
HAL Id: hal-02425156
https://hal.science/hal-02425156

Submitted on 29 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mobility Prediction in Vehicular Networks: An
Approach through Hybrid Neural Network under

Uncertainty
Soumya Banerjee, Samia Bouzefrane, Paul Mühlethaler

To cite this version:
Soumya Banerjee, Samia Bouzefrane, Paul Mühlethaler. Mobility Prediction in Vehicular Networks:
An Approach through Hybrid Neural Network under Uncertainty. International Conference on Mobile
Secure and Programmable Networking (MSPN 2017), pp.195-217, Series Springer LNCS 10566, Jun
2017, Paris, France. pp.178-194, �10.1007/978-3-319-67807-8_14�. �hal-02425156�

https://hal.science/hal-02425156
https://hal.archives-ouvertes.fr

Mobility Prediction in Vehicular Networks : An
Approach through Hybrid Neural Networks

under Uncertainty
∗Soumya Banerjee †Samia Bouzefrane ‡Paul Muhethaler

Abstract

Conventionally, the exposure regarding knowledge of the inter vehicle
link duration is a significant parameter in Vehicular Networks to esti-
mate the delay during the failure of a specific link during the transmis-
sion. However, the mobility and dynamics of the nodes is considerably
higher in a smart city than on highways and thus could emerge a com-
plex random pattern for the investigation of the link duration, referring
all sorts of uncertain conditions. There are existing link duration estima-
tion models, which perform linear operations under linear relationships
without imprecise conditions. Anticipating, the requirement to tackle the
uncertain conditions in Vehicular Networks, this paper presents a hy-
brid neural network-driven mobility prediction model. The proposed hy-
brid neural network comprises a Fuzzy Constrained Boltzmann machine
(FCBM), which allows the random patterns of several vehicles in a single
time stamp to be learned. The several dynamic parameters, which may
make the contexts of Vehicular Networks uncertain, could be vehicle speed
at the moment of prediction, the number of leading vehicles, the average
speed of the leading vehicle, the distance to the subsequent intersection
of traffic roadways and the number of lanes in a road segment. In this
paper, a novel method of hybrid intelligence is initiated to tackle such
uncertainty. Here, the Fuzzy Constrained Boltzmann Machine (FCBM) is
a stochastic graph model that can learn joint probability distribution over
its visible units (say n) and hidden feature units (say m). It is evident that
there must be a prime driving parameter of the holistic network, which
will monitor the interconnection of weights and biases of the Vehicular
Network for all these features. The highlight of this paper is that the
prime driving parameter to control the learning process should be a fuzzy
number, as fuzzy logic is used to represent the vague and and uncertain
parameters. Therefore, if uncertainty exists due to the random patterns

∗Soumya Banerjee,Visiting Prof. Conservatoire National des Arts et Metiers, Paris Cedex
03, France, Birla Institute of Technology, Mesra, India, e-mail:soumyabanerjee@bitmesra.ac.in
†Samia Bouzefrane, Conservatoire National des Arts et Metiers, Paris Cedex 03, France,

‡Paul Muhlethaler, Eva team, INRIA 2 Rue Simone IFF, 75012 Paris, France,

1

2 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

caused by vehicle mobility, the proposed Fuzzy Constrained Boltzmann
Machine could remove the noise from the data representation. Thus, the
proposed model will be able to predict robustly the mobility in VANET,
referring any instance of link failure under Vehicular Network paradigm.

Keywords: Vehicular Network, Mobility Prediction, Link Failure, Fuzzy Con-
strained Boltzmann Machine, VANET, Uncertainty.

1 Introduction
With the increase of wireless networks and the growing trends towards the In-
ternet of Things (IoT), vehicular communication is being viewed from different
perspectives. These include the road safety and traffic management [1]. How-
ever, scenarios of vehicular networks are becoming more complex as several
dynamic parameters of vehicles are being introduced : vehicle speed at the mo-
ment of prediction, number of leading vehicles, average speed of the leading
vehicles, the distance to the subsequent intersection and the numbers of lanes
in a road segment. The problem is thus more realistic and several research
initiatives are already being accomplished, by considering the data obtained re-
lating short-term vehicle movement [2][3]. The reliability of contexts, variables
in different road intersections, different traffic scenarios and inter-vehicle link
duration offer challenges to formulate the prediction model [4]. In addition to, a
substantial number of research initiatives concern probabilistic modeling of ve-
hicles which infer immediate future locations. Even so, it has been observed that
to configure a robust and intelligent vehicular networks [5], each tiny parameter
such as road intersection problem parameters can be handled with an effective
group scheduling of vehicles. Thus those intelligent neuro-fuzzy (neural-network
and fuzzy logic driven) models becoming more adaptive to suit different traf-
fic conditions [6]. Inspired by such models [7] [8], this paper proposes a Fuzzy
Constrained Boltzmann Machine (FCBM). This is a stochastic graph model
and can learn joint probability distributions over certain time units with many
existing as well as hidden features of different vehicular network environments.
The relevance of proposed approach is two fold: firstly, the class of Boltzmann
machine is a specialized class of deep learning algorithm and no such model cur-
rently exists. Moreover, conventional deep learning models are being controlled
with visible and hidden features of problem domain. In this case, an uncertain
relationship is represented with these inherent uncertainty as a fuzzy number.
Thus, the constraints of relationships between the features should be driven by
fuzzy logic and this could serve to train the Boltzmann machine to infer smarter
decision about mobility predictions in vehicular networks. We develop the sim-
ulation and experimental model and test it with the corresponding data set.
Several interesting observations have been obtained. The analysis shows that a
hybrid intelligent model is required, where uncertainty and non-linear optimal
conditions persist. The remaining part of the paper has been organized as fol-
lows: Section 2 briefly mentions the most relevant intelligent models deployed
for vehicular networks under different conditions. Section 3 develops a mathe-

