N

N
N

HAL

open science

Manifestability Verification of Discrete Event Systems

Lina Ye, Philippe Dague, Lulu He

» To cite this version:

Lina Ye, Philippe Dague, Lulu He. Manifestability Verification of Discrete Event Systems. DX 2019
- 30th International Workshop on Principles of Diagnosis, Nov 2019, Klagenfurt, Austria. pp.1-9.

hal-02425146

HAL Id: hal-02425146
https://hal.science/hal-02425146v1

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02425146v1
https://hal.archives-ouvertes.fr

Manifestability Verification of Discrete Event Systems

Lina Ye’? and Philippe Dague! and Lulu He'
LRI, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, France
2CentraleSupélec, Univ. Paris-Saclay, France
e-mail: firstname.name @Iri.fr

Abstract

Fault diagnosis is a crucial and challenging task in
the automatic control of complex systems, whose
efficiency depends on the diagnosability property
of a system, allowing one to determine with cer-
tainty whether a given fault has effectively oc-
curred based on the available observations. How-
ever, this is a quite strong property that generally
requires a high number of sensors. Consequently,
it is not rare that developing a diagnosable system
is too expensive. In this paper, we analyze a new
system property called manifestability, that rep-
resents the weakest requirement on observations
for having a chance to identify on line fault occur-
rences and can be verified at design stage. Intu-
itively, this property makes sure that a faulty sys-
tem has at least one future behavior after fault oc-
currence observably distinguishable from all nor-
mal behaviors. Then, we propose an algorithm
with PSPACE complexity to automatically verify
it for finite automata. Furthermore, we prove that
the problem of manifestability verification itself
is PSPACE-complete. The experimental results
show the feasibility of our algorithm from a prac-
tical point of view. Then, we extend our approach
to real-time systems modeled by timed automata.
To do this, we redefine manifestability by taking
into account time constraints and we prove that
this problem for timed automata is undecidable.

1 Introduction

Fault diagnosis is a crucial and challenging task in the auto-
matic control of complex systems, whose efficiency depends
on a system property called diagnosability. Diagnosability
is a system property describing whether one can distinguish
with certainty fault behaviors from normal ones based on
sequences of observable events emitted from the system.
In a given system, the existence of two infinite behaviors
with the same observations, where exactly one contains the
considered fault, violates diagnosability. The existing work
concerning discrete event systems (DESs) searches for such
ambiguous behaviors, both in centralized and distributed
ways [1, 2, 3, 4, 5]. However, in reality, diagnosability turns
out to be a quite strong property that generally requires a
high number of sensors. Consequently, it is often too ex-
pensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., a reason-
able number of sensors, and the possibility to observe a
fault manifestation, we recently introduced a new property
called manifestability [6], which is borrowed from philoso-
phy “...which I shall call the "manifestability of the mental",
that if two systems are mentally different, then there must
be some physical contexts in which this difference will dis-
play itself in differential physical consequences” [7]. In the
domain of diagnosis, similarly, the manifestability property
describes the capability of a system to manifest a fault oc-
currence in at least one future behavior, which is the weakest
property to require. This should be analyzed at design stage
on the system model. Under the assumption that no behav-
ior described in the model has zero probability, the fault will
then necessarily show itself with nonzero probability after
enough runs of the system. Differently, for diagnosability,
all future behaviors of all fault occurrences should be distin-
guishable from all normal behaviors, which is a strong prop-
erty and sensor demanding. Obviously one has to continue
to rely on diagnosability for online safety requirements, i.e.,
for those faults which may have dramatic consequences if
they are not surely detected when they occur, in order to
trigger corrective actions. But for all other faults that do
not need to be detected at their first occurrence (e.g., whose
consequence is a degraded but acceptable functioning that
will require maintenance actions in some near future), man-
ifestability checking, which is cheaper in terms of sensors
needed, is enough under the probabilistic assumption above.

In this paper, we first present in Section 2 the results of
our recent work [8]: we define manifestability for finite au-
tomata before providing a sufficient and necessary condition
to check it with a formal algorithm based on equivalence
checking of languages; then we show that the manifesta-
bility problem itself is PSPACE-complete; finally we give
experimental results about the efficiency of the algorithm
(detailed proofs are omitted and can be found in [8]). In
Section 3, we extend this work to real-time systems mod-
eled by timed automata before redefining this property by
taking into account time constraints in an explicit way with a
sufficient and necessary condition to check it; we prove that
the manifestability becomes then undecidable by reducing
the undecidable inclusion problem of timed languages to it.
Finally, we conclude and draw perspectives in Section 4.

2 Manifestability for DESs

‘We remind the automaton model for DESs and diagnosabil-
ity property and introduce manifestability property, showing
that it is a weaker property than diagnosability, and we give

a formal sufficient and necessary condition for this property
to hold from which we derive an algorithm with PSPACE
complexity to check it (we show that manifestability check-
ing is actually PSPACE-complete) and give some experi-
mental results.

2.1 Models of DESs

We model a DES as a finite automaton G' = (Q, %, d, ¢"),
where () is the finite set of states, X the finite set of events,
d € @ x X x @ the set of transitions (the same notation will
be kept for its natural extension to words of ¥*), and ¢° the
initial state. The set of events X is divided into three disjoint
parts: X = X, w X, w X, where ¥, is the set of observable
events, X, the set of unobservable normal events and X the
set of predefined unobservable fault events.

Example 1. The top part of Figure 1 shows an example of a
system model G, where ¥, = {01, 02,03},%,, = {ul,u2},
and ¥y = {F}.

ul 02
1 "
0]

. u2 - ol 02
ul 4 I 02

/
S E D«
/!

|QON}£%|Q6N|21>|Q7N|22>|Q5ND03

Figure 1: A system model (top) and its diagnoser (bottom).

