Oriented Architecture, OSGi platform.

1. Introduction
Gartner1 predicts the use of 25 “Billion Connected

Things” by 2020. The popularity of mobile devices

such as smartphones and connected objects are

offering ubiquitous communication and information

services, creating such a dependency in all domains

from our daily life to enterprise services, and even

in critical environments such as industry, health and

military.

Mobile devices accelerate the emergence of various

real-time mobile applications that require a high

1 http://www.gartner.com/newsroom/id/2905717

level of responsiveness and in return need intensive

computing resources. Thanks to the Cloud

computing paradigm, these mobile applications

move to the Cloud instead of being installed and

run directly on the mobile devices. Hence, apps are

accessed and executed remotely on the Cloud

through mobile interfaces.

Mobile Cloud Computing (MCC) aims to extend

computing capabilities of mobile devices, storage

capacity, and enhance data safety to improve the

computing experience of mobile users in a

transparent way. However, mobile devices

challenges (limited resources and battery, mobility

constraints, network constraints, variable hardware

and software context) increase the complexity of

the applications in embedded systems and impact

the traditional application development model. New

methodologies and service frameworks are required

to reduce the complexity of the software and to

supply a support facilitating software re-use.

To deal with the various challenges of MCC in

multi context environment, we propose to adapt

Service Oriented Architecture (SOA) to build a

dynamic framework while alleviating several

problems like portability and interoperability in

MCC.

We present MCC architecture in three different

designs depending on both the application domain

constraints and the execution environment.

The first scheme is a central mobile Cloud design

that offers to mobile devices offloading capabilities

into powerful Cloud-centric servers and remote

services consuming. This centric design is the most

applied model for Cloud-based mobile applications

since it’s similar to a client/server approach.

However, centric approaches assume a reliable

WAN connection to Cloud servers.

An alternative MCC approach considers the

accumulative power of swarm of mobile devices

[1], despite the limitations of mobile-device

resources. This swarm can be turned into a giant

resourceful and ubiquitous infrastructure to provide

a low-cost distributed computing, or rich sensing

distributed applications. This introduces the second

proposed model which is a distributed design based

on Mobile-to-Mobile (M2M) cooperation.

Vehicular networks, music Cloud platforms, smart-

cities applications, and all interest-based apps can

be suitable use cases. In this approach, nearby

computing devices [2] can be weak devices that

might not be able to perform complex resource-

intensive tasks alone but by collaborating they can

provide enriched services. Furthermore, if services

are voluntary and free, it gives freedom to mobile

providers to terminate their services anytime.

To deal with these challenges, particularly in hostile

environment, where WAN Internet connections can

be absent or the mobile devices can have poor

connection capabilities, or either when service-

offloading providers need to be more controlled,

Cloudlets model has been introduced in [3].

In a 3-tiers model, Cloudlets act as intermediary

nodes between mobile devices and centric Cloud

servers. Cloudlets are explored as deployable

services on nearby units to be invoked with reduced

latency using alternative LAN communication

technologies such as one hope cellular networks

and Wi-Fi that enhance performances.

In this paper, we propose a design classification of

Mobile Cloud Computing in three main architecture

models. First, we present the traditional model used

for centric Cloud services and show how OSGi2

based SOA framework can fit to this model.

Second, we adapt the first model to a distributed

Mobile-to-Mobile Cloud computing in order to deal

with dynamic mobile and connected objects

interaction. In this context, we propose and

compare two solutions: a middleware solution

based on OSGi implementation and a native OS

Android embedded implementation.

In the third part, we adapt our model to 3-tier

Cloudlet design, and we explain how this model

can fulfil IoT network constraints and can be

suitable for hostile environments. We then compare

the performances of an OSGi-based Cloudlet

solution with two main solutions based respectively

on Virtual Machines (VMs) and Docker containers.

The rest of this paper is organized as follows.

Section II describes the main MCC challenges

impacting the application framework design.

Sections III to V, describe the different discussed

models and related performance analysis. Finally,

Section VI concludes the paper.

2. The main mobile Cloud challenges

To design evolving and scalable MCC application

frameworks, many challenges need to be

considered. These challenges can be classified into

two main aspects: challenges related to mobility

and communication environment and challenges

related to computing aspect.

2.1 Mobile communication constraints

With the device mobility, network coverage quality

can be variable. In fact, mobile-service

unavailability and interruption may prolong

2 Open Services Gateway initiative

execution time, increase monitoring overhead, and

deplete smartphones’ local resources, especially

battery. In addition, as stated in [4], the increasing

market of smartphones and IoT creates diversity

and heterogeneity regarding different dimensions,

such as hardware, OS, brand, capabilities, etc. This

heterogeneity must be hidden for the mobile apps

that have to focus on the services provided to the

user.

2.2 Computing constraints

As stated in [5], to have the vision of unrestricted

mobile capabilities, we augment the mobile devices

with Cloud resources, even if this may impede

overhead due to VM creation and migration, and

outsourcing.

One of the most important aims of MCC is to

conserve mobile resources and especially battery

power. For this purpose, resource-intensive tasks

are offloaded from mobile devices to the Cloud.

However, offloading is not always synonym of

energy and resources saving due to the wireless I/O

required resources. Many recent works propose a

decision making system before offloading, to

determine whether offloading computation can save

energy or not [6, 7, 8]. In addition, local execution

is not always possible, either because of resources

limitations (local processing and memory) or due to

the absence of an equivalent service locally.

 Considering the previous environment constraints,

developing cross-platform components (i.e. Cloud,

mobile, and hybrid) for Cloud-mobile applications

become a challenging task, since mobile codes are

not easily movable to various smartphones [9]

while Cloud components must be portable to all

Cloud infrastructures.

Regarding the number of Cloud-based applications

and the several service providers, an efficient MCC

framework should support a multi-tenancy

architecture in addition to portability. Through

multi-tenancy, a single software instance can serve

multiple tenants without developing Cloud-based

applications separately. Multi-tenancy is considered

as the most fundamentally used technology to share

computing and IT resources in Cloud computing
[10, 11].