3 Mobility Prediction in Vehicular Networks under Uncertainty

matical formulation of the proposed approach, and outlines the role of auxiliary
functions for modeling fuzzy logic in Boltzmann scheme in Section 3.1. Section
4 provides a short introduction to the highlights conventional Boltzmann ma-
chine and its relevance to hybrid neural networks. Section 4.1 gives details of
simulation and the corresponding results comparing them to the available data
set. Finally, Section 5 highlights about the contributions and mentions future
research directions in the field.

2 Related Work
Very few core research implementations are available using different computa-
tional intelligence schemes in vehicular networks for mobility prediction. Most
approaches (e.g. fuzzy logic and rough set) use clustering or classifications of
vehicles according to their location even in boundary regions [12] [13]. How-
ever specific intersection control problems in smart cities are being treated with
neuro-fuzzy learning from real traffic conditions [14]. Traffic and vehicle speed
prediction have also been developed using neural networks and hidden Markov
models [6]. Inspite of all the existing models, sensing techniques and prediction
of mobility in vehicular networks have raised substantial research challenges.
This is primarily because, none of the intelligent models could encompass diver-
sified uncertain parameters of vehicular networks and making the predictions
unrealistic. Inspired by recent studies of deep learning and machine learning
approaches [15], this paper adopts a basic Boltzmann machine approach. The
model is trained through fuzzy numbers, which represents different non-linear
features of vehicular network as well as network connectivity overheads. The
proposed model is termed as hybrid neural network.

3 Mathematical Formulation of Proposed Model
The following parameters are being considered, while formulating the proposed
model :

• Vehicle speed Sm at the moment of prediction

• Number of leading vehicles

• Average speed of leading vehicles

• Distance (optional) to the next intersection

• Number of lanes in the road segment (Rs)

These parameters are non-deterministic and lead to major concerns of uncer-
tainty in vehicular networks. In addition, these parameters and their associated
contexts can contain uncertainties. They are listed as :

• Change of vehicle Speed

4 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Table 1: List of Prime Variables
Parameters/ Variables Semantics

i ∈ I Time interval between
vehicles ->I= {1,2,......m}

j ∈ J Index of different access
points (AP), where

J={1,2,.....n}
γ1 Vehicle departure ratio

from source
Mij Rate of mobility from i to

j
Li Length of time interval
xij Mobility prediction

decision variable for the
points i to j

Ps Prediction Scenario with
respect to the parameters
mentioned for Vehicular

Network
α time interval

• Different driving habits and road conditions

• Density of traffic

• Position of traffic lights

Therefore a specific objective function can be formulated.
The objective function is described, the objective function can train the pro-

posed Boltzmann Machine through symmetric triangular Fuzzy Numbers. The
inclusion of fuzzy factor sis to tackle uncertain parameters and their contexts
mentioned in the previous description. We divide the approach into two major
parts:

a. Initially, optimal control of the delay for vehicle:
The total vehicle delay time for whole network is:

MinVD = [min
∑
j∈J

PS∑
k=1

∑
i∈Rs

V j
i (k)−Mij(k)]α] (1)

where V j
i (k) is the number of vehicles for point i for road section Rs at

the time instance k and αis the sampling interval period for complete network
coverage.

b. For this part, we assume that there must exist a non-linear optimal control
of mobility, where, for training with the uncertain parameters of the vehicular
network, a fuzzy number is introduced in triangular form (it signifies that the

5 Mobility Prediction in Vehicular Networks under Uncertainty

core function can represent at least three values of membership or certainty
factor: for example: road traffic could be moderately normal, medium, strongly
adequate etc.). We also observe that there could be different trends of mobility
for two communicating vehicles before the communication may fail due to the
predicted enhancement in the intermediate distance. Therefore, this non-linear
factor can be represented with another form of exponentiation function. Thus, if
the minimum value of vehicle delay under non-linear/uncertain factors is being
considered, then

MinVD = [min
∑
j∈J

PS∑
k=1

∑
i∈Rs

[V j
i (k)− exp(β

j
0(k)]α (2)

