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Abstract. Motivated by structures that appear in deep neural networks, we investigate nonlinear
composite models alternating proximity and affine operators defined on different spaces. We first
show that a wide range of activation operators used in neural networks are actually proximity oper-
ators. We then establish conditions for the averagedness of the proposed composite constructs and
investigate their asymptotic properties. It is shown that the limit of the resulting process solves a
variational inequality which, in general, does not derive from a minimization problem. The analysis
relies on tools from monotone operator theory and sheds some light on a class of neural networks
structures with so far elusive asymptotic properties.
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proximity operator, variational inequality.

1 Introduction

A powerful tool from fixed point theory to analyze and solve optimization and inclusion problems
in a real Hilbert space H is the class of averaged nonexpansive operators, which was introduced
in [3]. Let T : H → H be a nonexpansive operator, i.e., T is 1-Lipschitzian. Then α ∈ ]0, 1] is an
averagedness constant of T if Id+α−1(T − Id) remains nonexpansive, in which case we say that T is
α-averaged; if α = 1/2, T is firmly nonexpansive. The importance of firmly nonexpansive operators
in convex optimization and variational methods has long been recognized [19, 27, 36, 41, 46]. The
broader class of averaged operators was shown in [7] to play a prominent role in the analysis of
convex feasibility problems. In this context, the underlying problem is to find a common fixed point
of averaged operators. In [20], it was shown that many convex minimization and monotone inclusion
problems reduce to the more general problem of finding a fixed point of compositions of averaged
operators, which provided a unified analysis of various proximal splitting algorithms. Along these
lines, several fixed point methods based on various combinations of averaged operators have since
been devised, see [1, 2, 5, 9, 11, 13, 14, 17, 18, 24, 25, 38, 43, 47] for recent work. Motivated
by deep neural network structures with thus far elusive asymptotic properties, we investigate in the
present paper a novel averaged operator model involving a mix of nonlinear and linear operators.

Artificial neural networks have attracted considerable attention as a tool to better understand,
model, and imitate the human brain [31, 37, 42]. In a Hilbertian setting [6], an (n + 1)-layer
feed-forward neural network architecture acting on real Hilbert spaces (Hi)0!i!n is defined as the
composition of operators Rn◦(Wn ·+bn)◦· · ·◦R1◦(W1 ·+b1) where, for every i ∈ {1, . . . , n}, Ri : Hi →
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Hi is a nonlinear operator known as an activation operator, Wi : Hi−1 → Hi is a linear operator,
known as a weight operator, and bi ∈ Hi is a so-called bias parameter. Deep neural networks feature
a (possibly large) number n of layers. In recent years, they have been found to be quite successful
in a wide array of classification, recognition, and prediction tasks; see [34] and its bibliography.
Despite their success, the operational structure and properties of deep neural networks are not yet
well understood from a mathematical viewpoint. In the present paper, we propose to analyze them
within the following iterative model. We emphasize that our purpose is not to study the training
of the network, which consists of optimally setting the weight operators and bias parameters from
data samples, but to analyze mathematically such a structure once it is trained. Our model is also of
general interest in constructive fixed point theory for monotone inclusion problems.

Model 1.1 Let m " 1 be an integer, let H and (Hi)0!i!m be nonzero real Hilbert spaces, such that
Hm = H0 = H. For every i ∈ {1, . . . ,m} and every n ∈ N, let Wi,n : Hi−1 → Hi be a bounded linear
operator, let bi,n ∈ Hi, and let Ri,n : Hi → Hi. Let x0 ∈ H, let (λn)n∈N be a sequence in ]0,+∞[, set

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) Ti,n : Hi−1 → Hi : x (→ Ri,n(Wi,nx+ bi,n), (1.1)

and iterate

for n = 0, 1, . . .

x1,n = T1,nxn
x2,n = T2,nx1,n

...
xm,n = Tm,nxm−1,n

xn+1 = xn + λn(xm,n − xn).

(1.2)

In sharp contrast with existing algorithmic frameworks involving averaged operators (see cited
works above), the operators involved in Model 1.1 are not necessarily all defined on the same Hilbert
space and, in addition, they need not all be averaged. Let us also note that the relaxation parameters
(λn)n∈N in (1.2) allow us to model skip connections [44], in the spirit of residual networks [33]. If
λn ≡ 1, we obtain the standard feed-forward architecture [31].

Our contributions are articulated around the following findings.

• We show that a wide range of activation operators used in neural networks are actually prox-
imity operators, which paves the way to the analysis of such networks via fixed point theory for
monotone inclusion problems.

• We provide a new analysis of compositions of proximity and affine operators, establishing mild
conditions that guarantee that the resulting operator is averaged.

• We show that, under suitable assumptions, the asymptotic output of the network converges to
a point defined via a variational inequality. Furthermore, in general, this variational inequality
does not derive from a minimization problem.

The remainder of the paper is organized as follows. In Section 2, we bring to light strong con-
nections between the activation functions employed in neural networks and the theory of proximity
operators in convex analysis. In Section 3, we derive new results on the averagedness properties
of compositions of proximity and affine operators acting on different spaces. In Section 4, we in-
vestigate the asymptotic behavior of a class of deep neural networks structures and show that their
fixed points solve a variational inequality. The main assumption on this subclass of Model 1.1 is that
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the structure of the network is periodic in the sense that a group of layers is repeated. Finally, in
Section 5, the same properties are established for a broader class of networks.

