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Abstract

Fault diagnosis is a crucial and challenging task in
the automatic control of complex systems, whose
efficiency depends on the diagnosability property
of a system, allowing one to determine with cer-
tainty whether a given fault has effectively oc-
curred based on the available observations. How-
ever, this is a quite strong property that generally
requires a high number of sensors. Consequently,
it is not rare that developing a diagnosable system
is too expensive. In this paper, we analyze a new
system property called manifestability, that rep-
resents the weakest requirement on observations
for having a chance to identify on line fault occur-
rences and can be verified at design stage. Intu-
itively, this property makes sure that a faulty sys-
tem has at least one future behavior after fault oc-
currence observably distinguishable from all nor-
mal behaviors. Then, we propose an algorithm
with PSPACE complexity to automatically verify
it for finite automata. Furthermore, we prove that
the problem of manifestability verification itself
is PSPACE-complete. The experimental results
show the feasibility of our algorithm from a prac-
tical point of view. Then, we extend our approach
to real-time systems modeled by timed automata.
To do this, we redefine manifestability by taking
into account time constraints and we prove that
this problem for timed automata is undecidable.

1 Introduction
Fault diagnosis is a crucial and challenging task in the auto-
matic control of complex systems, whose efficiency depends
on a system property called diagnosability. Diagnosability
is a system property describing whether one can distinguish
with certainty fault behaviors from normal ones based on
sequences of observable events emitted from the system.
In a given system, the existence of two infinite behaviors
with the same observations, where exactly one contains the
considered fault, violates diagnosability. The existing work
concerning discrete event systems (DESs) searches for such
ambiguous behaviors, both in centralized and distributed
ways [1, 2, 3, 4, 5]. However, in reality, diagnosability turns
out to be a quite strong property that generally requires a
high number of sensors. Consequently, it is often too ex-
pensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., a reason-
able number of sensors, and the possibility to observe a
fault manifestation, we recently introduced a new property
called manifestability [6], which is borrowed from philoso-
phy “...which I shall call the "manifestability of the mental",
that if two systems are mentally different, then there must
be some physical contexts in which this difference will dis-
play itself in differential physical consequences” [7]. In the
domain of diagnosis, similarly, the manifestability property
describes the capability of a system to manifest a fault oc-
currence in at least one future behavior, which is the weakest
property to require. This should be analyzed at design stage
on the system model. Under the assumption that no behav-
ior described in the model has zero probability, the fault will
then necessarily show itself with nonzero probability after
enough runs of the system. Differently, for diagnosability,
all future behaviors of all fault occurrences should be distin-
guishable from all normal behaviors, which is a strong prop-
erty and sensor demanding. Obviously one has to continue
to rely on diagnosability for online safety requirements, i.e.,
for those faults which may have dramatic consequences if
they are not surely detected when they occur, in order to
trigger corrective actions. But for all other faults that do
not need to be detected at their first occurrence (e.g., whose
consequence is a degraded but acceptable functioning that
will require maintenance actions in some near future), man-
ifestability checking, which is cheaper in terms of sensors
needed, is enough under the probabilistic assumption above.

In this paper, we first present in Section 2 the results of
our recent work [8]: we define manifestability for finite au-
tomata before providing a sufficient and necessary condition
to check it with a formal algorithm based on equivalence
checking of languages; then we show that the manifesta-
bility problem itself is PSPACE-complete; finally we give
experimental results about the efficiency of the algorithm
(detailed proofs are omitted and can be found in [8]). In
Section 3, we extend this work to real-time systems mod-
eled by timed automata before redefining this property by
taking into account time constraints in an explicit way with a
sufficient and necessary condition to check it; we prove that
the manifestability becomes then undecidable by reducing
the undecidable inclusion problem of timed languages to it.
Finally, we conclude and draw perspectives in Section 4.

2 Manifestability for DESs
We remind the automaton model for DESs and diagnosabil-
ity property and introduce manifestability property, showing
that it is a weaker property than diagnosability, and we give



a formal sufficient and necessary condition for this property
to hold from which we derive an algorithm with PSPACE
complexity to check it (we show that manifestability check-
ing is actually PSPACE-complete) and give some experi-
mental results.

2.1 Models of DESs
We model a DES as a finite automaton G “ pQ,Σ, δ, q0q,
where Q is the finite set of states, Σ the finite set of events,
δ Ď QˆΣˆQ the set of transitions (the same notation will
be kept for its natural extension to words of Σ˚), and q0 the
initial state. The set of events Σ is divided into three disjoint
parts: Σ “ ΣoZΣuZΣf , where Σo is the set of observable
events, Σu the set of unobservable normal events and Σf the
set of predefined unobservable fault events.
Example 1. The top part of Figure 1 shows an example of a
system model G, where Σo “ to1, o2, o3u,Σu “ tu1, u2u,
and Σf “ tF u.
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Figure 1: A system model (top) and its diagnoser (bottom).

Similar to diagnosability, the manifestability algorithm
that we will propose would have exponential complexity in
the number of fault types (i.e., fault labels, or more gener-
ally a partition of fault labels) if all those fault types were
considered at once. To reduce it to linear complexity in the
number of fault types, as in [3, 4], we consider only one fault
type at a time. However, multiple occurrences of faults of
the given type are allowed. The faults from other types are
processed as unobservable normal events. This is justified
as the system is manifestable if and only if (iff) it is man-
ifestable for each fault type. In the following, Σf “ tF u,
where F is the currently considered fault type.