Here, Ps the prediction scenario, parameter βj
0(k) and V

j
i (k) is the result of

an auxiliary function, this will be essentially to formulate a final value of the
training function for the Boltzmann Machine. In practice, Boltzmann machines
are comprised of visible units, (say V), and hidden units. The visible units are
those which receive information from the ’environment’ (in this case it could be
the traffic conditions from the road and other features derived from the traffic
contexts), i.e. the training set is a set of binary vectors over the set V. The
distribution over the training set is denoted as a continuous function P+(V).
Moreover the machine has an energy reference, which is modified through the
positioning of interconnected weights of features during the operation. The
machine may stop learning correctly, when it is scaled up to anything larger than
a trivial value. There are two phases involved in Boltzmann machine training,
and we switch iteratively between both of them. One is the positive phase,
where the visible units’ states are clamped to a particular binary state vector
sampled from the training set (according to P+). The other is the negative
phase, where the network is allowed to run freely. Therefore, the reference
energy level of the machine should be discrete out of uncertainty factors and this
switching effect from positive to negative must encompass all the membership
values of uncertainty [9][10]. As in this case, the hidden features in random
or urban traffic conditions are free from external interference, and their values
are unknown to us. Hence, we cannot update their weights. Thus, the more
membership or certainty values of hidden feature vectors are introduced, the
more precise prediction can be.

In the next subsection, the structure of the auxiliary function is derived.

3.1 Structure of the Auxiliary Function in a Vehicular
Network

Here, we refer to the structure of βj
0(k):

δJ0 (k) =
{
k[γj0(k)⊕ γ

j
0(k + 1)] (3)

if (1 6 k 6 Ps − 1) and subsequently as the value of δJ0 (k) could be treated
as a fuzzy number trivially with 3 values ; if k= 0, then δJ0 (k) = 0, if k=Ps

6 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

then δJ0 (k) =Ps. The construction of Right hand side of the expression with γj0
indicates the weight bias of fuzzy nmber which is additive with the instances of
values k. That means, k and (k+1) instances are considered here for formulating
auxillary function and thus βj

0 .
For implementation, we also investigate the learning features of vehicular

networks and it could be either simple sample function or a multiple sample
function for error estimation in the final value of the training function in the
Boltzmann Machine. It is known that better scaling and an error free repre-
sentation will make the network learn better for the prediction of the vehicles
movement. Considering all the listed parameters, multiple sample features will
be suitable to make the training of the network more error free. Assuming,
the multiple sample features, the final training function, say X(w), where w is
the edge weight of the features connected in the Boltzmann Machine, can be
expressed as [10] :

T (w) =
1

2

n∑
i=1

m∑
i=1

(fc(x
i)− yic)2 (4)

It is clear that two terms i.e. fc(xi) and yic in the expressions related to T(w)
are the coefficients of the training function to be operated on feature vectors
taken from vehicular network paradigm. The first one depends on the network
edge weight w where the second one is independent of w. Therefore, a partial
derivative is derived for the final training weight wk

Psj
for all k and j.

4 Proposed High Level Description of the Hybrid
Neural Network

The term hybrid neural network was coined from the concept that a neural
network in its core form can be modified with the supporting mode of computa-
tional intelligence like fuzzy logic, specially to for the training purposes. Prior
to describing the proposed model, a brief background is presented on conven-
tional Boltzmann Machines (Fig. 1). They were one of the first examples of
a neural network capable of learning internal representations, and are able to
represent and (given sufficient time) solve difficult combinatoric problems [9].
The structure comprises of some visible and some hidden units. A graphical
representation of an example of a Boltzmann machine is shown in fig. 1. Each
undirected edge represents dependency. In this example there are 3 hidden units
and 4 visible units.

7 Mobility Prediction in Vehicular Networks under Uncertainty

Figure 1: Basic Structure of Boltzmann Machine Network

Structurally, the network can learn by the adjustment of weights and hence
it finally culminates with an energy function E [9] [10]:

E = −(
∑
i<j

wijsisj +
∑
i

θisi)

where, wij is the connection strength between unit j and unit i . si is the
state, si∈ {0, 1} of unit i,

θi is the bias of unit i in the global energy function. (−θi is the activation
threshold for the unit).

Normally, Boltzmann machines are made of two layers of neurons, with
connections only between different layers and no connections within the same
layer. The bottom layer (i.e. the visible one) is denoted further by a binary
vector v = [v1, v2, .., vnv

], in which each unit vi is a binary unit, and where nv
is the size of v (i.e. the number of neurons of the visible layer). The top layer

8 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Algorithm 1 Hybrid Boltzmann machine
Given: a training set of feature vectors (n) of a vehicular network at a random
condition

Assume visible neurons 10, hidden feature neuron : 625 and a standard
random number function;

t= 0:
While termination condition can’t be satisfied

for all features to n do
end for

Assign the function value as eq. (1) & (2)
Formulate T(w) following eq. (4)

for all fuzzy numbers weight w do
initiate final T(w)

end for
t = t+1;
end while

(i.e. the hidden one) is represented by the binary vector h = [h1 , h2 , .., hnh
],

in which each element hj is binary, and where nh is the size of h. Furthermore,
each neuron from the visible layer has associated bias. The biases of the visible
neurons are grouped in a vector a = [a1 , a2 , .., anv]. Similarly, hidden layer
neurons have biases, collected in vector b = [b1, b2, .., bnh]. The broad high
level description is presented in :

In this paper, the implementations of the algorithm is done in Visual C++.
In all the settings, the momentum was set to 0.5, the learning rate to 0.05. We
assume 10 visible and around 625 hidden (under uncertain conditions) neurons,
to be trained with a fuzzy triangular function.