Similar to diagnosability, the manifestability algorithm
that we will propose would have exponential complexity in
the number of fault types (i.e., fault labels, or more gener-
ally a partition of fault labels) if all those fault types were
considered at once. To reduce it to linear complexity in the
number of fault types, as in [3, 4], we consider only one fault
type at a time. However, multiple occurrences of faults of
the given type are allowed. The faults from other types are
processed as unobservable normal events. This is justified
as the system is manifestable if and only if (iff) it is man-
ifestable for each fault type. In the following, £ = {F},
where F' is the currently considered fault type.

Given a system model G, its prefix-closed language
L(G), which describes both normal and faulty behaviors of
the system, is the set of words produced by G: L(G) =
{s € %3¢ € Q,(¢° s,q) € §}. Those words containing
(resp., not containing) F' will be denoted by Lz (G) (resp.,
Ly (@G)). In the following, we call a word from L(G) a tra-
jectory in the system G and a sequence ¢go¢q107 ..., where
g0 = ¢° and, for all i, (g;, 04, qi+1) € 9, a path in G whose
label ogoy... is a trajectory in G. Given s € L(G), we
denote the post-language of L(G) after s by L(G)/s, for-
mally defined as: L(G)/s = {t € ¥*|s.t € L(G)}. The
projection of the trajectory s to observable events of G is
denoted by P(s), the observation of s. Two trajectories
having same observation are called observably equivalent.

This projection can be extended to L(G), i.e., P(L(G)) =
{P(s)|s € L(G)}, whose elements are called observed tra-
jectories. Traditionally, we do the following assumption
about the possibility to always continue a trajectory and to
observe infinite trajectories:

Assumption 1: (Alive and observably alive system) G is
alive, i.e., each state of Q) has a successor, so that L(G) is
alive (any trajectory has a continuation, i.e., is a strict prefix
of another trajectory), and G is observably alive, i.e., has
no unobservable cycle, i.e., each cycle contains at least one
observable event.

We will need some infinite objects. We denote by ¥¢
the set of infinite words on Y. We define in an obvious
way infinite paths in G and thus L“(G) the language of
infinite words recognized by G in the sense of Biichi au-
tomata [9]. As all states of (G are considered as final states,
those infinite trajectories are just the labels of infinite paths,
and the concept of Biichi automaton coincides with that of
Muller automaton, which can be determinized, according
to the McNaughton theorem. We can conclude from this
that L“(G) is the set of infinite words whose prefixes be-
long to L(G) and that two equivalent system models, i.e.,
such that L(Gy) = L(G3), define the same infinite tra-
jectories, ie., LY(Gy) = L“(G2). Particularly, we use
LY%(G) = LY(G) n *FX¥ for the set of infinite faulty
trajectories, and LY (G) = L¥(G) n (B\{F})“ for the set
of infinite normal trajectories, where \ denotes set subtrac-
tion (and analogously Ly (G) and Ly (G) for finite trajecto-
ries). In the following, we use the classical synchronization
operation between two automata G; and Ga, denoted by
G1 ||z, G2, ie., any event in 3 should be synchronized
while others can occur whenever possible [10].

The following basic operation is aimed at keeping only
information about a given set of events. It boils down to
replace by e the events not concerned and eliminate the e-
transitions thus created. It will be used to simplify some
intermediate structures when checking manifestability with-
out affecting the result obtained.

Definition 1. (Delay Closure). Given an automaton G =
(Q,%,8,q°), its delay closure with respect to $q, with ¥q <
Y, is Cs, (G) = (Qa,X4,04,q°), where: 1) Qq = {¢°} U
{geQ|3seT* 30 € X, (¢",50,9) € 0} 2) (¢,0,¢') €
04 if 0 € Xg and Is € (X\X4)*, (¢, s0,¢") € 4.

2.2 Diagnosability and Manifestability

A fault F' is diagnosable in a system model G if it can be
detected with certainty when enough events are observed
after its occurrence. This property is defined as follows [1],
where s" denotes a trajectory ending with F and F € p, for
p a trajectory, means that F' appears as a letter of p.

Definition 2. (Diagnosability). Given a system model
G and a fault F, F is diagnosable in G iff Ik € N such that
Vst e L(G),Vt e L(G) /s, |t| = k =
(Vpe L(G), P(p) = P(s''t) = F e p).

The above definition states that F' is diagnosable iff, for
each trajectory s in G, for each of its extensions ¢ with
enough events, then every trajectory p in G that has the same
observations as st should contain F. It has been proved
that the existence of two indistinguishable infinite trajecto-
ries, i.e., holding the same sequence of observable events,
with exactly one of them containing the given fault F, is
equivalent to the violation of the diagnosability property [2],
which is stated as follows.

Definition 3. (Critical Pair). A pair of infinite (resp., fi-
nite) trajectories s, s' is called a critical pair with respect
to F, denoted by s + §', if the following conditions are sat-
isfied: 1) s € LY (G), s € LY (G) (resp., s € Lp(G),s" €
Ln(G)). 2) P(s) = P(s').

Theorem 1. A fault F is diagnosable in G iff 3s,s' €
L¥(QG), such that s # s'.

The nonexistence of a critical pair with respect to F' wit-
nesses diagnosability of F'. To design a diagnosable system,
each faulty trajectory should be distinguished from normal
trajectories, which is often very expensive in terms of num-
ber of sensors required. To reduce such a cost and still make
it possible to show the fault after enough runs of the system,
another property called manifestability has been recently
introduced [6], which is much weaker than diagnosability.
Intuitively, manifestability describes whether or not a fault
occurrence has the possibility to manifest itself through ob-
servations. More precisely, if a fault is not manifestable,
then we can never be sure about its occurrence no matter
which trajectory is executed after it. Thus, the system model
should be necessarily revised.