Given a system model G, its prefix-closed language
LpGq, which describes both normal and faulty behaviors of
the system, is the set of words produced by G: LpGq “
ts P Σ˚|Dq P Q, pq0, s, qq P δu. Those words containing
(resp., not containing) F will be denoted by LF pGq (resp.,
LN pGq). In the following, we call a word from LpGq a tra-
jectory in the system G and a sequence q0σ0q1σ1..., where
q0 “ q0 and, for all i, pqi, σi, qi`1q P δ, a path in G whose
label σ0σ1... is a trajectory in G. Given s P LpGq, we
denote the post-language of LpGq after s by LpGq{s, for-
mally defined as: LpGq{s “ tt P Σ˚|s.t P LpGqu. The
projection of the trajectory s to observable events of G is
denoted by P psq, the observation of s. Two trajectories
having same observation are called observably equivalent.

This projection can be extended to LpGq, i.e., P pLpGqq “
tP psq|s P LpGqu, whose elements are called observed tra-
jectories. Traditionally, we do the following assumption
about the possibility to always continue a trajectory and to
observe infinite trajectories:

Assumption 1: (Alive and observably alive system) G is
alive, i.e., each state of Q has a successor, so that LpGq is
alive (any trajectory has a continuation, i.e., is a strict prefix
of another trajectory), and G is observably alive, i.e., has
no unobservable cycle, i.e., each cycle contains at least one
observable event.

We will need some infinite objects. We denote by Σω

the set of infinite words on Σ. We define in an obvious
way infinite paths in G and thus LωpGq the language of
infinite words recognized by G in the sense of Büchi au-
tomata [9]. As all states of G are considered as final states,
those infinite trajectories are just the labels of infinite paths,
and the concept of Büchi automaton coincides with that of
Muller automaton, which can be determinized, according
to the McNaughton theorem. We can conclude from this
that LωpGq is the set of infinite words whose prefixes be-
long to LpGq and that two equivalent system models, i.e.,
such that LpG1q “ LpG2q, define the same infinite tra-
jectories, i.e., LωpG1q “ LωpG2q. Particularly, we use
LωF pGq “ LωpGq X Σ˚FΣω for the set of infinite faulty
trajectories, and LωN pGq “ LωpGq X pΣztF uqω for the set
of infinite normal trajectories, where z denotes set subtrac-
tion (and analogously LF pGq and LN pGq for finite trajecto-
ries). In the following, we use the classical synchronization
operation between two automata G1 and G2, denoted by
G1 ‖Σs G2, i.e., any event in Σs should be synchronized
while others can occur whenever possible [10].

The following basic operation is aimed at keeping only
information about a given set of events. It boils down to
replace by ε the events not concerned and eliminate the ε-
transitions thus created. It will be used to simplify some
intermediate structures when checking manifestability with-
out affecting the result obtained.
Definition 1. (Delay Closure). Given an automaton G “

pQ,Σ, δ, q0q, its delay closure with respect to Σd, with Σd Ď
Σ, is AΣd

pGq “ pQd,Σd, δd, q
0q, where: 1) Qd “ tq0u Y

tq P Q | Ds P Σ˚, Dσ P Σd, pq
0, sσ, qq P δu; 2) pq, σ, q1q P

δd if σ P Σd and Ds P pΣzΣdq˚, pq, sσ, q1q P δ.

2.2 Diagnosability and Manifestability
A fault F is diagnosable in a system model G if it can be
detected with certainty when enough events are observed
after its occurrence. This property is defined as follows [1],
where sF denotes a trajectory ending with F and F P p, for
p a trajectory, means that F appears as a letter of p.
Definition 2. (Diagnosability). Given a system model
G and a fault F , F is diagnosable in G iff Dk P N such that

@sF P LpGq,@t P LpGq{sF , |t| ě k ñ
p@p P LpGq, P ppq “ P psF tq ñ F P pq.

The above definition states that F is diagnosable iff, for
each trajectory sF in G, for each of its extensions t with
enough events, then every trajectory p in G that has the same
observations as sF t should contain F . It has been proved
that the existence of two indistinguishable infinite trajecto-
ries, i.e., holding the same sequence of observable events,
with exactly one of them containing the given fault F , is
equivalent to the violation of the diagnosability property [2],
which is stated as follows.



Definition 3. (Critical Pair). A pair of infinite (resp., fi-
nite) trajectories s, s1 is called a critical pair with respect
to F , denoted by s  s1, if the following conditions are sat-
isfied: 1) s P LωF pGq, s

1 P LωN pGq (resp., s P LF pGq, s1 P
LN pGq). 2) P psq “ P ps1q.

Theorem 1. A fault F is diagnosable in G iff Es, s1 P
LωpGq, such that s  s1.

The nonexistence of a critical pair with respect to F wit-
nesses diagnosability of F . To design a diagnosable system,
each faulty trajectory should be distinguished from normal
trajectories, which is often very expensive in terms of num-
ber of sensors required. To reduce such a cost and still make
it possible to show the fault after enough runs of the system,
another property called manifestability has been recently
introduced [6], which is much weaker than diagnosability.
Intuitively, manifestability describes whether or not a fault
occurrence has the possibility to manifest itself through ob-
servations. More precisely, if a fault is not manifestable,
then we can never be sure about its occurrence no matter
which trajectory is executed after it. Thus, the system model
should be necessarily revised.

Definition 4. (Manifestability). F is manifestable in a sys-
tem model G iff

Ds P LF pGq, @p P LpGq, P ppq “ P psq ñ F P p.