MCC includes several other challenging tasks like

resource provisioning and software management

without service interruption, and high service

availability that needs to be achieved to guarantee

service continuity.

In the next sections, we will investigate the

different MCC based SOA designs that we propose.

3. Centric Cloud service oriented design

The definition of Mobile Cloud Computing is

commonly related to a centric architecture.

In [12] and [13], the authors describe MCC as a

service paradigm where the data processing and

storage are moved from mobile resource-

constrained devices to powerful and centralized

computing servers located in the Cloud. Moreover,

with the reliability and high bandwidth offered by

current mobile networks like 3G/4G, IEEE 802.11

b-g-n-ac Wi-Fi, users experience is considerably

improved. Hence, accessing remote services

floating in the Cloud, based on a thin native client

or web browser becomes a widespread model for

rich applications.

To provide efficiently Cloud services, recent works

[1, 14, 15, 16, 17, 18] define the Service Oriented

Architecture as an essential foundation for remote

Cloud services delivery, thanks to the flexibility

and the modularity of this approach.

In SOA paradigm, each service is designed to

perform one or more activities by implementing

one or more operations. As a result, each service is

built as a piece of code. As well stated in [19], “this

makes it possible to reuse the code by changing

only the way an individual service interoperates

with other services that make up the application”.

Many SOA approaches have been presented for

MCC such as in [20, 21, 22, 23]. However, in

previous works, the service notion is synonym of

Web services generally based on SOAP protocol.

Hence, Longo et al. [23] propose to support

Service-Oriented Computing (SOC) as a new

suitable paradigm for Cloud computing, while Wu

et al., in [10], refer to a service-oriented

development model for Cloud computing as a

Cloud-based design manufacturing (CBDM).

Frameworks for service consumers are enabled to

configure, select, and utilize customized product

realization resources and services ranging from

computer-aided engineering software to

reconfigurable manufacturing systems using

technical and functional service descriptions.

Wu et al., in [24], propose a framework called

POEM, based on virtualization, to offload, compose

and migrate images of the mobile devices to the

Cloud. The mobile user’s apps can use the local

image as well as the remote one hosted on a

dedicated VM within the Cloud. The authors

implemented the framework using OSGi and

XMPP technologies.

Pokahr and Braubach, in [25], propose a

component-based framework using Jadex platform.

Components are expected to interact by using

services offered by other components. The

framework manages the distribution of components

on Cloud nodes and maps service interaction to an

appropriate RPC-based communication in case that

components reside on different nodes. Non-

functional service descriptions like SLA and QoS

are used to provide more elasticity.

Unlike these cited research works, in our paper, we

define a Mobile Cloud Computing – SOA (MCC-

SOA) using “OSGi” framework. Compared to the

work of Zhang et al. in [17, 18] who proposed a

component migration mechanism from the mobile

devices to the Cloud using OSGi, our approach is

more complete and proposes a model that can either

offload or compose remote services on the

centralized Cloud. In the next paragraph, we recall

the principal features of OSGi before presenting our

Cloud-centric approach based on SOA/OSGi.

 OSGi3 - “Open Service Gateway initiative”- is a

Java-based SOA platform that uses modular

decoupled components and pluggable dynamic

service models. A framework that implements the

OSGi standard provides an environment for the

modularization of applications into smaller bundles.

A bundle is a deployment unit that can import and

export packages and resources. Each bundle is a

tightly coupled, dynamically loadable collection of

classes, jars, and configuration files that explicitly

declare their external dependencies (if any).

Bundles reuse a single Java object registered and

executed in a Java VM collaborative service model.

And a service-management system, as depicted in

Figure 1, is used to register and share services

across bundles and decouple service providers from

service consumers.

Fig 1. OSGi framework layers

OSGi bundles separate the service interface from its

implementation. For remote services, such

separation and low coupling is particularly

important, since the host implementation is in a

separate process from the service consumer. This

makes it highly desirable to minimize the coupling

and clear interface between distributed

components4. As OSGi was originally designed for

embedded systems, the framework provides a

lightweight and scalable solution. In addition, the

Java VM offers to OSGi portability and secure

execution environment.

Houacine et al. [26] implemented a middleware

solution that incorporates OSGi into Android

software development platform, which builds the

3 https://en.wikipedia.org/wiki/OSGi

4 https://wiki.eclipse.org/Tutorial:_Building_your_first_OSGi_Remote_Service

http://en.wikipedia.org/wiki/Modular_programming
https://wiki.eclipse.org/Tutorial:_Building_your_first_OSGi_Remote_Service

initial prototype of a service-architecture for local

Android-based mobile applications. This solution

uses the following OSGi-based model, in which we

distinguish two roles:

a- The service provider: which is a framework,

installed on the Cloud server, that implements

and exports services.

b- The service consumer: which is a framework

running on the mobile device, used to handle

interaction with mobile apps that import and

consume remote services offered by the Cloud

servers.

In this paper, we augment the solution of [26]

proposed initially to adapt OSGi model to a mobile

environment, to make a more complete contribution

based on two new additional points:

i- Service advertisement and discovery

components to offer means that facilitate bundle

discovery in mobile Cloud context ; and

ii- Bundle-state adaptation to deal with network

disconnections especially in hostile

environments.

In the next sub-sections, are presented the different

parts of the first contribution of this paper based

mainly on handling remote Cloud services.

3.1 Adaptation of OSGi SOA model to

mobile Cloud environment

To allow interaction between OSGi frameworks

distributed between the mobile device and the

Cloud, we propose to use the Remote-OSGi (R-

OSGi) bundle to handle OSGi remote services. R-

OSGi specification is unique in being completely

transport and protocol independent [27]. The

provider and consumer roles are defined with

respect to the use of the service rather than the

transport.

Fig. 2 OSGi based centric design

As shown in Figure 2, the interaction between the

Cloud service provider and the Android mobile

service consumer is performed following these

main steps:

a- In the service provider side, for each remote

service, a proxy bundle is generated dynamically

with the exported methods.

b- In the mobile side, the client gets the interface

description of the service in the form of a bytecode.