Definition 4. (Manifestability). F' is manifestable in a sys-
tem model G iff

Js€ Lr(G), Vpe L(G), P(p) = P(s) = F € p.

F' is manifestable iff there exists at least one faulty tra-
jectory s in GG such that every trajectory p that is observably
equivalent to s should contain F. In other words, mani-
festability is violated iff each occurrence of the fault can
never manifest itself in any future. This can be rephrased
in terms of diagnosis. Let Diag be the diagnosis procedure
with input an observation in ¥* and output a diagnosis in
{N,F,{N, F}}. Then, F is manifestable in G iff there ex-
ists a trajectory s in G such that Diag(P(s)) = {F'}, i.e.,
the correct diagnosis of the occurrence of F' can be made
for at least one faulty trajectory. This emphasizes that man-
ifestability is actually the weakest requirement for the exis-
tence of a useful (i.e., not always ambiguous from any ob-
served fauly trajectory) diagnosis procedure.

Theorem 2. A fault F is manifestable in a system model
G iff one or the other of the following equivalent conditions
is satisfied:

(¥) 3se Lp(G), 1s' € Ln(G), s # &,
(Sw) Ise Lu(G), I’ € LY (G), s » &

Manifestability concerns the possibility for the system to
manifest at least one occurrence of the fault, i.e., there exists
such an occurrence that shows itself in at least one of its
futures. In a similar way, one can define a strong version
of manifestability, which requires that any occurrence of the
fault should show itself in at least one of its futures [8]. It
is clear from definitions that diagnosability entails (strong)
manifestability.

2.3 Manifestability Verification

Manifestability verification consists in checking whether the
condition J,, (or) in Theorem 2 is satisfied for a given sys-
tem model. In this section, we show how to construct dif-
ferent structures based on a system model to obtain L% (G),
L% (G) as well as the set of critical pairs. The condition S,
(or &) can then be checked by using equivalence techniques
with these intermediate structures.

System Diagnosers

Given a system model, the first step is to construct a struc-
ture showing fault information for each state, i.e., whether
the fault has effectively occurred up to this state from the
initial state.

Definition 5. (Diagnoser). Given a system model G, its di-
agnoser with respect to a considered fault F' is the automa-
ton Dg = (Qp,¥p,0p,q%), where: 1) Qp < Q x {N, F'}
is the set of states; 2) ¥p = X is the set of events;
3) 0p S Qp X Xp X Qp is the set of transitions; 4)
q% = (¢°,N) is the initial state. The transitions of dp
are those ((q,€),e, (¢, V")), with (q,¢) reachable from q¢%,
such that there is a transition (q,e,q') € 6, and V' = F if
{ =Fve=F,otherwise {' = N.

The bottom part of Figure 1 shows the diagnoser for the
system depicted in the top part, where each state has its own
fault information. More precisely, given a system state g,
if the fault has occurred in all paths from ¢° to ¢, then the
fault label for ¢ is F'. Such a state is called fault (diagnoser)
state. If the fault has not occurred in any path from ¢ to g,
then the fault label for ¢ is NV and the state is called normal
(diagnoser) state. Diagnoser construction keeps the same set
of trajectories and splits into two those states reachable by
both a faulty and a normal path (g5 in the example).

Lemma 1. Given a system model G and its corresponding
diagnoser D¢, then we have L(G) = L(D¢g) and L* (G) =
L¥(Dg).

In order to simplify the automata handled, the idea is to
keep only the minimal subparts of D¢ containing all faulty
(resp., normal) trajectories.

Definition 6. (Fault (Refined) Diagnoser). Given a di-
agnoser Dg, its fault diagnoser is the automaton Dg =
(Qpr, Epr,0pr,qYr), where: 1) ¢% . = q%:2) Qpr =
{QD € QD | EIqlD = (q7F) € QDaEIS/ € Z*1)7 (QD>SI7Q3:)) €
0p}i 3) opr = {(ap.0.9p) € op | ap € Qpr}i 4)
Spr = {0 € ¥p | Igh,0,9%) € dpr}. The fault re-
fined diagnoser is obtained by performing the delay closure

with respect to the set of observable events X, on the fault
diagnoser: DET = U5, (DE).

The fault diagnoser keeps all fault states as well as all
transitions and intermediate normal states on paths from ¢%,
to any fault state. Then we refine this fault diagnoser by
only keeping the observable information, which is sufficient
to obtain the set of critical pairs. The top (resp., bottom) part
of Figure 2 shows the fault diagnoser (resp., fault refined
diagnoser) for Example 1.

By construction, the sets of faulty trajectories in Dg and
in G are equal and this is still true for infinite faulty trajec-
tories. This is also the case for faulty trajectories in DEE
and observed faulty trajectories in G (finite or infinite). But
take care that it may exist infinite normal trajectories in D
(resp., DER) if it exists in G a normal cycle in a path to
a fault state (e.g., adding a loop in state ¢; of the system
model of Example 1).

Lemma 2. Given a system model G and its correspond-
ing fault diagnoser DE and fault refined diagnoser DER,
we have Lp(G) = Lp(DE), L4(G) = L%(DE) and
P(Lp(G)) = Lp(DER), P(L3(G)) = L (DER).

Similarly, we obtain the subpart of D containing only
normal trajectories.

q3 F
ul 02

[N o Ve r] [sfDw
N
0301
|q0N|il>|Q1N|i> QSFDO?)

N
0301

Figure 2: Fault diagnoser (top) and its refined version (bot-
tom) for Example 1.