F is manifestable iff there exists at least one faulty tra-
jectory s in G such that every trajectory p that is observably
equivalent to s should contain F . In other words, mani-
festability is violated iff each occurrence of the fault can
never manifest itself in any future. This can be rephrased
in terms of diagnosis. Let Diag be the diagnosis procedure
with input an observation in Σ˚o and output a diagnosis in
tN,F, tN,F uu. Then, F is manifestable in G iff there ex-
ists a trajectory s in G such that DiagpP psqq “ tF u, i.e.,
the correct diagnosis of the occurrence of F can be made
for at least one faulty trajectory. This emphasizes that man-
ifestability is actually the weakest requirement for the exis-
tence of a useful (i.e., not always ambiguous from any ob-
served fauly trajectory) diagnosis procedure.

Theorem 2. A fault F is manifestable in a system model
G iff one or the other of the following equivalent conditions
is satisfied:

p=q Ds P LF pGq, Es1 P LN pGq, s  s1,
p=ωq Ds P LωF pGq, Es

1 P LωN pGq, s  s1.

Manifestability concerns the possibility for the system to
manifest at least one occurrence of the fault, i.e., there exists
such an occurrence that shows itself in at least one of its
futures. In a similar way, one can define a strong version
of manifestability, which requires that any occurrence of the
fault should show itself in at least one of its futures [8]. It
is clear from definitions that diagnosability entails (strong)
manifestability.

2.3 Manifestability Verification
Manifestability verification consists in checking whether the
condition=ω (or=) in Theorem 2 is satisfied for a given sys-
tem model. In this section, we show how to construct dif-
ferent structures based on a system model to obtain LωF pGq,
LωN pGq as well as the set of critical pairs. The condition =ω
(or =) can then be checked by using equivalence techniques
with these intermediate structures.

System Diagnosers
Given a system model, the first step is to construct a struc-
ture showing fault information for each state, i.e., whether
the fault has effectively occurred up to this state from the
initial state.

Definition 5. (Diagnoser). Given a system model G, its di-
agnoser with respect to a considered fault F is the automa-
tonDG “ pQD,ΣD, δD, q

0
Dq, where: 1)QD Ď QˆtN,F u

is the set of states; 2) ΣD “ Σ is the set of events;
3) δD Ď QD ˆ ΣD ˆ QD is the set of transitions; 4)
q0
D “ pq0, Nq is the initial state. The transitions of δD

are those ppq, `q, e, pq1, `1qq, with pq, `q reachable from q0
D,

such that there is a transition pq, e, q1q P δ, and `1 “ F if
` “ F _ e “ F , otherwise `1 “ N .

The bottom part of Figure 1 shows the diagnoser for the
system depicted in the top part, where each state has its own
fault information. More precisely, given a system state q,
if the fault has occurred in all paths from q0 to q, then the
fault label for q is F . Such a state is called fault (diagnoser)
state. If the fault has not occurred in any path from q0 to q,
then the fault label for q is N and the state is called normal
(diagnoser) state. Diagnoser construction keeps the same set
of trajectories and splits into two those states reachable by
both a faulty and a normal path (q5 in the example).

Lemma 1. Given a system model G and its corresponding
diagnoserDG, then we have LpGq “ LpDGq and LωpGq “
LωpDGq.

In order to simplify the automata handled, the idea is to
keep only the minimal subparts of DG containing all faulty
(resp., normal) trajectories.

Definition 6. (Fault (Refined) Diagnoser). Given a di-
agnoser DG, its fault diagnoser is the automaton DF

G “

pQDF , ΣDF , δDF , q0
DF q, where: 1) q0

DF “ q0
D; 2) QDF “

tqD P QD | Dq
1
D “ pq, F q P QD, Ds

1 P Σ˚D, pqD, s
1, q1Dq P

δ˚Du; 3) δDF “ tpq1
D, σ, q

2
Dq P δD | q2

D P QDF u; 4)
ΣDF “ tσ P ΣD | Dpq1

D, σ, q
2
Dq P δDF u. The fault re-

fined diagnoser is obtained by performing the delay closure
with respect to the set of observable events Σo on the fault
diagnoser: DFR

G “ AΣo
pDF

Gq.

The fault diagnoser keeps all fault states as well as all
transitions and intermediate normal states on paths from q0

D
to any fault state. Then we refine this fault diagnoser by
only keeping the observable information, which is sufficient
to obtain the set of critical pairs. The top (resp., bottom) part
of Figure 2 shows the fault diagnoser (resp., fault refined
diagnoser) for Example 1.

By construction, the sets of faulty trajectories in DF
G and

in G are equal and this is still true for infinite faulty trajec-
tories. This is also the case for faulty trajectories in DFR

G
and observed faulty trajectories in G (finite or infinite). But
take care that it may exist infinite normal trajectories in DF

G

(resp., DFR
G ) if it exists in G a normal cycle in a path to

a fault state (e.g., adding a loop in state q1 of the system
model of Example 1).

Lemma 2. Given a system model G and its correspond-
ing fault diagnoser DF

G and fault refined diagnoser DFR
G ,

we have LF pGq “ LF pD
F
Gq, L

ω
F pGq “ LωF pD

F
Gq and

P pLF pGqq “ LF pD
FR
G q, P pLωF pGqq “ LωF pD

FR
G q.

Similarly, we obtain the subpart of DG containing only
normal trajectories.
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Figure 2: Fault diagnoser (top) and its refined version (bot-
tom) for Example 1.

