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Abstract Fault diagnosability (allowing one to deter-

mine with certainty whether a given fault has effectively

occurred based on the available observations) is a cru-

cial and challenging property in complex system auto-

matic control, which generally requires a high number

of sensors, increasing the system cost, since it is quite

a strong property. In this paper, we analyze a new sys-

tem property called manifestability, that is a weaker re-

quirement on system observations for having a chance

to identify on-line faults: that a faulty system cannot

always appear healthy. We propose an algorithm with

PSPACE complexity to automatically verify it for finite

automata, and prove that the problem of manifesta-

bility verification itself is PSPACE-complete. The ex-

perimental results show the feasibility of our algorithm

from a practical point of view. Then, we extend our

approach to verify manifestability of real-time systems

modeled by timed automata, proving that it is unde-

cidable in general but under some restricted conditions

it becomes PSPACE-complete. Finally we encode this

property into an SMT formula, whose satisfiability wit-

nesses manifestability, before presenting experimental

results showing the scalability of our approach.
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CentraleSupélec & LRI, University Paris-Saclay
E-mail: lina.ye@lri.fr

1 Introduction

Fault diagnosis is a crucial and challenging task in the

automatic control of complex systems, whose efficiency

depends on a system property called diagnosability. Di-

agnosability expresses whether one can distinguish with

certainty fault behaviors from normal ones based on

sequences of observable events emitted from the sys-

tem. In a given system, the existence of two infinite

behaviors with the same observations, where exactly

one contains the considered fault, violates diagnosabil-

ity. The existing work concerning discrete event systems

(DESs) searches for such ambiguous behaviors, both in

centralized and distributed ways [43,31,37]. However,

in reality, diagnosability turns out to be quite a strong

property that generally requires a high number of sen-

sors. Consequently, it is often too expensive to develop

a diagnosable system.

To achieve a trade-off between the cost, i.e., a rea-

sonable number of sensors, and the possibility to ob-

serve a fault manifestation, we recently introduced a

new property called manifestability [54], which is bor-

rowed from philosophy: “...which I shall call the ‘mani-

festability of the mental’, that if two systems are men-

tally different, then there must be some physical con-

texts in which this difference will display itself in differ-

ential physical consequences” [36]. In the domain of di-

agnosis, similarly, the manifestability property describes

the capability of a system to manifest a fault occurrence

in at least one future behavior. This should be analyzed

at design stage on the system model. Under the assump-

tion that no behavior described in the model has zero

probability, the fault will then necessarily show itself

with nonzero probability after enough runs of the sys-

tem. In other words, given a system, if this property

holds, this system cannot always appear healthy when
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a fault occurs in it, i.e., at least one future behavior

observably distinguishes from normal behaviors. In all

cases, manifestability is the weakest property to require

from the system to have a chance to identify the fault

occurrence, i.e., to allow one to establish a diagnostic

mechanism. If a fault is not manifestable, then it is

useless to try to design a diagnoser for the system or to

analyze active diagnosability [27]. Differently, for diag-

nosability, all future behaviors of all fault occurrences

should be distinguishable from all normal behaviors,

which is a strong property and sensor demanding. Ob-

viously one has to continue to rely on diagnosability for

online safety requirements, i.e., for those faults which

may have dramatic consequences if they are not surely

detected when they occur, in order to trigger correc-

tive actions. But for all other faults that do not need to

be detected at their first occurrence (e.g., whose con-

sequence is a degraded but acceptable functioning that

will require maintenance actions in some near future),

manifestability checking, which is cheaper in terms of

sensors needed, is enough under the probabilistic as-

sumption above.

Note that in our precedent work [55], we have de-

fined (strong) manifestability for finite automata before

providing a sufficient and necessary condition to check

it with a formal algorithm based on equivalence check-

ing of languages of infinite words. Then we have proved

that the manifestability problem itself is a PSPACE-

complete problem. Furthermore, the correctness and ef-

ficiency of the algorithm have also been shown by our

experimental results. In this paper, we extend this work

to real-time systems modeled by timed automata with

several new contributions.

– For finite automata, we show that the manifestabil-

ity verification can be done equivalently by checking

the equivalence of languages of finite words.

– We redefine (strong) manifestability property for

timed automata that takes into account time con-

straints in an explicit way and provide a sufficient

and necessary condition to check it.

– Then we prove that the manifestability problem for

timed automata is undecidable by reducing the un-

decidable inclusion problem of timed automata to it.

We also study a subclass of timed automata by pro-

viding corresponding conditions (in particular re-

lated to determinism), under which the manifesta-

bility problem becomes decidable.

– For those decidable cases, we propose to encode this

problem in an SMT formula, whose satisfiability

witnesses manifestability.

– We also provide some preliminary experimental re-

sults for this SMT-based algorithm to check mani-

festability for timed automata, which shows its fea-

sibility and scalability.

– Some more precise comparison with other, already

existing notions in the literature are also provided,

in particular with opacity, especially secrecy, offer-

ing a connection between the work done on safety

and the work done on security.

2 Motivating Example

In this section, we explain why it is worth analyzing the

manifestability property with a motivating example.

Example 1 Figure 1 shows a modified version of the

HVAC system from [43], which is a composite model

that captures the interactions between the component

models, i.e., a pump, a valve, and a controller. In this

system, the initial state is q0, the events Valve open,

Pump start , Pump stop, Valve close are observable and

the fault events Pump failed , Sensor failed are not ob-

servable, as well as the silent event τ , the latter is used

to represent non-deterministic behaviors after the oc-

currence of the fault event Sensor failed .

In this system, the correct behavior is (Valve open

Pump start Pump stop Valve closeq
ω

, where ω denotes

the infinite concatenation. After the unobservable fault

Pump failed , the system exhibits different observations

from the correct behavior, this event is thus diagnos-

able (see Definition 2). Now consider the other fault

event Sensor failed , whose occurrence leads to non-

deterministic behaviors: one with the same observations

as the correct behavior, the other with different obser-

vations. Actually temperature sensor fault can cause

valve improperly controlled [7]. Here we consider two in-

dependent typical behaviors: either entering q7 by only

degrading the efficiency of energy consumption while

the system can still assume its basic functionality, or

entering q11, where the valve closes immediately with-

out executing the pump, leading to observations that

are distinguishable from the correct behavior. Suppose

that the issue of energy consumption is not the priority

of diagnosis. Hence the fact that the fault Sensor failed

can be detected only when it makes enter the state q11
is still acceptable in this case. The original (stochas-

tic) diagnosability property is not suitable to handle

such situations. If we consider manifestability, the fault

Sensor failed is effectively manifestable since its occur-

rence has at least one future that is distinguishable from

the correct behavior.
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Fig. 1: A simplified HVAC system.

3 Manifestability for DESs

We now present our system model, recall diagnosabil-

ity, and introduce (strong) manifestability, before giv-

ing a formal sufficient and necessary condition for this

property to hold. We demonstrate that (strong) mani-

festability is a weaker property than diagnosability.

3.1 Models of DESs

We model a DES as a finite automaton, denoted by

G “ pQ,Σ, δ, q0q, where Q is the finite set of states,

Σ is the finite set of events, δ Ď Q ˆ Σ ˆ Q is the

set of transitions (the same notation will be kept for

its natural extension to words of Σ˚), and q0 is the

initial state. The set of events Σ is divided into three

disjoint parts: Σ “ Σo ZΣu ZΣf , where Σo is the set

of observable events, Σu the set of unobservable normal

events and Σf the set of unobservable fault events.

Example 2 The top part of Figure 2 shows an exam-

ple of a system model G, where Σo “ to1, o2, o3u, Σu “

tu1, u2u, and Σf “ tF u. Notice that for diagnosis prob-

lem, fault is predefined as an unobservable event in the

model. This is different from testing, where faulty be-

haviors are judged against a specification.

Similar to diagnosability, the manifestability algorithm

that we will propose has exponential complexity in the

number of fault types (i.e., fault labels). To reduce it to

linear complexity, as in [37], we consider only one fault

type at a time. However, multiple occurrences of faults

of the given type are allowed. The faults from other

types are processed as unobservable normal events. This

q0

q1 q2 q4 q5

q3

q6 q7

q0 N

q1 N q2 F q4 F q5 F

q3 F

q6 N q7 N q5 N

o1

F

u1 o2

o3 o1

u2 o1 o2

o3

o1

F

u1 o2

o3 o1

u2 o1 o2

o3

o3

Fig. 2: A system example (top) and its diagnoser (bottom).

is justified as the system is manifestable if and only if

(iff) it is manifestable for each fault type. Thus, to check

the manifestability of a system with several fault types,

one can check its manifestability with respect to each

fault type in turn. In the following, Σf “ tF u, where

F is the currently considered fault type.

Given a system model G, its prefix-closed language

LpGq, which describes both normal and faulty behav-

iors of the system, is the set of words produced by G:

LpGq “ ts P Σ˚|Dq P Q, pq0, s, qq P δu. Those words

containing (resp., not containing) F will be denoted

by LF pGq (resp., LN pGq). In the following, we call a

word from LpGq a trajectory in the system G and a

sequence q0σ0q1σ1... a path in G, where q0 “ q0 and,

for all i, pqi, σi, qi`1q P δ, whose label σ0σ1... is a tra-

jectory in G. Given s P LpGq, we denote the post-

language of LpGq after s by LpGq{s, formally defined
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as: LpGq{s “ tt P Σ˚|s.t P LpGqu. The projection of

the trajectory s to observable events of G is denoted

by P psq, the observation of s. This projection can be

extended to LpGq, i.e., P pLpGqq “ tP psq|s P LpGqu,

whose elements are called observed trajectories. Tradi-

tionally, we do the following assumption about the pos-

sibility to always continue a trajectory and to observe

infinite trajectories:

Assumption 1: (Alive and observably alive system)

G is alive, i.e., each state of Q has a successor, so that

LpGq is alive (any trajectory has a continuation, i.e., is a

strict prefix of another trajectory), and G is observably

alive, i.e., has no unobservable cycle, i.e., each cycle

contains at least one observable event.

We will need some infinite objects. We denote by

Σω the set of infinite words on Σ. We define in an ob-

vious way infinite paths in G and thus LωpGq the lan-

guage of infinite words recognized by G in the sense

of Büchi automata [18]. As all states of G are con-

sidered as final states, those infinite trajectories are

just the labels of infinite paths, and the concept of

Büchi automaton coincides with that of Muller automa-

ton, which can be determinized, according to the Mc-

Naughton theorem. We can conclude from this that

LωpGq is the set of infinite words whose prefixes belong

to LpGq and that two equivalent system models, i.e.,

such that LpG1q “ LpG2q, define the same infinite tra-

jectories, i.e., LωpG1q “ LωpG2q. Particularly, we use

LωF pGq “ LωpGq XΣ˚FΣω for the set of infinite faulty

trajectories, and LωN pGq “ LωpGq X pΣztF uqω for the

set of infinite normal trajectories, where z denotes set

subtraction. In the following, we use the classical syn-

chronization operation between two automata G1 and

G2, denoted by G1 ‖Σs G2, i.e. any event in Σs should

be synchronized while others can occur whenever possi-

ble. It is easy to generalize the synchronization to a set

of automata using its associative property [19]. To ver-

ify manifestability, we define the following basic opera-

tion, which is to keep only information about a given set

of events. It boils down to replacing by ε the events not

concerned and eliminate the ε-transitions (silent transi-

tions) thus created (bisimulation with sequence of silent

actions plus one event concerned ε˚a). It will be used

to simplify some intermediate structures when check-

ing manifestability without affecting the validity of the

result obtained.

Definition 1 (Delay Closure). Given a automata G “

pQ,Σ, δ, q0q, its delay closure with respect to Σd, with

Σd Ď Σ, is AΣdpGq “ pQd, Σd, δd, q
0q, where: 1) Qd “

tq0u Y tq P Q | Ds P Σ˚, Dσ P Σd, pq
0, sσ, qq P δu; 2)

pq, σ, q1q P δd if σ P Σd and Ds P pΣzΣdq
˚, pq, sσ, q1q P δ.

3.2 Diagnosability and Manifestability

A fault F is diagnosable in a system model G if it can

be detected with certainty when enough events are ob-

served from G after its occurrence. This property is for-

mally defined as follows [43], where sF denotes a tra-

jectory ending with F and F P p, for p a trajectory,

means that F appears as a letter of p.