Definition 7. (Normal (Refined) Diagnoser). Given a di-
agnoser D¢, its normal diagnoser is the automaton Dg =
(QDN7EDN75DN7q%N)r where:]) q%N = Q%r 2) QDN =
{(a.N) € @p}: 3) épx = {(ap,0,9h) € dp | ¢} €
QDN},' 4) ZDN = {O’ € ED | El(qlD,O',q%) S 5DN}
The normal refined diagnoser is obtained by performing the
delay closure with respect to X, on the normal diagnoser:

D&t =Ly, (D).

Lemma 3. Given a system model G and its correspond-
ing normal diagnoser Dg and normal refined diagnoser

DXE, we have Ln(G) = L(DY), L% (G) = L* (DY) and
P(Ln(G)) = L(DGT), P(L{(G)) = L*(DE™).

a N
ol

/1:2 ol 02
R T T
01/

[NS ar N3]0 N[D o3

Figure 3: Normal diagnoser (top) and its refined version
(bottom) for Example 1.

Q5NDO3

The top (resp., bottom) part of Figure 3 shows the normal
diagnoser (resp., normal refined diagnoser) for Example 1.

Manifestability Checking

In this section, we show how to obtain the set of critical pairs
based on the diagnosers described in the precedent section.
Based on this, equivalence checking will be used to examine
the manifestability condition <, (or &) in Theorem 2.

Definition 8. (Pair Verifier). Given a system model G,
its pair verifier Vg is obtained by synchronizing the cor-
responding fault and normal refined diagnosers DgR and
DXZE based on the set of observable events, i.e., Vg =
DER |5, DA™

To construct a pair verifier, we impose that the synchro-
nized events are the whole set of observable events. Then
Vg is actually the product of DET and DY and the lan-
guage of the pair verifier is thus the intersection of the lan-
guage of the fault refined diagnoser and that of the normal
refined diagnoser. In the pair verifier, each state is com-
posed of two diagnoser states, whose label (F' or V) of the

first one indicates whether the fault has effectively occurred
in the first of the two corresponding trajectories. If the first
of these two states is a fault state, then this verifier state is
called ambiguous state since, reaching this state, the first
trajectory contains the fault and the second not, while both
have the same observations. Trajectories of Vi are thus ei-
ther normal (all states labels are (/V,/V)) or ambiguous (all
states labels from a certain state are (F',IN)), the latter ones
being denoted by L, (V) (resp., L¥ (V) for infinite ones).

Lemma 4. Given a system model G with its DER, DN
and Vg, we have L,(Vg) = Lr(DER) n L(DY®) and
L#(Ve) = L$(DET) n L*(DYR).

In the pair verifier depicted in Figure 4, the gray node
represents an ambiguous state.

@ N
ol q1 N
/!
N a N

qu ol qr N

03

Figure 4: The pair verifier for the system in Example 1.

Using Lemmas 2, 3, 4 and Definition 3, Theorems 1 and
2 rephrase as (the first result being well-known):

Theorem 3. Given a system model G, a fault F is diagnos-
able iff LY (Vg) = &.

Theorem 4. Given a system model G, a fault F' is man-
ifestable iff Lo(Vg) < Lp(DER) or, equivalently, iff
L (Vi) © L%(DER), where < is the strict inclusion.

Algorithm
Algorithm 1 is the pseudo-code to verify manifestability,
which can simultaneously verify diagnosability.

Algorithm 1 Manifestability and Diagnosability Algorithm
for DESs
1: INPUT: System model G; the considered fault F'

D¢g «— ConstructDiagnoser(G)

DER — ConstructF RDiagnoser(Dg)

DXYE « ConstructN RDiagnoser(Dg)

Vg « DER |5, DXR

if L¥(V) = & then

return “F is diagnosable and manifestable in G”

else if L% (Vi) = LL(DER)

(or, equivalently, L, (Vi) = Lr(DER)) then

9: return “F is neither diagnosable nor manifestable in
G’

10: else

11: return “F is not diagnosable but manifestable in G”

Given the input (line 1) as the system model G and the
fault F', we first construct the diagnoser (line 2) as described
by Definition 5. We then construct fault and normal refined
diagnosers (lines 3-4) as defined by Definitions 6 and 7. The
next step is to synchronize DEF and DY to obtain the
pair verifier Vi (line 5). With DgR and Vg, we have the
following verdicts:

o if L¥ (V) = I (line 6),
manifestable (line 7).

F is diagnosable and thus

[LitSys [[SITI]] [S/TI®PV) [Time | verdict [[HCSys [[SI/T[[[SI/IT[(PV) | Time | verdict |

Ex. 1 8/10 4/4 15 Manifes h-cl 22/24 18/18 32 Manifes
[4] 16/23 21/23 51 Manifes h-c2 36/39 74177 90 Manifes
[3] 16/20 719 25 Manifes h-c3 46/50 105/110 120 Manifes
[11] 3/6 4/6 12 Manifes h-c4 52/57 160/183 151 Manifes
[5] 18/21 53/57 69 Manifes h-c5 57169 32/37 78 Manifes
[12] 9/11 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes
[1] 12/28 45/51 68 NManifes h-c7 320/390 | 1752/1791 323 | NManifes

Table 1: Experimental results of manifestability checking for DESs

o if LY(V) = LY(DER) or, equivalently, L,(Ve) =
Lr(DER) (line 8), necessarily both nonempty, F is
not manifestable and thus not diagnosable (line 9).

o if L¥(Vg) # ¢ and if L¥(Vg) < LY(DER) o,
equivalently, L, (V) = Lr(DER) (line 10), F is not
diagnosable but manifestable (line 11).

Note that L% (DEF) = L¥(DER) (resp., L¥(Vg) =
L* (V%)) where DE'! is identical to DEF (resp., V; identi-
cal to Viz), except that the final states, for Biichi acceptance
conditions, are limited to fault (resp., ambiguous) states.
Note also that the condition L% (V) = L% (DER) is equiv-
alent to L¥ (V) = L¥(DEF) as the infinite normal trajec-
tories are identical in Vz and in DgR (and idem for finite
trajectories).