Then it parses it and creates a bundle proxy

bytecode that has to be run on the Android

platform.

c- As Android apps are composed of Dalvik codes,

traditional R-OSGi bundles are patched to

transform dynamically, using DEX service, the Java

bytecode to a Dalvik bytecode.

d- Then, the application bundle of the Android

platform uses the invoked remote bundle.

3.2 Service advertisement and

discovery components

In OSGi, a registry is used to find required services.

To address the inter-OSGi framework

communication issues, we adopt an XMPP

(Extensible Messaging and Presence Protocol)

based solution. XMPP [28] is an open standard

communication protocol for message-oriented

middleware based on XML (Extensible Mark-up

Language). XMPP server is used as a signalling and

communication service between different OSGi

frameworks. To integrate this service within

Android based framework, a signalling and

communication agent bundle has been developed

within Felix a lightweight implementation of OSGi.

To enable the communication between OSGi

bundles and the Android service, we developed

internal supporting bundles with the mechanism of

Java reflection and Android broadcast inside OSGi

framework, as well as an internal process inside the

Android service. With internal supporting bundles,

we introduce the following interaction between

three types of bundles: XMPP bundle,

Advertisement bundle and Discovery bundle as

shown in Figure 3.

Fig. 3 Bundle discovery interaction

Discovery Bundle: The discovery bundle registers

a broadcast listener that is used to listen to the

Android broadcast sent to OSGi framework from

the internal process inside Android service. Upon

receiving a broadcast, the discovery bundle will

dispatch the message to another service running

inside OSGi framework. In our case, it will be sent

to XMPP client bundle.

Advertisement Bundle: In the Cloud side, for each

published bundle, a notification is sent to the

advertisement bundle that adds public manifest

information to the advertisement bundle. The

advertisement bundle broadcasts the availability of

a new bundle or a group of related bundles. This

interaction can be used to update the bundles in

asynchronous way.

The interaction between the Discovery bundle and

the Advertisement bundle can be established based

on a Published/Subscribe paradigm.

In the centralised model, the discovery bundle

updates the local OSGi service registry with the

remote bundles’ information (bundle ID, location,

URL, IP/Port access…) when an update is received

from the Cloud publisher advertisement bundle.

3.3 Bundle state adaptation to deal with

network disconnections

One of the features of OSGi is the bundle

dependency resolution. Before starting the

application bundle, the framework checks if the

needed services (list of the import packages) are

available. This minimizes application bugs due to

the required-components absence.

In dynamic MCC environment, since the required

bundle is remote, a bundle can become unavailable

after a network disconnection due to the mobility of

the device for example. In OSGi framework, a

bundle has different states as shown in Table 1. In

this paper, we propose to handle service continuity

in our OSGi-based MCC framework by

investigating the behaviour of started and running

services in case of disconnection with the remote

bundles.

ACTIVE The bundle is running.

INSTALLED The bundle is installed but not yet resolved.

RESOLVED

The bundle is resolved and is able to be started. This

means that required packages and dependencies are

available.
START_ACTIVATIO

N

The bundle start operation must activate the bundle

according to the bundle's declared activation policy.

START_TRANSIENT

The bundle start operation is transient and the

persistent auto-start setting of the bundle is not

modified.
STARTING The bundle is in the starting process.

STOP_TRANSIENT
The bundle stop is transient and the persistent auto

start setting of the bundle is not modified.
STOPPING The bundle is in the stopping process

UNINSTALLED The bundle is uninstalled and may not be used.

Table1. Bundle states

To handle disconnection situations, we propose to

complete the bundle state by adding a health-check

process locally to the bundle, as in Figure 4. This

process is performed as in the following: after the

first bundle resolution, the access to the remote

bundle is checked using timeout and frequency

attributes. If the remote bundle is considered

unreachable, the client bundle is set to a “frozen

state” until the required bundle is reachable again.

If the application timeout is elapsed, a “white flag”

is returned to the client bundle that switches to stop

state without bugging the application.

As introduced here, the benefit of the health-check

mechanism is that if a service becomes unavailable

whilst being in use, the composite service’s internal

logic can be modified without recompiling the

assembly or restarting it.

Once a bundle is installed on the mobile

framework, its dependencies are resolved by the

framework. This step ensures that the local bundles

are available, and starts remote dependencies

health-check process. This process tests remote

Cloud access using adapted attributes such as

periodicity, accepted delay, etc. These check

attributes can be listed in the manifest file of the

main bundle.

Fig. 4. The proposed bundle life cycle

3.4 Performance analysis

In order to show the performance impact of using

OSGi bundles in remote centric Cloud services, we

considered three scenarios that we tested as in the

following:

a) The first scenario deals with local execution of

the bundles within the mobile device without

any remote operation.

b) The second scenario considers remote

execution where the remote service is provided

and executed on the Cloud server framework.

c) In the third scenario, the remote services

provided by the Cloud are migrated to be run

locally on the mobile device.

Each mobile phone with an integrated OSGi

framework interacts with its associated VM

belonging to the Cloud VM pool. Within the VM of

the Cloud, we set up Felix OSGi and installed R-

OSGi modules.

Two framework instances are installed:

- One OSGi framework within a VM of the

Cloud server based on Xenserver.

- The other OSGi framework on a “Samsung

Galaxy Tab” mobile Android device that uses a

4.1 version of Android, with a dual-core 1.4

GHz processor. Open Wi-Fi 2,4 GHz

connection has been used to perform the tests.

Figure 5 shows the measured execution time of the

bundles when varying their size according to the

three execution scenarios (local, remote execution,

service migration).

Fig. 5. Execution-time (in ms) evolution with

bundle size

According to the results of Figure 5, we can notice

that in local-execution context, the execution time

grows with the quantity of executed code but the

variation of time execution remains relatively low.

In the remote-execution scenario, the bundle

execution time is higher than local execution for

small bundles because of the added network delays.

