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In this study we propose the construction and the first hp a priori error analysis of a discontinuous Galerkin numerical scheme applied to the integral equation related to the Helmholtz problem in 3D. The main results of this article are an error bound in a broken norm suited to the problem and in a more classical L 2 -norm. Those bounds are quasi optimal for the h convergence and sub optimal for the p convergence. Various formulation choices and penalty functions are theoretically and numerically discussed. We confirm the advantage of using a symmetric formulation in the context of DG in integral equations. We also give an extensive numerical study of the scheme, particularly the h and p convergence. The very important cases of non conforming mesh and varying polynomial order are treated, which indicates the method's ability to handle hp refinement strategies.

Introduction

Wave propagation and scattering phenomenon appear in many fields of science, engineering and industry. It is of significant importance in geo-science, petroleum engineering, telecommunications, defense industry, and obviously acoustics. The simplest model of wave scattering by an object is the famous Helmholtz equation (recalled in section 1) which is the rule equation of acoustics in an homogeneous medium but also indirectly arises in more complex wave models (electromagnetism and elastodynamics). Despite its apparently simple form, it is a difficult equation to numerically solve as it is strongly non-Hermitian and its solutions are very oscillatory. These properties in turn make it hard to build a stable and efficient numerical scheme under practical mesh constraint. An other difficulty of this equation is that the propagation domain is generally infinite. Roughly speaking, two main families of approaches have been explored to overcome this numerical difficulty: solving the Helmholtz equation while bounding the calculation domain with artificial boundary conditions (see PML [START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF][START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] and the references therein); or using integral equations (see [START_REF] William | Strongly Elliptic Systems and Boundary Integral Equations[END_REF][START_REF] Nedelec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF][START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF]). The last one is known to be a very powerful formalism when a large propagation domain is considered. It consists in transforming the initial Helmholtz equation into an equivalent integral equation with its unknowns being Cauchy data living on the surface of the scattering object. In our study we choose to work in the scope of boundary integral equations. In real life applications, the scattering object is often large in comparison with the wavelength of interest. Moreover, the geometrical singularities of this object make the solution non-smooth.

As a consequence a classical Boundary Element Method (BEM) requires a fine mesh in order to compute an accurate numerical solution.

Recent works were devoted to the development of a posteriori error estimates for wave Boundary integral equation [Bak]. This enabled the development of auto adaptive loop strategies with local refinement procedures [START_REF] Praetorius | On 2d newest vertex bisection : optimality of mesh-closure and h1 stability of l2 projection[END_REF]. Those architectures appear to be an elegant methodology to solve very large problems with an optimal mesh size regarding a desired accuracy. Those auto-adaptive loops' computational efficiency could be largely improved by the use of non conforming finite element method, or Discontinuous Galerkin (DG) scheme. Indeed, in the same fashion as Galerkin approximation of elliptic PDE equations, the absence of conforming constraint would allow a greater mesh flexibility. This would also enable to work with non conforming meshes (hanging nodes), to locally enrich the polynomial space (variation of the local polynomial order of the approximation space). This so called non conforming hp-refinement couldn't be accomplished with a BEM. The use of a DG would also ease the mesh generation process for complex geometries [START_REF] Peng | A discontinuous Galerkin integral equation method for time-harmonic electromagnetic problems[END_REF](generation of a complex mesh per part and fusion). We see all those potential advantages as a motivation to use discontinuous approaches in the field of integral equations.

Unfortunately, as far as we know relatively little is known about the non conforming approximations of those integral operators. Most of the litterature is focused on the case of the Laplace equation [START_REF] Heuer | Discontinuous galerkin $$hp$$-bem with quasiuniform meshes[END_REF][START_REF] Chouly | A nitsche-based domain decomposition method for hypersingular integral equations[END_REF][START_REF] Heuer | Additive Schwarz method for the p -version of the boundary element method for the single layer potential operator on a plane screen[END_REF]. The case of the oscillating kernel is less treated and the literature found was mostly focused on numerical study and validation ( [START_REF] Kong | A Discontinuous Galerkin Surface Integral Equation Method for Scattering From Multiscale Homogeneous Objects[END_REF][START_REF] Peng | A discontinuous Galerkin integral equation method for time-harmonic electromagnetic problems[END_REF]) As far as we know, [START_REF] Heuer | A non-conforming domain decomposition approximation for the helmholtz screen problem with hypersingular operator[END_REF] is the only article proposing a theoretical study of the hyper-singular operator, in a domain decomposition fashion. More precisely they consider finite element patches with non conforming interfaces. In this article, we present the first theoretical and numerical analysis of an Interior Penalty Discontinuous Galerkin (IPDG) method for the oscillating hypersingular operator used for solving the Helmholtz equation. The structure of the analysis differs from [START_REF] Heuer | A non-conforming domain decomposition approximation for the helmholtz screen problem with hypersingular operator[END_REF]. Indeed, we propose an hp non-conforming analysis for symmetric and anti-symmetric scheme on closed surface for any wavenumber, where [START_REF] Heuer | A non-conforming domain decomposition approximation for the helmholtz screen problem with hypersingular operator[END_REF] treats the case of the anti-symmetric bilinear form with low order approximation space for open surface and low wave number.

The main technical contributions of the article are:

• The ellipticity of the Laplace bilinear form in the symmetric case (the anti-symmetric case is proved in [START_REF] Heuer | Discontinuous galerkin $$hp$$-bem with quasiuniform meshes[END_REF]), see proposition 3.

• A continuity and a Garding inequalities for the symmetric and the anti symmetric bilinear forms (see proposition 6).

• An a priori error bound in a DG norm and in a L 2 norm. The bounds are optimal in h convergence and sub optimal for the p convergence (see main theorems).

• The definition and the use of a lifting bilinear form for the proof, and an error estimate of the residual (see subsection 4.3).

• A discussion about the condition number and the comparison of the symmetric and anti symmetric schemes.

• Numerical test cases in 3D considering hp non conformity.

The remainder of the article is organized as follow. We first recall the problem model and the main integral operators in the section 2.1 before we build the IPDG scheme in 2.2. The construction is based on a non trivial integration per part formula which is recalled and briefly justified. We present afterward the main theorems of the article: an a priori error estimate in a DG norm and in a L 2 norm. An originality of the problem is the great influence of the scheme parameters (the penalty function) over the theoretical error bound. Several penalty functions' form are proposed and discussed. The section 4 contains the proof of the main results. The main ingredients are a conforming projector, the use of an original lifting operator, a Garding-type inequality and a duality approach. Finally, section 5 deals with numerical convergence rates on an example to illustrate the theorem and also addresses practical considerations: the condition number of the Galerkin matrix and the robustness of the method in case of non conforming meshes (hanging nodes and varying polynomial order).

Construction of the Discontinuous Galerkin formulation

In this first part the problem model and its main properties will be reminded. The construction of the discontinuous Galerkin formulation will be exposed afterward.

During all the rest of the article, we note Γ a closed polyhedral and Lipschitz surface. We note (Γ i ) i∈[1,N ] its faces. Nevertheless the construction of the scheme introduced in the section below is also valid for an open surface.

Problem model and integral operators

We constantly use in this work surface fractional Sobolev spaces. For s ≥ 0 we note H s (Γ) and Hs (Γ) the completion of C ∞ (Γ) and respectively C ∞ o (Γ) with the norms ||.|| H s (Γ) and ||.|| Hs (Γ) . We call H -s (Γ) and H-s (Γ) the dual spaces (with L 2 as pivot space) of Hs (Γ) and H s (Γ), respectively. For a complete description of those spaces, see [START_REF] William | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] and [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF].

The problem model and its discontinuous Galerkin discretization are expressed with two integral operators living on the Sobolev spaces introduced above. We need to recall those operators before introducing the model problem.

Definition 1 (Single layer operator). Let s ∈ [-1, 0]. We define the single layer integral operator V :

H s (Γ) → H s+1 (Γ) such that ∀u ∈ H s (Γ): ∀x ∈ Γ, Vu(x) = Γ g(x, y)u(y)dΓ(y), (1) 
with g(x, y) = e ik||x-y|| 4π||x -y|| being the Green kernel of the Helmholtz equation, where k ∈ R + .

We also need the following second integral operator.

Definition 2 (Hypersingular operator). Let s ∈ [0, 1]. We define the hypersingular integral operator W :

H s (Γ) → H s-1 (Γ) such that ∀u ∈ H s (Γ): ∀x ∈ Γ, Wu(x) = - ∂ ∂n(x) Γ u(y) ∂g(x, y) ∂n(y) dΓ(y). ( 2 
)
Remark 1. In the definition of the double layer operator the integral has to be understood as a finite part integral.

An extensive description of those operators can be found in [START_REF] William | Strongly Elliptic Systems and Boundary Integral Equations[END_REF], [START_REF] Nedelec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] and [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF]. They will explicitly be present in the definition of the problem model below.

Our physical scope of interest is the scattering of an acoustic wave by a rigid object in an homogeneous medium. The initial problem corresponding to this physical set is the well know exterior Helmholtz equation:

       ∆u v (x) + k 2 u v (x) = 0 ∀x ∈ R 3 \ Ω ∂u v (x) ∂n(x) = g ∀x ∈ Γ lim |x|→∞ |x| ∂ |x| u v -iku v = 0 (3)
where u v is the scattered field's potential (either for the pressure or the velocity), g a boundary data (for example the Neumann trace of a plane wave), and k ∈ R + the wave number of the problem. We note n the exterior normal unit vector on Γ, and Ω the bounded domain such that ∂Ω = Γ. The integral formalism is well-adapted for solving this kind of unbounded problem. This formalism is therefore used in this work. It consists in building an equivalent integral equation using the classical integral representation formulas. For details about the construction of those equivalent problems, see for instance [START_REF] Nedelec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] or [START_REF] William | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]. In our case, the corresponding equivalent integral equation is the following problem model.

Problem 1 (Problem model). For a given

f ∈ L 2 (Γ), find u ∈ H 1 2 (Γ) such that: Wu = f (4)
Remark 2. From [START_REF] Nedelec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], this problem admits an unique solution in H 1 2 (Γ), expect for a discrete set of wavenumbers. It is well known from the properties of W that the regularity of the right-hand side f implies u ∈ H 1 (Γ). Proposition 1 (Relation between V and W). From [START_REF] Nedelec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], the following relation exists between the hypersingular and the single layer potential:

∀u ∈ H 1 2 (Γ), Wu = curl Γ (Vcurl Γ u) -k 2 n • V(un). (5) 
Where curl Γ being the surface curl operator on Γ and curl Γ its adjoins operator. They are studied in details in [START_REF] Heuer | Additive Schwarz method for the p -version of the boundary element method for the single layer potential operator on a plane screen[END_REF].

The relation above is essential for practical application of the method. Indeed it enables to decrease the order of singularity of the operator. This formula will also be instrumental in the construction of the discontinuous Galerkin formulation.

Discontinous Galerkin construction 2.2.1. Integration per part formula

The construction of the discontinuous Galerkin method generally requires a local integration by parts formula in order to introduce the trace of the function on the skeleton of the mesh.