Definition 2 (Diagnosability). Given a system

model G and a fault F :

1. given k P N, F is k-diagnosable in G if

@sF P LpGq,@t P LpGq{sF , |t| ě k ñ

p@p P LpGq, P ppq “ P psF tq ñ F P pq.

2. F is diagnosable in G if

Dk P N such that F is k-diagnosable in G.

The above definition states that F is diagnosable if, for

each trajectory sF in G, for each of its extensions t with

enough events, then every trajectory p in G that has

the same observations as sF t should contain F . It has

been proved that the existence of two indistinguishable

infinite trajectories, i.e., holding the same sequence of

observable events, with exactly one of them containing

the given fault F , is equivalent to the violation of the

diagnosability property [31].

Definition 3 (Critical Pair). A pair of trajectories

s, s1 is called a k-critical pair (resp., an infinite-critical

pair or, in short, a critical pair) with respect to F , de-

noted by s k s
1 (resp., s  s1), if the following con-

ditions are satisfied: 1) s “ sF t P LF pGq, |t| “ k, s1 P

LN pGq (resp., s P LωF pGq, s
1 P LωN pGq). 2) P psq “ P ps1q.

Obviously, the existence of a critical pair implies the

existence of a k-critical pair for any k. But, conversely,

the existence, for all k, of a k-critical pair implies the

existence of a critical pair (by a finitude argument, con-

sidering a critical pair as a trajectory in the automaton

which is the synchronized product of G by itself on ob-

servable events, as it will be used in section 3.3). This

leads to the following characterization of diagnosability

in terms of critical pairs.

Theorem 1 A fault F is k-diagnosable (resp., diag-

nosable) in G iff Es, s1 P LpGq, such that s k s
1 (resp.,

Es, s1 P LωpGq, such that s  s1).

The nonexistence of a critical pair with respect to F

witnesses diagnosability of F . To design a diagnosable

system, each faulty trajectory should be distinguished

from normal trajectories, which is often very expensive

in terms of number of sensors required. To reduce such
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a cost and still make it possible to show the fault af-

ter enough runs of the system, another property called

manifestability has been recently introduced [54], which

is much weaker than diagnosability. Intuitively, mani-

festability describes whether or not a fault occurrence

has the possibility to manifest itself through observa-

tions. More precisely, if a fault is not manifestable, then

we can never be sure about its occurrence no matter

which trajectory is executed after it. Thus, the system

model should be necessarily revised.

Definition 4 (Manifestability). F is manifestable in

a system model G if

Ds P LF pGq, @p P LpGq, P ppq “ P psq ñ F P p.

F is manifestable if there exists at least one faulty

trajectory s in G such that every trajectory p that is

observably equivalent to s should contain F . In other

words, manifestability is violated iff each occurrence of

the fault can never manifest itself in any future. This

can be rephrased in terms of diagnosis. Let Diag be

the diagnosis procedure with input an observation in

Σ˚o and output a diagnosis in tN,F, tN,F uu. Then, F

is manifestable in G iff there exists a trajectory s in G

such that DiagpP psqq “ tF u, i.e., the correct diagnosis

of the occurrence of F can be made for at least one

faulty trajectory. This emphasizes that manifestability

is actually the weakest requirement for the existence of

a useful (i.e., not always ambiguous from any observed

faulty trajectory) diagnosis procedure.

Theorem 2 A fault F is manifestable in a system

model G iff one or the other of the following equivalent

conditions is satisfied:

pMq DsF t P LF pGq, Es
1 P LN pGq, s

F t |t| s
1,

pMωq Ds P LωF pGq, Es
1 P LωN pGq, s  s1.

Proof Condition M is a straightforward rephrasing of

Definition 4. We demonstrate condition Mω.

ñ Suppose that F is manifestable in G. Thus from

Definition 4, Ds P LF pGq such that Es1 P LN pGq with

P psq “ P ps1q. By extending s with enough events, which

is possible since the language is alive, we obtain then

Ds P LωF pGq, Es
1 P LωN pGq, such that s  s1.

ð Suppose now that F is not manifestable in G and

show that the condition Mω is consequently not true.

From non-manifestability of F and Definition 4, we

have @s P LF pGq, Dp P LN pGq, P ppq “ P psq. This

can be formulated as equality of the languages of two

automata, as it will be seen in section 3.3 (LapVGq “

LF pD
FR
G q). It results that this equality of the languages

still holds for infinite words (Lωa pVGq “ LωF pD
FR
G q), i.e.,

@s P LωF pGq, Dp P LωN pGq such that s  p, which is

 Mω, i.e., the condition Mω is not true. �

Manifestability concerns the possibility for the sys-

tem to manifest at least one occurrence of the fault,

i.e., there exists such an occurrence that shows itself

in at least one of its futures. Now we propose a strong

version of manifestability, which requires that all occur-

rences of the fault should show themselves in at least

one of their futures.

Definition 5 (Strong Manifestability). Given a

system model G and a fault F :

1. given k P N, F is strongly k-manifestable in G if

@sF P LpGq, Dt P LpGq{sF , |t| ď k,

@p P LpGq, P ppq “ P psF tq ñ F P p.

2. F is strongly manifestable in G if

@sF P LpGq, Dt P LpGq{sF ,

@p P LpGq, P ppq “ P psF tq ñ F P p.

F is strongly manifestable if, for each sF in G (and

not just for only one as in Definition 4) there exists

at least one extension t of sF in G, such that every

trajectory p in G that is observably equivalent to sF t

should contain F . In other words, each occurrence of

F should show itself in at least one of its futures. In

terms of the diagnosis procedure Diag, it means that

any occurrence sF of F in G owns a future t such that

DiagpP psF tqq “ tF u, i.e., the correct diagnosis of any

occurrence of F can be made for at least one future

trajectory. In a similar way as Theorem 2, we can prove

the following theorem, which provides a sufficient and

necessary condition for strong manifestability.

Theorem 3 Given a system model G and a fault F :

1. given k P N, F is strongly k-manifestable in G iff

the following condition is satisfied:

pMs
kq @sF P LpGq, Dt P LpGq{sF , |t| ď k,

Es1 P LN pGq, s
F t |t| s

1.

2. F is strongly manifestable in G iff one or the other

of the following equivalent conditions is satisfied:

pMsq @sF P LpGq, Dt P LpGq{sF ,

Es1 P LN pGq, s
F t  s1,

pMs
ωq @sF P LpGq, Dt P LωpGq{sF ,

Es1 P LωN pGq, s
F t  s1.

Proof 1. is just a rephrasing of Definition 5.1 and con-

dition Ms of 2. a rephrasing of Definition 5.2. It is

straightforward, by using aliveness of LpGq, that strong

manifestability implies Ms
ω. Consider the reverse. If F

is not strongly manifestable, then DsF P LpGq,@t P

LpGq{sF , Ds1 P LN pGq, s
F t |t| s

1. This means that

any faulty trajectory of prefix sF in G is equal to a

trajectory in the synchronized product of G by itself on
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observable events (after having erased the unobservable

events of the second copy), which can be expressed as

languages equality of two automata (see section 3.3),

which still holds for infinite words, giving  Ms
ω. �

Theorem 4 Given a system model G and a fault F ,

we have:

1. F is k-diagnosable (resp., diagnosable) in G implies

that F is strongly k-manifestable (resp., strongly

manifestable) in G.

2. F is strongly manifestable in G implies that F is

manifestable in G.

Proof 1. Suppose that F is not strongly manifestable,

then from Theorem 3, we have  Ms
ω, i.e., DsF P

LpGq,@t P LωpGq{sF , Ds1 P LωN pGq such that sF t 

s1. This implies that there does exist at least one

critical pair in the system. From Theorem 1, F is

not diagnosable (the proof is similar for k).

2. Suppose that F is not manifestable. From Theo-

rem 2, we have @s P LωF pGq, Ds
1 P LωN pGq, such that

s  s1. By choosing arbitrarily one sF P LpGq and

taking all s of prefix sF , we obtain DsF P LpGq,@t P

LωpGq{sF , Ds1 P LωN pGq such that sF t  s1, i.e.,

 Ms
ω. Hence F is not strongly manifestable. �

3.3 Manifestability Verification

Manifestability verification consists in checking whether

the condition Mω (or M) in Theorem 2 is satisfied

for a given system model. We now show how to con-

struct different structures based on a system model

to obtain LωF pGq, L
ω
N pGq as well as the set of criti-

cal pairs. The condition Mω can then be checked by
using equivalence techniques with these intermediate

structures. More precisely, if for each infinite faulty tra-

jectory s P LωF pGq, there exists a corresponding critical

pair, then the considered fault is not manifestable. Oth-

erwise, it is manifestable. For the sake of simplicity, we

concentrate on how to check manifestability, which can

be extended in a straightforward way to handle strong

manifestability. This extension will be explained explic-

itly later.

3.3.1 System Diagnosers

Given a system model, the first step is to construct a

structure showing fault information for each state, i.e.,

whether the fault has effectively occurred up to this

state from the initial state.

Definition 6 (Diagnoser). Given a system model G

and a considered fault F , its diagnoser is the automa-

ton DG “ pQD, Σ, δD, q
0
Dq, where: 1) QD Ď QˆtN,F u

is the set of states; 2) Σ is the set of events of G;

3) δD Ď QD ˆ Σ ˆ QD is the set of transitions; 4)

q0D “ pq
0, Nq is the initial state. The transitions of δD

are those ppq, `q, e, pq1, `1qq, with pq, `q reachable from

q0D, such that there is a transition pq, e, q1q P δ, and

`1 “ F if ` “ F _ e “ F , otherwise `1 “ N .

The bottom part of Figure 2 shows the diagnoser for

the system depicted in the top part, where each state

has its own fault information. More precisely, given a

system state q, if the fault has occurred in all paths

from q0 to q, then the fault label for q is F . Such a

state is called fault (diagnoser) state. If the fault has

not occurred in any path from q0 to q, then the fault

label for q is N and the state is called normal (diag-

noser) state. Diagnoser construction keeps the same set

of trajectories and splits into two those states reachable

by both a faulty and a normal path (q5 in the example).

Lemma 1 Given a system model G and its correspond-

ing diagnoser DG, then we have LpGq “ LpDGq and

LωpGq “ LωpDGq.

In order to simplify the automata handled, the idea

is to keep only the minimal subparts of DG containing

all faulty (resp., normal) trajectories.

Definition 7 (Fault (Refined) Diagnoser). Given a di-

agnoser DG, its fault diagnoser is the automaton DF
G “

pQDF , ΣDF , δDF , q
0
Dq, where: 1) QDF “ tqD P QD |

Dq1D “ pq, F q P QD, Ds
1 P Σ˚, pqD, s

1, q1Dq P δ˚Du; 2)

δDF “ tpq
1
D, σ, q

2
Dq P δD | q

2
D P QDF u; 3) ΣDF “ tσ P

Σ | Dpq1D, σ, q
2
Dq P δDF u. The fault refined diagnoser is

obtained by performing the delay closure with respect

to the set of observable events Σo on the fault diag-
noser: DFR

G “ AΣopD
F
Gq.

The fault diagnoser keeps all reachable fault states

as well as all transitions and intermediate normal states

on paths from q0D to any fault state. Note that we con-

sider classical permanent fault events, then once the

system enter a fault state, it will always stay in a fault

state whatever behavior it engages in later. Then we

refine this fault diagnoser by only keeping the observ-

able information, which is sufficient to obtain the set of

critical pairs. The top (resp., bottom) part of Figure 3

shows the fault diagnoser (resp., fault refined diagnoser)

for Example 2.

By construction, the sets of faulty trajectories in

DF
G and in G are equal and this is still true for infi-

nite faulty trajectories. This is also the case for faulty

trajectories in DFR
G (we call like this labels of paths in

DFR
G containing a fault state or whose last state reached

owns a transition to a fault state and denote them by

LF pD
FR
G q) and observed faulty trajectories in G (finite



How to be Sure a Faulty System Does not Always Appear Healthy? 7

q0 N q1 N q2 F

q4 F

q5 F

q3 F

q0 N q1 N

q4 F

q5 F

o1 F

u1 o2

o3 o1

o3

o1

o3 o1

o2
o3

Fig. 3: Fault diagnoser (top) and its refined version
(bottom) for Example 2.

or infinite). But take care that it may exist infinite nor-

mal trajectories in DF
G (resp., DFR

G ) if it exists in G a

normal cycle in a path to a fault state (e.g., adding a

loop in state q1 of the system model of Example 2).