However, for more important bundle sizes we

notice that the time execution in remote access

becomes lower than local execution, since the

performances of the Cloud server allow a rapid

execution. The inversion of the curve indicates

when it becomes interesting to execute a remote

service where the combination of the transmission

delay and the remote execution delay begins lower

than the local execution time, as specified in

formula 1.

Delay remote + Delay transmission < Delay Local

Delay transmission = ∑ (DelayNetwork, Delay I/O) (1)

Whereas, in the migration mode, the execution time

and the network delay are very important because

the time of bundle downloading grows linearly with

the bundle size. In fact, the migration mode requires

bandwidth and calculation resources availability in

mobile side to execute locally the migrated service.

This mode is advantageous when the migrated

service is re-used, which allows to decrease the

execution delay after the migration step.

In terms of memory consumption, Figure 6 shows

how the mobile evolves when the bundle size

varies.

Obviously, we notice that a local execution is more

memory consuming. In fact, the consumed memory

depends on the size of the service, i.e. the number

of service bundles and their size.

When the execution of bundles is remote (i.e.,

executed on the Cloud provider), the growth of the

remote bundles does not affect linearly the mobile

memory consumption. The transmission delay, due

to I/O and network communications, is more

impacted by the growth of the number of remote

bundles.

Fig. 6 Memory consumption evolution with

bundle size

4. Distributed M2M Cloud services

In this model, mobile devices are considered not

only as service consumers but also as service

providers to build a sensing-based application

platform. In such a framework, each mobile device

senses its surrounding information, such as wireless

communication channel status, neighbouring nodes

information, environmental information (e.g., CO2

and pollution levels, etc.), personal information

(e.g., medical and health information using bio

sensors), etc.

With the power of mobile-to-mobile

communication and distributed interaction, new

MCC emerging applications depend on a

distributed model where mobile nodes can be both

service consumer and service provider. Many

examples inspired from smart cities [29], like

connected vehicular safe driving apps, urban

sensing, mobile social computing, mobile

healthcare, location based and community services,

domotics, etc. may require interaction between

devices augmented thanks to personal Clouds as

well, where offloading from smart phones to more

powerful tablets can also be considered. In this

context where the Cloud is qualified as virtual since

it is built with autonomous limited-resource

devices, the service providers are mobile devices

that need to cooperate in order to provide the

required service.

In the following, we define two alternative

solutions to the centric approach of Section 3. We

first illustrate the use of OSGi to build a suitable

Mobile-to-Mobile service-oriented architecture.

And then, we propose a second solution that is

designed as a lightweight platform by incorporating

the SOA paradigm directly in the mobile Android

operating system.

4.1 OSGi-based proposed solution

 In the OSGi-based approach (see Figure 7), each

mobile device is acting either as a provider, a

consumer, or both. Each device needs to have an

embedded OSGi mobile framework. Mobile

frameworks are downloadable from the centric

Cloud. Once the framework is installed,

applications supporting OSGi can interact with a

proxy bundle like presented in the previous centric

model.

Fig. 7. Mobile-to-Mobile OSGi interaction

We choose the Apache Felix platform to implement

OSGi because of its small size compared to other

OSGi implementations. To integrate Felix within an

Android platform, we implement Felix as an

Android remote service that extends the

android.app.Service class. The access to Felix

being made via an RPC5 communication protocol,

the framework provides to clients an AIDL 6

description containing different methods that are

implemented by this service.

 The R-OSGi bundle patched with the dexification

process is only necessary on the client interface of

each mobile framework because of the

incompatibility between Java VM used by OSGi

and Dalvik VM used by Android.

4.2 Android based service architecture

 The previous OSGi Felix solution tries to provide

modularity by incorporating frameworks as

intermediary layers between the application and the

operation system. In fact in this solution, to execute

5 Remote Procedure Call

6 Android Interface Definition Language

the services of a local bundle, the Android

application (apk) triggers a bundle proxy by

running Android API, then the proxy asks the OSGi

middleware that calls the requested bundle. The

bundle seeks for elementary packages of the Java

virtual machine, and then the mobile OS layer

triggers the physical capacity.

This execution process enables negative impacts in

terms of end-to-end applications performances.

This motivates us to make a new proposal as in [30]

to incorporate OSGi-based SOA primitives directly

into Android OS layer.

Our solution targets to develop a component-based

software package that implements the service-

component model with modularity and reusability

capabilities. The Android platform is organized

around various layers. An application layer supplies

standard apps such as an SMS application, a

browser, a calendar, etc. Every application runs on

a distinct Dalvik Virtual Machine to avoid altering

the functioning of the other applications.

In our proposed solution, we introduce the notion of

“Andromodule” which is defined as a dynamic

Android module composed of:

 A service interface that provides a set of

APIs

 A service body that is an Android Dalvik

code

 And a manifest file which is an XML file

that describes the API and the services

offered by the Andromodules for

dependences-resolution purposes.

Fig.8 Andromodule components

The idea of the Andromodule is analogous to the

OSGi bundle unit except that the Andromodule is

executed directly as a Dalvik code, avoiding the

dexification process used in the first solution with

Felix middleware to convert byte code to dex code.

The service management system, implemented as

an Android class, includes many methods used to

manage the different states of the module (see

Table 2). A global overview of the Android-based

architecture is given in Figure 8.

Method Function

InstallModule

(location)
Installs a module from a specified location and assigns it

an ID automatically

Start(ID)

verifies the existence of a module corresponding to the

given ID, tries to resolve this module and starts it if it

succeeds to resolve its dependencies

Activate (ID)
It verifies the existence of a module corresponding to the

given ID and registers the service in the registry.

Stop (ID) It verifies the existence of a module corresponding to the

given ID and stops the service if it is in a start or active

state.

UninstallModule

(ID)

It verifies the existence of a module corresponding to the

given ID and uninstalls it if it is resolved or stopped.

Table 2. The methods of Andromodules

In the following sub-section, we investigate the two

architecture designs by comparing their

performances.

4.3 Performance analysis

 In this sub-section, we focus on the performances

of the designed SOA solutions by measuring the

overhead generated by the OSGi Felix middleware

and by comparing its performances with the

Andromodule-based solution to highlight the

benefit of the lightweight solution while keeping

SOA modularity concept.