4.1 Results and Analysis
The above Fuzzy Constrained Boltzmann Machine (FCBM) algorithm is sim-
ulated in VC++ 5.0 with MFC (Microsoft Foundation class) support and the
algorithm is tested an available data set [11]. The VC++ code uses two threads
that read and write from the synthesized vehicular network with the func-
tion getVecMessage () and sendVecMessage() from the library predefined as
<msn.h>. Prior to developing the desired simulation, the following propositions
are made to support the simulation across the interconnected device network

• Nodes: A node is an instance of an executable and can be a sensor, actu-
ator, processing or monitoring algorithm.

• Messages: A message is a typed data structure made up of primitive
types like integer, floating point, boolean, etc., arrays of primitives and
constants. Nodes communicate with each other by passing messages.

• Context of Topic: A Context of Topic is an asynchronous data transport
system based on a subscribe/publish system and is identified by a name.
One or more nodes are able to publish data (messages) to a topic and one

9 Mobility Prediction in Vehicular Networks under Uncertainty

Table 2: Analysis of Prediction Scenario with different time stamps
and feature weights
Wt. w 0 2 3 4 5 6 7
Ps = 20 .5 1 .86 .4 0 1 .3 .6 1 0 0 1 0 0 1 0 0 1 0 0 1

1 .6 1 1 1 0.8 1 1 1 1 1 .5 1 1 .5 0 1 .7 0 1 1
0 1 .7 1 0 1 1 .8 1 .8 0 1 1 0 1 0 0 1 1 0 1

Ps= 130 .5 0 1 .6 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 1 0 1 1 1 .4 .6 1 .6 .4 0 0 1 0 0 1
1 .9 1 1 .9 1 1 1 1 .9 0 1 1 0 1 1 0 1 1 1 1

or more nodes can read data on that context of topic. Data is exchanged
asynchronously by means of a topic and via a service. This process will
help to identify more vehicular network features. Finally, this will produce
a training set of vectors

• Services: A services allows nodes to communicate with each other through
a synchronously communication. The service nodes are able to send a
request and receive a response.

The following observation in values of weights (Fuzzy numbers) are done follow-
ing the prediction scenario Ps:

The different intermediate states of the vehicular network have been demon-
strated with the different weight values and there are substantial changes from
weight mark iterations from 0-7. The prediction scenario Ps is also different
with time stamps from 20-130 ms as shown in Fig 2. It is shown that a Fuzzy
driven Boltzmann machine with different vehicle tracks and having same net-
work overheads can predict the movement of vehicles.

The network processing overhead increases proportionally with an increase
in vehicle density for all types of highway road/tracks as shown in Fig. 2. The
network processing overhead in the scheme is higher because of the additional
features incurred for the tasks such as accident zone identification, travel di-
rection identification, risk factor assignment and prioritization of emergency
vehicles like fire services or ambulances.

Prediction is more accurate after the first two tracks (red and blue) are being
for training following the weight values shown in Table 2. The green and blue
curve of the track shows certain steady value with all the features, however for
prediction scenario Ps the red track diminished after certain iterations.

10 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Figure 2: Movement Track

Following the data set in [11], the second part of the simulation is shown. In
this case, to identify the different types of vehicles, the simulation time differs
depending on the weighted feature w. However, the average vehicle density
alters considerably, with respect to average connectivity distance. The other
part of simulation is also done with the number and types of vehicles. The
impact is one of the important parameter to understand the prediction error
analysis.

11 Mobility Prediction in Vehicular Networks under Uncertainty

Figure 3: Impact of Vehicle acceleration and simulation time for
prediction

The plots shown in fig. 3 are closely analogous to the parameters studied:
acceleration of 12 similar vehicles are being considered and the simulation time
is calculated. The simulation code developed for the Boltzmann machine with
fuzzy numbers as constraints, is shown in appendix, and following the code, the
RMS value of the simulation performed on the data set [11] is given in terms of
vehicle mobility predictions. The values collected for the phases of delivery and
acknowledgement and the total time of the iteration have also been presented.
For the acknowledgment phase, there are the minimum and maximum time
used for the message and the number of conditional variables of the messages
for vehicles through FCBM are also given. We also observe that the phases of
configuring the Boltzmann machine with 10 visible and 625 hidden units can
be kept as maximum to train the network. When more than 625 uncertain
features from traffic conditions exist, the prediction time differs randomly, even
after successful training with fuzzy triangular values.

12 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Figure 4: Restricted Vehicles with uncertain Gap

13 Mobility Prediction in Vehicular Networks under Uncertainty

In the figure 4, a plot is shown for 12 vehicles of different types, with an
intermediate gap and distance between them. The plot has been restricted with
iterations of simulation and it is found that, if the intermediate gap of all 12
types of vehicles are considered, then with available training scheme only vehicle
number 12, 8 and 10 can be referred for effective prediction. The other vehicles
cannot be considered with this training function, as the intermediate gaps are
uncertain and random. The curve shows in the plot are also not smooth and it
becomes more stiffer for the best convergence of vehicle 12.