Definition 7. (Normal (Refined) Diagnoser). Given a di-
agnoser DG, its normal diagnoser is the automaton DN

G “

pQDN ,ΣDN , δDN , q0
DN q, where: 1) q0

DN “ q0
D; 2) QDN “

tpq,Nq P QDu; 3) δDN “ tpq1
D, σ, q

2
Dq P δD | q2

D P

QDN u; 4) ΣDN “ tσ P ΣD | Dpq1
D, σ, q

2
Dq P δDN u.

The normal refined diagnoser is obtained by performing the
delay closure with respect to Σo on the normal diagnoser:
DNR
G “ AΣo

pDN
G q.

Lemma 3. Given a system model G and its correspond-
ing normal diagnoser DN

G and normal refined diagnoser
DNR
G , we have LN pGq “ LpDN

G q, L
ω
N pGq “ LωpDN

G q and
P pLN pGqq “ LpDNR

G q, P pLωN pGqq “ LωpDNR
G q.
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Figure 3: Normal diagnoser (top) and its refined version
(bottom) for Example 1.

The top (resp., bottom) part of Figure 3 shows the normal
diagnoser (resp., normal refined diagnoser) for Example 1.

Manifestability Checking
In this section, we show how to obtain the set of critical pairs
based on the diagnosers described in the precedent section.
Based on this, equivalence checking will be used to examine
the manifestability condition =ω (or =) in Theorem 2.

Definition 8. (Pair Verifier). Given a system model G,
its pair verifier VG is obtained by synchronizing the cor-
responding fault and normal refined diagnosers DFR

G and
DNR
G based on the set of observable events, i.e., VG “

DFR
G ‖Σo

DNR
G .

To construct a pair verifier, we impose that the synchro-
nized events are the whole set of observable events. Then
VG is actually the product of DFR

G and DNR
G and the lan-

guage of the pair verifier is thus the intersection of the lan-
guage of the fault refined diagnoser and that of the normal
refined diagnoser. In the pair verifier, each state is com-
posed of two diagnoser states, whose label (F or N ) of the

first one indicates whether the fault has effectively occurred
in the first of the two corresponding trajectories. If the first
of these two states is a fault state, then this verifier state is
called ambiguous state since, reaching this state, the first
trajectory contains the fault and the second not, while both
have the same observations. Trajectories of VG are thus ei-
ther normal (all states labels are (N ,N )) or ambiguous (all
states labels from a certain state are (F ,N )), the latter ones
being denoted by LapVGq (resp., Lωa pVGq for infinite ones).
Lemma 4. Given a system model G with its DFR

G , DNR
G

and VG, we have LapVGq “ LF pD
FR
G q X LpDNR

G q and
Lωa pVGq “ LωF pD

FR
G q X LωpDNR

G q.

In the pair verifier depicted in Figure 4, the gray node
represents an ambiguous state.
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Figure 4: The pair verifier for the system in Example 1.

Using Lemmas 2, 3, 4 and Definition 3, Theorems 1 and
2 rephrase as (the first result being well-known):
Theorem 3. Given a system model G, a fault F is diagnos-
able iff Lωa pVGq “ H.

Theorem 4. Given a system model G, a fault F is man-
ifestable iff LapVGq Ă LF pD

FR
G q or, equivalently, iff

Lωa pVGq Ă LωF pD
FR
G q, where Ă is the strict inclusion.

Algorithm
Algorithm 1 is the pseudo-code to verify manifestability,
which can simultaneously verify diagnosability.

Algorithm 1 Manifestability and Diagnosability Algorithm
for DESs

1: INPUT: System model G; the considered fault F
2: DG Ð ConstructDiagnoserpGq
3: DFR

G Ð ConstructFRDiagnoserpDGq

4: DNR
G Ð ConstructNRDiagnoserpDGq

5: VG Ð DFR
G ‖Σo

DNR
G

6: if Lωa pVGq “ H then
7: return “F is diagnosable and manifestable in G”
8: else if Lωa pVGq “ LωF pD

FR
G q

(or, equivalently, LapVGq “ LF pD
FR
G q) then

9: return “F is neither diagnosable nor manifestable in
G”

10: else
11: return “F is not diagnosable but manifestable in G”

Given the input (line 1) as the system model G and the
fault F , we first construct the diagnoser (line 2) as described
by Definition 5. We then construct fault and normal refined
diagnosers (lines 3-4) as defined by Definitions 6 and 7. The
next step is to synchronize DFR

G and DNR
G to obtain the

pair verifier VG (line 5). With DFR
G and VG, we have the

following verdicts:
• if Lωa pVGq “ H (line 6), F is diagnosable and thus

manifestable (line 7).