For this purpose, we choose the execution time as a

measurement criterion and we use DDMS (Dalvik

Debug Monitor Server) tool of Android SDK that

runs in both emulators and real terminals. DDMS

provides a powerful option called TraceView to

measure execution time.

In these experiments, based on the TraceView tool,

we measured the execution times of all the

developed methods that interact with Felix and then

on Android environment. First, we computed the

necessary time to start Felix, and then we measured,

according to the number of bundles and their

dependencies, the execution time of these methods.

The experiments undertaken in these two solutions

have been tested on an emulator with the following

characteristics:

Device Nexus S (4.0”, 480 * 800: hdpi));

Android 2.2 – API level 8; Ram 343; VM Heap: 32;

Internal Storage: 60MB

Bundle size: 32 KB.

Fig.9 bundle execution time (in ms)

Figure 9 depicts that Andromodule-based platform

is so promising to solve the problems caused by the

huge number of bundles’ dependencies, because the

operations are executed in a few milli-seconds

while the same operations take few seconds with

OSGi-based platform.

In the OSGi model, the most important time is the

bundle start() time, since the bundle needs to

upload all required resources as JAR files and Java

virtual machine during the first execution.

The service bundle stays in a lazy state until one of

its class files is loaded. In this context, a bundle

listener (Discovery bundle) can receive notifications

only after it has been started, which can introduce

potential events missing during the significant start

time.

However when using Andromodules, the method

start() is executed at the OS level and all resources

are already uploaded during the OS start-up.

5. Cloudlet based model
 In the preceding proposed architectures based

either on centric approach or distributed model, we

assume implicitly that the Cloud WAN or Internet

network access is reliable. However, coverage

quality can be variable depending not only on the

distance with the base station, but also on the

variation of the available bandwidth and the speed.

In a hostile environment where first responders

operate in crisis situations or soldiers fight in

battlefields for example, connection to the Cloud is

generally impossible. To reduce interaction latency

and dependency on the WAN connection, Cloudlets

[3] are proposed to create a proximate Cloud to

access nearby remote resources. A Cloudlet is a

new architectural element that arises from the

convergence of mobile computing and Cloud

computing. It represents the middle tier of a 3-tier

hierarchy: mobile device, Cloudlet, and Cloud as

illustrated in Figure 10. As stated in [3], a Cloudlet

can be viewed as a “data center in a box” to make

the Cloud closer to the mobile device while relying

on high bandwidth (e.g., one-hop Wi-Fi) and low

latencies.

We propose to discuss in the following sub-sections

three solutions to implement a Cloudlet based

design: the first one is based on Virtual Machines

(VMs), the second one uses Docker containers and

the third one relies on OSGi framework. Finally,

some measurements have been done to compare the

performances between these solutions.

5.1 VM based Elijah solution

Despite their introduction in the 1970’s [31], VMs

have been propelled thanks to the Cloud data

centers. Hypervisors like VMware, Xen or KVM

brought VMs to a wide use in Cloud service

platform thanks to the elasticity and isolation

properties.

Simanta et al., in [32], present a reference

architecture based on Cloudlets as part of a project

called Elijah project (see Figure 11). Based on a

VM manager, the Cloudlets are viewed as code-

offloading elements used to serve mobile devices in

single-hop proximity.

Fig. 10. Cloudlet general design

The major components of this architecture are the

Cloudlet host and the mobile client. The Cloudlet

host is a physical server that hosts a discovery

service that broadcasts the Cloudlet IP address and

its port number allowing mobile devices to find it.

The Cloudlet host contains a base-VM image that is

used for VM synthesis, and a Cloudlet server that

handles offloaded code in the form of application

overlays. Whereas, the mobile client hosts apps that

discover Cloudlets and upload application overlays

to the Cloudlet.

An application overlay is created once per

application. The base VM is a VM disk-image file

that is obtained from the central core and saved to a

Cloudlet that runs a VM manager compatible with

the base VM.

The VM manager starts the base VM and the

application is installed. After installation, the VM is

shut down. A copy of the modified base-VM disk

image is saved as the complete VM disk image.

The application overlay is calculated as the binary

diff (VCDIFF RFC3284) using xdelta3 [33] tool,

between the complete VM disk image and the base

VM disk image. The base VM is then deployed to

any platform that will serve as a Cloudlet.

The mobile device carrying application overlays

will be able to execute these applications on any

Cloudlet that has the corresponding base VM.

The Cloudlet client is an Android app that:

1. Discovers Cloudlets through information

broadcasted by the discovery service residing

in the Cloudlet host;

2. Creates an HTTP connection to the Cloudlet

server for overlay transmission and uploads the

overlay.

In the Elijah solution, the client needs to carry the

overlay which can be heavy because of the limited

resources of mobile devices. In addition, the VM

synthesis operation is time consuming. The overlay

needs to be processed offline while being strongly

tied to the Cloudlet VM. Overlay replication

between Cloudlets needs also to be studied to offer

Cloudlet roaming with full security.

Fig.11 Elijah based Overlay architecture

5.2 Container-based Cloudlet Solution

In the virtualization-based approach (see Figure

12), each VM contains a full operating system with

all its layers. The hypervisor scheduling operates at

two levels as explained in the following. The first

scheduling occurs at the hypervisor level where the

hypervisor schedules VMs, and the second one at

the virtual machine level where the guest operating

system schedules processes. Taking that into

account, it is obvious that this approach creates a

significant overhead. Another virtualization

approach, based on containers [34, 35], has been

proposed to reduce significantly this overhead, and

thus providing better performances, especially in

terms of elasticity and density within a lean data

center.

In the container-based virtualization, scheduling

occurs only at one level. The containers contain

processes, while the kernel and the libraries are

shared between the containers. Hence, the scheduler

is used only at process level to schedule processes.

The behaviour is similar to a classical operating

system; the only difference is that, in container-

based virtualization, processes are affected to a

container, and between each container, an isolation

occurs at two levels:

 Isolation between processes, and

 Isolation between processes and the hardware.