Lemma 2 Given a system model G and its correspond-

ing fault diagnoser DF
G and fault refined diagnoser DFR

G ,

we have LF pGq “ LF pD
F
Gq, L

ω
F pGq “ LωF pD

F
Gq and

P pLF pGqq “ LF pD
FR
G q, P pLωF pGqq “ LωF pD

FR
G q.

Similarly, we obtain the subpart of DG containing

only normal trajectories.

Definition 8 (Normal (Refined) Diagnoser). Given a

diagnoser DG, its normal diagnoser is the automaton

DN
G “ pQDN , ΣDN , δDN , q

0
Dq, where: 1)QDN “ tpq,Nq P

QDu; 2) δDN “ tpq1D, σ, q
2
Dq P δD | q2D P QDN u; 3)

ΣDN “ tσ P Σ | Dpq1D, σ, q
2
Dq P δDN u. The normal

refined diagnoser is obtained by performing the delay

closure with respect to Σo on the normal diagnoser:

DNR
G “ AΣopD

N
G q.

Lemma 3 Given a system model G and its correspond-

ing normal diagnoser DN
G and normal refined diagnoser

DNR
G , we have LN pGq “ LpDN

G q, L
ω
N pGq “ LωpDN

G q

and P pLN pGqq “ LpDNR
G q, P pLωN pGqq “ LωpDNR

G q.

q0 N

q1 N

q6 N q7 N q5 N

q0 N

q1 N

q7 N q5 N

o1

u2 o1 o2
o3

o1

o1 o2
o3

Fig. 4: Normal diagnoser (top) and its refined version
(bottom) for Example 2.

The top (resp., bottom) part of Figure 4 shows the

normal diagnoser (resp., normal refined diagnoser) for

Example 2. Note the presence of the deadlock state

pq1, Nq, showing that LN pGq is not necessarily alive.

3.3.2 Manifestability Checking

In this section, we show how to obtain the set of critical

pairs based on the diagnosers described in the precedent

section. Based on this, equivalence checking will be used

to examine the manifestability condition Mω (or M)

in Theorem 2.

Definition 9 (Pair Verifier). Given a system model G,

its pair verifier VG is obtained by synchronizing the

corresponding fault and normal refined diagnosers DFR
G

and DNR
G based on the set of observable events, i.e.,

VG “ DFR
G ‖Σo DNR

G .

To construct a pair verifier, we impose that the syn-

chronized events are the whole set of observable events.

Then VG is actually the product of DFR
G and DNR

G and

the language of the pair verifier is thus the intersec-

tion of the language of the fault refined diagnoser and

that of the normal refined diagnoser. In the pair verifier,

each state is composed of two diagnoser states, whose

label (F or N) of the first one indicates whether the

fault has effectively occurred in the first of the two cor-

responding trajectories. If the first of these two states

is a fault state, then this verifier state is called am-

biguous state since, reaching this state, the first tra-

jectory contains the fault and the second not, while

both have the same observations. Trajectories of VG
that are labels of paths in VG containing an ambiguous

state or whose last state reached owns a transition to

an ambiguous state are called ambiguous and denoted

by LapVGq (resp., Lωa pVGq for infinite ones).

Lemma 4 Given a system model G with its DFR
G , DNR

G

and VG, we have LapVGq “ LF pD
FR
G q X LpDNR

G q and

Lωa pVGq “ LωF pD
FR
G q X LωpDNR

G q.

In the pair verifier depicted in Figure 5, the gray node

represents an ambiguous state.

q0 N

q0 N

q1 N

q1 N

q1 N

q7 N

q5 F

q5 N

o1

o1

o2
o3

Fig. 5: The pair verifier for the system in Example 2.

Theorem 5 Given a system model G, a fault F is di-

agnosable in G iff Lωa pVGq “ H.
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Proof Lωa pVGq ‰ H ô LωF pD
FR
G q X LωpDNR

G q ‰ H

(from Lemma 4) ô P pLωF pGqq X P pLωN pGqq ‰ H

(from Lemmas 2 and 3) ô Ds P LωF pGq, Ds
1 P LωN pGq

P psq “ P ps1q ô Ds, s1 P LωpGq s  s1 (from Defini-

tion 3) ô F is not diagnosable (from Theorem 1). �

From this Theorem, it follows that the system in Exam-

ple 2 is not diagnosable as Figure 5 shows that Lωa pVGq “

to1o2o
ω
3 u.

Theorem 6 Given a system model G, a fault F is

manifestable in G iff LapVGq Ă LF pD
FR
G q or, equiv-

alently, iff Lωa pVGq Ă LωF pD
FR
G q.

Proof Lωa pVGq Ć LωF pD
FR
G q ô LωF pD

FR
G q Ď LωpDNR

G q

(from Lemma 4)ô P pLωF pGqq Ď P pLωN pGqq (from Lem-

mas 2 and 3) ô @s P LωF pGq, Ds
1 P LωN pGq P psq “

P ps1q ô @s P LωF pGq, Ds
1 P LωN pGq s  s1 (from Def-

inition 3) ô  Mω ô F is not manifestable (from

Theorem 2). The proof is identical when using finite

trajectories and property M. �

From this Theorem, it follows that the system in Ex-

ample 2 is manifestable as Figure 3 and Figure 5 show

that LωF pD
FR
G qzLωa pVGq “ to1o3o1o

ω
3 u.

Adapting the proof of Theorem 6 by using Theo-

rem 3 instead of Theorem 2, i.e., by reasoning on prop-

erty Ms
ω (or equivalently Ms) instead of property Mω

(or equivalently M), one obtains:

Theorem 7 Given a system model G, a fault F is

strongly manifestable in G iff @sF P LpGq, LapVGq X

P psF qΣ˚o Ă LF pD
FR
G q X P psF qΣ˚o or, equivalently,

Lωa pVGq X P ps
F qΣω

o Ă LωF pD
FR
G q X P psF qΣω

o .

So, when manifestabilty requires only strict inclusion

of the language LapVGq into the language LF pD
FR
G q,

strong manifestability requires that this strict inclusion

holds for all corresponding sub-languages made up of

the words of both languages having a given prefix equal

to the observation of an arbitrary trajectory ending by

an occurrence of F . Conversely, to verify non-strong

manifestability, it is enough to find one fault trajectory

sF such that there is equality of both sub-languages

made up of words of prefix P psF q: LapVGqXP ps
F qΣ˚o “

LF pD
FR
G q X P psF qΣ˚o .

3.3.3 Algorithm and Complexity

Algorithm 1 is the pseudo-code to verify manifesta-

bility, which can simultaneously verify diagnosability.

Given the input (line 1) as the system model G and

the fault F , we first construct the diagnoser (line 2) as

described by Definition 6. We then construct fault and

normal refined diagnosers (lines 3-4) as defined by Def-

initions 7 and 8. The next step is to synchronize DFR
G

and DNR
G to obtain the pair verifier VG (line 5). With

DFR
G and VG, we have the following verdicts:

– if Lωa pVGq “ H (line 6), F is diagnosable from

Theorem 5 and thus manifestable (even strongly

manifestable) from Theorem 4 (line 7).

– if Lωa pVGq “ LωF pD
FR
G q or, equivalently, LapVGq “

LF pD
FR
G q (line 8), necessarily both nonempty, we

can deduce from Theorem 6 that F is not mani-

festable. Thus, by Theorem 4, F is not diagnosable

(line 9).

– if Lωa pVGq ‰ H and if Lωa pVGq Ă LωF pD
FR
G q or,

equivalently, LapVGq Ă LF pD
FR
G q (line 10), which

can be deduced because of Lemma 4, the former

condition means by Theorem 5 that F is not diag-

nosable, and the latter means by Theorem 6 that F

is manifestable (line 11).

Algorithm 1 Manifestability and Diagnosability Algo-

rithm for DESs
1: INPUT: System model G; the considered fault F
2: DG Ð ConstructDiagnoserpGq
3: DFRG Ð ConstructFRDiagnoserpDGq
4: DNRG Ð ConstructNRDiagnoserpDGq
5: VG Ð DFRG ‖Σo

DNRG
6: if Lωa pVGq “ H then
7: return “F is diagnosable and manifestable in G”
8: else if Lωa pVGq “ LωF pD

FR
G q (or, equivalently, LapVGq “

LF pDFRG qq then
9: return “F is neither diagnosable nor manifestable in

G”
10: else
11: return “F is not diagnosable but manifestable in G”
12: end if

Note that LωF pD
FR
G q “ LωpD1FRG q (resp., Lωa pVGq “

LωpV 1Gq) where D1FRG is identical to DFR
G (resp., V 1G

identical to VG), except that the final states, for Büchi

acceptance conditions, are limited to fault (resp., am-

biguous) states. Note also that the condition Lωa pVGq “

LωF pD
FR
G q is equivalent to LωpVGq “ LωpDFR

G q as the

infinite normal trajectories are identical in VG and in

DFR
G (and idem for finite trajectories).

In Algorithm 1, the complexity of the different di-

agnosers constructions is polynomial. Building the pair

verifier by synchronizing the fault and the normal re-

fined diagnosers is polynomial with the number of sys-

tem states. To finally check the manifestability, the

equivalence checking (line 8) is known to be a PSPACE

problem (even for infinite words, see [48]). Thus, the to-

tal complexity of this algorithm is PSPACE. As we will

formally prove just below, Algorithm 1 suggests that

the manifestability problem is more complex than di-

agnosability (for which a test of language emptiness is

sufficient, which implies a total NLOGSPACE complex-
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ity; actually it is a result already known that checking

diagnosability is NLOGSPACE-complete).

Now we show that the problem of manifestability

verification itself is a PSPACE-complete problem by

the reduction to it of rational languages equivalence

checking. The problem of checking non-deterministic

automata equivalence is known to be PSPACE-complete.

Theorem 8 Given a system model G and a fault F ,

the problem of checking whether F is manifestable in G

is PSPACE-complete.

Proof The complexity of Algorithm 1 is PSPACE. We

show that the problem of checking manifestability is

PSPACE-hard. Let G1 “ pQ1, Σ, δ1, q
0
1q and G2 “ pQ2,

Σ, δ2, q
0
2q be two arbitrary (non-deterministic) automata

on the same vocabulary defining prefix-closed alive lan-

guages. One can always assume that Q1 X Q2 “ H.

Based on G1 and G2, one can construct a new au-

tomaton, representing a system model, G “ pQ,Σ Y

tτ, F u, δ, q0q, where Q “ Q1 YQ2 Y tq
0u and δ “ δ1 Y

δ2 Y tpq
0, F, q01q, pq

0, τ, q02qu, with Σo “ Σ, Σu “ tτu

and Σf “ tF u. From the construction of G, one has

LpG1q “ P pLF pGqq and LpG2q “ P pLN pGqq. From

Lemmas 2, 3 and 4, one obtains LapVGq “ P pLF pGqqX

P pLN pGqq. This implies LpG1qXLpG2q “ LapVGq. From

Theorem 6, one has LpG1q X LpG2q Ă LpG1q ðñ F is

manifestable in G, i.e., LpG1q Ď LpG2q ðñ F is not

manifestable in G. So, rational languages inclusion test-

ing boils down to manifestability checking, which gives

the result. Note that we could do exactly the same proof

using the languages of infinite words and again Theo-

rem 6, and the fact that the problem of checking non-

deterministic automata equivalence on infinite words

has also been proved to be PSPACE-complete [48]. And

note that the proof shows also that checking strong

manifestability is PSPACE-hard. �

Let now consider verifying strong manifestability. It

is obvious from Definition 5 that F is strongly man-

ifestable in G iff each occurrence of F as a transition

label is strongly manifestable in G. We can thus assume

that there is only one transition in G labeled by F , say

pqF , F, q
1
F q. From Theorem 7, proving non-strong man-

ifestability of F in G is equivalent to find sF P LpGq

such that LF pD
FR
G q XP psF qΣ˚o Ď LapVGq XP ps

F qΣ˚o .