LitSys |S|/|T| |S|/|T|(PV) Time verdict HCSys |S|/|T| |S|/|T|(PV) Time verdict
Ex. 1 8/10 4/4 15 Manifes h-c1 22/24 18/18 32 Manifes
[4] 16/23 21/23 51 Manifes h-c2 36/39 74/77 90 Manifes
[3] 16/20 7/9 25 Manifes h-c3 46/50 105/110 120 Manifes

[11] 3/6 4/6 12 Manifes h-c4 52/57 160/183 151 Manifes
[5] 18/21 53/57 69 Manifes h-c5 57/69 32/37 78 Manifes

[12] 9/11 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes
[1] 12/28 45/51 68 NManifes h-c7 320/390 1752/1791 323 NManifes

Table 1: Experimental results of manifestability checking for DESs

• if Lωa pVGq “ LωF pD
FR
G q or, equivalently, LapVGq “

LF pD
FR
G q (line 8), necessarily both nonempty, F is

not manifestable and thus not diagnosable (line 9).
• if Lωa pVGq ‰ H and if Lωa pVGq Ă LωF pD

FR
G q or,

equivalently, LapVGq Ă LF pD
FR
G q (line 10), F is not

diagnosable but manifestable (line 11).
Note that LωF pD

FR
G q “ LωpD1FRG q (resp., Lωa pVGq “

LωpV 1Gq) where D1FRG is identical to DFR
G (resp., V 1G identi-

cal to VG), except that the final states, for Büchi acceptance
conditions, are limited to fault (resp., ambiguous) states.
Note also that the condition Lωa pVGq “ LωF pD

FR
G q is equiv-

alent to LωpVGq “ LωpDFR
G q as the infinite normal trajec-

tories are identical in VG and in DFR
G (and idem for finite

trajectories).
In Algorithm 1, the complexity of the different diagnosers

constructions is polynomial. Building the pair verifier by
synchronizing the fault and the normal refined diagnosers
is polynomial with the number of system states. To finally
check the manifestability, the equivalence checking (line 8)
is known to be a PSPACE-complete problem (even for in-
finite words, see [13]). Thus, the total complexity of this
algorithm is poly-space. Algorithm 1 suggests that the man-
ifestability problem is more complex than diagnosability,
for which a test of language emptiness is sufficient (line
6), which implies a total NLOGSPACE complexity (in fact
it is a result already known that checking diagnosability is
NLOGSPACE-complete). Actually, we have shown that the
problem of manifestability verification itself is PSPACE-
complete by the polynomial reduction to it of rational lan-
guages equivalence checking.
Theorem 5. Given a system model G and a fault F , the
problem of checking whether F is manifestable in G is
PSPACE-complete.

2.4 Experimental Results
We have implemented our algorithm (including emptiness
and equivalence checking, but existing external solver could
be used for this) and applied it on more than one hundred
examples taken from literature and hand-crafted ones. The
latter ones are constructed to show the scalability since the
sizes of the former ones are very small. All our experimental
results are obtained by running our program on a Mac OS
laptop with a 1.7 GHz Intel Core i7 processor and 8 Go 1600
MHz DDR3 of memory.

Table 1 shows part of our experimental results, where
the verdicts (e.g., Manifes(tability), Diagno(sability), N(on)
Manifes(tability)) show the strongest property satisfied by
the system. We give the number of states and transitions
of the system (|S|/|T|), of the pair verifier (|S|/|T|(PV)), as
well as the execution time (in milliseconds). The exam-
ples (LitSys) include Example 1 with illustrative examples

of other papers. We construct the hand-crafted examples
(HCSys) by extending the examples (LitSys), focusing on
non-diagnosable examples. For example, for a manifestable
system, an arbitrary automaton without fault is added such
that at least one faulty infinite trajectory can always manifest
itself (and obviously critical pairs are preserved).

From our experimental results, the executed time is also
dependent on the size of the pair verifier besides that of the
system. To achieve a worst case, one way is to employ the
construction in the proof of Theorem 5. The hand-crafted
example h-c7 is constructed in such a way. We can see that
the original HVAC system in [1] (as well as its extension
h-c7) is not manifestable. It is thus necessary to go back to
design stage to revise the system model. For other mani-
festable but not diagnosable systems, one interesting future
work is to study bounded-manifestability, making sure to
detect the fault in bounded time after its occurrence.

3 Manifestability for Real-time Systems
For real-time systems, it is important to take into account
during analysis phase explicit time constraints, which are
naturally present in real-life systems (e.g., transmission de-
lays, response time, etc...) and thus cannot be neglected con-
sidering their impact on some properties, including mani-
festability. For example, two ambiguous behaviors for an
untimed DES may be distinguishable by adding explicit
time constraints, e.g., the delay between some two succes-
sive observable events is bounded. Considering that classi-
cal models (e.g., finite automata, Petri nets) cannot express
such real-time constraints, we will analyze manifestability
for timed automata (TA), which are one of the most stud-
ied models for real-time systems since their introduction by
[14]. In such a model, quantitative properties of delays be-
tween events can easily be expressed. Executions traces of
TA are modeled by timed words, i.e., sequences of events
which are attached to the time at which they occur. Hence,
TA are seen as acceptors of languages of timed words.

We extend in this section our approach to handle the man-
ifestability problem for TA, demonstrating that it is undecid-
able for general TA.

3.1 Manifestability for TA
TA constitute a framework for modeling and verifying real-
time systems. A TA is essentially a finite automaton, thus
with a finite set of states and a finite set of labeled transitions
between them, extended with a finite set of real-valued vari-
ables modeling clocks. During a run of a TA, clock values
are initialized with zero when starting in the initial state, and
then are increased all with the same speed. Clock values can
be compared to constants or between them. These compar-
isons form guards (resp., invariants of states) that may en-
able instantaneous transitions (resp., restrict the time during



which one can stay in the corresponding state), constraining
thus the possible behaviors of the TA. Furthermore, clocks
can be also reset to zero by some of the transitions.

The set of possible clock constraints considered in this
paper is formally described by:

g ::“ true | x ’ c | x´ y ’ c | g ^ g,
where x, y are clock variables, c is a constant and

’ P tă,ď,“,ě,ąu.