In the case of classical PDE systems (Maxwell, Helmholtz, Poisson, etc.), one generally uses classical Stoke identities (see [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF][START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF][START_REF] Hou | A Discontinuous Galerkin Augmented Electric Field Integral Equation for Low-Frequency Electromagnetic Scattering Analysis[END_REF]). The situation is a bit more difficult in the case of a field living on a surface. Indeed one has to be careful to maintain the trace of the function on the skeleton well defined. Our need here is to obtain a integration per part formula in order to transform a term of the form curl Γ (Vcurl Γ u), v Γ . For regular functions the result is straightforward. Indeed, applying the trivial proposition 10 (which is a consequence of the Stoke formula) on a sufficiently regular sub domain Q ⊂ Γ, one can get for u, v ∈ H 1 (Γ):

curl Q (Vcurl Γ u), v Q = Vcurl Γ u, curl Γ v Q + t ∂Q • Vcurl Q u, v ∂Q , ( 6 
)
with t ∂Q being the tangent unit vector of ∂Q with positive orientation. In the formula above and in all the remaining of the article, curl Q will denote the restriction of curl Γ to the sub domain Q.

Unfortunately, the term on the frontier ∂Q is not well defined for v ∈ L 2 (Q) as the trace operator

γ o : H s (Q) → H s-1 2 (∂Q)
exists and is continuous only for s > 1 2 (see [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF]). But the formula (6) can be extended through the definition of the linear and bounded operator t ∂Q • Vcurl Γ u:

u ∈ H 1 2 (Γ); Wu ∈ L 2 (Γ) -→ H -(∂Q) u -→ t ∂Q • Vcurl Γ u (7)
defined by the relation:

∀v ∈ H 1 2 + (Q), t ∂Q • Vcurl Γ u, v ∂Q = curl Q (Vcurl Γ u), v Q -Vcurl Γ u, curl Q v Q , (8) 
with > 0. See [START_REF] Heuer | Additive Schwarz method for the p -version of the boundary element method for the single layer potential operator on a plane screen[END_REF] or [GHH] for the details of the proof. This integration per part formula will be used for the construction of the DG formulation. The formula shows that an extra regularity to the test function space is required. It needs to be at least in H 1 2 + (Γ) in order to have a skeleton trace well defined. It also reveals the impossibility of building an equivalent "broken" formulation of the problem model.

Remark 4. This extension to a bounded operator only serves for a problem on an open surface. Indeed in this case there would be u ∈ H 1-ε (Γ) and so the formula (6) can no longer be applied. This result can serve for further investigation on open surface case.

Construction of the Discontinuous Galerkin formulations

Let T h be a conforming quasi-uniform mesh whose elements are shape regular triangles K. For all element K ∈ T h we note h K its diameter. We also define h = max K∈T h h K . The set of edges of T h is noted E h . We also need the skeleton of the mesh γ h = e∈E h e. We restrict ourselves in the theoretical work to conforming and γ-shape regular meshes [START_REF] Melenk | hp -Interpolation of Nonsmooth Functions and an Application to hp -A posteriori Error Estimation[END_REF] for sake of simplicity.

Notation: In all the rest of the document we note a b (resp. a b or a b if there exists c ∈ R + independent of the approximation parameters (i.e. h and p) such that a ≤ cb (resp. a ≥ cb or a = cb ). Now let's construct the DG formulation. The idea is to get a "broken" formulation by splitting the expression on the mesh. Thanks to the L 2 regularity of f , the duality product in (4) corresponds to an L 2 (Γ) scalar product. So by linearity, (4) becomes:

K∈T h Wu, v K = f, v Γ , ∀v ∈ L 2 (Γ). ( 9 
)
Then we use the integration by part formula (8) and the relation (5) between V and W, equation (9) becomes, for v ∈ H 1 2 + (K) (for any K ∈ T h ):

K∈T h Vcurl Γ u, curl K v K -k 2 V(un), vn K + t K .Vcurl Γ u, v ∂K = f, v Γ . ( 10 
)
Following what's classically done in DG literature, we write the skeleton term as a sum over the edges so that the jumps of the test function appear. As for each edge e ∈ E h there is K 1 , K 2 ∈ T h such that e = K 1 ∩ K 2 , we obtain:

K∈T h t K .Vcurl Γ u, v ∂K = e=K1∩K2⊂γ h t K1 .Vcurl Γ u, v e + t K2 .Vcurl Γ u, v e , ( 11 
)
with t K1 = -t K2 . We choose for each e ∈ E h an arbitrary but fixed tangent vector t e = t K1 . We can rewrite the term so that:

K∈T h t K • Vcurl Γ u, v ∂K = e∈E h t e • Vcurl Γ u, [[v]] e , (12) 
with:

[[v]] = v| K1 -v| K2 being the jump of v on an edge e = K 1 ∩ K 2 .
Remark 5. We implicitly used the regularity Vcurl Γ u ∈ H 1 (Γ), which implies a weak continuity: for any

e = K 1 ∩ K 2 ∈ E h , Vcurl Γ u| K1 = Vcurl Γ u| K2 almost everywhere on e.
If we consider a conforming approximation space V ⊂ H 1 2 + (Γ), the term (12) would vanish as [[v]] = 0 for any v ∈ V . The formulation would then become a classic boundary finite element method. But the equation (9) also accepts more general (broken) test space of the structure

H dg (T h ) = {v ∈ L 2 (Γ), v| K ∈ H 1 2 +ε (K) ∀K ∈ T h }. (13) 
with ε > 0. For practical reasons, we define the broken curl operator curl h by parts such that:

∀K ∈ T h , curl h (v)| K = curl K (v| K ). ( 14 
)
This notation enables to write the initial weak formulation under a compact form. The equations from (9) to (12) imply:

Proposition 2 (Discontinuous weak formulation). Let u be the solution of problem 1 then:

∀v ∈ H dg (T h ), A(u, v) = f, v (15) 
with:

A(u, v) = Vcurl h u, curl h v Γ -k 2 V(un), vn Γ + t e .Vcurl h u, [[v]] γ h . ( 16 
)
Unfortunately, It is known that this kind of weak formulation doesn't imply stable numerical schemes (it will be showed later). Following the IPDG literature ([FW08, MPS13, HPSS05, HTX]), a penalty term is added in the formulation. It has the following general form:

P σ (u, v) = σ h [[u]], [[v]] γ h , ∀u, v ∈ H dg (T h ), (17) 
where σ h : γ h → R + is the penalty function to determine. It's role is to stabilize the formulation. It will also force the continuity of the solution.

For numerical and practical reasons, we choose to work with a broken polynomial space

X hp = {v ∈ L 2 (Γ), v| K ∈ P p (K) ∀K ∈ T h } ⊂ H dg (T h ) (18) 
with P p (K) being the polynomial space of degree p on K. We also define p K the local polynomial order on the element K ∈ T h . We then derive from proposition 2 the discrete Galerkin formulation:

Problem 2 (Discontinuous Galerkin formulation). Seek u h ∈ X hp such that:

∀v ∈ X hp , A θ h (u h , v) = f, v (19) 
where

A θ h (u, v) = Vcurl h u h , curl h v Γ -k 2 V(u h n), vn Γ + T u h , [[v]] γ h + P σ (u h , v) + θ T v, [[u h ]] γ h , ( 20 
)
with T u, v γ h = t e • Vcurl h u, v γ h simply being an abbreviate notation.

A consistent term T v, [[u h ]] γ h is added in the bilinear form, where the parameter θ can take the values -1, 0, 1. It enables to have formulations with distinct properties. The case θ = 1 is the "symmetric" formulation and therefore shall have good numerical properties. Choosing θ = -1 gives the "anti-symmetric" formulation. We call the θ = 0 case the "natural formulation". The θ values {-1, 0, 1} respectively lead to the "anti-symmetric", "natural" and "symmetric" formulation. This latter is expected to have good numerical properties ([Riv08]).

A priori error estimates : main results

The main result of the article is an hp a priori error analysis for the GD formulation from problem 2. The nature of the operators and the spaces involved in the formulation guided us in the definition of a suited norm for this study.

We equip the space H dg (T h ) with the following "DG norm":

||u|| dg = ||curl h u|| 2 H -1 2 (Γ) + ||u|| 2 L 2 (Γ) + ||σ 1 2 h [[u]]|| 2 L 2 (γ h ) 1 2 . ( 21 
)
The error analysis can be accomplished using a suited penalty function. It will be showed later that a particular behavior for σ h is required to stabilize the DG formulation. For all the rest of the article, we adopt the following form for the penalty function:

Definition 3 (Penalty function). We define the penalty function σ h : γ h → R + such that:

∀e ∈ E h , σ h (e) = σ o p np e h n h e , ( 22 
)
where n p ≥ 1, n h > 1 and σ o > 0 are real constants, called the penalty function's parameters. The mesh's parameters p e and h e are defined using a local averaging of the functions h and p such that:

∀e ∈ E h , p e = p K1 + p K2 2 and h e = h K1 + h K2 2 , ( 23 
)
where

K 1 , K 2 ∈ T h such that e = K 1 ∩ K 2 .

Error estimate in DG norm

Let's now introduce the main results of this paper.

Theorem 1 (Main result: a priori error estimate). Let u ∈ H r (Γ) be the solution of problem 1, with r ≥ 1. Let σ h be the penalty function from definition 3 with n h > 3 and n p > 4.

Let u h denote the DG approximation defined in problem 2. There exists h o > 0 and p o ≥ 1 such that for any space X hp such that X hopo ⊂ X hp , the following error estimate holds:

||u-u h || dg max K∈T h    h n h -3 2 +µ K K p r+ np -4 2 K    ||u|| H r (Γ) + max K∈T h    h min(0, n h -4 2 ) K p min(0, np -5 2 ) K    inf v∈X hp ∩C o (Γ)
||v -u|| dg , (24)

with : µ K = min(p K + 1, r), for any K ∈ T h .
A proof of this theorem will be given in section 4. Following the lines of [START_REF] Vardapetyan | hp-adaptive finite elements in electromagnetics[END_REF], the theorem (1) also serves to prove the existence of u h .

Corollary 1 (Existence of the numerical solution). let the conditions from the main theorem 1 be fulfilled. Let σ h be the penalty function from definition 3, with n h > 3 and p K > 4. Then the problem 2 admits a unique solution u h ∈ X hp .

Proof. Using a finite dimensional argument, we just have to show that u h = 0 when the right hand side f = 0. If f = 0, then u = 0 as well and then the a priori estimate from theorem (1) leads to ||u h || dg ≤ 0.

We can use standard interpolation theory results (see [START_REF] Steinbach | Numerical approximation methods for elliptic boundary value problems: finite and boundary elements[END_REF][START_REF] Ern | Theory and Practice of Finite Elements[END_REF]) to estimate the infimum, in order to obtain an hp explicit form of the a priori error estimate of theorem 1.

Corollary 2 (Explicit hp version).

With the same conditions as in theorem 1, the explicit hp error estimate holds:

||u -u h || dg max K∈T h    h min(r-1 2 ,r+ n h -5 2 ) K p min(r-1 2 ,r- 6-np 2 ) K    ||u|| H r (Γ) . ( 25 
)
Keeping the polynomial order p ≥ 1 fixed on the mesh and varying h leads to the h-version of the discontinuous Galerkin scheme. We can particularize the main theorem in this case to get the h-convergence estimate theorem below.

Corollary 3 (explicit h-version error estimate).

With the same conditions as in theorem 1, the explicit p error estimate holds:

||u -u h || dg max K∈T h h min(r-1 2 ,r+ n h -5 2 ) K ||u|| H r (Γ) . ( 26 
)
Remark 6 (On the theoretical importance of the penalty parameter n h ). The penalty parameter n h plays an important role in the convergence rate of the formulation. Depending on the selected value, the DG method can be in three distinct regimes:

• r + n h -5 2 ≤ 0: the error isn't controlled by the theorem. Nothing can be said about the convergence of the numerical scheme.