In Algorithm 1, the complexity of the different diagnosers
constructions is polynomial. Building the pair verifier by
synchronizing the fault and the normal refined diagnosers
is polynomial with the number of system states. To finally
check the manifestability, the equivalence checking (line 8)
is known to be a PSPACE-complete problem (even for in-
finite words, see [13]). Thus, the total complexity of this
algorithm is poly-space. Algorithm 1 suggests that the man-
ifestability problem is more complex than diagnosability,
for which a test of language emptiness is sufficient (line
6), which implies a total NLOGSPACE complexity (in fact
it is a result already known that checking diagnosability is
NLOGSPACE-complete). Actually, we have shown that the
problem of manifestability verification itself is PSPACE-
complete by the polynomial reduction to it of rational lan-
guages equivalence checking.

Theorem 5. Given a system model G and a fault F, the
problem of checking whether F is manifestable in G is
PSPACE-complete.

2.4 Experimental Results

We have implemented our algorithm (including emptiness
and equivalence checking, but existing external solver could
be used for this) and applied it on more than one hundred
examples taken from literature and hand-crafted ones. The
latter ones are constructed to show the scalability since the
sizes of the former ones are very small. All our experimental
results are obtained by running our program on a Mac OS
laptop with a 1.7 GHz Intel Core i7 processor and 8 Go 1600
MHz DDR3 of memory.

Table 1 shows part of our experimental results, where
the verdicts (e.g., Manifes(tability), Diagno(sability), N(on)
Manifes(tability)) show the strongest property satisfied by
the system. We give the number of states and transitions
of the system (|S|/|T]), of the pair verifier (|S|/|T|(PV)), as
well as the execution time (in milliseconds). The exam-
ples (LitSys) include Example 1 with illustrative examples

of other papers. We construct the hand-crafted examples
(HCSys) by extending the examples (LitSys), focusing on
non-diagnosable examples. For example, for a manifestable
system, an arbitrary automaton without fault is added such
that at least one faulty infinite trajectory can always manifest
itself (and obviously critical pairs are preserved).

From our experimental results, the executed time is also
dependent on the size of the pair verifier besides that of the
system. To achieve a worst case, one way is to employ the
construction in the proof of Theorem 5. The hand-crafted
example h-c7 is constructed in such a way. We can see that
the original HVAC system in [1] (as well as its extension
h-c7) is not manifestable. It is thus necessary to go back to
design stage to revise the system model. For other mani-
festable but not diagnosable systems, one interesting future
work is to study bounded-manifestability, making sure to
detect the fault in bounded time after its occurrence.

3 Manifestability for Real-time Systems

For real-time systems, it is important to take into account
during analysis phase explicit time constraints, which are
naturally present in real-life systems (e.g., transmission de-
lays, response time, etc...) and thus cannot be neglected con-
sidering their impact on some properties, including mani-
festability. For example, two ambiguous behaviors for an
untimed DES may be distinguishable by adding explicit
time constraints, e.g., the delay between some two succes-
sive observable events is bounded. Considering that classi-
cal models (e.g., finite automata, Petri nets) cannot express
such real-time constraints, we will analyze manifestability
for timed automata (TA), which are one of the most stud-
ied models for real-time systems since their introduction by
[14]. In such a model, quantitative properties of delays be-
tween events can easily be expressed. Executions traces of
TA are modeled by timed words, i.e., sequences of events
which are attached to the time at which they occur. Hence,
TA are seen as acceptors of languages of timed words.

We extend in this section our approach to handle the man-
ifestability problem for TA, demonstrating that it is undecid-
able for general TA.

3.1 Manifestability for TA

TA constitute a framework for modeling and verifying real-
time systems. A TA is essentially a finite automaton, thus
with a finite set of states and a finite set of labeled transitions
between them, extended with a finite set of real-valued vari-
ables modeling clocks. During a run of a TA, clock values
are initialized with zero when starting in the initial state, and
then are increased all with the same speed. Clock values can
be compared to constants or between them. These compar-
isons form guards (resp., invariants of states) that may en-
able instantaneous transitions (resp., restrict the time during

which one can stay in the corresponding state), constraining
thus the possible behaviors of the TA. Furthermore, clocks
can be also reset to zero by some of the transitions.

The set of possible clock constraints considered in this
paper is formally described by:

gu=true|xzxclz—y>xc|gng,
where x, y are clock variables, c is a constant and
X € {<a <, =, 2, >}‘

Note that a TA allowing such clock constraints is ex-
ponentially more concise than its classical variant with
only diagonal-free constraints (where the comparison can
be done only between a clock value and a constant), but
both have same expressiveness. Let X be a finite set of
clock variables. A clock valuation over X is a function
v : X — R, where R denotes the set R, of non-negative
real numbers. Then the set of all clock valuations over X is
denoted by RX and the set of time constraints over X by
C(X), where such a constraint is given by a collection of
clock constraints. If a clock valuation v satisfies the time
constraint g, then it is denoted by v = g. In the following,
we denote [¢] the set of clock valuations that satisfy g, i.e.,

[9] = {ve R* | v g}
Definition 9. (Timed Automaton) A timed automaton
(TA) is a tuple A = (Q, %, X,6%,q°, I), where:

e () is a finite set of states;
e X is a finite set of events;

e X is a finite set of clock variables;

e 0¥ € Q x C(X) x X x 2X x Q is a finite set of
transitions (q, g,0,r,q’), where the guard g € C(X),
which has to be satisfied for the transition to be fired,
and the clocks r = X reset to zero, when not specified,
are by default true and (J, respectively;

o ¢° € Q is the initial state;

o [:Q — C(X) is the invariant function that associates
with each state q the invariant 1(q), a constraint that
has to be satisfied by clocks in state q (true by default,
when not specified). We require 0 € [I(qo)].