In order to simplify the notations, assume in this para-

graph that the fault refined diagnoser DFR
G is obtained

by the delay closure with respect to Σo Y tF u, i.e., de-

cide to keep the event F in DFR
G and thus in VG too

(this changes nothing to statement of Theorem 7). So,

we check the existence of sF P LF pD
FR
G q such that:

LF pD
FR
G q X sFΣ˚o Ď LapVGq X sFΣ

˚
o . (NSM)

Let tpqF , qiquiPI be the set of all states of VG (trimmed

w.r.t. ambiguous states co-accessibility) whose first com-

ponent is qF (we omit to write associated fault labels,

N – and possibly also F if the F transition is part of a

cycle – for qF and N for the qi’s). Note that qF appears

once among the qi’s. If the property (NSM) is satisfied

for some sF , then any extension of sF in LF pD
FR
G q

has to appear as an extension of sF in LapVGq, i.e.,

Lq1F pD
FR
G q Ď

Ť

iPI Lpq1F ,qiqpVGq, where LqpGq denotes

the set of words produced by G from state q, i.e., as

if q was the initial state of G. But this is only a nec-

essary condition, not sufficient in general. Actually, if

corresponding extensions in VG need several pq1F , qiq as

starting states, (NSM) property to be satisfied requires

that a common prefix s exists for all of them, i.e., a com-

mon word in the associated languages LpVG, pqF , qiqq,

where LpG, qq denotes the set of words produced from

paths from initial state to q in G, i.e., as if q was the

only final state (s will then necessarily be a prefix in

LpDFR
G , qF q too). Finally, the existence of sF verifying

(NSM) is equivalent to the existence of J Ď I, such

that: Lq1F pD
FR
G q Ď

Ť

iPJ Lpq1F ,qiqpVGq and
Ş

iPJ LpVG,

pqF , qiqq ‰ H. This equivalence provides an algorithm

for checking non-strong manifestability, which boils down

to a finite number of tests of language equivalence and

language emptiness. In the worst case, this algorithm

may require testing all subsets J of I, thus giving an

EXPTIME complexity in the size of G. Nevertheless,

under the particular assumption that there is no cy-

cle in G before the occurrence of F or containing F ,

the system has then only a finite number of fault oc-

currences, i.e., of possible prefixes sF , as the language

LpDFR
G , qF q is finite. Processing each word sF of this

language separately, one has just to do each time one

language equivalence test between the fault refined di-

agnoser and the pair verifier limited to sF , which gives a

PSPACE complexity for the corresponding algorithm.

This proves that checking strong manifestability is a

PSPACE-complete problem for the class of systems ver-

ifying this assumption.

3.4 Experimental Results

We have applied our algorithm on more than one hun-

dred examples taken from literature and hand-crafted

ones. The latter ones are constructed to show the scal-

ability since the sizes of the former ones are very small.

All our experimental results1, including those in Sec-

tion 4.4, are obtained by running our program on a

1 the examples in Table 1 and Table 2 can be found in
https://www.lri.fr/˜linaye/cases.pdf
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LitSys |S|/|T| |S|/|T|(PV) Time verdict HCSys |S|/|T| |S|/|T|(PV) Time verdict

Ex. 2 8/10 4/4 15 SManifes h-c1 22/24 18/18 32 SManifes
ls1[44] 16/23 7/11 39 Manifes h-c2 36/39 74/77 90 Manifes
ls2[37] 16/20 7/9 25 Manifes h-c3 87/90 63/68 105 Manifes
ls3[27] 4/7 3/3 12 SManifes h-c4 52/57 32/30 63 SManifes
ls4[53] 15/21 11/16 52 SManifes h-c5 57/69 32/37 78 SManifes
ls5[45] 11/15 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes
ls6[43] 8/12 8/11 53 NManifes h-c7 986/1032 870/861 312 NManifes

Table 1: Experimental results of manifestability checking for DESs

Mac OS laptop with a 1.7 GHz Intel Core i7 processor

and 8 Go 1600 MHz DDR3 of memory.

Table 1 shows part of our experimental results, where

the verdicts (e.g., Manifes(tability), S(trong)Manifes,

Diagno(sability), N(on)Manifes) show the strongest

property satisfied by the system. For example, if it is

Manifes, then it is not SManifes nor Diagno. Diagno

implies both SManifes and Manifes. We give the num-

ber of states and transitions of the system (|S|/|T|),

of the pair verifier (|S|/|T|(PV)), as well as the execu-

tion time (millisecond is used as time unit). The size of

the pair verifier includes all transitions generated from

the synchronization of the fault refined diagnoser and

the normal refined diagnoser. The examples shown here

include Example 2 in this paper with the (modified) il-

lustrative examples of other papers that handle similar

problems.

To construct the hand-crafted examples (HCSys)

from those selected from the literature (LitSys), we are

not interested in diagnosable examples. First, diagnos-

able systems are rare in the literature as well as in the

industry. Second, diagnosability implies an empty lan-

guage of ambiguous infinite words for the pair verifier,

which can be verified without equivalence checking. The

efficiency cannot be convincing by applying our algo-

rithm on diagnosable examples. When extending the

examples from the literature, we keep the same verdict.

For example, for a manifestable system, an arbitrary

automaton without fault is added in a place such that

at least one faulty trajectory can always manifest itself

(and obviously critical pairs are preserved).

From our experimental results, the executed time is

also dependent on the size of the pair verifier besides

that of the system. To achieve a worst case, one way is

to employ the example construction in the proof of The-

orem 8 by setting LpG1q “ LpG2q. The hand-crafted

example h-c7 is constructed in such a way.

We can see that the original HVAC system in [43] is

not manifestable, i.e., any faulty behavior cannot be di-

agnosed in all its futures. It is thus necessary to go back

to design stage to revise the system model. For other

manifestable but not diagnosable systems, one inter-

esting future work is to study bounded-manifestability,

making sure to detect the fault in bounded time.

4 Manifestability for Real-time Systems

Note that for real-time systems, it is important to take

into account during analysis phase explicit time con-

straints, which are naturally present in real-life sys-

tems (e.g., transmission delays, response time, etc...)

and thus cannot be neglected considering their impact

on some properties, including manifestability. For ex-

ample, two ambiguous behaviors for an untimed DES

may be distinguishable by adding explicit time con-

straints, e.g., the delay between some two successive

observable events is always different. Considering that

classical models (e.g., finite automata, Petri nets) can-

not express such real-time constraints, we will analyze

manifestability for timed automata (TA), which are one

of the most studied models for real-time systems since

their introduction by [2]. In such a model, quantitative

properties of delays between events can easily be ex-

pressed. Executions traces of TA are modeled by timed

words, i.e., sequences of events which are attached to

the time at which they occur. Hence, TA are seen as

acceptors of languages of timed words.

We extend in this section our approach to handle the

manifestability problem for TA, demonstrating that it

is undecidable for general TA and becomes PSPACE-

complete under some special conditions. For the decid-

able cases, we propose a new approach to efficiently

encode the manifestability problem into Satisfiability

Modulo Theories (SMT). SMT is an extended form of

Boolean satisfiability (SAT), where literals are inter-

preted with respect to a background theory. In terms

of expressiveness, one can provide with SMT a natu-

ral symbolic representation for TA. The discrete parts

of TA can be represented by the Boolean part and the

continuous clocks evolutions can be expressed by the

linear real arithmetic theory.
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4.1 Manifestability for TA

TA constitute a framework for modeling and verifying

real-time systems. A TA is essentially a finite automa-

ton, thus with a finite set of states and a finite set of

labeled transitions between them, extended with a finite

set of real-valued variables modeling clocks. During a

run of a TA, clock values are initialized with zero when

starting in the initial state, and then are increased all

with the same speed. Clock values can be compared

to constants or between them. These comparisons form

guards (resp., invariants of states) that may enable in-

stantaneous transitions (resp., restrict the time during

which one can stay in the corresponding state), and by

doing so constrain the possible behaviors of the TA.

Furthermore, clocks can be also reset to zero by some

of the transitions.

Before introducing the formal definition of TA, we

first give the set of possible clock constraints considered

in this paper, formally described by:

g ::“ true | x ’ c | x´ y ’ c | g ^ g,

where x, y are clock variables, c is a constant and

’ P tă,ď,“,ě,ąu.

Note that a TA allowing such clock constraints is ex-

ponentially more concise than its classical variant with

only diagonal-free constraints (where the comparison

can be done only between a clock value and a constant),

but both have same expressiveness. Let X be a finite set

of clock variables. A clock valuation over X is a function

v : X Ñ R, where R denotes the set R` of non-negative

real numbers (actually, for implementation, the set Q`
of non-negative rational numbers is used to have an ex-

act computer representation). Then the set of all clock

valuations over X is denoted by RX and the set of time

constraints over X by CpXq, where such a constraint is

given by a collection of clock constraints. If a clock valu-

ation v satisfies the time constraint g, then it is denoted

by v |ù g. In the following, we denote vgw the set of clock

valuations that satisfy g, i.e., vgw “ tv P RX | v |ù gu.

Definition 10 (Timed Automaton) A timed auto-

maton (TA) is a tuple A “ pQ,Σ,X, δX , q0, Iq, where:

– Q is a finite set of states;

– Σ is a finite set of events;

– X is a finite set of clock variables;

– δX Ď Q ˆ CpXq ˆ Σ ˆ 2X ˆ Q is a finite set of

transitions pq, g, σ, r, q1q, where the guard g P CpXq,
which has to be satisfied for the transition to be

fired, and the clocks r Ď X reset to zero, when not

specified, are by default true and H, respectively;

– q0 P Q is the initial state;

– I : Q Ñ CpXq is the invariant function that asso-

ciates with each state q the invariant Ipqq, a con-

straint that has to be satisfied by clocks in state q,

whose value by default, when not specified, is true.

We require 0 P vIpq0qw.

We will again assume the given partition Σ “ ΣoZΣuZ

Σf and we can without restriction take Σf “ tF u.

Example 3 Figure 6 is a TA obtained by adding some

time constraints to the system model shown at the top

part of Figure 2 and modifying some observable events

and the place of the fault. Here c is a clock variable that

is used to impose certain periods between events.

q0

q1 q2 q4 q5

q3

q6 q7

F

o1; c :“ 0

c ď 1;u1 0 ă c ď 3; o2

c ą 3; o2 o3

u2 o1; c :“ 0 c ą 3; o2

o3

Fig. 6: A real-time system model TA.

In this example of TA, pq3, 0 ă c ă“ 3, o2,H, q5q P δ
X

means that only when the guard 0 ă c ă“ 3 is satisfied,

the event o2 can occur, inducing an instantaneous state

change from q3 to q5 with the clock value unchanged.

Since the last reset of c before this occurrence of o2

happens with the occurrence of o1, the period between

those occurrences of o1 and o2 should be greater than

0 and smaller than or equal to 3. We denote this transi-

tion also as q3
0ăcă“3; o2
ÝÝÝÝÝÝÝÝÑ q5. For the sake of simplic-

ity, we do not assign specific invariants to states, i.e.,

we use the default value true for all states, which means

that there is no time limit for the system to stay in any

state. When there is an invariant for a state, once the

invariant ceases to be satisfied, one is obliged to leave

the corresponding state.

We call a state with a clock valuation an exten-

sion state, shortly state in the following, i.e., pq, vq with

q P Q and v P RX . Let t P R, the valuation v ` t

is defined by pv ` tqpxq “ vpxq ` t,@x P X. Suppose

X 1 Ď X, we denote by vrX 1 Ð 0s the valuation such

that @x P X 1, vrX 1 Ð 0spxq “ 0 and @x P XzX 1,

vrX 1 Ð 0spxq “ vpxq. A TA gives rise to an infinite

transition system with two types of transitions between

extension states. One is a time transition representing

time passage in the same state q, during which the in-

variant inv “ Ipqq for q should be always respected.

The other one is a discrete transition issued from a la-

beled transition q
g; σ; r
ÝÝÝÝÑ q1 for TA, associated with an



12 Philippe Dague et al.

event σ, which is fired (a necessary condition being that

the guard g is satisfied) and should be executed instan-

taneously, i.e., the clock valuation cannot be modified

by the transition itself but only by the reset to 0 of those

clock variables belonging to r, if any. In the following,

both are denoted by pq, vq
ν
ÝÑ pq1, v1q, where ν P Σ YR.

Thus, if ν P Σ, then v should satisfy the guard g in the

corresponding TA labeled transition and v1 “ vrr Ð 0s

for r the clock variables reset to 0 in this transition, if

any. Otherwise, if ν P R, then q1 “ q and v1 “ v ` ν,

where all of v ` t, for 0 ď t ď ν, should satisfy the

invariant inv associated to the state q.