• 1 2 ≤ r + n h -4 2 ≤ r: convergence rate of O h r+ n h -5
2 which is slower than the BEM rate of convergence.

• n h ≥ 4: convergence rate of O h r-1 2
, as fast as the conforming BEM method.

Thus an user shall choose n h ≥ 4 in order to have an optimal convergence rate. This behavior doesn't appear in other IPDG methods ([FW08, MPS13, HPSS05, HTX]) . It is a particularity of IPDG method for the hypersingular operator. Nevertheless we will see in the section 5 that the method is numerically more robust that the theorem statement and can handle a wider range of penalty function parameters' values.

Keeping a constant mesh (h constant) and varying the local polynomial order p K and p leads to the so called p-version of the DG method. We also particularize the error estimate from the main theorem to this case.

Corollary 4 (Explicit p-version error estimate).

With the same conditions as in theorem 1, the explicit p error estimate holds:

||u -u h || dg max K∈T h    1 p min(r-1 2 ,r- 6-np 2 ) K    ||u|| H r (Γ) . ( 27 
)
Remark 7 (On the theoretical importance of the penalty parameter n p ). The penalty parameter n p plays an important role in the convergence rate of the formulation. Depending on the selected value, the DG method can be in three distinct regimes:

• r + np-6 2
≤ 0: the error isn't controlled by the theorem. Nothing can be said about the convergence of the numerical scheme.

• 1 2 ≤ r + np-6 2 ≤ r: convergence rate of O 1 p r+ np -6 2
which is slower than the BEM rate of convergence.

• n p ≥ 5: convergence rate of O 1 p r-1 2
, as fast as the conforming BEM method.

Thus a user shall choose n p ≥ 5 in order to have an optimal convergence rate. As for the hconvergence, we will see in the section 5 that the method is numerically more robust that the theorem's statement and can handle a much wider range of penalty function parameters' values.

Error estimate in L 2 (Γ) norm

The theorem above guarantees the reliability of the numerical scheme. An other estimate in the L 2 (Γ) norm can be obtained, and is very relevant from a more practical point of view.

Theorem 2 (L 2 error estimate). Let's consider the same hypothesis as in the main theorem 1. The following error estimate in L 2 norm holds:

||u -u h || L 2 (Γ) max K∈T h h r K p r K ||u|| H r (Γ) + max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || DG . (28)
We also present apart the particular cases of the h and p convergence.

Corollary 5 (L 2 error: h-version).

Let's consider the same conditions as in theorem 1. Let σ h be the penalty function from definition 3 with n p ≥ 0 and n h > 3 a positive constant. Let the polynomial order p be fixed on the mesh. Considering n h ∈]3, 4], the following error estimate holds:

||u -u h || L 2 (Γ) max K∈T h h r-n h -4 2 ||u|| H r (Γ) (29) 
whereas for n h ≥ 4 there is

||u -u h || L 2 (Γ) max K∈T h {h r K } ||u|| H r (Γ) . ( 30 
)
This corollary enables to easily see the convergence rate difference between L 2 norm and the DG norm. In this case the scheme converges 1 2 times faster.

Corollary 6 (L 2 error: p-version). Let's consider the same conditions as in theorem 1. Let's consider the mesh size h fixed on the mesh and let's allow a varying polynomial order p. If the parameter's value n p ∈]4, 5] is chosen, the following error estimate holds:

||u -u h || L 2 (Γ) max K∈T h    1 p r+ np -5 2 K    ||u|| H r (Γ) (31) 
whereas for n p ≥ 5 there is:

||u -u h || L 2 (Γ) max K∈T h 1 p r K ||u|| H r (Γ) . ( 32 
)

Proof of the error estimates

This section is devoted to the proof of the main theorem. After having recalled the useful technical lemmas in subsection 4.1, and deriving the needed properties of the problem's bilinear form in subsections 4.2, 4.3, we will carry out the a priori error analysis in subsection 4.4.1.

Auxiliary results

We need some intermediate results in order to prove the theorem, mostly about function approximation theory and integral and surface differential operators' properties.

Function interpolation

The error estimate requires the use of interpolation and projection operators. We first recall those classical results. We start with the standard L 2 projection Π 2 : H s (Γ) → X hp , with s ∈ R + . There exists a local and global error estimate results.

Lemma 1 (Local L 2 projector). Let s ∈ R + and q ≤ s. Let f ∈ H s (K), with K ∈ T h .
The following error estimate holds:

||Π 2 f -f || H q (K) h min(p K +1,s)-q K p s-q K ||f || H s (K) . ( 33 
)
Proof. See [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] for the case on integer orders. The results follows then by the use of the interpolation theory [START_REF] Simon | Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples[END_REF].

From this first result a global estimate can be obtained for a negative norm.

Lemma 2 (Global L 2 projector). Let s ≥ 0 and q ≤ 0. Let f ∈ H s (Γ). The following error estimate holds:

||Π 2 f -f || H q (Γ) max K∈T h h min(p k +1,s)-q K p s-q K ||f || H s (Γ) (34) 
Proof. Direct consequence of lemma 1 and use of trivial inequalities of Sobolev broken norm.

Our error analysis requires the use of a operator which approximates a piecewise polynomial function by a continuous one. Following what is done in other discontinuous Galerkin studies ([MPS13, HPSS05, HTX]), we define a projector Π c :

X hp → X hp ∩ C o (Γ).
Lemma 3. There exists an operator Π c :

X hp → X hp ∩ C o (Γ) such that: ∀w ∈ X hp , ||w -Π c w|| 2 L 2 (Γ) ||h 1 2 e [[w]]|| 2 L 2 (γ h ) (35) 
and:

∀w ∈ X hp , ||curl h (w -Π c w)|| 2 L 2 (Γ) ||h -1 2 e [[w]]|| 2 L 2 (γ h ) (36) 
with h e being defined as in definition 3, for any e ∈ E h .

Proof. The demonstration is lengthy and technical. One can find a constructive (and rather simple) proof in [START_REF] Ohannes | A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems[END_REF]. Note that this result is also valid for a non-conforming mesh.

This initial result serves to obtain a more useful error estimator in the norm of the problem Lemma 4. Let w ∈ X hp . The operator Π c defined in lemma 3 has the following properties:

(i) ||w -Π c w|| 2 dg ||h -1 2 e [[w]]|| 2 L 2 (γ h ) . (ii) ∀v ∈ H 1 2 +ε (Γ) (with ε > 0), ||w -Π c w|| L 2 (Γ) max K∈T h h n h +1 K p np K ||w -v|| dg .
Proof. (i) is obvious. (ii) is also easy if using the following elementary calculation:

||w -w c || 2 L 2 (γ h ) ||h 1 2 e [[w]]|| 2 L 2 (γ h ) ||h n h 2 e h - n h 2 e p np 2 e p - np 2 e h 1 2 e [[w]]|| 2 L 2 (γ h ) max K∈T h h n h +1 K p np K ||σ 1 2 h [[w -v]]|| 2 L 2 (γ h ) . ( 37 
)
We also remind here the standard results of Clement-type interpolation for p non conforming space.

Lemma 5 (Local Clement interpolation).

Let s, q ∈ R with q ∈ [0, 1] and s ≥ 1. The Clément's operator

I c : H s (Γ) → X hp ∩ C o (Γ)
respects the following approximation property:

∀u ∈ H s (Γ), ||u -I c u|| H q (K) h K p K s-q ||u|| H s (K) (38) 
for any K ∈ T h .

Proof. See [START_REF] Melenk | hp -Interpolation of Nonsmooth Functions and an Application to hp -A posteriori Error Estimation[END_REF] for integer orders. The result then follows by interpolation [START_REF] Simon | Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples[END_REF].

Remark 8. The mesh regularity conditions of theorem 3.1 from [START_REF] Melenk | hp -Interpolation of Nonsmooth Functions and an Application to hp -A posteriori Error Estimation[END_REF] are fulfilled in our case since we only consider conforming γ-shape regular triangular meshes.

A global estimate can be obtained.

Lemma 6 (Global Clement interpolation). Under the conditions of lemma 5, the following error estimate holds:

∀u ∈ H s (Γ), ||u -I c u|| H q (Γ) max K∈T h h K p K s-q ||u|| H s (Γ) (39) 
for q ∈ [0, 1].

Proof. Direct consequence of lemma 5, for q = 0 and q = 1. The result then follows by interpolation.

Operators'properties

We collect here the relevant properties of the integral (W and V) and the surface curl operators. Throughout the paper, we note V o and W o the operators associated with the Laplace kernel (k = 0). We remind their basic properties: Lemma 7. There is:

• (i) Let s ∈ [-1, 0]. V o : H s (Γ) → H s+1 (Γ) is continuous. Moreover it is elliptic: ∀u ∈ H -1 2 (Γ), V o u, u Γ ||u|| 2 H -1 2 (Γ)
.

(40)

• (ii) Let s 1 ∈ [-1, 0] and s 2 ∈ [0, 1]. V : H s1 (Γ) → H s1+1 (Γ) and W : H s2 (Γ) → H s2-1 (Γ) are continuous. • (iii) Let s ∈ [-1, 0]. Ṽ = V -V o : H s (Γ) → H s+2 (Γ) is continuous.
Proof. For (i) see [START_REF] Heuer | Discontinuous galerkin $$hp$$-bem with quasiuniform meshes[END_REF], for (ii) and (iii) see [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF].

In this study we will need to control norms on the skeleton γ h by quantities living on the surface Γ. Do to so we will use the following standard result.

Lemma 8 (Multiplicative trace inequality). let u ∈ H 1 (K) with K ∈ T h . The following relation holds:

||u|| 2 L 2 (∂K) ||u|| L 2 (K) • |u| H 1 (K) + 1 h K ||u|| 2 L 2 (K) . ( 41 
)
Proof. See [START_REF] Prudhomme | Review of a priori error estimation for discontinuous galerkin methods[END_REF].

The error analysis constantly requires the estimate of a norm of the skeleton by a surface norm.

The following result will be particularly instrumental in the analysis:

Lemma 9 (Trace estimate). Let v ∈ X hp and w ∈ H 1 (Γ). For any α > 0, β > 0, the following estimate holds:

| [[v]], w γ h | ||p β e h -α e [[v]]|| L 2 (γ h )   p -β h α ||w|| 1 2 L 2 (Γ) K∈T h |w| 2 H 1 (K) 1 4 + p -β h α-1 2 ||w|| L 2 (Γ)   . ( 42 
)
Proof. The Cauchy-Schwarz inequality first gives:

| [[v]], w γ h | ≤ ||h -α e [[v]]|| L 2 (γ h ) K∈T h h 2α K ||w|| 2 L 2 (∂K) 1 2 . ( 43 
)
Let's now focus on the right-hand side term. The use of the multiplicative trace inequality gives:

K∈T h h 2α K ||w|| 2 L 2 (∂K) K∈T h h 2α K ||w|| L 2 (K) |w| H 1 (K) + h 2α-1 K ||w|| 2 L 2 (K) . ( 44 
)
The Hölder inequality then gives:

h 2α K∈T h ||w|| L 2 (K) |w| H 1 (K) h 2α K∈T h ||w|| 2 L 2 (K) 1 2 K∈T h |w| 2 H 1 (K) 1 2 , ( 45 
)
which directly leads to the announced result after having injected the polynomial order p.