We demonstrate final results as statistical comparisons. It is the impact
of vehicle density and average connectivity distance. We assume statistical
Rayleigh fading with superimposed log normal scale. The results show that both
vehicle density and average connectivity increases as the average vehicle density
increases. Further, as shadow fading occurs, therefore, standard deviation value
increases for both these parameters. This means that the average vehicle density
required to satisfy a given value of average connectivity distance decreases,
whenever the value of standard deviation increases. Three vehicles 12, 8 and 10
are considered to test the convergence of decision in uncertainty, and the lower
red curve demonstrates minimum deviation, but with minimum fuzzy training
value.

For immediate reference, we present a snapshot of the results as in Table 3:
all pairs of iterations with acknowledgment and delivery of movement prediction
are shown and minimum error should correspond to greater precision. It should
be mentioned that, we performed a single partial derivative to obtain the final
training function T (w) with the auxiliary function shown in section 3.1. A higher
order and more iterations of partial derivative will lead to better precision and
could reduce the error value in prediction.

Table 3: Results for Vehicle Movement
Iteration Min Max Val. passed in function RMS Err.

Ackn. 2.1 2.6 05 32.7 4.7
Delv. 1.0 7.9 15 33.6 8.7
Ackn. 5.3 8.0 20 41.2 3.92
Delv. 2.4 2.6 25 34.3 2.1

14 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Figure 5: Optimal Vehicle Density & Connectivity

5 Conclusion
The paper demonstrated a novel model to predict the movement of vehicles
under uncertainty conditions. The approach is implemented through a conven-
tional Boltzmann Machine and trained with fuzzy logic and encompassing the
features of a vehicular network. The hidden features and their combinations are
expressed as a fuzzy triangular function and thus a computationally lightweight
application could be developed. However, while deploying the simulation, it was
observed that as conventionally a Boltzmann machine is used for deep learn-
ing applications (principally pattern recognition), existing Python libraries are
inadequate to support the simulation. The application can be well extended
with more real life data instances and if the order of partial derivation could be
higher when choosing final training function, better throughput and accuracy
could be obtained. A greater numbers of intelligent optimization algorithms like
different variants of swarms can be chosen to select the precise combinations of

15 Mobility Prediction in Vehicular Networks under Uncertainty

parameters. In addition, the complexity of the program may lead to a trade-off
between accuracy of prediction and execution time.

References
[1] H. Omar, W. Zhuang, A. Abdrabou, and L. Li, Performance evaluation of

vemac supporting safety applications in vehicular networks, IEEE Trans.
Emerg. Topics Comput., vol. 1, no. 1, pp. 69–83, Jun. 2013.

[2] S.Pack and Y.Choi, Fast Handoff Scheme Based on Mobility Prediction
in Public Wireless LAN Systems, in IEEE Proceedings- Communications,
,Vol. 151, Issue 5, pp. 489-495, 2004.

[3] G.Yavas, D.Katsaros, O.Ulusoy, and Y. Manolopoulos, A Data Mining Ap-
proach for Location Prediction in Mobile Environments, in Data & Knowl-
edge Engineering, August 2005, Vol.54, Issue 2, pp. 121-146.

[4] X. Wang, C. Wang, G. Cui, and Q. Yang, Practical link duration prediction
model in vehicular ad hoc networks, Int. J. of Dist. Sensor Networks, vol.
2015.

[5] Weigang Wu, Jiebin Zhang, Aoxue Luo, Jiannong Cao, Distributed Mutual
Exclusion Algorithms for Intersection Traffic Control, IEEE Transactions
on Parallel and Distributed Systems, Vol: 26, Issue: 1, Jan. 2015, pp.65 -
74, 2015.

[6] Jialang Cheng, Weigang Wu, Jiannong Cao, Keqin Li, Fuzzy Group-Based
Intersection Control via Vehicular Networks for Smart Transportations,
IEEE Transactions on Industrial Informatics,Vol: 13, Issue: 2, April 2017,
pp.751-758, 2017.

[7] Nizar Alsharif, Khalid Aldubaikhy and Xuemin Shen, Link Duration Es-
timation using Neural Networks based Mobility Prediction in Vehicular
Networks, IEEE Canadian Conference on Electrical and Computer Engi-
neering (CCECE), IEEE procedings, 2016.

[8] Bingnan Jiang, Yunsi Fei, Traffic and vehicle speed prediction with neural
network and Hidden Markov model in vehicular networks, iEEE Intelligent
Vehicles Symposium (IV), 2015 .

[9] Thomas Streubel, Karl Heinz Hoffman, Prediction of driver intended path
at intersections, IEEE Intelligent Vehicles Symposium Proceedings, 2014.

[10] Hinton, G. E.; Sejnowski, T. J. D. E. Rumelhart, J. L. McClelland, and
the PDP Research Group, eds. Learning and Relearning in Boltzmann Ma-
chines, 1986.