Docker container based virtualization improves

performances since there is no hypervisor overhead.

Fig.12 Containers vs VM layers

Using Docker containers, both of the mobile device

and the Cloudlet server may use Linux-based OS.

In this case, the app is isolated within a container

and can be executed either within the mobile device

or the Cloudlet container depending on the

resources needed by the application. In this

solution, there is no need to overlays like defined in

Elijah project. Moreover, because the Docker

containers are standard and include minimum

libraries, there is no need to pre-requisite

installations, besides the fact that they are less

heavy (MB) than VM images (GB) and

consequently can be offloaded while consuming

less energy.

5.3 OSGi-based Cloudlet model

In the OSGi based solution, we propose to install

each OSGi framework on a dedicated VM to meet

scalability and elasticity needs, where distinct VMs

are managed within the Cloudlet by a hypervisor as

depicted in Figure 13.

Fig.13 OSGi-based Cloudlet architecture

Regarding the global architecture, the Cloudlet has

different physical interfaces:

- Access Point interface (AP): provides a Wi-Fi

802.11 dual band (2.4 & 5 Ghz) to connect

with the mobile devices.

- Cloud service and management interface (MI)

which connects the Cloudlet to the Cloud

through a wired network for service

communication and for supervision and

administration of the Cloudlet station.

In addition to network capabilities, the Cloudlet has

storage and computing capacities where Cloudlet

storage can act as intermediary caching service.

Because we consider a three-tier architecture with

the following entities: mobile device, Cloudlet and

Cloud, an OSGi framework is installed on each of

the three components. Apart the mobile device,

each of the Cloud and the Cloudlet hosts the OSGi

framework within a dedicated VM. The VMs are

created on demand and are deleted when they are

not needed. The elasticity, as one of the intrinsic

properties of the Cloud and the Cloudlet, is then

guaranteed.

In the following, we explain how OSGi is

distributed through this three-tier architecture.

 Cloud server framework

The Cloudlet based architecture relies on the Cloud

as a sandbox that can serve either by the Cloudlet to

offload the OSGi VM associated with the mobile

device when it is leaving this proximate Cloudlet,

or by a Cloudlet that is discovered by the mobile

device and that needs to download, from the Cloud,

the OSGi VM image of the mobile user to interact

with it.

 Cloudlet framework
 The Cloudlet can be shared between multiple

mobile users or multiple applications that need the

segregation of execution environments. The

Cloudlet system is segregated into different virtual

zones (VMs).

The Cloudlet can download the required image

from the Cloud as explained earlier, but it can also

build locally the corresponding VM of the mobile

device by getting initially the OSGi framework

from the Cloud in order to set up the OSGi

environment within the VM. This entire

environment (VM enriched with OSGi) will serve

to provide OSGi services to the mobile device.

Using the management interface, the Cloud ensures

the interaction and the management of the Cloudlet.

 Mobile framework

 An OSGi framework is installed in the mobile

device and includes a Cloudlet interface for the

discovery, and service interaction with OSGi

framework hosted within the corresponding VM in

the Cloudlet.

In this OSGi-based Cloudlet model, the mobile

device makes call to the Cloudlet once the Cloudlet

is discovered. After a mutual authentication is

performed, the Cloudlet downloads from the Cloud

a sub environment of the user, which allows the

mobile OSGi framework to interact with its image

on the Cloudlet.

5.4 Performances Analysis

In this section, we performed some tests related to

the Cloudlet basic scheme. We measured the

execution time generated by the offloading process,

in the three discussed implementations: Overlay

VM based solution, Docker-containers solution and

OSGi middleware solution.

5.4.1 VM based Elijah solution
For this experiment, we have used two personal

computers:

- One with a Linux Ubuntu 14.04 LTS <64 bits>

(CORE i7) as the Cloudlet server

- And a second with Windows 7 <32 bits>

(DUAL CORE) as the mobile device.

After importing the base VM to our local database,

we run the Cloudlet server in order to listen to

incoming client requests. We assume that in the

client side, we have a VM overlay containing the

geany program and we wanted to reconstruct a

custom VM on the server side.

The client connects to the Cloudlet upon detecting

its IP address, using the program “synthesis_client”

and supplies the VM overlay. When the client sends

the VM overlay to the Cloudlet, the Cloudlet server

starts performing the VM synthesis operation.

This experiment shows that the offloading

technique based on VM overlays is a little bit

heavy.

As an example, we consider geany program whose

size is 2.7 MB. When the overlay is generated, it

reaches 9.1 MB. Hence, the VM synthesis operation

takes approximately 2.4 minutes to be performed.

We noticed that the largest amount of time is

consumed by the upload overlay operation and

depends on the overlay size. Using VM image

compression allows better performances.

5.4.2 Dockers based solution
In our environment, we consider containers based

on Ubuntu 13.10 everywhere, on the mobile device,

on the Cloudlet and on the Cloud. In this model

both the client and the Cloudlet need to use a Linux

based OS.

In Docker mechanism, images are the result of a

recursive mounting of different image layers. Each

image layer has a parent image layer except for the

root image layer. If we consider again the example

of geany program, we will have an image

containing an Ubuntu OS layer enriched with the

geany layer that is offloaded by the mobile device

to be added to the Cloudlet image so that the new

Docker image within the Cloudlet is the one given

in Figure 14.

Fig. 14. Docker image

We noticed that the Docker images can start much

faster than VMs (less than 1 second compared to 11

seconds on our hardware) because unlike VMs,

docker images are lightweight implementations and

the geany layer that is offloaded from the mobile to

the Cloudlet has a smaller size than that of the

overlay.

5.4.3 OSGi based solution
OSGi is natively running on Java Virtual Machine

but without inter framework hypervisor. OSGi has

been tested as a middleware running on the

operating system.

Our tests, generally, show that OSGi based solution

has equivalent and even better performances than

Docker container and VM based solutions. We will

illustrate this through the following example.

5.4.4 Discussion
In our tests, we took programs with the equivalent

size as in the following: an OSGi bundle of 1,2 KB,

a program of 1,5 KB to be run in Elijah

environment and a program of 1,4KB to be run on a

Docker image, as presented in Table 3.