Note that a TA allowing such clock constraints is ex-
ponentially more concise than its classical variant with
only diagonal-free constraints (where the comparison can
be done only between a clock value and a constant), but
both have same expressiveness. Let X be a finite set of
clock variables. A clock valuation over X is a function
v : X Ñ R, where R denotes the set R` of non-negative
real numbers. Then the set of all clock valuations over X is
denoted by RX and the set of time constraints over X by
CpXq, where such a constraint is given by a collection of
clock constraints. If a clock valuation v satisfies the time
constraint g, then it is denoted by v |ù g. In the following,
we denote vgw the set of clock valuations that satisfy g, i.e.,
vgw “ tv P RX | v |ù gu.

Definition 9. (Timed Automaton) A timed automaton
(TA) is a tuple A “ pQ,Σ, X, δX , q0, Iq, where:

• Q is a finite set of states;

• Σ is a finite set of events;

• X is a finite set of clock variables;

• δX Ď Q ˆ CpXq ˆ Σ ˆ 2X ˆ Q is a finite set of
transitions pq, g, σ, r, q1q, where the guard g P CpXq,
which has to be satisfied for the transition to be fired,
and the clocks r Ď X reset to zero, when not specified,
are by default true andH, respectively;

• q0 P Q is the initial state;

• I : QÑ CpXq is the invariant function that associates
with each state q the invariant Ipqq, a constraint that
has to be satisfied by clocks in state q (true by default,
when not specified). We require 0 P vIpq0qw.

We will again assume the given partition Σ “ ΣoZΣuZ
Σf and we can without restriction take Σf “ tF u.

Example 2. Figure 5 is a TA obtained by adding some time
constraints to the system model shown at the top part of Fig-
ure 1 and modifying some observable events and the place
of the fault. Here c is a clock variable that is used to impose
certain periods between events.

In this example of TA, pq3, 0 ă c ď 3, o2,H, q5q P δ
X

means that only when the guard 0 ă c ď 3 is satisfied, the
event o2 can occur, inducing an instantaneous state change
from q3 to q5 with the clock value unchanged. Since the
last reset of c before this occurrence of o2 happens with the
occurrence of o1, the period between those occurrences of
o1 and o2 should be greater than 0 and not greater than 3.
We denote this transition also as q3

0ăcď3; o2
ÝÝÝÝÝÝÝÑ q5. For the

sake of simplicity, we do not assign specific invariants to
states, i.e., we use the default value true for all states, which
means that there is no time limit for the system to stay in any
state (in general, once the invariant ceases to be satisfied,
one is obliged to leave the corresponding state).

We call a state with a clock valuation an extension state,
shortly state in the following, i.e., pq, vq with q P Q and

q0

q1 q2 q4 q5

q3

q6 q7

F

o1; c :“ 0

c ď 1;u1 0 ă c ď 3; o2

c ą 3; o2 o3

u2 o1; c :“ 0 c ą 3; o2

o3

Figure 5: A real-time system model TA.

v P RX . Let t P R, the valuation v ` t is defined by
pv ` tqpxq “ vpxq ` t,@x P X . Suppose X 1 Ď X , we
denote by vrX 1 Ð 0s the valuation such that @x P X 1,
vrX 1 Ð 0spxq “ 0 and @x P XzX 1, vrX 1 Ð 0spxq “
vpxq. A TA gives rise to an infinite transition system with
two types of transitions between extension states. One is a
time transition representing time passage in the same state
q, during which the invariant inv “ Ipqq for q should be
always respected. The other one is a discrete transition is-
sued from a labeled transition q g; σ; r

ÝÝÝÝÑ q1 for TA, associated
with an event σ, which is fired (a necessary condition being
that the guard g is satisfied) and should be executed instan-
taneously, i.e., the clock valuation cannot be modified by
the transition itself but only by the reset to 0 of those clock
variables belonging to r, if any. In the following, both are
denoted by pq, vq ν

ÝÑ pq1, v1q, where ν P Σ Y R. Thus, if
ν P Σ, then v should satisfy the guard g in the correspond-
ing TA labeled transition and v1 “ vrr Ð 0s for r the clock
variables reset to 0 in this transition, if any. Otherwise, if
ν P R, then q1 “ q and v1 “ v ` ν, where all of v ` t, for
0 ď t ď ν, should satisfy the invariant inv associated to q.

Given a TA A, a sequence pq0, v0 “ 0q
ν1
ÝÑ pq1, v1q

. . .
νn
ÝÑ pqn, vnq is a feasible execution in A if @i P t0,

..., n ´ 1u, pqi, viq
νi`1
ÝÝÝÑ pqi`1, vi`1q is either a time or a

discrete transition in it. Then the word ν1...νn P pΣ Y Rq‹

is called a timed trajectory or a run. This extends to infi-
nite sequences and trajectories. The set of finite (resp., in-
finite) timed trajectories for A is denoted by LpAq (resp.,
LωpAq, where acceptance is in the sense of Büchi automata
or, equivalently, of Muller automata if all states are consid-
ered as final). The faulty runs, i.e., containing F , are noted
LF pAq (resp.,LωF pAq) and the normal runs, i.e., not contain-
ing F , are noted LN pAq (resp., LωN pAq). By summing up
successive time periods and introducing a zero time period
between two successive events if any, we can always assume
that between any two successive events there is exactly one
time period, i.e., periods and events alternate in a timed tra-
jectory. For ρ a timed trajectory, we denote by timepρq P
R Y t`8u the total time duration for ρ, i.e., timepρq “
ř