[11] Hinton, G. E.; Osindero, S.; Teh, Y. A fast learning algorithm for deep
belief nets Neural Computation. 18 (7): pp.1527–1554, 2006.

16 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

[12] Ratul Mahajan, CRAWDAD dataset microsoft/vanlan (v. 2007-09-14),
downloaded from http://crawdad.org/microsoft/vanlan/20070914,
https://doi.org/10.15783/C7FG6S, Sep 2007.

[13] I. Tal, G. M. Muntean, User oriented fuzzy logic based clustering scheme
for vehicular Ad hoc networks, IEEE Vehicular Technology Conf. (VTC
Spring), pp. 1–5, 2013.

[14] Bevish Jinila, Komathy Rough Set Based Fuzzy Scheme for Clustering and
Cluster Head Selection in VANET ELEKTRONIKA IR ELEKTROTECH-
NIKA, ISSN 1392-1215, Vol. 21, No. 1, 2015.

[15] Miki Aoyagi Learning Coefficient in Bayesian Estimation of Restricted
Boltzmann Machine, Journal of Algebraic Statistics Vol. 4, No. 1, pp. 31-58,
2013.

17 Mobility Prediction in Vehicular Networks under Uncertainty

APPENDIX

Code Segment :
Communication Prototype Functions ∗/

#include <mspnvehic le . h>
#include <ki l lApp . h>
#include <boost / thread / thread . hpp>
void openNewTerminal () ;
bool n o t i f i c a t i o nK i l l e dP r o c e s s
(atv_acrosser : : k i l lApp : : Request &req ,
void rece iveKi l lCommunicat ion (int argc , char ∗∗ argv) ;
boost : : mutex mtxTerminal ;
boost : : mutex : : scoped_lock lock (mtxTerminal) ;
boost : : cond i t i on_var i ab l e condTerminal ;
/∗ I t proves the presence o f
t e rmina l window tha t execu te the proces s
communication ∗/
bool ex i s tTermina l = f a l s e ;
/∗ ∗∗∗
∗ @function : openNewTerminal
∗ Thread opens a new termina l and execu t e s the communication
∗ program . I t a l s o remains wa i t ing s t a t u s on the cond i t i on v a r i a b l e
∗ to launch again the proces s communication .
∗∗ ∗/
void openNewTerminal ()
{
int statusSystem = 0 ;
/∗Open the f i r s t t e rmina l wi th communication program∗/
ex i s tTermina l = true ;
statusSystem = system ("gnome−t e rmina l ␣−x␣ . / communication") ;
p r i n t f ("\nTERMINAL␣OPENED␣STATUS: ␣%d" , statusSystem) ;
/∗ I n f i n i t e whi le , t h e r e w i l l be a lways a cond i t i on v a r i a b l e
which wai t a s i g n a l from a k i l l e d proces s .
When the the cond i t i on v a r i a b l e w i l l be awake from a k i l l e d process ,
i t w i l l open a new termina l and execu te the communication
program and wai t again another s i g n a l from a k i l l e d proces s ∗/
while (1)
{/
∗Condit ion var i ab l e , wait to be awake a f t e r the k i l l e d proce s s ∗/
while (ex i s tTermina l == true) condTerminal . wait (l o ck) ;
/∗Open a new termina l and execu te the communication proces s ∗/
statusSystem = system ("gnome−t e rmina l ␣−x␣ . / communication") ;
p r i n t f ("\nTERMINAL␣OPENED␣STATUS: ␣%d" , statusSystem) ;
i f (statusSystem < 0)
p r i n t f ("\n␣PROBLEM␣TO␣OPEN␣THE␣NEW␣WINDOW␣DURING␣THE

RESTARTING␣OF␣THE␣SOFTWARE␣communication") ;

18 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

}}
∗∗
∗ @function : rece iveKi l lCommunicat ion
∗ Thread waits the communication with communication proce s s v ia
∗ ROS s e r v i c e in case the proce s s communication needs to
∗ terminate . When r e c e i v e the no t i c e from the s e r v i c e the
∗ f unc t i on n o t i f i c a t i o nK i l l e dP r o c e s s i s c a l l e d .
∗∗∗/
void rece iveKi l lCommunicat ion (int argc , char ∗∗ argv)
{
ros : : i n i t (argc , argv , "") ;
ro s : : NodeHandle n ;
//Here the s e r v i c e c a l l e d
" restartCommunication " i s c r ea ted and
// ad v e r t i s e d over ROS.
ro s : : S e rv i c eSe rv e r s e r v i c e = n . adv e r t i s e S e r v i c e
(" restartCommunication " , n o t i f i c a t i o nK i l l e dP r o c e s s) ;
ro s : : sp in () ;