We will again assume the given partition X = ¥, w X, w
Y+ and we can without restriction take ¥y = {F'}.

Example 2. Figure 5 is a TA obtained by adding some time
constraints to the system model shown at the top part of Fig-
ure 1 and modifying some observable events and the place
of the fault. Here c is a clock variable that is used to impose
certain periods between events.

In this example of TA, (¢3,0 < ¢ < 3,02, J, q5) € 6%
means that only when the guard 0 < ¢ < 3 is satisfied, the
event o2 can occur, inducing an instantaneous state change
from g3 to g5 with the clock value unchanged. Since the
last reset of ¢ before this occurrence of 02 happens with the
occurrence of o1, the period between those occurrences of

ol and 02 should be greater than 0 and not greater than 3.

. .. 0<ce<3; 02
We denote this transition also as q3 SeSO qs. For the

sake of simplicity, we do not assign specific invariants to
states, i.e., we use the default value true for all states, which
means that there is no time limit for the system to stay in any
state (in general, once the invariant ceases to be satisfied,
one is obliged to leave the corresponding state).

We call a state with a clock valuation an extension state,
shortly state in the following, i.e., (¢,v) with ¢ € @ and

Figure 5: A real-time system model TA.

v € RX. Lett € R, the valuation v + t is defined by
(v+t)(z) = v(z) +t,Yo € X. Suppose X' < X, we
denote by v[X’ <« 0] the valuation such that Vo € X',
v[X" < 0](x) = 0 and Yz € X\X', v[X' « 0](z) =
v(z). A TA gives rise to an infinite transition system with
two types of transitions between extension states. One is a
time transition representing time passage in the same state
g, during which the invariant inv = I(q) for ¢ should be
always respected. The other one is a discrete transition is-

sued from a labeled transition ¢ EIRALIN ¢’ for TA, associated
with an event o, which is fired (a necessary condition being
that the guard g is satisfied) and should be executed instan-
taneously, i.e., the clock valuation cannot be modified by
the transition itself but only by the reset to O of those clock
variables belonging to 7, if any. In the following, both are
denoted by (q,v) = (¢/,v'), where v € ¥ U R. Thus, if
v € 3, then v should satisfy the guard g in the correspond-
ing TA labeled transition and v' = v[r « 0] for r the clock
variables reset to 0 in this transition, if any. Otherwise, if
v e R, then ¢ = gand v = v + v, where all of v + ¢, for
0 < t < v, should satisfy the invariant ¢nv associated to gq.
Given a TA A, a sequence (¢°,v9 = 0) 25 (q1,v1)

Vn

. = (@n,vy) is a feasible execution in A if Vi € {0,

o — 11 (g5, v5) =25 (giga, vig) is either a time or a

discrete transition in it. Then the word v;...v, € (£ U R)*
is called a timed trajectory or a run. This extends to infi-
nite sequences and trajectories. The set of finite (resp., in-
finite) timed trajectories for A is denoted by L(A) (resp.,
L¥(A), where acceptance is in the sense of Biichi automata
or, equivalently, of Muller automata if all states are consid-
ered as final). The faulty runs, i.e., containing F’, are noted
Lp(A) (resp., L% (A)) and the normal runs, i.e., not contain-
ing F, are noted Ly (A) (resp., L% (A)). By summing up
successive time periods and introducing a zero time period
between two successive events if any, we can always assume
that between any two successive events there is exactly one
time period, i.e., periods and events alternate in a timed tra-
jectory. For p a timed trajectory, we denote by time(p) €
R U {+} the total time duration for p, i.e., time(p) =

vieRawep Vi (note that time(p) = oo implies that p is
an infinite run). We note L*(A) (resp., LR (A), L% (A))
the time-infinite runs (resp., time-infinite faulty runs, time-
infinite normal runs) and thus we have L*(A4) < L¥(A)
(resp., LR(A) < L% (A), LK (A) < LK (A)). Now we
redefine a projection operator P for TA. Given a timed tra-
jectory p and a set of events X' < X, P(p,¥') is the timed
trajectory obtained by erasing from p all events not in ¥ and
summing up the periods between successive events in the
resulting sequence. For example, if p = 2 01 3 u 2 02 3 o1,
then P(p, {01,02}) = 201 502 3 0l. In the following, we
simply denote P(p) the projection of the timed trajectory p

to observable events, i.e., P(p) = P(p, X,).

Analogously to DESs, we make for TA the assumption
about (time-infinite) continuation of any finite (timed) tra-
jectory and observation of any infinite (timed) trajectory.

Assumption 2: (Time alive and observably alive system)
The TA A is time alive (also called timelock-free) , i.e., from
each reachable (by a finite run from ¢°) state, starts a time-
infinite run (which is equivalent to say that L(A) is exactly
made up of all the prefixes of L*(A)), and observably alive,
i.e., there is no infinite run without any observable event,
i.e., any infinite run has infinitely many observable events
occurrences (this implies in particular that the system cannot
stay infinitely, and thus cannot stay an infinitely long time,
in a same state with only time transitions).

The TA of Figure 5 is time alive and observably alive.

We will use the following notion, first introduced by [15].

Definition 10. (A-faulty runs) Given A a TA, let p =
ViVs ... be a faulty run. Let then j be the smallest i such
that v; = F and let p' = vji1.... We denote time(p') by
time(p, F') and call it the period from (the first occurrence
of) fault F in p. If time(p, F) = A, where A € R, then we
say that at least A time units pass after the first occurrence
of F'in p, or, in short, that p is A-faulty.

Definition 2 extends to define diagnosability of TA by re-
placing the length parameter & by the time parameter A.