The overlay computed for Elijah program reaches

1,4 MB while the Docker image containing the

corresponding program has a size of 6,6KB.

Table 3 shows that the execution delay (9s) is high

when the mobile device offloads the Docker

container with its required application, which is

heavy to outsource. In addition, the mobile client

needs to carry with him the whole container (~600

MB) which is too much for a mobile device.

 OSGi Elijah Dockers

Program Size KB 1,2 1,5 1,4

Overlay/layer size 1,4MB 6,6KB

Communication
Internet

WiFi

LAN

WiFi

Internet

WiFi

Execution delay < 1s 6s 9s

Table 3. Cloudlet-based solutions

The Elijah VM overlay presents an intermediate but

important execution time (6s). The overlay-based

solution offloads heavy overlays even when they

are compressed. The VM synthesis operation is

time-consuming task. This solution is very sensitive

to network variation during the overlay

communication.

 By contrast, OSGi-based solution shows that

running a remote bundle inside OSGi Cloudlet is

particularly faster (<1sec) remotely on the

Cloudlet. Consequently, the performances are

significantly enhanced. These tests are done while

the OSGi framework is already running. R-OSGi

allows the required services to be executed. There is

no additional layer generation during the execution.

Only the JVM and the OSGi framework are

required.

6. Conclusion
 We proposed, in this paper, a design and a

performance analysis of different MCC-SOA

architectures to show that there is no ideal model,

but each model can be more suitable depending on

the application context. Deploying one unique

framework to deal with different contexts is a major

benefit facilitating the remote Cloud services

development and deployment and a very important

added value in MCC services where the same user

and the same device act in different application

contexts at the same time. Our service-oriented

framework based on OSGi was adapted to each of

the three-presented contexts. Thanks to the bundle

units, remote OSGi bundles and a dynamic

management service, our middleware deals with

multi basic Cloud needs with local storage and

execution, a remote execution or a service

migration.

We also show how mobile Cloud computing can

offer a very rich environment to provide multiple

services by a dynamic and fluid collaboration

between the mobile devices as a part of the Cloud.

To meet the scalability requirement, we propose in

this model to use advertisement and discovery

components based on a publish/subscribe paradigm,

and implemented it with Extensible Messaging and

Presence Protocol XMPP. Additionally, we launch

the OSGi framework within VMs in the Cloud as

well as in the Cloudlet. The Cloudlet based design

seems to be a very interesting and promising model.

From the performance point of view, the first

measurements highlight that OSGi is a lightweight

solution suitable for mobile Cloud environment

regardless of the context.

In our future works, we aim to analyse and enhance

the security of our proposed middleware, on two

levels: The first one will deal with the software

security as a service level. The second one will be

related to environment security (devices, user

authentication and communication security).

Finally, we plan to conduct deeper measurements to

analyse the impact of the security solution on the

mobile Cloud performances.

References

[1]. Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani,

Muhammad Shiraz, “MOMCC: Market-Oriented

Architecture for Mobile Cloud Computing Based on

Service Oriented Architecture”, Mobile Cloud Computing

Research Lab Faculty of Computer Science and

Information Technology University of Malaya, Kuala

Lumpur, Malaysia (http://arxiv.org/pdf/1206.6209.pdf),

June 2012.

[2]. M. Satyanarayanan, “Pervasive computing: vision and

challenges,” Personal Communications, IEEE, vol. 8, no. 4,

pp. 10–17, 2001.

[3]. M. Satyanarayanan, P. Bahl, R. Caceres, & N. Davies,

“The case for vm-based cloudlets in mobile computing,”

Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009

[4]. Z. Sanaei, S. Abolfazli, A.Gani, & R. Buyya,

“Heterogeneity in Mobile Cloud Computing: Taxonomy

and Open Challenges”, IEEE Communications Surveys &

Tutorials, pp. 369 - 392, Vol. 16, no 1, Feb. 2014.

[5]. M. Shiraz, A. Gani, R. Hafeez, & R. Buyya, “A review on

distributed application processing frameworks in smart

mobile devices for mobile cloud computing,” IEEE

Commun. Surveys & Tutorials, pp. 1294 – 1313, Vol. 15,

no 3, July 2013.

[6]. Huber Flores, S. Narayana & R. Buyya, “Computational

Offloading or Data Binding? Bridging the Cloud

Infrastructure to the Proximity of the Mobile User”. 2nd

IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering, pp. 10-18, Oxford,

April 2014.

[7]. P. Miettinen & K. Nurminen, “Energy efficiency of mobile

clients in cloud computing”. Nokia Research Center.

HotCloud'10 Proceedings of the 2nd USENIX conference

on Hot topics in cloud computing (available online), 2010.

[8]. Weishan Zhang, Shouchao Tan & Klaus Marius Hansen

“A Short Survey on Decision Making for Task Migrations

in Mobile Cloud Environments”, 2014 International

Conference on Identification, Information and Knowledge

in the Internet of Things (IIKI), pp. 64-67, 2014.

[9]. Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, &

Rajkumar Buyya, “Heterogeneity in Mobile Cloud

Computing: Taxonomy and Open Challenges”, IEEE

Communications Surveys & Tutorials, pp. 369 – 392,

Vol.16, n° 1, May 2013.

[10]. D. Wu et al. “Cloud-based design and manufacturing: A

new paradigm in digital manufacturing and design

innovation”, Computer-Aided Design, pp. 1–14, Vol. 59,

Feb. 2015.

[11]. Numecent 2014. Available from

http://gfxspeak.com/2013/07/19/numecent-launches-

native-as-a-service-cloudpaging-platform/

[12]. White Paper, “Mobile Cloud Computing Solution Brief,”

AEPONA, November 2010.

[13]. Saeid Abolfazli, Zohreh Sanaei & Abdullah Gani, “Mobile

Cloud Computing: A Review on Smartphone

Augmentation Approaches”, 1st International Conference

on Computing, Information Systems, and Communications

(CISCO'12), May 2012, Singapore.