}/
∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ @function : n o t i f i c a t i o nK i l l e dP r o c e s s
∗ This func t i on has c a l l e d each time
that ROS s e r v i c e answers from
∗ the communication c r e a t i n g ∗ a sync ron i z a t i on with i t .
∗ The func t i on w i l l change in f a l s e
the value o f the va r i a b l e
∗ ex i s tTermina l and wake up the
∗ cond i t i on va r i ab l e condTerminal
∗ with the scope o f open a
new termina l and execute the proce s s
∗ communication .
∗∗/
bool n o t i f i c a t i o nK i l l e dP r o c e s s (atv_acrosser : : k i l lApp : : Request &req ,
atv_acrosser : : k i l lApp : : Response &re s)
{
ROS_INFO("PID␣KILLED␣%ld " , (long int) req . p i d2K i l l) ;

/∗ s e t to f a l s e the v a r i a b l e ex i s tTermina l , i t means the r e are nt
open termina l wi th running communication ∗/
ex i s tTermina l = f a l s e ;
/∗ wake up the cond i t i on v a r i a b l e condTerminal ∗/
condTerminal . noti fy_one () ;

return t rue ;
}
int main (int argc , char ∗∗ argv)

19 Mobility Prediction in Vehicular Networks under Uncertainty

{
boost : : thread openNewTerminal_Thread(&openNewTerminal) ;
boost : : thread receiveKil lCommunication_Thread (
&rece iveKi l lCommunicat ion , argc , argv) ;
openNewTerminal_Thread . j o i n () ;
receiveKil lCommunication_Thread . j o i n () ;
return 0 ;
}

/∗ Boltzmann Prototype wi th Fuzzy t r a i n i n g ∗/
#include <math . h>
#include <fstream>
#include <iostream>
#include <random> using namespace arma ; us ing namespace
std ;
#define e l i f else i f
#define HIDDEN_SIZE 200
#define BATCH_SIZE 2000 oncatenateMat (vector<mat> &vec){ int
he ight = vec [0] . n_rows ; int width = vec [0] . n_cols ;
mat r e s = zeros<mat>(he ight ∗ width , vec . s i z e ()) ;
for (int i =0;
i<vec . s i z e () ; i++){mat img = vec [i] ;
img . reshape (he ight ∗ width , 1) ; r e s . c o l (i) = img . c o l (0) ; }
r e s = r e s / 2 5 5 . 0 ; return
r e s ; } int ReverseInt (int i){
unsigned char ch1 , ch2 , ch3 , c
h4 ; ch1 = i & 255 ; c
h2 = (i >> 8) & 255 ; ch3 = (i >> 16) &
255 ; ch4 = (i >> 24) & 255 ;
return ((int) ch1 << 24) +
((int) ch2 << 16) + ((int) ch3 << 8) + ch4 ; }
void read_Mnist (s t r i n g
f i l ename , vector<mat> &vec)
{ i f s t r e am f i l e (f i l ename , i o s : : b inary) ;
i f (f i l e . is_open ()) { int magic_number = 0 ; int
number_of_images = 0 ;
int n_rows = 0 ; int n_cols = 0 ;
f i l e . read ((char∗) &magic_number ,
s izeof (magic_number)) ;
magic_number = Reverse Int (magic_number) ;
f i l e . read ((char∗)
&number_of_images , s izeof (number_of_images)) ;
number_of_images = Reverse Int (number_of_images) ;
f i l e . read ((char∗)
&n_rows , s izeof (n_rows)) ;
n_rows = Reverse Int (n_rows) ;
f i l e . read ((char∗) &n_cols , s izeof (n_cols)) ; n_cols =

20 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

Reverse Int (n_cols) ;
for (int i = 0 ;
i < number_of_images ; ++i){mat tp (n_rows , n_cols) ;
for (int r = 0 ; r < n_rows ; ++r)
{ for (int c = 0 ; c < n_cols ; ++c)
{unsigned char temp = 0 ; f i l e . read ((char∗)
&temp , s izeof (temp)) ; tp (r , c) = (double)
temp ;}} vec . push_back (tp) ; }}}
voidreadData (mat &x , s t r i n g xpath)
{// read MNIST iamge in t o Arma Mat
vec to rvec to r<mat> vec ; read_Mnist (xpath , vec) ;
random_shuff le (vec . begin () , vec . end ()) ;
x = concatenateMat (vec) ; }mat
s igmoid (mat M){ return 1 .0 / (exp(−M) + 1 . 0) ; }
voidmatRandomInit (mat &m, int rows ,
int co l s , double s c a l e r){m =
randn<mat>(rows , c o l s) ;m = m ∗ s c a l e r ;
}matgetBernoul l iMatr ix (mat &prob)
{// randu b u i l d s a Uniformly d i s t r i b u t e d
matrixmat ran = randu<mat>
(prob . n_rows , prob . n_cols)
; mat r e s = zeros<mat>(prob . n_rows ,
prob . n_cols) ; r e s . elem (f i nd (prob > ran)) .
ones () ; return r e s ; }
vo idsave2txt (mat &data , s t r i n g s t r , int s tep){ s t r i n g s =
std : : to_str ing (s tep) ; s t r += s ;
s t r += " . txt " ; FILE ∗pOut = fopen (s t r . c_str () , "w") ;
for (int i =0; i<data . n_rows ; i++){for (int
j =0; j<data . n_cols ; j++)
{ f p r i n t f (pOut , "%l f " , data (i , j)) ;
i f (j == data . n_cols − 1) f p r i n t f (pOut , "\n") ;
else f p r i n t f (pOut , "
") ; } } f c l o s e (pOut) ; }
matFCBM_training (mat x , int hidS ize ,
int batchSize , int cd_k) /∗ Fuzzy Numbers∗/
{ int n f e a tu r e s = x . n_rows ;
int nsamples = x . n_cols ;
// b i s hidden l a y e r ;// c i s v i s i b l e layermat
w, b , c ; matRandomInit (w,
n f ea ture s , h idS ize , 0 . 1 2) ; matRandomInit (b , h idS ize , 1 , 0) ;
matRandomInit (c , n f ea ture s , 1 , 0) ; int counter = 0 ;double
lrateW = 0 . 0 1 ; //Learning ra t e fo
r weights double l ra teC = 0 . 0 1 ; /
/Learning ra t e for b i a s e s o f v i s i b l e un i t s double l r a teB
= 0 . 0 1 ; //Learning ra t e f o r b i a s e s
o f hidden un i t s