Definition 11. (Diagnosability of TA). Given a TA A and a
fault F', F is diagnosable in A iff 1A € R such that
Vp e L(A), p A-faulty =
(Vo' € L(A),P(p) = P(p') = F € p').

Note that it is enough to consider only finite runs as, if
one A is suitable for guaranteeing diagnosability with finite
runs, any A’ > A is suitable with finite or infinite runs.

Similarly, Definition 3 is transposed to the TA framework.

Definition 12. (Timed Critical Pair). A pair of infinite
(resp., finite) timed trajectories p, p' is called a timed crit-
ical pair with respect to F, denoted by p % p/, if the fol-
lowing conditions are satisfied: 1) p € L%(A), p' € LY (A)
(resp., p€ Lr(A),p" € Ln(A)). 2) P(p) = P(p').

Finally, the characterization of diagnosability of DESs
provided by Theorem 1 extends to TA [15].

Theorem 6. A fault F is diagnosable in A iff 3p,p’ €
L®(A), such that p % p'.

From this characterization and from the extension to TA
of the construction of a pair verifier V4, it has been proved
that diagnosability of F'in A is equivalent to emptiness of
L¥(Vy), a problem known to be PSPACE. And reducing
TA reachability to diagnosability proves that checking diag-
nosability is actually PSPACE-complete for TA [15].

Now we adapt Definition 4 to TA.

Definition 13. (Manifestability of TA). F' is manifestable
inaTA A iff
dp e Lr(A),
Vol € L(A), P(/) = P(p) = F e .

Note that we could also adopt a weaker definition of man-
ifestability allowing p to be an arbitrary time-finite run,
i.e., not only a finite run in Lp(A), but also a run in
LY (ANLE(A), called Zeno run. But, as Zeno runs are
in general non-desirable behaviors due to modeling errors,
we adopted this stronger version to exclude manifestabilty
through Zeno runs only. An immediate rephrasing of this

definition gives, by using Definition 12, the following ana-
log to Theorem 2.

Theorem 7. A fault F' is manifestable in a TA A iff the fol-
lowing condition is satisfied:

(SY) Fpe Lp(A), 3o’ € Ln(A), p» p.

Thus, in a similar way as for DESs, the manifestability
verification for TA consists in checking the existence of a
faulty trajectory that can be distinguishable by observations
from all normal ones. The difference is that for TA, the
occurrence time of observable events should also be taken
into account. In other words, a non-manifestable DES has
a chance to become manifestable by adding some time con-
straints such that at least one faulty trajectory can be distin-
guishable form normal ones thanks to the different occur-
rence time of the same observable events. For example, the
automaton version (without time constraints) of the system
modeled by the TA of Figure 5 is actually not manifestable
since all faulty trajectories have the same observations as the
normal one, i.e. 010203*. But with time constraints, any
faulty trajectory with the event 1 is distinguishable from
the normal ones since the time duration between the succes-
sive observable events ol and 02 is at most 3 time units for
the former, while greater than 3 time units for the latter.

3.2 Undecidability of Manifestability for TA

From a given TA A modeling a real-time system, the idea is
to construct its corresponding fault diagnoser Di (see Defi-
nition 6 for the non-refined version) and pair verifier V4, the
latter being constructed by synchronizing D% with normal
refined diagnoser Dg R (see Definition 7) based on the set of
observable events (it is not necessary, as we did for automata
in order to get more compact representation, to refine D% ;
the reason to limit as much as possible the use of the refine-
ment process is explained just below). We define the final
states in DY as the faulty states and the final states in V
as the ambiguous states. Thus, manifestability verification
consists in checking whether there exists an accepted timed
trajectory in ij; that is not accepted by V4. The reason is
that each ambiguous timed trajectory in V4 corresponds to
a faulty timed trajectory in the original system, for which
there exists at least one normal timed trajectory with the
same observations, i.e., such that the fault cannot manifest
itself. For the example depicted in Figure 5, its trim V4 and
Dﬁ are shown in Figure 6. Note that in V4, since we syn-
chronize two timed trajectories, their corresponding clock
variable c is distinguished by renaming as c¢; and ¢y [15].
It is obvious that any timed trajectory of Df; containing u1
(and 03) is not accepted by V4 (as the transition in V4 fol-
lowing u1 can never be fired due to its clocks constraints),
proving thus that F' is manifestable.

The problem in the general case is that, to construct DY #
from DfX , we are obliged to rest on the delay closure pro-
cess, i.e., on removing unobservable events or equivalently
removing e-transitions. But it is known that this is not al-
ways possible. Actually, it has been proved [16] that, con-
trary to the case of DES, e-transitions strictly increase the
power of TA, if there is a self-loop containing e-transitions
which reset some clocks. But e-transitions can be removed
if they do not reset clocks, to obtain a TA accepting the
same timed language. Thus, we will assume that there is
no clock reset for the transitions with non-observable events
in the normal diagnoser DY (other non-observable events

0<c1 <3Ancy>3;

Figure 6: The trim pair verifier V4 (top) and the fault diag-
noser DY (bottom) for the system model depicted in Fig-
ure 5.

are not handled as e-transitions) and adopt the method pro-
posed in [16] to remove non-observable events in DY to get
DYE. This assumption is fulfilled by Example 2 (c is not
reset in transition u2).

Assumption 3: (Limited clock reset TA) In the normal
diagnoser DX of A, there is no clock reset for the transitions
with non-observable events.

Now, from the construction of those two structures, The-
orem 4 extends to TA.

Theorem 8. Given a real-time system model A with limited
clock reset, a fault F is manifestable iff L,(Va) = Lr (DY),
with V4 = DY ||, DYE.

So we get a way to check manifestability as checking in-
clusion between languages defined by two TA. But it is well-
known that this problem is undecidable for general TA [17].
Actually, we show now how to reduce the inclusion problem
of TA to the manifestability problem of TA, which proves
the undecidability of manifestability checking for TA.