[14]. Wei-Tek Tsai, “Service-Oriented Cloud Computing

Architecture”, The Seventh International Conference on

Information Technology: New Generations (ITNG), April

2010, pp. 684 – 689.

[15]. David S. Linthicum, “Cl trustworthy oud Computing and

SOA Convergence in your Enterprise: A Step-by-Step

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7063999
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7063999
http://gfxspeak.com/2013/07/19/numecent-launches-native-as-a-service-cloudpaging-platform/
http://gfxspeak.com/2013/07/19/numecent-launches-native-as-a-service-cloudpaging-platform/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei-Tek%20Tsai.QT.&searchWithin=p_Author_Ids:38182137600&newsearch=true

Guide”, Addison Wesley editor, sept. 2009, 264 pages,

ISBN-13: 978-0136009221.

[16]. Lizhe Wang, Gregor von Laszewski & Andrew Younge,

“Cloud Computing: a Perspective Study”, New Generation

Computing, Vol. 28, Issue 2, pp 137-146, April 2010.

[17]. Weishan Zhang et al. “Towards an OSGi Based Pervasive

Cloud Infrastructure”, The 2013 IEEE and Internet of

Things, pp. 418 – 425, Aug. 2013.

[18]. Weishan Zhang, Licheng Chen, Xin Liu, Qinguua Lu,

Peiying Zhang & Su Yang, “An OSGi-based flexible and

adaptive pervasive cloud infrastructure”, Science China

Information Sciences, Vol. 57, no 3, pp. 1-11, Science

China Press, June 2014.

[19]. Cavalcanti, José Carlos, “Effects of IT on Enterprise

Architecture, Governance, and Growth”, ISBN-13: 978-

1466664692, IGI Global edition, Sept. 2014, 307 pages.

[20]. Johnneth Fonseca, Zair Abdelouahab, Denivaldo Lopes &

Sofiane Labidi, “A security framework for SOA

applications in mobile environment”, International Journal

of Network Security and Its Applications (IJNSA), Vol.1,

No.3, pp. 90-107, october 2009.

[21]. Decker M., & Bulander R. "A Platform for Mobile Service

Provisioning Based on SOA Integration", In

Communications in Computer and Information Science,

Vol 23, 2009, Springer Berlin Heidelberg, pp 72-84.

[22]. Natchetoi, Y. Kaufman, V. & Shapiro, A. "Service-

oriented architecture for mobile applications", Proceedings

of the 1st international workshop on Software architectures

and mobility / International Conference on Software

Engineering, pp 27-32, 2008.

[23]. Francesco Longo, Dario Bruneo, Massimo Villari, Antonio

Puliafito, Eliot Salant & Yaron Wolfsthal, “Towards the

future internet: the RESERVOIR, VISION Cloud, and

CloudWave experiences”, International Journal of High

Performance Computing and Networking (IJHPCN), Vol.

8, No. 3 pp. 235-247, 2015.

[24]. Huijun Wu, Dijiang Huang, Yan Zhu, “Establishing A

Personal On-Demand Execution Environment for Mobile

Cloud Applications”, Journal of Mobile Networks and

Applications, Vol. 20, Issue 3, pp. 297-307, June 2015.

[25]. Alexander Pokahr & Lars Braubach, “Towards Elastic

Component-Based Cloud Applications”, Proc. of the 8th

International Symposium on Intelligent Distributed

Computing (IDC 2014), pp. 161-171, Sept. 2014, Spain.

[26]. N. Houacine, S. Bouzefrane, D. Huang & Li Li. "MCC-

OSGi: An OSGi-based Mobile Cloud Service Model", The

IEEE ISADS (Eleventh International Symposium on

Autonomous Decentralized Systems), March 2013, pp.37-

44, Mexico.

[27]. https://wiki.eclipse.org/Tutorial:_Building_your_first_OSG

i_Remote_Service

[28]. https://tools.ietf.org/html/rfc6120

[29]. O. Kotevska, A. Lbath & S. Bouzefrane, « Toward a real-

time framework in cloudlet-based architecture » Tsinghua

Science and Technology, Vol. 21, n°1, pp. 80-88, 2016.

[30]. M. Zneika, H. Loulou, F. Houacine, S. Bouzefrane,

“Towards a Modular and Lightweight Model for Android

Development Platforms”, 2013 IEEE International

Conference on Green Computing and Communications and

IEEE Internet of Things and IEEE Cyber, Physical and

Social Computing, August 2013, pp.2129-2132,

[31]. R. J. Creasy. The origin of the VM/370 time-sharing

system. IBM Journal of Research and Development,

25(5):483–490, Sep 1981.

[32]. Simanta, Soumya; Lewis, Grace; Morris, Ed; Ha, Kiryong;

and Satyanarayanan, Mahadev. “A Reference Architecture

for Mobile Code Offload in Hostile Environments”. Proc.

of the Joint 10th Working IEEE/IFIP Conference on

Software Architecture & 6th European Conference on

Software Architecture (WICSA/ECSA 2012). August

2012. http://www.cs.cmu.edu/~satya/docdir/simanta-

mobicase2012.pdf.

[33]. Xdelta.org, xdelta.org

[34]. https://www.docker.com/

[35]. Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy

Bavier, and Larry Peterson, “Container-based Operating

System Virtualization: A Scalable, High-performance

Alternative to Hypervisors”, ACM SIGOPS Operating

Systems Review - EuroSys'07 Conference Proceedings,

Vol. 41 Issue 3, pp. 275-287, June 2007.

http://link.springer.com/search?facet-creator=%22Lizhe+Wang%22
http://link.springer.com/search?facet-creator=%22Gregor+von+Laszewski%22
http://link.springer.com/search?facet-creator=%22Andrew+Younge%22
http://link.springer.com/journal/354
http://link.springer.com/journal/354
http://link.springer.com/journal/354/28/2/page/1
https://wiki.eclipse.org/Tutorial:_Building_your_first_OSGi_Remote_Service
https://wiki.eclipse.org/Tutorial:_Building_your_first_OSGi_Remote_Service