νiPR^νiPρ
νi (note that timepρq “ `8 implies that ρ is

an infinite run). We note L8pAq (resp., L8F pAq, L
8
N pAq)

the time-infinite runs (resp., time-infinite faulty runs, time-
infinite normal runs) and thus we have L8pAq Ď LωpAq
(resp., L8F pAq Ď LωF pAq, L

8
N pAq Ď LωN pAq). Now we

redefine a projection operator P for TA. Given a timed tra-
jectory ρ and a set of events Σ1 Ď Σ, P pρ,Σ1q is the timed
trajectory obtained by erasing from ρ all events not in Σ1 and
summing up the periods between successive events in the
resulting sequence. For example, if ρ “ 2 o1 3 u 2 o2 3 o1,
then P pρ, to1, o2uq “ 2 o1 5 o2 3 o1. In the following, we
simply denote P pρq the projection of the timed trajectory ρ



to observable events, i.e., P pρq “ P pρ,Σoq.
Analogously to DESs, we make for TA the assumption

about (time-infinite) continuation of any finite (timed) tra-
jectory and observation of any infinite (timed) trajectory.

Assumption 2: (Time alive and observably alive system)
The TAA is time alive (also called timelock-free) , i.e., from
each reachable (by a finite run from q0) state, starts a time-
infinite run (which is equivalent to say that LpAq is exactly
made up of all the prefixes of L8pAq), and observably alive,
i.e., there is no infinite run without any observable event,
i.e., any infinite run has infinitely many observable events
occurrences (this implies in particular that the system cannot
stay infinitely, and thus cannot stay an infinitely long time,
in a same state with only time transitions).

The TA of Figure 5 is time alive and observably alive.
We will use the following notion, first introduced by [15].

Definition 10. (∆-faulty runs) Given A a TA, let ρ “

ν1ν2 . . . be a faulty run. Let then j be the smallest i such
that νi “ F and let ρ1 “ νj`1 . . . . We denote timepρ1q by
timepρ, F q and call it the period from (the first occurrence
of) fault F in ρ. If timepρ, F q ě ∆, where ∆ P R, then we
say that at least ∆ time units pass after the first occurrence
of F in ρ, or, in short, that ρ is ∆-faulty.

Definition 2 extends to define diagnosability of TA by re-
placing the length parameter k by the time parameter ∆.
Definition 11. (Diagnosability of TA). Given a TA A and a
fault F , F is diagnosable in A iff D∆ P R such that

@ρ P LpAq, ρ ∆-faultyñ
p@ρ1 P LpAq, P pρq “ P pρ1q ñ F P ρ1q.

Note that it is enough to consider only finite runs as, if
one ∆ is suitable for guaranteeing diagnosability with finite
runs, any ∆1 ą ∆ is suitable with finite or infinite runs.

Similarly, Definition 3 is transposed to the TA framework.
Definition 12. (Timed Critical Pair). A pair of infinite
(resp., finite) timed trajectories ρ, ρ1 is called a timed crit-
ical pair with respect to F , denoted by ρ ff ρ1, if the fol-
lowing conditions are satisfied: 1) ρ P LωF pAq, ρ

1 P LωN pAq
(resp., ρ P LF pAq, ρ1 P LN pAq). 2) P pρq “ P pρ1q.

Finally, the characterization of diagnosability of DESs
provided by Theorem 1 extends to TA [15].
Theorem 6. A fault F is diagnosable in A iff Eρ, ρ1 P
L8pAq, such that ρ ff ρ1.

From this characterization and from the extension to TA
of the construction of a pair verifier VA, it has been proved
that diagnosability of F in A is equivalent to emptiness of
L8a pVAq, a problem known to be PSPACE. And reducing
TA reachability to diagnosability proves that checking diag-
nosability is actually PSPACE-complete for TA [15].

Now we adapt Definition 4 to TA.
Definition 13. (Manifestability of TA). F is manifestable
in a TA A iff

Dρ P LF pAq,
@ρ1 P LpAq, P pρ1q “ P pρq ñ F P ρ1.

Note that we could also adopt a weaker definition of man-
ifestability allowing ρ to be an arbitrary time-finite run,
i.e., not only a finite run in LF pAq, but also a run in
LωF pAqzL

8
F pAq, called Zeno run. But, as Zeno runs are

in general non-desirable behaviors due to modeling errors,
we adopted this stronger version to exclude manifestabilty
through Zeno runs only. An immediate rephrasing of this

definition gives, by using Definition 12, the following ana-
log to Theorem 2.

Theorem 7. A fault F is manifestable in a TA A iff the fol-
lowing condition is satisfied:

p=tq Dρ P LF pAq, Eρ1 P LN pAq, ρ ff ρ1.

Thus, in a similar way as for DESs, the manifestability
verification for TA consists in checking the existence of a
faulty trajectory that can be distinguishable by observations
from all normal ones. The difference is that for TA, the
occurrence time of observable events should also be taken
into account. In other words, a non-manifestable DES has
a chance to become manifestable by adding some time con-
straints such that at least one faulty trajectory can be distin-
guishable form normal ones thanks to the different occur-
rence time of the same observable events. For example, the
automaton version (without time constraints) of the system
modeled by the TA of Figure 5 is actually not manifestable
since all faulty trajectories have the same observations as the
normal one, i.e. o1o2o3˚. But with time constraints, any
faulty trajectory with the event u1 is distinguishable from
the normal ones since the time duration between the succes-
sive observable events o1 and o2 is at most 3 time units for
the former, while greater than 3 time units for the latter.