Remark 9. The introduction of the polynomial order can seem artificial at this level. However it is essential as it will enable us later to introduce the penalty function and thus a part of DG norm.

curl h v(x) • f (x)dΓ(x) = Γ v(x)curl Γ f (x)dΓ(x) + γ h f (x) • [[v(x)n e × n]]dγ(x) (46) 
with n e | K being the exterior normal at ∂K (with e ∈ E h and K ∈ T h ) and n the exterior normal of Γ.

Proof. The proof is straightforward using a classic Stoke identity on each element with the definition of the surface curl and then summing over the elements.

Remark 10. The formula above with v ∈ H 1 (Γ) coincides with the well-known Stokes identity of [NEDELEC] page 73.

The following properties of the curl operator are also instrumental in our analysis.

Lemma 11. Here are some continuity results of the surface curl:

• (i) curl Γ : H 1 2 (Γ) → (H -1 2 (Γ)) 3 is continuous. • (ii) For s ∈ [0, 1] and for all face Γ i of Γ, curl Γi : H s (Γ i ) → (H s-1 (Γ i )) 3 is continuous. • (iii) The operator curl h : X hp ⊂ L 2 (Γ) → X hp ⊂ H -1 (Γ) 3 is continuous.
The continuity constant depends on the mesh parameters and the norm used. There is:

||curl h u|| H -1 (Γ) max K∈T h p K h K ||u|| L 2 (Γ) (47) 
And:

||curl h u|| H -1 (Γ) ||u|| L 2 (Γ) + || 1 h 1 2 e [[u]]|| L 2 (γ h ) (48) 
Proof. For (i) and (ii) see [START_REF] Heuer | Discontinuous galerkin $$hp$$-bem with quasiuniform meshes[END_REF] and [START_REF] Heuer | Additive Schwarz method for the p -version of the boundary element method for the single layer potential operator on a plane screen[END_REF]. Let's prove (iii). Let u ∈ X hp . By definition of the dual norm and the integrability of u:

||curl h u|| H -1 (Γ) = sup Φ∈H 1 (Γ) curl h u, Φ Γ ||Φ|| H 1 (Γ) . ( 49 
)
The integration per part formula from lemma (10) gives:

||curl h u|| H -1 (Γ) = sup Φ∈H 1 (Γ) u, curl Γ Φ Γ + Φ, [[u]]n e × n γ h ||Φ|| H 1 (Γ) . ( 50 
)
The left term is estimated the following way:

sup

Φ∈H 1 (Γ) u, curl Γ Φ Γ ||Φ|| H 1 (Γ) = sup Φ∈H 1 (Γ) Γi u, curl Γi Φ Γ ||Φ|| H 1 (Γ) ≤ sup Φ∈H 1 (Γ) Γi ||u|| L 2 (Γi) ||curl Γi Φ|| L 2 (Γi) ||Φ|| H 1 (Γ) . ( 51 
)
And by proposition (ii):

sup

Φ∈H 1 (Γ) u, curl Γ Φ Γ ||Φ|| H 1 (Γ) ||u|| L 2 (Γ) . ( 52 
)
A broken Cauchy-Schwarz inequality serves to estimate the skeleton term:

Φ, [[u]]n e × n γ h ≤ K∈T h ||Φ|| L 2 (∂K) ||u|| L 2 (∂K) . (53) 
A Hölder inequality gives:

Φ, [[u]]n e × n γ h ≤ K∈T h ||Φ|| 2 L 2 (∂K) 1 2 K∈T h ||u|| 2 L 2 (∂K) 1 2 . ( 54 
)
As Φ ∈ H 1 (Γ), lemma 8 implies that:

K∈T h ||Φ|| 2 L 2 (∂K) 1 2 ≤ h -1 2 ||Φ|| H 1 (Γ) . ( 55 
)
A use of lemma 8 and a classical inverse inequality of the H 1 (Γ) semi norm give:

K∈T h ||u|| 2 L 2 (∂K) 1 2 ≤ max K∈T h p K h 1 2 K ||u|| L 2 (Γ) , ( 56 
)
which ends the proof of the relation (47). In the case of the relation (48), the only modification on the proof is the estimate of the skeleton term in equation ( 50). There is in this case:

Φ, [[u]]n e × n γ h ≤ ||[[u]]|| L 2 (γ h ) K∈T h ||Φ|| 2 L 2 (∂K) 1 2 , ( 57 
)
which combined with equation (55) gives the result.

Continuity and ellipticity of the bilinear form

The tools introduced before enable us to study the DG bilinear form. This section is devoted to the collection of essential ellipticity and continuity results which are needed to establish the main theorem. We first need the two following definitions: Definition 4. We call A o the static bilinear form (with k = 0) such that:

∀u, v ∈ X hp , A o (u, v) = V o curl h u, curl h v Γ + T o u, [[v]] γ h + P σ (u, v) + θ T o v, [[u]] γ h , ( 58 
)
with θ = {-1, 0, 1}.

Definition 5. Let à be the following bilinear form:

∀u, v ∈ X hp , Ã(u, v) = Ṽcurl h u, curl h v Γ + T u, [[v]] γ h + θ T v, [[u]] γ h -k 2 V(un), (vn) Γ , ( 59 
) With Ṽ = V -V o and T = T -T o .
The study of A is eased by splitting it between its static and oscillating part:

∀u, v ∈ X hp , A(u, v) = A o (u, v) + Ã(u, v). ( 60 
)
Proposition 3 (Discrete ellipticity). Let σ h be the penalty function from definition 3. Let the discrete space X hp be fixed. If there exists a constant c > 0 independent from the approximation parameters (i.e. h and p) such that:

∀e ∈ E h , p 1-np e σ o h n h -1 e ≤ c, (61) 
then the following ellipticity property for A o holds:

∀u ∈ X hp , |A o (u, u)| ||σ 1 2 h [[u]]|| 2 L 2 (γ h ) + ||curl h u|| 2 H -1 2 (Γ) . ( 62 
)
For θ = -1 (anti-symmetric version) there is an unconditional ellipticity.

Remark 11. The constraint from equation (61) shows that there must be n h > 1 and n p < 1 in order to get an asymptotic ellipticity of the static bilinear form A o . Those bounds shall therefore be respected in order to have a stable numerical scheme.

Proof. The result is trivial for θ = -1 using V o ellipticity. We prove the property for θ = 0 (the θ = 1 case is obtained the same way). Let u ∈ X hp . There is:

|A o (u, u)| V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h -| T o u, [[u]] γ h |. ( 63 
)
We introduce a parameter α e ∈ R + for each edge of the mesh e ∈ E h such that:

T o u, [[u]] γ h = α e T o u, 1 α e [[u]] γ h = e∈E h α e T o u, 1 α e [[u]] L 2 (e) . ( 64 
)
The broken Cauchy-Schwarz inequality leads to:

|A o (u, u)| V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h -||α e T o u|| L 2 (γ h ) || 1 α e u|| L 2 (γ h ) . ( 65 
)
Let β be an other positive parameter. Using the classical Young's Inequality a • b ≤ a 2 2β + βb 2 2 , with a, b > 0 leads to :

|A o (u, u)| V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h - 1 2β ||α e T o u|| 2 L 2 (γ h ) - β 2 || 1 α e [[u]]|| 2 L 2 (γ h ) . ( 66 
)
We will then use the parameters β, α to balance the apparent lack of positiveness of the expression. The term with T o is the complicated one. With u being a piecewise polynomial, we can obviously bound (V o curl h u) • t e by V o curl h u. So:

||αT o u|| 2 L 2 (γ h ) = e∈E h ||α e T o u|| 2 L 2 (e) K∈T h ||α ∂K V o curl h u|| 2 L 2 (∂K) . ( 67 
)
As u ∈ X hp , there is curl h u ∈ L 2 (Γ) and by lemma 7, V o curl h u ∈ H 1 (Γ). We can then locally use the multiplicative trace inequality:

||α e T u|| 2 L 2 (γ h ) K∈T h α 2 ∂K ||(V o curl h u)|| L 2 (K) • |(V o curl h u)| H 1 (K) + 1 h K ||(Vcurl h u)|| 2 L 2 (K) . ( 68 
)
Let's take α 2 ∂K = h K in order to control the h -1 explosive factor. It gives:

||α e T o u|| 2 L 2 (γ h ) K∈T h h K ||(V o curl h u)|| L 2 (K) • |(V o curl h u)| H 1 (K) + ||(V o curl h u)|| 2 L 2 (Γ) . ( 69 
)
The left-hand side term of the above equation ( 69) is separated using the Hölder inequality:

K∈T h h K ||(V o curl h u)|| L 2 (K) • |(V o curl h u)| H 1 (K) K∈T h ||(V o curl h u)|| 2 L 2 (K) 1 2 K∈T h ||h K ∇ h V o curl h u|| 2 L 2 (K) 1 2 . ( 70 
)
Then using the quasi-uniformity of the mesh (∀K ∈ T h , h h K ) and the continuity of V o :

K∈T h ||(h K ∇ h V o curl h u)|| 2 L 2 (K) 1 2 h||curl h u|| L 2 (Γ) . ( 71 
)
We then use the inverse inequality result (theorem 3.9) from [START_REF] Emmanuil | Inverse-type estimates on $hp$-finite element spaces and applications[END_REF] to obtain a negative norm. It gives:

h||curl h u|| L 2 (Γ) p||curl h u|| H -1 2 (Γ) . ( 72 
)
We finally estimate the term T o the following way:

||αT o u|| 2 L 2 (γ h ) p||curl h u|| 2 H -1 2 (Γ) . ( 73 
)
The use of the V o ellipticity leads to:

V o curl h u, curl h u Γ -||αT o u|| 2 L 2 (γ h ) C ell - p β ||curl h u|| 2 H -1 2 (Γ) . ( 74 
)
with C ell being the ellipticity constant from the operator V o . One has to set a sufficiently large parameter β in order to get a positive constant. We take the following expression: β p in order to eliminate the polynomial order dependency. The remaining terms of the equation (66) are estimated like:

σ h [[u]], [[u]] L 2 (γ h ) - β 2 || 1 α e u|| 2 L 2 (γ h ) = e∈E h σ h (e) - β 2α 2 e • [[u]], [[u]] L 2 (e) . ( 75 
)
We need to estimate the expression by the jump part of the discontinuous Galerkin norm, in order to get an ellipticity property with the semi-norm of the problem. We would get the announced property if there exist C ∈ R + such that:

∀e ∈ E h , σ h (e) - β 2α 2 e ≥ Cσ h (e), (76) 
as we would be able to write:

σ h [[u]], [[u]] γ h - β 2 || 1 α u|| 2 L 2 (γ h ) ≥ C e∈E h σ h (e) [[u]], [[u]] e = C||σ 1 2 h [[u]]|| 2 L 2 (γ h ) . ( 77 
)
The penalty function's form is then injected into the constraint (76). The ellipticity is ensured if there is:

∀e ∈ E h , 1 - C • p 1-np e σ o h n h -1 e > 0. (78) 
This ends the proof of the proposition.

Proposition 4 (Discrete continuity). The bilinear form A h is continuous.