21 Mobility Prediction in Vehicular Networks under Uncertainty

double weightcos t = 0 . 0002 ; double initialmomentum = 0 . 5 ; double
finalmomentum = 0 . 9 ; double
errsum = 0 . 0 ; double momentum ;
mat incW = zero s (w. n_rows , w. n_cols) ; mat incB =
ze ro s (b . n_rows , b . n_cols) ;
mat incC = ze ro s (c . n_rows , c . n_cols) ;
while (1){ // s t a r t p o s i t i v e phase in t randomNum =
((long) rand () + (long) rand ()) %
(nsamples − batchS ize)
; mat data = x . c o l s (randomNum, randomNum + batchS ize −
1) ; data = getBernou l l iMat r ix (data) ;
mat poshidprobs = sigmoid (w. t () ∗ data + repmat (b , 1 ,
batchS ize)) ; poshidprobs =
normal i s e (poshidprobs , 1 , 0) ;
mat posprods = data ∗ poshidprobs . t () /
batchS ize ; mat posh idact = sum(poshidprobs , 1) /
batchS ize ; mat po sv i s a c t = sum(data , 1)
/ batchS ize ; // end o f p o s i t i v e
phasemat poshidprobs_temp = poshidprobs ; mat
posh id s ta t e s , negdata ;
// s t a r t ne ga t i v e phase //
CD−K a l g f o r (int i = 0 ; i < cd_k ; i++){po sh id s t a t e s =
getBernou l l iMat r ix (poshidprobs_temp) ;
negdata = sigmoid (w ∗ po sh i d s t a t e s + repmat (c , 1 , batchS ize)) ;
negdata =getBernou l l iMat r ix (negdata) ;
poshidprobs_temp = sigmoid (w. t () ∗ negdata + repmat (b , 1 , batchS ize)) ;
poshidprobs_temp = normal i s e (poshidprobs_temp , 1 , 0) ; }
mat neghidprobs = poshidprobs_temp ;
mat negprods = negdata ∗ neghidprobs . t () /
batchS ize ; mat neghidact = sum(neghidprobs , 1)
/ batchS ize ; mat negv i s a c t = sum(negdata , 1) / batchS ize ; //end o f
negat ive phasedouble e r r = accu (pow(mean(data − negdata , 1) , 2 . 0)) ;
//errsum = err + errsum ; i f (counter > 10) momentum
= finalmomentum ;
else momentum = initialmomentum ;
// update we i gh t s and biasesincW = momentum ∗ incW + lrateW
∗ ((posprods − negprods) − weightcos t ∗ w) ;
incC = momentum ∗ incC + lrateC ∗ (po sv i s a c t − negv i s a c t) ;
incB =
momentum ∗ incB + lrateB ∗ (posh idact − neghidact) ;
w += incW ; c += incC ; b += incB ; cout<<" counter ␣=
"<<counter<<" , ␣ e r r o r ␣=␣"<<err<<endl ;
i f (counter % 100 == 0){ save2txt (w, "w/w_" , counter / 100) ;
save2txt (b , "b/b_" ,
counter / 100) ; save2txt (c , "c/c_" , counter / 100) ; }
i f (counter >= 10000) break;++ counter ; }

22 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler

return w;} int main (int argc ,
char∗∗ argv){ long s ta r t , end ; s t a r t = c l o ck () ;
mat trainX ; readData
(trainX , "mnist / t ra in−images−idx3−ubyte") ; cout<<"Read
trainX␣ s u c c e s s f u l l y ,
i n c l ud ing ␣"<<trainX . n_rows<<"
f e a t u r e s ␣and␣"<<trainX . n_cols<<"␣ samples . "<<endl ; // Finished
read ing datamat
w = FCBM_training (trainX , HIDDEN_SIZE, BATCH_SIZE, 1) ;
end = c lock () ; cout<<"Tota l ly ␣used
time : ␣"<<((double) (end − s t a r t)) /
CLOCKS_PER_SEC<<"␣ second"<<endl ; return 0 ;