3.2 Undecidability of Manifestability for TA
From a given TA A modeling a real-time system, the idea is
to construct its corresponding fault diagnoser DF

A (see Defi-
nition 6 for the non-refined version) and pair verifier VA, the
latter being constructed by synchronizing DF

A with normal
refined diagnoserDNR

A (see Definition 7) based on the set of
observable events (it is not necessary, as we did for automata
in order to get more compact representation, to refine DF

A ;
the reason to limit as much as possible the use of the refine-
ment process is explained just below). We define the final
states in DF

A as the faulty states and the final states in VA
as the ambiguous states. Thus, manifestability verification
consists in checking whether there exists an accepted timed
trajectory in DF

A that is not accepted by VA. The reason is
that each ambiguous timed trajectory in VA corresponds to
a faulty timed trajectory in the original system, for which
there exists at least one normal timed trajectory with the
same observations, i.e., such that the fault cannot manifest
itself. For the example depicted in Figure 5, its trim VA and
DF
A are shown in Figure 6. Note that in VA, since we syn-

chronize two timed trajectories, their corresponding clock
variable c is distinguished by renaming as c1 and c2 [15].
It is obvious that any timed trajectory of DF

A containing u1
(and o3) is not accepted by VA (as the transition in VA fol-
lowing u1 can never be fired due to its clocks constraints),
proving thus that F is manifestable.

The problem in the general case is that, to constructDNR
A

from DN
A , we are obliged to rest on the delay closure pro-

cess, i.e., on removing unobservable events or equivalently
removing ε-transitions. But it is known that this is not al-
ways possible. Actually, it has been proved [16] that, con-
trary to the case of DES, ε-transitions strictly increase the
power of TA, if there is a self-loop containing ε-transitions
which reset some clocks. But ε-transitions can be removed
if they do not reset clocks, to obtain a TA accepting the
same timed language. Thus, we will assume that there is
no clock reset for the transitions with non-observable events
in the normal diagnoser DN

A (other non-observable events
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Figure 6: The trim pair verifier VA (top) and the fault diag-
noser DF

A (bottom) for the system model depicted in Fig-
ure 5.

are not handled as ε-transitions) and adopt the method pro-
posed in [16] to remove non-observable events in DN

A to get
DNR
A . This assumption is fulfilled by Example 2 (c is not

reset in transition u2).
Assumption 3: (Limited clock reset TA) In the normal

diagnoserDN
A ofA, there is no clock reset for the transitions

with non-observable events.
Now, from the construction of those two structures, The-

orem 4 extends to TA.
Theorem 8. Given a real-time system model A with limited
clock reset, a faultF is manifestable iffLapVAq Ă LF pD

F
Aq,

with VA “ DF
A ‖Σo

DNR
A .

So we get a way to check manifestability as checking in-
clusion between languages defined by two TA. But it is well-
known that this problem is undecidable for general TA [17].
Actually, we show now how to reduce the inclusion problem
of TA to the manifestability problem of TA, which proves
the undecidability of manifestability checking for TA.
Theorem 9. Given a TA A and a fault F , the problem of
checking whether F is manifestable in A is undecidable.

Proof. Reducing the undecidable inclusion problem of TA
to the manifestability problem is achieved by adapting to
TA the construction in the proof of Theorem 5. Let A1 “

pQ1,Σ, X1, δ
X1
1 , q0

1 , I1q, A2 “ pQ2,Σ, X2, δ
X2
2 , q0

2 , I2q be
two arbitrary (non-deterministic) time alive TA on the same
vocabulary. One can assume that Q1 X Q2 “ H. Based
on A1 and A2, one can construct a new TA representing a
system model, A “ pQ,Σ Y tτ, F u, X, δX , q0, Iq, where
Q “ Q1 Y Q2 Y tq

0u, X “ X1 Y X2 Y tx
0u δX “

δX1
1 YδX2

2 Ytpq0, x0 “ 0, F,H, q0
1q, pq

0, x0 “ 0, τ,H, q0
2qu

and I “ I1 Y I2, with Σo “ Σ, Σu “ tτu and Σf “ tF u.
A satisfies the assumption of limited clock reset. From
the construction of A, one has LpA1q “ P pLF pAqq and
LpA2q “ P pLN pAqq. In the same way as the proof of The-
orem 5, one gets finally LpA1q X LpA2q Ă LpA1q ðñ F
is manifestable in A, i.e., LpA1q Ď LpA2q ðñ F is not
manifestable in A. So, languages inclusion testing for TA
boils down to manifestability checking of TA.

4 Conclusion and Future Work
In order to bring an alternative to diagnosability analysis,
whose satisfaction is very demanding in terms of sensors
placement, we have defined manifestability, a new weaker
property and have addressed its formal verification for both
DESs and real-time systems modeled as TA. For this, we
have constructed different structures from the system model

and have demonstrated that manifestability checking boils
down to languages inclusion checking and that the mani-
festability problem is PSPACE-complete for finite automata
(for which we have provided preliminary experimental re-
sults showing the efficiency and scalability of this approach)
and undecidable for TA. We work presently on defining
subclasses of TA (based on determinism conditions) for
which this problem becomes decidable, actually PSPACE-
complete, and can be encoded into an SMT formula, which
can be checked automatically by an SMT solver (our TA
example of Figure 5 belongs actually to such a decidable
subclass).
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