Given a TA A, a sequence of such transitions pq0, v0
“ 0q

ν1
ÝÑ pq1, v1q . . .

νn
ÝÑ pqn, vnq is a feasible execution

in A if @i P t0, ..., n ´ 1u, pqi, viq
νi`1
ÝÝÝÑ pqi`1, vi`1q is

either a time or a discrete transition in it. Then the

word ν1...νn P pΣYRq
‹ is called a timed trajectory or a

run. This extends to infinite sequences and trajectories.

The set of finite (resp., infinite) timed trajectories for

A is denoted by LpAq (resp., LωpAq, where acceptance

is in the sense of Büchi automata or, equivalently, of

Muller automata if all states are considered as final).

The faulty runs, i.e., containing F , are noted LF pAq

(resp., LωF pAq) and the normal runs, i.e., not contain-

ing F , are noted LN pAq (resp., LωN pAq). By summing up

successive time periods and introducing a zero time pe-

riod between two successive events if any, we can always

assume that between any two successive events there is

exactly one time period, i.e., periods and events alter-

nate in a timed trajectory. For ρ a timed trajectory,

we denote by timepρq P R Y t`8u the total time du-

ration for ρ, i.e., timepρq “
ř

νiPR^νiPρ
νi (note that

timepρq “ `8 implies that ρ is an infinite run). We
note L8pAq (resp., L8F pAq, L

8
N pAq) the time-infinite

runs (resp., time-infinite faulty runs, time-infinite nor-

mal runs) and thus we have L8pAq Ď LωpAq (resp.,

L8F pAq Ď LωF pAq, L
8
N pAq Ď LωN pAq). Now we rede-

fine a projection operator P for TA. Given a timed

trajectory ρ and a set of events Σ1 Ď Σ,P pρ,Σ1q is

the timed trajectory obtained by erasing from ρ all

events not in Σ1 and summing up the periods between

successive events in the resulting sequence. For exam-

ple, if ρ “ 2 o1 3 u 2 o2 3 o1, then P pρ, to1, o2uq “

2 o1 5 o2 3 o1. In the following, we simply denote P pρq

the projection of the timed trajectory ρ to observable

events, i.e., P pρq “ P pρ,Σoq.

We make for TA the analog assumption done for

DES about the (time-infinite) continuation of any (ti-

med) trajectory and the necessity to observe any infi-

nite (timed) trajectory.

Assumption 2: (Time alive and observably alive sys-

tem) The TA A is time alive (also called timelock-free),

i.e., from each reachable (by a finite run from q0) state,

starts a time-infinite run (which is equivalent to say

that LpAq is exactly made up of all the prefixes of

L8pAq), and observably alive, i.e., there is no infinite

run without any observable event, i.e., any infinite run

has infinitely many observable events occurrences (this

implies in particular that the system cannot stay in-

finitely, and thus cannot stay an infinitely long time, in

a same state with only time transitions).

The TA of Figure 6 is time alive and observably

alive.

We will use the following notion, originally intro-

duced by [50].

Definition 11 (∆-faulty runs) Given A a TA, let ρ “

ν1ν2 . . . be a faulty run. Let then j be the smallest i

such that νi “ F and let ρ1 “ νj`1 . . . . We denote

timepρ1q by timepρ, F q and call it the period from (the

first occurrence of) fault F in ρ. If timepρ, F q ě ∆,

where ∆ P R, then we say that at least ∆ time units

pass after the first occurrence of F in ρ, or, in short,

that ρ is ∆-faulty.

Definition 2 extends to define diagnosability of TA by

replacing the length parameter k by the time parameter

∆.

Definition 12 (Diagnosability of TA). Given a TA

A and a fault F :

1. given ∆ P R, F is ∆-diagnosable in A if

@ρ P LpAq, ρ ∆-faulty ñ

p@ρ1 P LpAq, P pρq “ P pρ1q ñ F P ρ1q.

2. F is diagnosable in A if

D∆ P R such that F is ∆-diagnosable in A.

Note that we used in this definition the language of fi-

nite words LpAq. This is because ∆-diagnosability with

this definition implies ∆1-diagnosability, for any ∆1 ą

∆, with the definition allowing both finite and infinite

words, as any infinite ∆1-faulty run owns a prefix which

is a finite ∆-faulty run. Obviously, in absence of Zeno

runs (infinite runs in finite time), both definitions are

exactly the same.

In the same way, Definition 3 is transposed to the TA

framework.

Definition 13 (Timed Critical Pair). A pair of

timed trajectories ρ, ρ1 is called a timed ∆-critical pair

(resp., a timed infinite-critical pair or, in short, a timed

critical pair) with respect to F , denoted by ρ ff∆ ρ1

(resp., ρ ff ρ1), if the following conditions are satisfied:

– ρ P LF pAq, time(ρ, F q “ ∆, ρ1 P LN pAq (resp.,

ρ P L8F pAq, ρ
1 P L8N pAq).

– P pρq “ P pρ1q.
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Finally, the characterization of diagnosability of DESs

provided by Theorem 1 extends to TA.

Theorem 9 A fault F is ∆-diagnosable (resp., diag-

nosable) in A iff Eρ, ρ1 P LpAq, such that ρ ff∆ ρ1 (resp.,

Eρ, ρ1 P L8pAq, such that ρ ff ρ1).

From this characterization and from the extension to

TA of the construction of a pair verifier VA, it has

been proved that diagnosability of F in A is equiva-

lent to emptiness of L8a pVAq, a problem known to be

PSPACE. And reducing TA reachability to diagnos-

ability proves that checking diagnosability is actually

PSPACE-complete for TA [50].

Now we adapt Definition 4 to define manifestability

of TA.

Definition 14 (Manifestability of TA). F is mani-

festable in a TA A if

Dρ P LF pAq,

@ρ1 P LpAq, P pρ1q “ P pρq ñ F P ρ1.

Note that we could also adopt a weaker definition of

manifestability allowing ρ to be an arbitrary time-finite

run, i.e., not only a finite run in LF pAq, but also a

Zeno run in LωF pAqzL
8
F pAq but as Zeno runs are in gen-

eral non-desirable behaviors due to modeling errors, we

adopted this stronger version excluding manifestability

through Zeno runs only. An immediate rephrasing of

this definition gives, by using Definition 13, the follow-

ing result (analog to Theorem 2).

Theorem 10 A fault F is manifestable in a TA A iff

the following condition is satisfied:

pMtq Dρ P LF pAq, Eρ
1 P LN pAq, ρ fftimepρ,F q ρ

1.

In the same way, Definition 5 can be adapted to define

strong manifestability of TA.

Definition 15 (Strong Manifestability of TA).

Given a TA A and a fault F :

1. given ∆ P R, F is strongly ∆-manifestable in A if

@ρF P LpAq, Dt P LpAq{ρF , timeptq ď ∆,

@ρ1 P LpAq, P pρ1q “ P pρF tq ñ F P ρ1.

2. F is strongly manifestable in A if

@ρF P LpAq, Dt P LpAq{ρF ,

@ρ1 P LpAq, P pρ1q “ P pρF tq ñ F P ρ1.

And, similar to Theorem 3.1, we obtain the following

straightforward result.

Theorem 11 Given a TA A, a fault F and ∆ P R, F

is strongly ∆-manifestable in A iff the following condi-

tion is satisfied:

pMts
∆q @ρF P LpAq, Dt P LpAq{ρF , timeptq ď ∆,

Eρ1 P LN pAq, ρ
F t fftimeptq ρ

1.

Thus, in a similar way as for DESs, the manifestability

verification for TA consists in checking the existence of

a faulty trajectory that can be distinguishable from all

normal ones. The difference is that for TA, the occur-

rence time of observable events should also be taken

into account. In other words, a non-manifestable DES

has a chance to become manifestable by adding some

time constraints such that at least one faulty trajec-

tory can be distinguishable from normal ones thanks

to the different occurrence time of the same observable

events. For example, consider the system modeled by

the TA of Figure 6. Its simple automaton version with-

out time constraints is actually not manifestable since

all faulty trajectories have the same observations as the

normal one, i.e. o1o2o3˚. After adding time constraints,

at least one faulty timed trajectory can manifest itself,

distinguishable from the normal one. More precisely,

the faulty trajectory with the event u1 can be distin-

guishable from the normal one since the time duration

between the successive observable events o1 and o2 is

smaller than or equal to 3 time units for the former,

while that is strictly greater than 3 time units for the

latter. When the time between observing o1 and o2 is

not greater than 3, we can be sure about the occur-

rence of the fault. One can clearly see that adding time

constraints sometimes makes a non-manifestable sys-

tem manifestable by distinguishing temporally a faulty

trajectory, which cannot manifest itself in the untimed

setting, from all normal trajectories.

4.2 Undecidability and Decidability Results

From a given TA A modeling a real-time system, the

idea is to construct its corresponding fault diagnoser

DF
A (see Definition 7 for the non-refined version) and

fault pair verifier V FA , the latter being constructed by

synchronizing DF
A with normal refined diagnoser DNR

A

(see Definition 8) based on the set of observable events

(it is not necessary, as we did for automata in order to

get more compact representation, to do the refinement

of DF
A ; the reason for limiting as much as possible the

use of the refinement process is explained just below).

We define the final states in DF
A as the faulty states and

the final states in V FA as the ambiguous states. Thus,

manifestability verification consists in checking whether

there does exist an accepted timed trajectory in DF
A

that is not accepted by V FA . The reason is that each am-

biguous timed trajectory in V FA corresponds to a faulty

timed trajectory in the original system, for which there

exists at least one normal timed trajectory with the
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same observation, i.e., such that the fault cannot man-

ifest itself. For the example depicted in Figure 6, its

trim V FA and DF
A are shown in Figure 7. Note that in

V FA , since we synchronize two timed trajectories, their

q0 N

q0 N

q1 F

q0 N

q2 F

q7 N

q3 F

q7 N

q4 F

q5 N

q5 F

q5 N

q0 N q1 F q2 F q3 F q5 F

q4 F

F o1;

c1 :“ 0, c2 :“ 0

c1 ď 1;

u1

0 ă c1 ď 3 ^ c2 ą 3;

o2

c1 ą 3 ^ c2 ą 3;

o2
o3

o3

F o1;

c :“ 0
o3

c ď 1;

u1

0 ă c ď 3;

o2

o2

c ą 3;

o3

o3

Fig. 7: The fault pair verifier V FA for the system whose
model is depicted in Figure 6 (top); the fault diagnoser DFA

(bottom).

corresponding clock variable c is distinguished by re-

naming as c1 and c2 [50]. It is obvious that any timed

trajectory of DF
A containing u1 (and o3) is not accepted

by V FA (as the transition in V FA following u1 can never

be fired due to its clocks constraints), proving thus that

F is manifestable.

The problem in the general case is that, to con-

struct DNR
A from DN

A , we are obliged to rest on the

delay closure process, i.e., on removing unobservable

events or equivalently removing ε-transitions. But it is

known that this is not always possible. Actually, it has

been proved [8] that, contrary to the case of FSM, ε-

transitions strictly increase the power of TA, if there

is a self-loop containing ε-transitions which reset some

clocks. But ε-transitions can be removed if they do not

reset clocks, to obtain a TA accepting the same timed

language. More generally, it has been proved [22] that

a TA such that no ε-transition with nonempty reset set

lies on any directed cycle can be effectively transformed

into a TA without ε-transitions that accepts at least the

timed language of the initial TA and whose non-Zeno

accepted timed words are the same with those accepted

by the initial TA. In this paper, as we do not exclude

Zeno runs, we will assume simply that there is no clock

reset for the transitions with unobservable events in the

normal diagnoser DN
A . Other unobservable events are

not handled as ε-transitions. This assumption is ful-

filled by Example 3, depicted in Figure 6, as c is not

reset in transition u2 (but it could be reset in transi-

tion u1). So in our case, we adopt the method proposed

in [8] to remove unobservable events in DN
A to get DNR

A .

Assumption 3: (Limited clock reset TA) Any transi-

tion in A from a state q reachable from q0 by a normal

(i.e., not containing F ) execution, and associated to an

unobservable normal event σ, is of the form pq, g, σ,H, q1q,

i.e., has no clock reset.