∀(u, v) ∈ X 2 hp , |A h (u, v)| ||u|| dg • ||v|| dg (79)
Proof. We estimate each term of (15) separately. First:

| Vcurl h u, curl h v Γ | ||curl h u|| H -1 2 (Γ) ||Vcurl h v|| H 1 2 (Γ) . ( 80 
)
And the use of lemme (11) gives:

| Vcurl h u, curl h v Γ | ||curl h u|| H -1 2 (Γ) ||curl h v|| H -1 2 (Γ) . ( 81 
)
The others terms are estimated like in the proof of proposition 3 (more precisly the skeleton term T is estimated like in equations ( 67)-( 73)). The Hölder inequality ends the proof.

Proposition 5 (Perturbated form continuity). For any β ∈ R + there is:

∀(u, v) ∈ X 2 hp , | Ãh (u, v)| ||u|| L 2 (Γ) ||v|| L 2 (Γ) + β 2 ||σ 1 2 h [[v]]|| 2 L 2 (γ h ) + 1 2β ||u|| 2 L 2 (Γ) (82) 
Proof. The proof uses the same estimate techniques as before, with the use of the extraregularity of Ṽ in lemma 7, the curl continuity lemma 11(iii) and a Young inequality to exhibit β.

Contrary to the static problem, the bilinear form from the DG problem 2 isn't elliptic. However, we can obtain the following weaker property.

Proposition 6 (Garding inequality). Let X hp be an approximation space and c > 0 a constant independent from the approximation parameters (i.e. of h and p) such that :

∀e ∈ E h , p 1-np e σ o h n h -1 e ≤ c, (83) 
with n p and n h being the penalty parameter constants from definition 3. Then, there exists α, β ∈ R + independant of the approximation parameters and an approximation space X hopo such that for all X hp ⊃ X hopo :

∀u ∈ X hp , |A h (u, u)| ≥ α||u|| 2 dg -β||u|| 2 L 2 (Γ) . ( 84 
)
Proof. We first have:

|A h (u, u)| = |A o (u, u) + Ãh (u, u)| ≥ |A o (u, u)| -| Ãh (u, u)|. ( 85 
)
Then the use of proposition 3 gives us the limit mesh X hopo such that for all X hp ⊃ X hopo , A o is elliptic. This result combined with the continuity of Ãh gives:

|A h (u, u)| ≥ C 1 ||curl h u|| 2 H -1 2 (Γ) + ||σ 1 2 h [[u]]|| 2 L 2 (γ h ) -C 2 (1 + 1 2β )||u|| 2 L 2 Γ + β 2 ||σ 1 2 h [[u]]|| 2 L 2 (γ h ) , (86) 
with C 1 and C 2 being positive constants. We rewrite it the following way:

|A h (u, u)| ≥ C 1 ||curl h u|| 2 H -1 2 (Γ) + C 1 ||u|| 2 L 2 (Γ) + (C 1 -C 2 β 2 )||σ 1 2 h [[u]]|| 2 L 2 (γ h ) -(C 2 (1 + 1 2β ) + C 1 )||u|| 2 L 2 (Γ) . ( 87 
)
Choosing β sufficiently small ends the proof.

Lifting operator and residual function

One on the main difficulty in the error analysis of the discontinuous Galerkin method is that expressions of the form A h (u -u h , v) (with u ∈ H 1 2 (Γ)) are not well defined as the trace of u on the skeleton of the mesh γ h doesn't exist. To overcome this difficulty, we build (in the same philosophy as [MPS13, HPSS05, HTX]) an extension of A h which still has a meaning for function u ∈ V (h) = H 1 2 (Γ) + X hp . More fundamentally, the extension gathers in the same bilinear form the continuous and the discrete problem, providing us a powerful demonstration tool. Let's first define the jump on γ h for functions of V (h).

Definition 6 (Generalized jump). Let

u = u 1 + u 2 ∈ V (h) with u 1 ∈ H 1 2 (Γ) and u 2 ∈ X hp . Two cases appear: (i) if u 2 = 0 then [[u]] = 0, (ii) if u 2 = 0 then [[u]] = [[u 1 ]]. Lemma 12. Let v ∈ V (h). Let's define the linear form b v ∈ X * hp by: ∀w ∈ X hp , b v (w) = γ h [[v]]t.Vcurl h wdγ. ( 88 
)
The following continuity estimate holds:

∀w ∈ X hp , |b v (w)| || p β e h α e [[v]]|| L 2 (γ h ) max K∈T h p 5 2 -β K h α-2 K ||w|| H -1 2 (Γ) , ( 89 
)
for any α > 0, β > 0.

Proof. The use of lemma 9 first gives:

|b v (w)| ||p β e h -α e [[v]]|| L 2 (γ h ) p -β h α ||curl h w|| 1 2 H -1 (Γ) ||curl h w|| 1 2 L 2 (Γ) + p -β h α-1 2 ||curl h w|| H -1 (Γ) . ( 90 
)
Inverse estimates now have to be used to obtain the desired continuity in H -1 2 (Γ) norm. First, the use of the fact that curl h w is a polynomial, an inverse type inequality (theorem 3.9) from [START_REF] Emmanuil | Inverse-type estimates on $hp$-finite element spaces and applications[END_REF] and the continuity of the broken curl from lemma 11(iii) give the result.

The lifting operator can now be defined. It can be interpreted as a generalization of the term

T u, [[v]] γ h of A h .
Definition 7 (Lifting operator). We define L : V (h) → X hp by the following relation:

∀w ∈ X hp , L(v), Vw Γ = b v (w), (91) 
for any v ∈ V (h).

Proposition 7. There exists h o , p o such that for all X hp ⊃ X hopo , The operator L exists on V (h) and is continuous. The following estimate holds:

∀u ∈ V (h), ||L(u)|| H -1 2 (Γ) max K∈T h h n h -4 2 K • p 5-np 2 K ||u|| dg , ( 92 
)
with σ h being the penalty function from definition 3.

Proof. The existence directly comes from the well-posedness of V ( [START_REF] Demkowicz | Asymptotic convergence in finite and boundary element methods: Part 1: Theoretical results[END_REF]). The continuity is a consequence of the inf-sup condition: There exists h o > 0, p o ≥ 1, and a > 0 such that for all h ≤ h o and p ≥ p o with X hp ⊃ X hopo :

inf v h ∈X hp sup w h ∈X hp v h , Vw h Γ ||v h || H -1 2 (Γ) ||w h || H -1 2 (Γ) ≥ a > 0. (93) 
Let's choose v h = L(v). We obtain:

||L(v)|| H -1 2 (Γ) ≤ sup w h ∈X hp 1 a L(v), Vw h Γ ||w h || H -1 2 (Γ) ≤ sup w h ∈X hp 1 a b v (w h ) ||w h || H -1 2 (Γ) . ( 94 
)
The use of lemma 12 and the definition of the penalty function with α = n h 2 and β = np 2 end the proof.

Proposition 8. There is

H 1 2 (Γ) ⊂ Ker(L) (95) Proof. v ∈ H 1 2 (Γ) implies [[v]] = 0. So b v = 0. The use of the inf-sup condition then leads to ||L(v)|| H -1 2 (Γ)
= 0, which ends the proof.

We can now introduce the lifted bilinear form.

Definition 8 (Lifted bilinear form). We define the following bilinear form

A l h . ∀(u, v) ∈ V (h) × V (h): A l h (u, v) = Vcurl h u, curl h v Γ -k 2 V(un), vn Γ + σ 1 2 h [[u]], σ 1 2 h [[v]] γ h + L(v), Vu Γ + θ L(u), Vv Γ . ( 96 
)
This generalization is an essential tool for the error analysis. The definition of L and A l h have got the following very interesting properties.

Proposition 9 (Consistency with the initial problem). This property shows that the lifted bilinear form is an extension of both the continuous bilinear form and the discrete one. More precisely, there is:

∀(u, v) ∈ X hp × X hp , A l h (u, v) = A h (u, v) (97) 
and:

∀(u, v) ∈ H 1 2 (Γ) × H 1 2 (Γ), A l h (u, v) = A(u, v). ( 98 
)
Proof. Direct consequence of the definition of the lifting operator.

Proposition 10 (Continuity). The extended bilinear form inherits the continuity property of

A h . There is:

|A l h (u, v)| C l (h)||u|| dg ||v|| dg , (99) 
with:

C l (h) = max K∈T h h min(0, n h -4 2 ) K • p max(0, 5-np 2 ) K .
Proof. Using the proposition 7 and lemmas 11 and 7 gives:

|A l h (u, v)| ||curl h u|| H -1 2 (Γ) ||curl h v|| H -1 2 (Γ) + ||u|| L 2 (Γ) ||v|| L 2 (Γ) + ||σ 1 2 h [[u]]|| L 2 (γ h ) ||σ 1 2 h [[v]]|| L 2 (γ h ) + max K∈T h h n h -4 2 K • p 5-np 2 K • (||σ 1 2 h [[u]]|| L 2 (γ h ) ||v|| L 2 (Γ) + |θ| • ||σ 1 2 h [[v]]|| L 2 (γ h ) ||u|| L 2 (Γ) ). ( 100 
)
The application of Hölder inequality then leads to the result.

The lifted bilinear form also enables us to define a discontinuous version of the standard residual function. This definition will naturally appear in the a priori error estimate.

Definition 9 (DG residual function). Let u ∈ H

1 2 (Γ) be the exact solution of the problem 1. We use the bilinear form A l to define the following residual:

∀v ∈ V (h), r h (v) = A l h (u, v) -f, v Γ , ( 101 
)
with f ∈ L 2 (Γ) being the right-hand side of the initial problem 1.

Lemma 13 (Residual's basic properties).

The residual has the following basic properties: (i) Let u h be the solution of the discrete problem. There is

∀v ∈ X hp , r h (v) = A l h (u -u h , v). ( 102 
)
(ii) Orthogonality of the residual

∀v ∈ H 1 2 (Γ), r h (v) = 0. ( 103 
)
Proof. (i) is obtained using the first part of the proposition 9:

For v ∈ X hp : r h (v) = A l h (u, v) -A h (u h , v) = A l h (u, v) -A l h (u h , v) = A l h (u -u h , v
). (ii) comes using the second part of the proposition 9:

for v ∈ H 1 2 (Γ): r h (v) = A(u, v) -l(v) = 0.
The error estimate in section 4.4.1 will require a sharp estimate of the residual function. It has the following important property: Proposition 11. Let u being the solution of the initial problem 1. Let's suppose u ∈ H r (Γ) with r ≥ 1. Then the following estimate yields:

∀w ∈ X hp , r h (w) max K∈T h    h n h -3 2 +µ K K p r+ np -4 2 K    ||w|| dg ||u|| H r (Γ) , ( 104 
)
with µ K = min(1 + p K , r), for any K ∈ T h .

Proof. We get from the definition of A l :

r h (w) = Vcurl Γ u, curl h w Γ -k 2 V(nu), (nw) Γ + L(w), Vu Γ -f, w Γ . ( 105 
)
We introduce the conforming projection Π c w ∈ X hp ∩ C 0 (Γ) of w from lemma 3. It will serve to introduce the continuous bilinear form A. Indeed we have:

Vcurl Γ u, curl h w + curl Γ Π c w -curl Γ Π c w Γ -k 2 V(un, n(w + Π c w -Π c w) Γ = A(u, Π c w) + Vcurl Γ u, curl h w -curl h Π c w Γ -k 2 un, n(w -Π c w) Γ = f, Π c w Γ + Vcurl Γ u, curl h w -curl h Π c w Γ -k 2 nu, n(w -Π c w) Γ , ( 106 
)
by definition of the continuous problem.