Theorem 9. Given a TA A and a fault F, the problem of
checking whether F' is manifestable in A is undecidable.

Proof. Reducing the undecidable inclusion problem of TA
to the manifestability problem is achieved by adapting to
TA the construction in the proof of Theorem 5. Let A; =
(Q1727X155f17Q?711), AQ = (Q?anX276§27 QS7[2) be
two arbitrary (non-deterministic) time alive TA on the same
vocabulary. One can assume that)1 N Q2 = J. Based
on A; and As, one can construct a new TA representing a
system model, A = (Q,% u {7, F}, X,6%,¢°,I), where
Q=Qru@uidh X = X;uUXsu {2 6% =
510652 u{(¢%2° = 0, F, &, q0), (¢%,2° = 0,7, &, ¢8)}
andI =1 v, with¥, = X, 3, = {r}and Xy = {F}.
A satisfies the assumption of limited clock reset. From
the construction of A, one has L(A4;) = P(Lp(A)) and
L(As) = P(Ly(A)). In the same way as the proof of The-
orem 5, one gets finally L(A;) n L(Ag) < L(A;) < F
is manifestable in A4, i.e., L(A;) € L(A2) <= F is not
manifestable in A. So, languages inclusion testing for TA
boils down to manifestability checking of TA. O

4 Conclusion and Future Work

In order to bring an alternative to diagnosability analysis,
whose satisfaction is very demanding in terms of sensors
placement, we have defined manifestability, a new weaker
property and have addressed its formal verification for both
DESs and real-time systems modeled as TA. For this, we
have constructed different structures from the system model

and have demonstrated that manifestability checking boils
down to languages inclusion checking and that the mani-
festability problem is PSPACE-complete for finite automata
(for which we have provided preliminary experimental re-
sults showing the efficiency and scalability of this approach)
and undecidable for TA. We work presently on defining
subclasses of TA (based on determinism conditions) for
which this problem becomes decidable, actually PSPACE-
complete, and can be encoded into an SMT formula, which
can be checked automatically by an SMT solver (our TA
example of Figure 5 belongs actually to such a decidable
subclass).

References

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
and D. Teneketzis. Diagnosability of Discrete Event System.
Transactions on Automatic Control, 40(9):1555-1575, 1995.

[2] S.Jiang, Z. Huang, V. Chandra, and R. Kumar. A Polynomial
Time Algorithm for Testing Diagnosability of Discrete Event
Systems. Transactions on Automatic Control, 46(8):1318—
1321, 2001.

[3] Y Pencolé. Diagnosability Analysis of Distributed Dis-
crete Event Systems. In Proceedings of the 16th European
Conference on Articifial Intelligent (ECAI’04), pages 43—47.
Nieuwe Hemweg: IOS Press., 2004.

[4] A. Schumann and J. Huang. A Scalable Jointree Algorithm
for Diagnosability. In Proceedings of the 23rd American Na-
tional Conference on Artificial Intelligence (AAAI’08), pages
535-540. Menlo Park, Calif.: AAAI Press., 2008.

[5] L. Ye and P. Dague. Diagnosability Analysis of Discrete
Event Systems with Autonomous Components. In Proceed-
ings of the 19th European Conference on Artificial Intelli-
gence (ECAI’10), pages 105-110. Nieuwe Hemweg: 10S
Press., 2010.

[6] L. Ye, P. Dague, D. Longuet, L. Branddn Briones, and
A. Madalinski. Fault Manifestability Verification for Discrete
Event Systems. In Proceedings of the 22nd European Confer-
ence on Artificial Intelligence (ECAI’16), pages 1718-1719.
10S Press., 2016.

[7]1 D. Papineau. Philosophical Naturalism. Blackwell Pub,
1993.

[8] L. Ye, P. Dague, D. Longuet, L. Branddn Briones, and
A. Madalinski. How to be sure a faulty system does not al-
ways appear healthy? In Proceedings of 12th International
Conference on Verification and Evaluation of Computer and
Communication Systems (VECoS 2018), Grenoble, France,
September 26-28, 2018, pages 114-129, 2018.

[9] J.R. Biichi. On a decision method in restricted second order
arithmetic. Z. Math. Logik Grundlag. Math, 6:66-92, 1960.

[10] C. G. Cassandras and S. Lafortune. Introduction To Discrete
Event Systems, Second Edition. Springer, 2008.

[11] S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal
constructions for active diagnosis. J. Comput. Syst. Sci.,
83(1):101-120, 2017.

[12] A. Schumann and Y. Pencolé. Scalable Diagnosability
Checking of Event-driven System. In Proceedings of the
Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI’07), pages 575-580. Menlo Park, Calif.: In-
ternational Joint Conferences on Artificial Intelligence, Inc.,
2007.

[13] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementa-
tion problem for Biichi automata with applications to tempo-
ral logic. Theoretical Computer Science, 49(2-3):217-237,
1987.

[14]

[15]

[16]

[17]

R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183-235, April 1994.

S. Tripakis. Fault diagnosis for timed automata. In Pro-
ceedings of International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT’02), Lec-
ture Notes in Computer Science. Springer, 2002.

B. Bérard, P. Gastin, and A. Petit. On the power of non-
observable actions in timed automata. In Proceedings of 13th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 96), Grenoble, France, February 22-24, 1996,
pages 257-268, 1996.

R. Alur and P. Madhusudan. Decision problems for timed
automata: A survey. In Formal Methods for the Design of
Real-Time Systems, International School on Formal Methods
for the Design of Computer, Communication and Software
Systems, SEM-RT 2004, Bertinoro, Italy, September 13-18,
2004, Revised Lectures, pages 1-24, 2004.