This is equivalent to say that there is no clock reset

for transitions with unobservable events in DN
A . Now,

from the construction of the two structures DF
A and

DNR
A , Theorem 6 extends to TA.

Theorem 12 Given a real-time system model A with

limited clock reset, a fault F is manifestable in A iff

LapV
F
A q Ă LF pD

F
Aq, with V FA “ DF

A ‖Σo DNR
A .

So we get a way to check manifestability as checking

inclusion between languages defined by two TA. But it

is well-known that this problem is undecidable for gen-

eral TA [3].

Actually, in a similar way to that in the discrete frame-

work, we show how to reduce the inclusion problem of

TA to the manifestability problem of TA, which proves

the undecidability of manifestability checking for TA.

Theorem 13 Given a TA A and a fault F , the problem

of checking whether F is manifestable in A is undecid-

able.

Proof Reducing the undecidable inclusion problem of

TA to the manifestability problem is achieved by adapt-

ing to TA the construction in the proof of Theorem 8.

LetA1 “ pQ1, Σ,X1, δ
X1
1 , q01 , I1q,A2 “ pQ2, Σ,X2, δ

X2
2 ,

q02 , I2q be two arbitrary (non-deterministic) time alive

TA on the same vocabulary defining prefix-closed timed

languages. One can assume that Q1 X Q2 “ H. Based

on A1 and A2, one can construct a new TA represent-

ing a system model, A “ pQ,Σ Y tτ, F u, X, δX , q0, Iq,

where Q “ Q1YQ2Ytq
0u, X “ X1YX2Ytx

0u, δX “

δX1
1 YδX2

2 Ytpq0, x0 “ 0, F,H, q01q, pq
0, x0 “ 0, τ,H, q02qu

and I “ I1YI2, with Σo “ Σ, Σu “ tτu and Σf “ tF u.

A satisfies the assumption of limited clock reset. From

the construction of A, one has LpA1q “ P pLF pAqq and

LpA2q “ P pLN pAqq. In the same way as the proof of

Theorem 8, one gets finally LpA1qXLpA2q Ă LpA1q ðñ

F is manifestable in A, i.e., LpA1q Ď LpA2q ðñ F is

not manifestable in A. So, languages inclusion testing

for TA boils down to manifestability checking of TA.

The proof shows also that checking strong manifesta-

bility is undecidable. �

Since the manifestability problem of TA is unde-

cidable, we now analyze a subclass of TA whose man-

ifestability problem is decidable. The idea comes from

the fact that the inclusion problem of deterministic TA

is PSPACE-complete [3]. For a TA A, we say it is de-

terministic whenever given two distinct discrete transi-

tions from the same state with the same label pq, g1, σ,

r1, q
1
1q and pq, g2, σ, r2, q

1
2q, it holds that g1 ^ g2 is not

satisfiable, i.e., there is no common time where one or

the other could be indifferently fired.
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Definition 16 (Single-Silent Deterministic TA)

Given a TA A with limited clock reset, we call it Single-

Silent Deterministic TA (SS-DTA), if A is deterministic

and, from any state q reachable from q0 by a normal ex-

ecution, if a transition by an unobservable normal event

exists from q, then it is the only one normal transition

from q, i.e., if pq, g1, σ1, r1, q
1
1q and pq, g2, σ2, r2, q

1
2q are

two different transitions with σ1, σ2 ‰ F , then σ1 P Σo
and σ2 P Σo.

The TA of Figure 6 is an SS-DTA. One can notice that

for an SS-DTA, as A is deterministic, so are both its

normal diagnoser DN
A and its fault diagnoser DF

A . The

condition of Definition 16 also implies that any unob-

servable normal transition in DN
A is the only one tran-

sition issued from its source state. And with Assump-

tion 3, it is easy to show that DNR
A , constructed from

DN
A by deleting unobservable events, keeps determin-

istic. Since both DNR
A and DF

A are deterministic, then

V FA obtained from their synchronization is also deter-

ministic (this can be verified for the example in Fig-

ure 7). Thus in a similar way as that for Theorem 8,

the following theorem can be proved by reducing the in-

clusion problem of two deterministic TA to manifesta-

bility problem of an SS-DTA (note that Assumption 3

and the second condition of Definition 16 are trivially

satisfied as τ is the unique unobservable normal event).

Theorem 14 Given an SS-DTA and a fault F, its man-

ifestability problem is PSPACE-complete.

4.3 Encoding Bounded Manifestability

In this section, we show how to verify the manifestabil-

ity of an SS-DTA by encoding it into SMT formula. We

do not consider the problem of deciding if an arbitrary

TA can be transformed into an SS-DTA, as it is already

known that the problem of deciding whether a TA is

determinizable is actually undecidable [24]. Note that

there are some subclasses of TA that are determiniz-

able by using for example algorithm proposed in [6]. To

facilitate SMT encoding for the inclusion checking, we

add an additional non-final state sink to the fault pair

verifier V FA , which is deterministic, such that it is deter-

ministic and complete. This is done by adding transi-

tions from other states to the state sink and a self-loop

for state sink (see [2] for details, in the case where in-

variants are True). By Theorem 12, checking that an

SS-DTA A satisfies manifestability is equivalent to find

a faulty timed trajectory ρ (i.e., accepted by DF
A), such

that the timed trajectory of V FA identical to ρ (which

exists as V FA is complete and is unique as V FA is deter-

ministic) is not accepted by V FA . Thus manifestability

checking boils down to finding a timed trajectory which

is accepted by DF
A and rejected by V FA . To code this

problem as a (finite) logical formula whose satisfiabil-

ity will be determined by bounded model checking, it is

necessary to bound the length of the timed trajectories

considered. An input integer parameter k will thus be

given, and only timed trajectories ρ such that |ρ| ď k

will be considered. Now, what will matter for the end-

user, in case of manifestability, is that the fault will

manifest itself after an acceptably long time. That is,

his requirement will not be a length k, but a time delay

∆ P R representing a time upper-bound after its oc-

currence for the fault to manifest itself (similar to the

concept of ∆-manifestability used in Definition 15.1).

As there is in general no relationship between k and

∆ among timed trajectories (except that, for a given

timed trajectory, the two parameters vary in the same

sense), as a longer timed trajectory may have a smaller

time, the usage of the method is as follows: one checks

if it exists a timed trajectory of length at most k (in-

put of the algorithm) and of time after fault at most ∆

(input from the end-user), then the requirements of the

end-user are fulfilled; otherwise one repeats the process

with a greater k. One can at any step query without the

parameter ∆ in order to get back a delay ∆1 (greater

than ∆), proving the manifestability in time ∆1 after

the fault, and see if it could be acceptable by the end-

user. Obviously, if no theoretical length upper-bound

exists for manifestability, the absence of solution will

not be a guarantee that the fault is not manifestable.

4.3.1 Encoding (deterministic) TA

We now show how to logically encode in SMT the exis-

tence of a timed trajectory (of length at most k and pos-

sibly of time after fault at most ∆) accepted by DF
A and

rejected by V FA such that the satisfiability of the logical

formula is equivalent to the existence of such a trajec-

tory. In case of satisfiability, a model is returned, which

actually provides such a timed trajectory. As explained

before, we can assume that time and discrete transitions

alternate in any timed trajectory. Hence, we rewrite

pq, vq
t
ÝÑ pq, v2q

σ
ÝÑ pq1, v1q, where t P R and σ P Σ,

as pq, vq
t,σ
ÝÝÑ pq1, v1q. In the following, we consider this

kind of combined time-discrete transition during the en-

coding. Accordingly, a timed trajectory of length k is

a finite sequence pt0, σ0q, pt1, σ1q, ..., ptk´1, σk´1q, where

ti P R, σi P Σ, and @i, 0 ď i ď k ´ 1, pqi, viq
ti,σi
ÝÝÝÑ

pqi`1, vi`1q is allowed by A. We can assume that the

timed trajectory ends by a time transition, that we will

represent by setting σk´1 “ ε as a silent event. For

the example depicted in Figure 6, one 4-length timed

trajectory is ρ “ p1.5, u2q, p3, o1q, p5, o2q, p1, εq that is
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witnessed by the feasible execution pq0, c “ 0q
1.5,u2
ÝÝÝÝÑ

pq6, c “ 1.5q
3,o1
ÝÝÑ pq7, c “ 0q

5,o2
ÝÝÑ pq5, c “ 5q

1,ε
ÝÝÑ

pq5, c “ 6q.

Given a TA A and a given fault F , to check its

manifestability, we first construct from A the fault pair

verifier V FA and the fault diagnoser DF
A as described

before. We denote them V FA “ pQ̂,Σ, X̂, δ̂X , q̂0, Îq and

DF
A “ pQ,Σ, X, δX , q0, Iq, both with Σ, the set of

events of A. Then we encode essential static parts in

V FA and DF
A as follows.

– The set of states is encoded by positive integers with

the function EQ : Q Ñ QE “ t1, ..., }Q}u (resp.,

ÊQ : Q̂ Ñ Q̂E “ t1, ..., }Q̂}u, where QF Ď QE

(resp. Q̂F Ď Q̂E) codes the final states, i.e., QF

corresponds to the set of faulty states (resp., Q̂F to

the set of ambiguous states).

– The set of events for both TA is encoded by positive

integers EΣ : Σ Ñ ΣE “ t1, ..., }Σ}u. where ΣE “

ΣE
o ZΣ

E
u ZΣ

E
f , corresponding to Σ “ ΣoZΣuZΣf .

The normal events Σn “ Σo Z Σu are encoded by

integers from 1 to }Σn} and fault events by integers

from }Σn} ` 1 to }Σ}.

– The set of symbolic transitions is encoded by a set

of tuples EδX : δX Ñ δE “ pQE ˆ CpXq ˆ ΣE ˆ

2XˆQEq with EδX pq, g, σ, r, q
1q “ pEQpqq, g, EΣpσq,

r, EQpq
1qq. A similar way to define ÊδX on δ̂X for δ̂E .

4.3.2 Encoding timed trajectories

Given k and ∆, the essential point is to define a formula

Ψk∆ whose satisfiability is equivalent to the existence of

a timed trajectory ρ with |ρ| “ k and time(ρ, F q ď ∆

which is accepted by DF
A and rejected by V FA . Such

ρ is actually a witness of manifestability (in time af-

ter the fault at most ∆). Before presenting this for-

mula, we need to distinguish the value of variables rep-

resenting the timed trajectory in DF
A and in V FA . To do

this, the variables equipped with a hat are associated

to V FA while the variables without a hat are attached

to DF
A , except for variables representing the events and

the time periods which are the same.

– The integer-valued variables e0, ..., ek´1 encode the

events of the timed trajectory both in DF
A and V FA

(with ek´1 encoding ε).

– The integer-valued variables s0, ..., sk (resp., ŝ0, ...,

ŝk̂) represent the states of the timed trajectory in

DF
A (resp., V FA ).

– The real-valued variables t0, ..., tk´1 encode the time

periods for the timed trajectory in both TA.

– The real-valued variables vx0 , ..., v
x
k , for all x P X

(resp., v̂x0 , ..., v̂
x
k̂
, for all x P X̂) represent the values

of the corresponding clock x in each state in DF
A

(resp., V FA ), initialized as 0, i.e., vx0 “ v̂x0 “ 0.

– The additional real-valued variables vF0 , ..., v
F
k rep-

resent the time elapsed after the first fault occur-

rence in DF
A (´1 by convention before the fault oc-

currence).

4.3.3 Encoding bounded manifestability

In order to describe the formula Ψk∆ as intuitively as

possible, we present it with different separate parts.

– Initialization. The two timed trajectories should start

in the initial state with the initialization of all clock

variables.

– For the timed trajectory in DF
A :

ΦInit :“ p
Ź

xPX

vx0 “ 0q ^ ps0 “ EQpq0qq

^pvF0 “ ´1q.

– For the timed trajectory in V FA :

Φ̂Init :“ p
Ź

xPX̂

v̂x0 “ 0q ^ pŝ0 “ ÊQpq̂0qq.

– Well-formedness of timed trajectories. Three points

have to be verified for well-formedness: 1) each time

period between two discrete transitions should be

non-negative; 2) the values of integer-valued vari-

ables representing all events should be in t1...}Σ}u;

3) the values of variables representing all states

should be in t1...}Q}u for the DF
A and in t1...}Q̂}u

for V FA . As it is about the same timed word, it is

enough to check the first two points only once.