In order to estimate each term, we have to introduce the L 2 projection from lemma 2, noted Π 2 . The definition 7 of the lifting operator leads to:

L(w), Vu Γ = L(w), V(u + Π 2 u -Π 2 u) Γ = L(w), VΠ 2 u Γ + L(w), V(u -Π 2 u) Γ = [[w]], t.Vcurl h Π 2 u γ h + L(w), V(u -Π 2 u) Γ . ( 107 
)
The advantage of having introduced the projections above will be exhibited afterward. We will use the error estimate of the projections to bound the residual function.

The approximation lemma 4 of Π c leads to:

nu, n(w -Π c w) Γ ≤ ||u|| L 2 (Γ) ||w -Π c w|| L 2 (Γ) max K∈T h h n h +1 K p np K ||u|| H r (Γ) ||w|| dg . ( 108 
)
The other term of the equation (106) can't be directly estimated. We need to use the integration per parts formula from lemma 10, identifying the duality product with an L 2 (Γ) inner product to get:

Vcurl Γ u, curl h w-curl h Π c w Γ = w-Π c w, curl Γ (Vcurl Γ u) Γ + Vcurl Γ u, [[w]]n e ×n Γ γ h (109)
The first term of (109) can be easily estimated using the continuity of V and curl and the approximation property from lemma 4 :

w -Π c w, curl Γ (Vcurl Γ u) Γ ≤ ||w -Π c w|| L 2 (Γ) ||curl Γ Vcurl Γ u|| L 2 (Γ) max K∈T h h n h +1 K p np K ||w|| dg ||curl Γ u|| L 2 (Γ) max K∈T h h n h +1 K p np K ||w|| dg ||u|| H r (Γ) . ( 110 
)
The term on the skeleton from the integration per part formula can be associated with the skeleton term of equation ( 107) noting that:

Vcurl Γ u, [w]n e × n Γ γ h + [[w]], t.Vcurl h Π 2 u γ h = -Vcurl h Π 2 u, [[w]]t γ h + [[w]], t.Vcurl Γ u γ h = [[w]], t.Vcurl Γ u γ h -t.Vcurl h Π 2 u, [[w]] γ h = [[w]], t.(Vcurl h (u -Π 2 u)) γ h . ( 111 
)
We use the lemma 9, the continuity of V and curl, the quasi-uniformity of the mesh and the local approximation property of Π 2 to get the following error estimate:

| [[w]], t.(Vcurl(u -Π 2 u)) γ h | ≤ ||σ 1 2 h [[w]]|| L 2 (γ h ) • h n h -1 2 p -np 2 ||Vcurl h (u -Π 2 u)|| H 1 (Γ) ||σ 1 2 h [[w]]|| L 2 (γ h ) • K∈T h h n h -1 2 K p - np 2 K ||curl K (u -Π 2 u)|| 2 L 2 (K) 1 2 ||σ 1 2 h [[w]]|| L 2 (γ h ) • K∈T h h n h -1 2 K p - np 2 K ||(u -Π 2 u)|| 2 H 1 (K) 1 2 ||σ 1 2 h [[w]]|| L 2 (γ h ) • max K∈T h h n h -3 2 +µ K K p - np 2 -(r-1) K ||u|| H r (Γ) , (112) with µ K = min(p K + 1, r), for any K ∈ T h .
The lifting term (107) is estimated the following way:

L(w), V(u -Π 2 u) Γ ≤ ||L(w)|| H -1 2 (Γ) ||V(u -Π 2 u)|| H 1 2 (Γ) . ( 113 
)
Then the continuity of V and L, and the approximation lemma 2 lead to:

L(w), V(u -Π 2 u) Γ max K∈T h    h n h -3 2 +µ K K p r+ np -4 2 K    ||w|| dg ||u|| H r (Γ) . ( 114 
)
Putting all those estimates together ends the proof.

Proof of the main theorem

We now have all the tools to end the proof of the main theorem. Let's note u ∈ H r (Γ) (with r ≥ 1) the solution of the exact problem and u h the solution of the discrete problem.

Proof of the error estimate in DG norm

Step 1: Decomposition of the error. Following what's done in [START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF], we first split the error into two contributions by introducing an element v ∈ X hp ∩ C o (Γ) such that:

||u -u h || dg ≤ ||u -v|| dg + ||v -u h || dg . ( 115 
)
The error can be separated into the non-conformity default and the error between u and its best conforming approximation. The term ||u -v|| dg will be treated easily using a Clément type interpolation. Let's focus on the other one. We use the Garding inequality to re-introduce the bilinear form. It gives:

||v -u h || 2 dg |A h (v -u h , v -u h )| + v -u h , v -u h Γ . ( 116 
)
We then use proposition 9 to replace the discrete bilinear form by the lifted one:

||v -u h || 2 dg |A l h (v -u h , v -u h )| + v -u h , v -u h Γ ( 117 
)
in order to introduce the exact solution

||v -u h || 2 dg |A l h (v -u h + u -u, v -u h )| + v -u h , v -u h Γ . ( 118 
)
We then separate the contributions:

||v -u h || 2 dg |A l h (v -u, v -u h )| + |A l h (u -u h , v -u h )| + v -u h , v -u h Γ . ( 119 
)
As announced before, the residual function appears naturally:

||v -u h || 2 dg |A l h (v -u, v -u h )| + |r h (v -u h )| + v -u h + u -u, v -u h Γ |A l h (v -u, v -u h )| + |r h (v -u h )| + v -u, v -u h Γ + u -u h , v -u h Γ . ( 120 
)
Dividing by ||v -u h || dg leads to:

||v -u h || dg A l h (v -u, v -u h ) ||v -u h || dg + |R h | + v -u, v -u h Γ ||v -u h || dg + u -u h , v -u h Γ ||v -u h || dg (121) with R h = sup w∈X hp r h (w) ||w|| dg . ( 122 
)
The estimate of R h is straightforward using the proposition 11:

R h max K∈T h    h n h -3 2 +µ K K p r+ np-4 2 K    ||u|| H r (Γ) . ( 123 
)
The third term of equation ( 121) is estimated using a Cauchy-Schwarz inequality

v -u, v -u h Γ ||v -u h || dg ≤ ||v -u|| L 2 (Γ) ||v -u h || L 2 (Γ) ||v -u h || dg ≤ ||v -u|| L 2 (Γ) (124) 
and then will be absorbed by ||v -u|| L 2 (Γ) in (115). Then defining the following notation:

E h (u -u h ) = sup w∈X hp | u -u h , w Γ | ||w|| dg (125)
leads to:

||v -u h || dg |A l h (v -u, v -u h )| ||v -u h || dg + |R h | + ||v -u|| L 2 (Γ) + E h (u -u h ). ( 126 
)
The only tricky term is E h . We manage to estimate it thanks to a duality approach.

Step 2: Estimate of E h and duality approach. We will use here a duality approach to express E h with the operators of the problem. Their properties will then be used to estimate the term. Let w ∈ X hp . We need to introduce Π c w ∈ X hp ∩ C o (Γ) the conforming projection of w. We decompose the numerator of ( 125) such that:

u -u h , w -Π c w + Π c w Γ = u -u h , w -Π c w Γ + u -u h , Π c w Γ . ( 127 
)
The first term of ( 127) is estimated without difficulties thanks to the projector's error estimate. The other term is trickier and requires the introduction of the following dual problem :

Problem 3 (dual problem). We define the intermediate unknown z ∈ H 1 2 (Γ) being the solution of:

Wz = Π c w. ( 128 
) Having Π c w ∈ X hp ∩ C o (Γ) ⊂ L 2 (Γ) leads to z ∈ H 1 (Γ).
Next, let's note e h = u -u h the error (the quantity to estimate). A variationnal formulation of the dual problem 3 with the error gives:

Wz, e h Γ = Π c w, e h Γ . ( 129 
)
The right-hand side of the upper expression being the term we first wanted to estimate. We see that the use of the dual approach linked Π c w, e h Γ with the initial problem. The left-hand side of equation ( 129) is treated using integration per part formulas. The variationnal formulation of W and the symmetry of V first lead to:

Wz, u Γ = curl Γ z, Vcurl Γ u Γ -k 2 V(zn), un Γ = Vcurl Γ z, curl Γ u Γ -k 2 V(zn), un Γ . ( 130 
)
The integration per parts formula (8) gives:

Wz, u h Γ = K∈T h Wz, u h K = K∈T h curl K u h , Vcurl Γ z K -k 2 V(zn), u h n K + t K • Vcurl Γ z, u h ∂K (131)
and

Wz, u h Γ = K∈T h curl K u h , Vcurl Γ z K -k 2 V(zn), u h n K + e∈E h t e • Vcurl Γ z, [[u h ]] e . ( 132 
)
Combining ( 131) and (132) gives:

Wz, e h Γ = Wz, u Γ -Wz, u h Γ = curl h e h , Vcurl h z Γ -k 2 V(zn), e h n Γ -t e • Vcurl Γ z, [[u h ]] γ h . (133) Recalling from definition 6 that [[e h ]] = [[u -u h ]] = -[[u h ]]
, one has:

Wz, e h Γ = curl h e h , Vcurl h z Γ -k 2 V(zn), e h n Γ + t e • Vcurl Γ z, [[e h ]] γ h . ( 134 
)
Using the definition of A l h in the expression above and the proposition 8 leads to:

Wz, e h Γ = A l h (e h , z) -L(e h ), Vz Γ + t e • Vcurl Γ z, [[e h ]] γ h . ( 135 
)
We introduce I c z ∈ the Clément's interpolate of z from lemma 6. Using the orthogonal property of the residual from lemma 13 leads to :

A l h (e h , z) = A l h (e h , z -I c z + I c z) = A l h (e h , z -I c z) + r h (I c z) = A l h (e h , z -I c z). So: Wz, e h Γ = A l h (e h , z -I c z) -L(e h ), Vz Γ + t e • Vcurl Γ z, [[e h ]] γ h = T 1 + T 2 + T 3 . (136) Estimate of T 1 : The continuity of A l yields: A l h (e h , z -I c z) C l (h)||e h || dg ||z -I c z|| dg . ( 137 
)
The regularity of z -I c z and the lemma 11 enable to estimate the Galerkin norm such that:

A l h (e h , z -I c z) C l (h)||e h || dg ||z -I c z|| H 1 2 (Γ) . ( 138 
)
The lemma 6 leads to:

T 1 C l (h) max K∈T h h K p K 1 2 ||e h || dg ||z|| H 1 (Γ) . ( 139 
)
Estimate of T 2 + T 3 : We introduce the L 2 -projection of z in order to have:

L(e h ), Vz Γ = L(e h ), VΠ 2 z Γ + L(e h ), V(z -Π 2 z) Γ . ( 140 
)
Then T 2 + T 3 can be expressed as the sum of two contributions such that:

T 2 + T 3 = Φ 1 + Φ 2 , (141) with: 
Φ 1 = t e • Vcurl Γ z, [[e h ]] γ h -L(e h ), VΠ 2 z Γ and Φ 2 = L(e h ), V(Π 2 z -z) Γ . ( 142 
)
This manipulation was done in order to use the lifting operator and the L 2 -projection approximation properties. The term Φ 1 was already estimated in the proof of the proposition 11. We directly have from this:

Φ 1 ≤ ||σ 1 2 h [[w]]|| L 2 (γ h ) max K∈T h {h n h -1 2 +µ K K p - np 2 K }||u|| H 1 (Γ) . ( 143 
)
The term Φ 2 is estimated the following way:

Φ 2 ≤ ||L(e h )|| H -1 2 (Γ) ||V(Π 2 z -z)|| H 1 2 (Γ) . ( 144 
)
Then the continuity lemma 7 and proposition 7 lead to:

Φ 2 max K∈T h h n h -4 2 K • p 5-np 2 K ||e h || dg ||Π 2 z -z|| H -1 2 (Γ) . ( 145 
)
Remark 12. We recall that proposition 7 is valid for a minimal approximation space X ho,po

The estimate is ended using the L 2 approximation lemma 2 and the quasi uniformity of the mesh:

Φ 2 max K∈T h h n h -1 2 K • p 2-np 2 K ||e h || dg ||z|| H 1 (Γ) . ( 146 
)
So we have:

T 2 + T 3 max K∈T h h n h -1 2 K • p 2-np 2 K ||e h || dg ||z|| H 1 (Γ) . ( 147 
)
We combine all these estimates above in the equation ( 136) to get the more compact expression:

| Π c w, e h Γ | max h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||e h || dg ||z|| H 1 (Γ) . ( 148 
)
In order to get rid of z (which is just an intermediate unknown), we use the fact that W :

H 1 (Γ) → L 2 (Γ) is an isomorphism. It implies that its inverse W -1 : L 2 (Γ) → H 1 (Γ) is continuous. So: ||z|| H 1 (Γ) = ||W -1 Π c w|| H 1 (Γ) ≤ ||W -1 || • ||Π c w|| L 2 (Γ) ≤ ||W -1 || • ||Π c w|| dg . ( 149 
)
The estimate above is used in (127) and combined with the conforming approximation lemma 4 to give:

∀w ∈ X hp , | u -u h , w Γ | max h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||e h || dg ||w|| dg . ( 150 
)
The result obtained is summarized in the following property:

Proposition 12 (estimate of E h ). Let u be the solution of problem 1 and u h the solution of problem 15 with a penalty function from definition 3. There exist h o , p o such that for all X hp ⊃ X hopo , the following estimate holds:

E h max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || dg . ( 151 
)
Remark 13. One shall notice that the term limiting the asymptotic convergence of the E h is the continuity constant of the generalized bilinear form A l h .

Corollary 7. The convergence behavior of E h strongly depends on the value of the penalty parameters:

• If n h > 3 and n p > 4: lim h,p→0 E h = 0.
• If n h = 3 and n p = 4: E h is asymptotically bounded.

• If n h < 3 or n p < 4: then nothing can be said with the proposition above.

Step 3: Final proof of the main theorem. Now we just have to collect all the estimates above to end the proof. Injecting the dual problem estimate from proposition 12 and the residual function estimate from proposition 11 in equation ( 126) gives:

||v -u h || dg |A l h (v -u, v -u h )| ||v -u h || dg + max K∈T h    h n h -3 2 +µ K K p r+ np -4 2 K    ||u|| H r (Γ) + ||v -u|| L 2 (Γ) + max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || dg . (152)
Let's now inject this estimate in the initial error decomposition equation (115). There holds:

||u -u h || dg ||v -u|| dg + |A l h (v -u, v -u h )| ||v -u h || dg + max K∈T h    h n h -3 2 +µ K K p r+ np -4 2 K    ||u|| H r (Γ) + max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || dg . ( 153 
)
From corollary 7, we have to restrict the penalty function parameters n h > 3 and n p > 4 so that the term E h tends to 0. With this hypothesis, there exist limit mesh values h o and p o and an approximation space X hopo such that for any X hp ⊃ X hopo , there holds:

||u -u h || dg ||v -u|| dg + |A l h (v -u, v -u h )| ||v -u h || dg + max K∈T h    h n h -3 2 +µ K K p r+ np-4 2 K    ||u|| H r (Γ) . (154) 
A final use of the lifted bilinear form's continuity and a passage to the infimum end the proof of the error estimate.

Proof of the L 2 error estimate

The idea is to express the error in the L 2 (Γ) with the DG norm. To do so we start by introducing the following decomposition:

||u -u h || 2 L 2 (Γ) = u -u h , u -I c u Γ + u -u h , Π c u h -u h Γ + u -u h , I c u -Π c u h Γ . ( 155 
)
Using the Cauchy-Schwarz inequality we get:

||u -u h || L 2 (Γ) ≤ ||u -I c u|| L 2 (Γ) + ||Π c u h -u h || L 2 (Γ) + ||Π c u h -I c u|| L 2 (Γ) . ( 156 
)
The two first terms are easy to estimate using lemmas 6 and 4. Indeed we have:

||u -I c u|| L 2 (Γ) max K∈T h h r K p r K ||u|| H r (Γ)
and

||Π c u h -u h || L 2 (Γ) max K∈T h h n h +1 K p np K ||u -u h || dg . ( 157 
)
The last term can be estimated by the use of a dual problem, in a same fashion as what was done previously. Noting w = Π c u h -I c u, we define z ∈ H 1 (Γ) which solves the following dual problem :

∀v ∈ L 2 (Γ), Wz, v Γ = w, v Γ , (158) 
from which we immediately get:

||w|| 2 L 2 (Γ) = Wz, w Γ . ( 159 
)
Then the exact solution u is introduced again:

Wz, w Γ = Wz, Π c u h -I c u Γ = Wz, Π c u h -u Γ + Wz, u -I c u Γ . ( 160 
)
We separately estimate the two terms above. The first one is easily estimated recalling that Wz, I c u -u ∈ L 2 (Γ) and using lemma 6 :

| Wz, I c u -u Γ | ≤ ||Wz|| L 2 (Γ) ||I c u -u|| L 2 (Γ) ||w|| L 2 (Γ) max K∈T h h r K p r K ||u|| H r (Γ) (161) 
The second term can be estimated by introducing the numerical solution u h from problem 2:

| Wz, Π c u h -u Γ | = Wz, Π c u h -u h Γ + Wz, u h -u Γ . ( 162 
)
Where the term Wz, u h -u Γ has already been analyzed when estimating E h . From the equation (148) we directly get:

| Wz, u h -u Γ | max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || dg ||w|| L 2 (Γ) . ( 163 
)
The conforming projection estimate lemma 4 then gives:

Wz, Π c u h -u h Γ ≤ ||Wz|| L 2 (Γ) ||Π c u h -u h || L 2 (Γ) ||w|| L 2 (Γ) max K∈T h h n h +1 K p np K ||u -u h || dg . ( 164 
)
The estimates above are collected in equation ( 159) in order to finally get:

||Π c u h -I c u|| L 2 (Γ) max K∈T h h r K p r K ||u|| H r (Γ) + max K∈T h h min( 1 2 , n h -3 2 ) K p max(-1 2 , 4-np 2 ) K ||u -u h || dg .
(165) The use of the above equations ( 156) and (157) in equation (155) ends the proof.

Numerical results

In this section we conduct some numerical experiments to highlight the practical performances of the DG method introduced and analyzed in this article. We will consider three numerical aspects of the DG:

• The h and p convergence with conforming meshes.

• Non-conforming meshes with varying polynomial orders.

• The impact of θ and the penalty function's parameters.

Physical configuration. We consider the model problem 1 of acoustic scattering by a unit cube of boundary Γ = ∂([0, 1] × [0, 1] × [0, 1]). The right hand side is f (x) = ∂ n u i (x) with x ∈ Γ and u i = exp(ikve • x) being an incident plane wave. The vector ve is the propagation direction of the wave. In subsections 5.1 and 5.2 the wave number k = 1 and an incident wave ve = (0, 0, 1) are considered. In the subsection 5.3 the values k = 20 and ve = (1, 1, 1) are taken.

Error measurement. We note u θ h the numerical DG solution obtained with θ formulation and u the exact solution. Since the latter is unknown, the error

||curl h (u -u θ h )|| 2 H -1 2 (Γ) + ||u -u θ h || 2 L 2 (Γ) + ||σ 1 2 h [[u θ h ]]|| 2 L 2 (γ h ) 1 2
(166) can't be computed directly, expect for ||σ

1 2 h [[u θ h ]]|| L 2 (γ h ) .
To overcome this difficulty, we use a reference solution u θ ref computed with a refined mesh (a reference mesh). We then measure

||u θ h -u θ ref || DG instead of ||u θ h -u|| DG .
We highlight the fact that each formulation θ has its own reference solution. As a consequence, the error measurements

||curl h (u θ h -u θ ref )|| H -1 2 (Γ)
and

||u θ h -u θ ref || L 2 (Γ)
give an estimate of the convergence rates, but they don't give any information about the actual value of the error. Thus except for the jump part of the error, a comparison of the precision of each formulation is out of our scope. The curl part of the norm can't be evaluated simply as it is a dual norm. It is computed using the Laplace single layer potential V o because V o u, u Γ defines an equivalent norm of ||u||

H -1 2 (Γ)
(from lemma 7).

In the next sections this estimate serves to compute the error and the convergence rate of the discontinuous Galerkin method.

h-convergence

In this subsection we maintain a fixed polynomial order p = 1 and observe the h-convergence rate of the DG method. The formulations with θ ∈ {-1, 0, 1} are considered. We also observe the potential influence of the penalty coefficient σ h = σ o h n h with n h ∈ {1, 3 2 , 2, 4}. We take σ o = 1. We consider a sequence of triangular meshes T i , with i ∈ [1, 5] such that T i ⊂ T i+1 . Each mesh T i+1 is obtained by uniform refining of T i . So h i = hi-1 4 . The mesh T 5 is used to compute the reference solution. A description of the meshes' parameters can be seen in table 1.

In the figure 2 the total error for each formulation and for distinct penalty parameters' values n can be observed.

Those convergence rate are in full agreement with the ones predicted by the theorem for n h = 4. The theoretical convergence rate is apparently suboptimal for n h < 4. Particularly the error appears to converge even for n h = 1, which is a value out of the scope of the theorem. 10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -0.2 mesh size h total error
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Total error, natural formulation (θ = 0) 10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -1 10 -0.8 10 -0.6 10 -0.4 mesh size h total error 10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -2 10 -1 mesh size h L2 and curl error h h 1 2 (a) L 2 (in red) and curl (in blue) of the error for all formulations and all values of n h 10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -2 10 -1 mesh size h jump error

n h = 4 n h = 2 n h = 1.5 n h = 1 (c) Total error, symmetric formulation (θ = 1)
n h = 4 n h = 2 n h = 1.5 n h = 1 (b) ||σ 1 2 h -1 h ]]|| L 2 (γ h ) (anti-symmetric formula- tion)
10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -2 10 -1 mesh size h jump error

n h = 4 n h = 2 n h = 1.5 n h = 1 (c) ||σ 1 2 h [[u 0 h ]]|| L 2 (γ h ) (natural formulation)
10 -1.4 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -3 10 -2 mesh size h jump error

n h = 4 n h = 2 n h = 1.5 n h = 1 (d) ||σ 1 2 [[u 1 h ]]|| L (γ h ) (symmetric formulation)
Figure 3: Observation of the jump error ||σ

1 2 h [[u θ h ]]|| L 2 (γ h ) , the L 2 error ||u θ h -u θ ref || L 2 (Γ) and the curl error ||curl h (u θ h -u θ ref )|| H -1 2 (Γ)
for the three formulations and for penalty parameter values n h = 4, 2, 3 2 , 1.

In the figure 3.(a) we present the L 2 and curl part of the error for all formulations and penalty value parameters. The observed convergence rate corresponds to those predicted by the theory for n h = 4. The faster convergence in the L 2 is indeed clearly observed. For n h < 4, the convergence rate predicted is sub-optimal. The method seems to converge in the L 2 norm even for n h < 3. Our theoretical work cannot capture this behavior. According to us, sharper inverse type estimates are needed to get a sharper a priori bound. This is left for further investigations. The figures 3.(b), 3.(c) and 3.(d) illustrate the influence of the penalty parameter over the convergence rate of the jump part of the error. In this case, there is a exact correspondence between the predicted convergence rates and those observed numerically for n h = 4. The lower convergence rate predicted by the theory when decreasing n h is observed. It also reveals that for n h = 1 the error doesn't converge for any formulations, because of the term ||σ

1 2 h [[u θ h ]]|| L 2 (γ h ) .

However and as a consequence, the jump ||[[u θ

h ]]|| L 2 (γ h ) numerically still converges in O(h -1 ). 

p-convergence

In this subsection we numerically analyze the p-convergence behavior of the DG method. To do so we consider the first mesh of the table 1 and observe the error for polynomial orders varying from p = 1 to p = 6 (the latter being the reference solution). For each formulation we consider a penalty function σ h = σ o p np with n p = { 1 2 , 1, 2, 3, 4, 5} and σ o = 1. The total error measured can be observed on figure (4). A look at the total error suggests that the three formulations have the same behavior for any penalty parameter's value. The observed convergence rate is slightly better than the predicted one O(p -1 2 ) for n p = 5. Many factors may play a role in this particular behavior (local extra regularity of the solution, numerical approximations, lack of precision in the error calculation process, etc.). For the other values of n p , the theoretical error bound is apparently suboptimal. Nevertheless, each contribution of the error can have a different behavior, in a same way as what observed for the h-convergence analysis. The L 2 , curl and jump error contribution are plotted respectively on figures 5, 6 and 7. First, we note from that the observed convergence rate corresponds to the predicted one for n p = 5. It tends to show that in this case the a priori error estimates in DG and L 2 norm are optimal. For n p < 5 the theoretical bound seems to be suboptimal. Indeed even for n p = 1 2 the DG method numerically converges. But in this case the convergence rate of the jump contribution of the error clearly decreases. In our opinion, the optimality of the error bound could be recovered by the use of sharper inverse type inequalities in the proof. We especially suspect the continuity estimate of lemma 12 to be suboptimal. Unfortunately those technical results are hard to obtain. This improvement of the theoretical work is left to further research. The penalty parameter mostly influences the convergence rate of the jump contribution of the error. The same phenomena was observed in the case of the h-convergence.

np = 1 np = 2 np = 3 np = 4 np = 5 (a) ||σ 1 2 h [[u -1 ]]|| L 2 h ) (anti- symmetric formulation) 10 0 10 0.2 10 0.4 10 0.6 10 -3 10 -2 polynomial order jump error np = 1 2 np = 1 np = 2 np = 3 np = 4 np = 5 (b) ||σ 1 2 [[u 0 h ]]|| L 2 (γ h ) (natural for- mulation) 10 0 10 0.2 10 0.4 10 0.6 10 -5 10 -4 10 -3 polynomial order jump error np = 1 2 np = 1 np = 2 np = 3 np = 4 np = 5 (c) ||σ 1 2 h [[u 1 h L 2 (γ h ) (symmetric formulation) Figure 7: Observation of the jump error ||σ 1 2 h [[u θ h ]]|| L 2 (γ h ) in
It is also interesting to note from figure 7 that the jump error is significantly lower for the symmetric formulation. Thus this formulation re establish better the continuity of the numerical solution. This will be more closely inspected in the following subsection.

Remark 14.

The numerical experiments of this subsection tend to show that the a priori error estimates are suboptimal bounds for n h ≥ 4 and n p ≥ 5. For lower values of the penalty parameters, the method numerically still converges. According to us, the suboptimality of those results comes from a rough estimate of the lifting operator continuity constant L. This also shows that the range of efficient parameters' values is much wider than theoretical theorems' statements. This is very good news from a practitioner's point of view.

Other experiments: from theory to practice

We briefly consider two aspects of great importance a practitioner's point of view: the condition number of the Galerkin matrix and the possibility to use the scheme with non conforming meshes.

Condition number

The condition number of the Galerkin matrix is also of great practical importance as it determines how easily the linear system of the problem can be solved. In an IPDG context, the penalty parameters' value are known to have a great impact on the condition number. More precisely [START_REF] Castillo | Performance of Discontinuous Galerkin Methods for Elliptic PDEs[END_REF] shows an increase of the penalty parameter can lead to a catastrophic increase of the condition number in the case of IPDG schemes for PDE elliptic equations. Here we investigate the influence of the formulation (symmetric, natural and anti-symmetric) and the penalty function over the condition number. However we don't directly compute it. We measure instead the number of GMRES iterations needed to solve the system with a precision of ε = 10 -3 (See [START_REF] Gratton | Algorithm 842: A set of gmres routines for real and complex arithmetics on high performance computers[END_REF] for more about those iterative methods). The results are also put in relation with the error obtained. To do so we compare the jump error

||[[u θ h ]]|| L 2 (γ h )
. It helps to compare the formulations. We consider for this case a fixed simple cubic (P 1 ) mesh . We choose a constant penalty function P σ (u, v) = σ o . We consider the values condition number (a low penalty function values). Those results also enables to see the stability of each formulation in the case of very low penalty parameters. The anti-symmetric one is stable even in the case σ o = 1 100 . This can be explained by the fact that the corresponding static bilinear form A o is elliptic for any penalty parameter's value. This is the advantage of the anti symmetric formulation. This isn't the case for the two others, which are unstable for small values of σ o . For the natural case, the Galerkin matrix was always successfully inverted but the numerical solution obtained was horrible: the error jump is very high. For the symmetric formulation, the matrix was not even invertible for σ o = { 1 100 , 1 10 , 1 2 }. On an other hand, the symmetric formulation gives better results in term of continuity. A visualization of the results on figures 8, 9 and 10 in term of ratio precision/number of GMRES iteration on figure 11 clearly shows that for a prescribed (jump) error, the symmetric formulation gives the better results with the less iteration requirement. This higher precision of the symmetric formulation can also be seen by a direct observation of the physical fields. The reader can compare on figure 12 the numerical solutions of each formulation for σ o = 5. On this figure the higher precision of the symmetric formulation is clear and visually very important. Thus, the symmetric formulation gives the better results in term of ratio precision/number of GMRES iterations and should be preferred.

σ o = 1 100 , 1 10 , 1 2 

non-conforming mesh

As depicted in the introduction, one main advantage of the DG method is its ability to naturally handle non-conforming meshes. The behavior of the IPDG method in this case is now investigated from a practical point of view. We both consider polynomial (varying polynomial order) and geometrical (hanging nodes) non conformity. To do so, we compare the numerical solutions obtained with five meshes. Their main properties are showed in figure 13. We conduct two experiments that will show the good behavior of the IPDG method in a non conforming set up, and in the mean time the numerical pollution induced by this non conforming configuration.

Experiment 1. The solutions obtained with meshes 1, 2 and 3 are first compared, the latter being a combination of the two first. A visualization of the meshes can be seen on figure 14(d),(e),(f). Solutions from meshes 1 and 2 are the reference solutions. The non-conforming solution from the third mesh can then be compared with the others to see if the hanging nodes and the polynomial non-conformity induce an important numerical error. The real part of the solutions (the physical solution) can be observed in figures 14(a),(b),(c). They are visually identical. So in this case the non conformity doesn't seem to introduce any noticeable numerical error. It tends to proof the robustness of the DG method in presence of hanging node and polynomial varying order. This preliminary numerical test gives us hope in our ability to use this method in an hp refinement context.

Experiment 2. The hanging nodes are known to cause a pollution of the numerical solution in others IPDG methods. Indeed at the level of a non conformity the approximation space has to be rich enough to assure the continuity of the solution. It becomes especially true when the amount of hanging nodes increases. The following numerical example is an illustration of this effect. We compare the solutions obtained with the meshes 4 and 5. They have two times more hanging nodes than the mesh 3. The corresponding triangulation can be seen on figure 15(c). The only difference between them is the polynomial order. The real part of each solution can be seen on figure 15(a),(b). A visual default at the level of the non conformity clearly appears on figure 15(a). Indeed the approximation space is too poor (here P 1 /P 4 ) so the continuity can't be well established on this part of the mesh. An enrichment of the polynomial space (P 2 /P 4 ) 15(a) is needed to diminish the pollution caused by the hanging nodes. In this example it is actually very efficient as the increase of one order leads to the disappearance of the hanging node pollution (at least visually).

As a conclusion, the two numerical experiments above tend to show the robustness of the DG method in a non conforming context.

Conclusion

In this paper we have presented the first a priori error analysis for the IPDG approximation of the Helmholtz integral equation problem. The derived bound was showed to be optimal for a certain range of the penalty parameter's values. Work still has to be made in order to derive optimal bound for the lowest values of the penalty functions' coefficients. This is left for further investigation. The theoretical work and the numerical analysis on a non smooth geometry and in a non conforming situation tended to show the good behavior of the method. This work also confirm that a symmetric formulation gives the best results in term of numerical error and continuity reestablishment. This first analysis paves the way for a use of the IPDG in integral equation in more complex set up. Particularly, the study of the IPDG's performances in an hp refinement procedure is under investigation. 

Remark 3 .

 3 The right-hand side f is naturally connected to the data of the initial Helmholtz problem (3) such that f = [[u v ]]. So the apparent limiting condition f ∈ L 2 (Γ) is finally very general and englobes almost all the physical configurations.
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 910 Figure 9: Number of GMRES iterations for some penalty values for the natural formulation (θ = 0).σ o 1 100
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 1112 Figure 11: Comparison of the number of GMRES iterations required in function of the precision of the error jump ||[[u θ h ]]|| L 2 (γ h ) for penalty parameter's values from figure 8, 9 and 10.
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 13 Figure 13: Non conforming meshes description.
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 14 Figure 14: Visual comparison of the solutions obtained via conforming meshes (solutions (a) and (b) got with meshes (d) and (f)) and non conforming mesh (solution (c) obtained with mesh (f). Accurate visualization obtained with the work of [MBM + 18].

  , 1, 2, 5, 10, 100 . The number of GMRES iterations versus the penalty value and the error can be observed in the figures 8, 9 and 10. We observe the same behavior as what was already observed for other IPDG methods: a degradation of the condition number as the penalty function increases. In a conclusion, a trade-off has to be made between the continuity reestablishment of the numerical DG solution (a high penalty function values) and an acceptable .84 0.42 0.21 8.45 10 -2 4.23 10 -2 4.22 10 -3
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We finally expose an integration per part formula, which will later be essential to estimate the residual function. It is also a main tool of the scheme construction as it was depicted in the first section.Lemma 10 ("Broken" Stokes identity version). Letf ∈ H 1 (Γ) 3 and v ∈ {L 2 (Γ)| ∀K ∈ T h v| K ∈ H 1 (K)}.It holds:Γ