– For the timed trajectory in DF
A :

ΦWF :“ p
k´1
Ź

i“0

0 ď tiq ^ p
k´1
Ź

i“0

1 ď ei ^ ei ď }Σ}q

^p
k´1
Ź

i“0

1 ď si ^ si ď }Q}q.

– For the timed trajectory in V FA :

Φ̂WF :“ p
k´1
Ź

i“0

1 ď ŝi ^ ŝi ď }Q̂}q.

– Acceptance of the timed trajectory in DF
A and re-

jection of the timed trajectory in V FA . We formalize

here that the timed trajectory represented by values

for the predefined variables without hat should be

accepted by DF
A , where final states are faulty ones.

And the timed trajectory represented by those for

variables with hat should be rejected by V FA , where

final states are ambiguous ones. Precisely, in each

timed trajectory, each pair of adjacent states has to

be connected by a transition that is allowed in the

corresponding TA. The last state in the trajectory

in V FA is not a final one, while the last state in DF
A

is a final one with the length bound k.

– For the timed trajectory in DF
A :

ΦAcc :“ p
k´1
Ź

i“0

p
Ž

psi,g,ei,r,si`1qPδE
rrgssi ^ TPr

i qq ^

p
Ž

qPQF
ŝk “ qq.
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Here rrgssi represents that the clock valuations

after the i-th step in this timed trajectory, i.e.,

vxi ` ti, should satisfy the guard g, such as:

‚ rrx ’ cssi :“ pvxi ` tiq ’ c.

‚ rrx´ y ’ cssi :“ pvxi ´ v
y
i q ’ c.

‚ rrg1 ^ g2ssi :“ rrg1ssi ^ rrg2ssi.

TPr
i in the above expression formalizes the time

progression, i.e., time transition, by resetting

clocks in the subset r and by increasing all other

clocks, including the time elapsed from the first

fault occurrence if triggered, with the correspond-

ing period ti:

TPr
i :“ p

Ź

xPr
vxi`1 “ 0q ^ p

Ź

xPpXzrq

vxi`1 “ vxi ` tiq

^p0 ď vFi ñ vFi`1 “ vFi ` tiq.

– For the timed trajectory in V FA :

Φ̂Rej :“ p
k´1
Ź

i“0

p
Ž

pŝi,ĝ,ei,r̂,ŝi`1qPδ̂E

rrĝssi ^yTP
r

i qq ^

p
Ź

qPQ̂F

ŝk ‰ qq.

In a similar way, rrĝssi for the timed trajectory

in V FA is encoded as follows:

‚ rr{x ’ cssi :“ pv̂xi ` tiq ’ c.

‚ rr {x´ y ’ cssi :“ pv̂xi ´ v̂
y
i q ’ c.

‚ rr {g1 ^ g2ssi :“ rrĝ1ssi ^ rrĝ2ssi.

The following is the time progression for this

timed trajectory:

yTP
r̂

i :“ p
Ź

xPr̂

v̂xi`1 “ 0q ^ p
Ź

xPpXzr̂q

v̂xi`1 “ v̂xi ` tiq.

– The timed trajectory contains a fault occurrence

(with one fault type, the fault occurrence coding

can be simplified as }Σn} ` 1 “ ei). Furthermore,

after the first occurrence of a fault at step i, the

value of the variable vFi`1 is assigned to 0 to trigger

counting the time elapsed from this fault occurrence

(otherwise it stays equal to ´1). Finally, we check

whether the time elapsed after fault is at most ∆

(in absence of given ∆, nothing is added).

Φ∆ :“ p
k´1
Ź

i“0

pvFi “ ´1 ñ pp}Σn} ă ei ñ vFi`1 “ 0q

^pei ď }Σn} ñ vFi`1 “ ´1qqqq ^ vFk ď ∆.

Now the formula Ψk∆ whose satisfiability witnesses

manifestability (in time after fault at most ∆) is pre-

sented as follows:

Ψk∆ :“ ΦInit^ Φ̂Init^ΦWF ^ Φ̂WF ^ΦAcc^ Φ̂Rej ^Φ∆.

Note that for the sake of simplicity, in the proposed

formula, there is no state invariant. But considering

timed automata without state invariants does not entail

any loss of generality as the invariants can be added to

the guards [29]. And, if really wanted, the formula Ψk∆
can be extended to handle such invariants (by verifying

that the clock valuations in each state do not violate

the corresponding invariant, which has to be done only

when entering the state and leaving it).

4.4 Preliminary Experimental Results

To show the correctness and efficiency of our approach

to check manifestability of TA, we show some prelimi-

nary experimental results in this section. We realized a

prototype implementation in Python by using the SMT

solver Z3. The program was executed on the same ma-

chine as for the first set of experiences.

Given an SS-DTA A, we construct its fault pair ver-

ifier V FA as described in Section 4.2, which is done at the

syntactic level. Then, based on DF
A and V FA , we encode

the formula Ψk∆ as described in Section 4.3. The satisfi-

ability of Ψk∆, i.e., the construction of a corresponding

adequate timed trajectory, is checked by Z3. With a

bounded model checking process, we test for different

values of the bound k (length of the trajectory and thus

measure of the size of the formula). We report on dif-

ferent versions of three literature examples, including

Example 3 which is ex00, that are modified by adding

different temporal constraints such that we have both

manifestable and non-manifestable models for each of

them. Note that some original literature examples are

finite automata. For example, ex01 is obtained from

ex00 by changing the guard from q3 to q5 as c ě 3 and

becomes thus non-manifestable because no faulty timed

trajectory can manifest itself. Furthermore, considering

that such literature examples are normally quite small,

to show the scalability, we have tested also some hand-

crafted systems (hcs), constructed in a partially random
way based on the chosen literature ones without chang-

ing the verdict. For example, ex02 is constructed based

on ex00 by adding a deterministic TA whose initial state

is the destination state of an additional transition with

source state q2, remaining thus manifestable. Similarly,

ex03 is generated from ex01 by adding a determinis-

tic TA without fault to the state q6, and remains thus

non-manifestable.

Table 2 shows part of our experimental results, where

column 2 shows the transitions number of the corre-

sponding system model, columns 3 and 4 the upper

bound k for the length of timed trajectories and the

time upper bound ∆ after fault occurrence. Then one

can find the size of the formula expressed by its number

of clauses, the required memory and the execution time

in seconds in the columns 5, 6 and 7, respectively. The

final column shows the verdict for each system, where

SAT witnesses manifestability, while UNSAT implies

non-manifestability. For the manifestable systems, we

try to give k and ∆ as small as possible. A small ∆ is



18 Philippe Dague et al.

Sys |trans.| k ∆ |clauses| mem. time SAT?

ex00 10 5 1 668 3.98 0.09 SAT
ex01 10 430 10000 89423 18.28 859.72 UNSAT

ex02(hcs) 233 5 3 16781 8.76 1.78 SAT
ex03(hcs) 365 51 10000 510972 17.50 802.53 UNSAT
ex04(hcs) 1782 7 5 441563 29.27 573.36 SAT
ex05(hcs) 1620 15 1000 512308 30.22 1216.82 UNSAT

ex10 [27] 6 2 3 243 2.50 0.03 SAT
ex11 [27] 6 420 10000 118267 16.62 767.73 UNSAT
ex12(hcs) 287 3 5 6051 5.31 0.63 SAT
ex13(hcs) 381 56 20000 557073 18.21 721.15 UNSAT
ex14(hcs) 2030 7 5 36754 25.09 37.81 SAT
ex15(hcs) 2436 9 20000 521857 32.63 763.02 UNSAT

ex20 [31] 9 5 1 578 3.6 0.12 SAT
ex21 [31] 9 380 15000 127778 17.60 743.43 UNSAT
ex22(hcs) 296 5 2 16008 5.52 2.1 SAT
ex23(hcs) 315 32 20000 507318 17.53 933.21 UNSAT
ex24(hcs) 2120 5 3 120003 27.09 90.06 SAT
ex25(hcs) 1695 8 23000 423305 28.36 1545.20 UNSAT

Table 2: Experimental results of manifestability checking for SS-DTA

interesting from a practical point of view since it rep-

resents how much time after the fault occurrence this

fault manifests itself. Another important observation is

that for non-manifestable systems, we increase the value

of k as well as ∆ to show the scalability. From the for-

mulas size, one can see that SMT solvers can check for

satisfiability relatively large formulas.

5 Comparison with Opacity

A very close research field worth comparing in a ded-

icated section is the opacity analysis of discrete event

systems, introduced in 2005, which has become a very

fertile field of research over the last decade, driven by

safety and privacy concerns in network communications

and online services (see [30] for a survey). A system is

opaque if an external observer (the intruder) is unable

to infer a “secret” about the system behavior, i.e., if

for any secret behavior, there exists at least one other

non-secret behavior that looks the same (for observa-

tion) to the intruder. In our context, if we consider the

occurrence of a fault as the secret, and thus faulty tra-

jectories as secret behavior and normal trajectories as

non-secret behavior, then intuitively fault manifesta-

bility and opacity are dual concepts, each one being in

some sense the negation of the other. But, as there are

various notions of opacity and as fault occurrence is a

specific type of secret, the various concepts and their

relationships have to be studied carefully.

For DESs, opacity properties are classified into two

families: language-based opacity (LBO) and state-based

opacity (SBO), depending if a language or a set of states

is the secret. The closest to fault manifestability is LBO,

which is not surprising as it has been already shown

in [35] that related properties such as observability, di-

agnosability and detectability can all be reformulated

as opacity. Indeed, defining, for a system model G with

fault F , the secret language LS as LF pGq and the non-

secret language LNS as LN pGq, then the strong opacity

of LS with respect to LNS and P , defined in [35] as

any word of LS has same projection by P that some

word of LNS , is exactly equivalent to the negation of

F manifestability. Actually, manifestability is directly

related to a special case of opacity, called secrecy [5].

A language property of a system is said strongly secret

if it is strongly opaque with respect to its complement.

Considering to be faulty as property, i.e., considering as

language the faulty trajectories, we obtain that strong

secrecy is equivalent to the negation of manifestabil-

ity. As checking strong secrecy has been proved to be

PSPACE-complete [21], it results that checking mani-

festability is at most PSPACE (actually also PSPACE-

complete as we proved, and it is the same for strong

opacity).

A smoother LBO property, named weak opacity,

is also defined in [35] as some word of LS has same

projection by P that some word of LNS . And, analo-

gously, weak secrecy for a property is defined as its weak

opacity with respect to its complement (i.e., LNS “

LpGqzLS). It is proved in [57] that checking weak opac-

ity is polynomial. But this concept of weak secrecy is

not pertinent in the context of fault manifestability,

as its negation would mean that any faulty trajectory

is distinguishable from all normal trajectories, which

never happens (any trajectory ending by a first occur-

rence of the fault cannot be distinguished from its nor-

mal longer strict prefix). Nevertheless, changing slightly
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the definition of LS as faulty trajectories with at least

one observable event after the fault occurrence, then

the negation of weak secrecy would be exactly 1-step

diagnosability, i.e., each occurrence of the fault is diag-

nosable from the first observation after its occurrence,

which is a very strong property. Our strong manifesta-

bility is actually much more smooth, while having no

studied equivalence in opacity. Indeed, the negation of

strong manifestability means that it exists a trajectory

sF ended by the fault F such that any trajectory with

prefix sF remains secret with respect to normal trajec-

tories and P (i.e., has same observation that some nor-

mal trajectory). Thus this particular secrecy does not

concern any faulty trajectory as strong secrecy or some

faulty trajectory as would do weak secrecy, but any

faulty trajectory having some given minimal faulty pre-

fix. One points here a specificity of fault manifestability

with respect to general secrecy or opacity properties,

i.e., by construction the secret language LS considered

is suffix-closed in LpGq (and thus LNS is prefix-closed),

expressing that the faults we consider are permanent.

Different in its approach, SBO, introduced by [40]

for automata, relates to the intruder ability to infer

that the secret is or has been in a given secret state

or set of states. Depending on the nature of the secret

set, different SBO properties have been defined [30].

Thus one can distinguish among others Current-State

Opacity (CSO), if the intruder can never infer, from its

observations, whether the current state of the system

is a secret state or not (i.e., for every trajectory that

leads to a secret state, there exists another trajectory

with same observation leading to a non-secret state)

and Initial-State Opacity (ISO), if the intruder is never

sure whether the system’s initial state was a secret state

or not (i.e., for every trajectory that originates from a

secret initial state, there exists another trajectory with

same observation originating from a non-secret initial

state). Both CSO and ISO have been proven to be

PSPACE-complete and transformation mappings be-

tween LBO, CSO and ISO have been studied in [52].

Note that our approach can be adapted by duality in

a very straightforward way to analyze ISO, which can

be considered as a special case of manifestability : it is

enough to add an initial state and transitions from this

new initial state to the previous initial states, labeled

with the fault event for those who are secret and with

an unobservable normal event for those who are non-

secret. However, the approach proposed in [42] to ana-

lyze ISO requires space complexity that is exponential

in the number of states of the given automaton, which

is hence improved by our method. Regarding CSO, we

may have the following constatation: if we define secret

states either as all states reachable by a faulty trajec-

tory or those states that are destination states of a fault

event, CSO does not apply to manifestability analysis

(in particular, in CSO, a trajectory leading to a secret

state may be normal).

In fact, most SBO properties are to mask the crit-

ical moments of the system, such that they cannot be

revealed immediately to an external observer, and do

not consider the system behavior once it has exited a

secret state (in particular, the set of secret states is not

required to be stable). Actually, the more general prob-

lem to keep secret the fact the system was in a secret

state a few steps ago has been studied under the name

of K-step opacity [40,38], i.e., for every trajectory that

leads to a secret state and every extension of it with at

most K observable events, there exists another trajec-

tory with same observation leading to a non-secret state

with an extension with same observation that the previ-

ous extension (thus CSO is 0-step opacity). It has been

proven to be NP-hard and was extended to infinite-

step opacity [41,38,39,56], proven to be PSPACE-hard.

Note that here the goal is to mask a secret state by

a non-secret state at the same place in the sequence

of observations, which is insufficient in general to pre-

vent an intruder for discovering that a secret state was

crossed at some place during the last K observations.

To avoid this, a language-based translation of K-step

opacity is suggested in [38] as trajectory-based K-step

opacity, a stronger property ensuring that an intruder

cannot determine whether the system has reached a se-

cret state at any point during the last K observations

(independently of its exact place). Actually, it looks to

be identical to K-step strong opacity, introduced later

in [23] to express that, for each trajectory, there exists

a trajectory with same observation that never crossed a

secret state during the last K observations. But again

the dual notion, i.e., the presence of a secret sate in the

last K observations necessarily manifests itself, is dif-

ferent from our strong k-manifestability, i.e., any fault

event manifests itself in at least one of its future in at

most k steps (could be as well k observations) after its

occurrence. This is because our approach of fault man-

ifestability, as fault diagnosability, is event-based and

not state-based and thus the “faulty” character of a

state is not related to that state but to the way it can

be reached. In particular, a same state can be reached

by a faulty trajectory and a normal one, i.e., a normal,

so non-secret, trajectory may contain secret states. In a

state-based framework of faulty systems, i.e., if a fault

was characteristic of a state and possibly intermittent

(i.e., the set of faulty states is not required to be sta-

ble), then there would exist a duality worthwhile to

study between fault manifestability and SBO.
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Opacity analysis for TA has been studied (almost

exclusively) in [20], where the (language-based) opac-

ity property for a secret timed language S with respect

to a TA A and P is defined as the property that, for

any run, it exists a run with same observation that does

not belong to S. A state-based opacity property, called

L-opacity is also defined, where a set SL of secret loca-

tions is said to be opaque with respect to A and P if,

for any run, it exists a run with same observation whose

last location reached does not belong to SL. L-opacity

problem is proven to be undecidable, not only for gen-

eral TA but also for DTA and even for the subclass of

event-recording automata (ERA), where each clock is

associated with an event and is reset when this event

occurs. It is then shown that opacity can be reduced

to L-opacity, with the consequence that opacity prob-

lem is undecidable even for ERA with secrets given by

ERA. In the context of fault manifestability for a TA A,

taking for S the language of faulty runs, we obtain that

the opacity of S is equivalent to the negation of mani-

festability as we defined it. So, our undecidability result

for checking manifestability of TA, for which we gave

a direct proof, can be obtained by adapting the proof

in [20]. In [51] the language-based opacity problem for

real-time automata (RTA), a subclass of TA (not com-

parable with ERA) which has a single clock which is

reset at each transition and thus can be regarded as

finite automata with time information for each transi-

tion, has been proven to be decidable without more pre-

cision. But, except this very particular subclass, there

is no work, as far as we know, that succeeded to give a

sufficient condition on TA such that the opacity prob-

lem becomes decidable. In this paper, we proved that,

for the subclass of SS-DTA, the manifestability problem

is PSPACE-complete and we proposed an SMT-based

approach to check it. Another close property called non-

interference is to guarantee the safety of flow informa-

tion by capturing causal dependency between high-level

actions (private) and low-level behavior (public). The

authors of [25] analyzed different variants of this prop-

erty for TA and proved some of them decidable by

transforming them into weak simulation problem be-

tween TA with events set excluding private events and

TA with that hiding private events.

6 Related Work

The first approach to verify the diagnosability of DESs

is to check the existence of critical pairs based on a de-

terministic automaton[43], which has exponential com-

plexity in the number of system states. The authors

of [31] proposed twin plant method (based on the con-

struction of the verifier) with polynomial complexity.

Here we have adapted the twin plant method, plus

equivalence checking to verify manifestability. The ex-

istence of critical pairs, that excludes diagnosability,

does not exclude manifestability. Intuitively, manifesta-

bility is a more complicated problem than diagnosabil-

ity, which was demonstrated by proving that the prob-

lem itself is PSPACE-complete instead of polynomial

(actually NLOGSPACE-complete) for diagnosability.

In [46,47], the authors proposed different variants of

detectability (such as strong detectability) about state

estimation. The system is detectable (resp., strongly de-

tectable) if, based on a sequence of observations, one

can be sure about the state in which the system is

for some given trajectory (resp., all trajectories). They

proposed a polynomial algorithm for strong detectabil-

ity, for which two different trajectories with the same

observations witness its violation. However, to analyze

detectability, they constructed a deterministic observer

that has exponential complexity with the number of

system states. Our approach can be adapted to handle

state estimation by considering an ambiguous state as

one that contains different system states. Thus, we can

improve their state estimation by using the improved

equivalence checking techniques (e.g., the approach of

[14] normally constructs a small part of the determinis-

tic automaton). Furthermore, we proved that the prob-

lem of manifestability itself is PSPACE-complete.

The authors of [1,26] proposed an approach for weak

diagnosability in a concurrent system by using Petri

nets, i.e., impose a constraint of weak fairness by disal-

lowing the enabled transition to be perpetually ignored.

The idea is to make impossible some non-diagnosable

scenarios in order to upgrade the diagnosability level.

They focused on how to get a more appropriate model,

based on which a polynomial solution like that for clas-

sical diagnosability can be applied.

Two definitions for stochastic diagnosability were

introduced and analyzed in [49], which are weaker than

diagnosability. A-diagnosability requires that the am-

biguous behaviors have a null probability. While AA-

diagnosability admits errors in the provided informa-

tion which should have an arbitrary small probability.

Then four variants of diagnosability (FA, IA, FF, IF)

were introduced and studied for different probabilis-

tic system models [10,11]. Different ambiguity criteria

were then defined according to different types of runs:

for faulty runs only or for all runs; for infinite runs or

for finite sub-runs. Among them IF-diagnosability (for

infinite faulty runs) is the weakest one. Note that IF-

diagnosability of a finite probabilistic system is equiva-

lent to A-diagnosability.

The authors of [27,9] analyzed (safe) active diagnos-

ability by introducing controllable actions for (proba-



How to be Sure a Faulty System Does not Always Appear Healthy? 21

bilistic) DESs, where the complexity of these problems

was also studied. The idea is to design controllers (resp.,

label activation strategies for probabilistic version) to

enable a subset of actions in order to make the system

diagnosable (resp., stochastically diagnosable).

On the other hand, the use of TA to model real-time

systems has been largely studied since their introduc-

tion by [2]. [50] proposed for the first time the diag-

nosability definition of TA and then adapted the twin

plant method to check it before proving the PSPACE-

completeness of this problem. As indicated by the au-

thor, the reachability in the twin plant for TA can be

checked by model-checking tools such as Kronos. How-

ever, it is worth noting that the tools such as Kronos

and UPPAAL that have implemented the standard for-

ward reachability algorithm based on zones have been

shown to be incorrect for diagonal constraints due to

the problem of the abstraction operator over zones ([15,

32]). There is no such problem when using normal SMT

solvers since they do not use abstraction techniques.

Then [16] analyzed the diagnosability problem of TA

by constraining the class of diagnosers considered and

demonstrated that it is 2EXPTIME-complete for a de-

terministic TA diagnoser, by using timed game con-

struction.

Some works proposed to use SMT techniques to per-

form verification on TA with quite good results. In [4],

a SMT-based approach was proposed to incrementally

analyze TA for some special decidable problems, includ-

ing universality for deterministic TA and language in-

clusion of a non-deterministic one into a deterministic

one. This is done by adopting bounded version for the

sake of efficiency. To verify reachability for TA, [33]

introduced a SMT-based bounded model checking to

handle non-lasso-shaped infinite runs by integrating re-

gion abstraction. More recently, attention was payed

to verification of special failure models, called Failure

Propagation Models (FPMs), where failure propaga-

tion information is abstracted from the original system

model. The approach proposed in [17] presents how to

encode in SMT the diagnosability problem for a given

timed FPM. It is worth noting that TA are totally

different from FPMs, the former being considered as

original system models, based on which FPMs can be

abstracted. However, this transformation is not trivial

at all, as demonstrated in ([12,13]. Then, we have pro-

posed in [28] a new approach to verify diagnosability di-

rectly on TA by using SMT techniques, which provides

an alternative to systems for which the abstraction to

a FPM is not convenient.

7 Conclusion and future work

In this paper we have addressed the formal verification

of manifestability for both DESs and real-time systems.

To bring an alternative to (stochastic) diagnosability

analysis, whose satisfaction is very demanding in terms

of sensors placement, we have defined (strong) mani-

festability, a new weaker property, actually the weakest

one to satisfy to have a chance to diagnose a given fault.

It is especially useful when the stochastic model is not

available during diagnosability analysis. Note that non-

manifestability of a system implies its non-stochastic

diagnosability, but the converse is not necessarily true.

It is worth noting that for today’s complex systems,

it is not realistic to analyze (stochastic) diagnosability

for each type of faults (e.g., hundreds of faults may oc-

cur for even one HVAC subsystem in a given building

with different categories such as abrupt and degrada-

tion [34]). It is more reasonable to verify different prop-

erties (e.g., diagnosability for abrupt faults and man-

ifestability for degradation faults) for different faults

according to their severity. We also want to empha-

size that if stochastic diagnosability is very useful and

interesting when the fault occurrence probability dis-

tributions are available, very limited studies have been

conducted about this availability even for quite mature

HVAC systems [34].

We have demonstrated that manifestability problem

for finite automata (resp., TA) is PSPACE-complete

(resp., undecidable). We further defined SS-DTA, a sub-

class of deterministic TA, for which this problem be-

comes PSPACE-complete. It is thus encoded into an

SMT formula, which can be checked automatically by

an SMT solver. The efficiency and scalability of this

approach have also been shown by preliminary exper-

imental results. With such tools at his disposal, the

designer may thus check both manifestability and diag-

nosability of each given fault. If manifestability is not

satisfied, he knows that this fault, if it occurs, will never

be detectable and he has thus necessarily to add sensors

to make it manifest itself. If the fault has been proven

manifestable but non-diagnosable, he knows, from the

outputs of the algorithms, both a future trajectory of

the fault that is distinguishable from correct behavior

and another future trajectory that is indistinguishable

from correct behavior. Depending on the severity of the

fault, of the estimated “probability” of the distinguish-

able future trajectory and of the impact of the fault

in the indistinguishable future trajectory, he can thus

decide to change or add sensors and check again both

manifestability and diagnosability.

One interesting future work is to find out a larger

subclass of TA than SS-DTA, for which manifestabil-
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ity problem is decidable and to relate this problem to

opacity. Another perspective is to study this problem

for distributed systems composed of a set of compo-

nents with a modular method, more interestingly, by

taking into account probabilistic aspects.
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