Notation. We follow standard notation from convex analysis and operator theory [8, 40]. Thus,
the expressions xn ⇀ x and xn → x denote, respectively, weak and strong convergence of a
sequence (xn)n∈N to x in H, and Γ0(H) is the class of lower semicontinuous convex functions ϕ : H →
]−∞,+∞] such that domϕ =

{
x ∈ H

∣∣ ϕ(x) < +∞
}
*= ∅. Now let ϕ ∈ Γ0(H). The conjugate of

ϕ is denoted by ϕ∗, its subdifferential by ∂ϕ, and its proximity operator is proxϕ : H → H : x (→
argminy∈H(ϕ(y) + ‖x − y‖2/2). The symbols ranT , domT , FixT , and zerT denote respectively the
range, the domain, the fixed point set, and the set of zeros of an operator T . The space of bounded
linear operators from a Banach space X to a Banach space Y is denoted by B (X ,Y). Finally, &1+
denotes the set of summable sequences in [0,+∞[.

2 Proximal activation in neural networks

The following facts will be needed.

Lemma 2.1 Let ϕ ∈ Γ0(H). Then the following hold:

(i) [8, Proposition 12.29] Fix proxϕ = Argminϕ.

(ii) [8, Corollary 24.5] Let g ∈ Γ0(H) be such that ϕ = g − ‖ · ‖2/2. Then proxϕ = ∇g∗.

2.1 Activation functions

An activation function is a function ' : R → R which models the firing activity of neurons. The
simplest instance, that goes back to the perceptron machine [42], is that of a binary firing model:
the neuron is either firing or at rest. For instance, if the firing level is 1 and the rest state is 0, we
obtain the binary step function

' : ξ (→

{
1, if ξ > 0;

0, if ξ ! 0,
(2.1)

which was initially proposed in [37]. As this discontinuous activation model may lead to unstable
neural networks, various continuous approximations have been proposed. Our key observation is
that a vast array of activation functions used in neural networks belong to the following class.

Definition 2.2 The set of functions from R to R which are increasing, 1-Lipschitzian, and take value
0 at 0 is denoted by A(R).

Remarkably, we can precisely characterize this class of activation functions as that of proximity
operators.

Proposition 2.3 Let ' : R → R. Then ' ∈ A(R) if and only if there exists a function φ ∈ Γ0(R), which
has 0 as a minimizer, such that ' = proxφ.

Proof. The fact that the class of increasing, 1-Lipschitzian functions from R to R coincides with that of
proximity operators of functions in Γ0(R) is shown in [22, Proposition 2.4]. In view of Lemma 2.1(i)
and Definition 2.2, the proof is complete.

To illustrate the above results, let us provide examples of common activation functions ' ∈ A(R),
and identify the potential φ they derive from in Proposition 2.3 (see Fig. 1).
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Example 2.4 The most basic activation function is ' = Id = prox0. It is in particular useful in
dictionary learning approaches, which correspond to the linear special case of Model 1.1 [45].

Example 2.5 The saturated linear activation function [31]

' : R → R : ξ (→






1, if ξ > 1;

ξ, if − 1 ! ξ ! 1;

−1, if ξ < −1

(2.2)

can be written as ' = proxφ, where φ is the indicator function of [−1, 1].

Example 2.6 The rectified linear unit (ReLU) activation function [39]

' : R → R : ξ (→

{
ξ, if ξ > 0;

0, if ξ ! 0
(2.3)

can be written as ' = proxφ, where φ is the indicator function of [0,+∞[.

Example 2.7 Let α ∈ ]0, 1]. The parametric rectified linear unit activation function [32] is

' : R → R : ξ (→

{
ξ, if ξ > 0;

αξ, if ξ ! 0.
(2.4)

We have ' = proxφ, where

φ : R → ]−∞,+∞] : ξ (→

{
0, if ξ > 0;

(1/α − 1)ξ2/2, if ξ ! 0.
(2.5)

Proof. Let ξ ∈ R. Then φ′(ξ) = 0 if ξ > 0, and φ′(ξ) = (1/α − 1)ξ if ξ ! 0. In turn (Id+φ′)ξ = ξ if
ξ > 0, and (Id+φ′)(ξ) = ξ/α if ξ ! 0. Hence, ' = (Id+φ′)−1 is given by (2.4).

Example 2.8 The bent identity activation function ' : R → R : ξ (→ (ξ +
√
ξ2 + 1 − 1)/2 satisfies

' = proxφ, where

φ : R → ]−∞,+∞] : ξ (→

{
ξ/2 −

(
ln(ξ + 1/2)

)
/4, if ξ > −1/2;

+∞, if ξ ! −1/2.
(2.6)

Proof. This follows from [23, Lemma 2.6 and Example 2.18].

Example 2.9 The inverse square root unit activation function [16] is ' : R → R : ξ (→ ξ/
√

1 + ξ2.
We have ' = proxφ, where

φ : R → ]−∞,+∞] : ξ (→

{
−ξ2/2−

√
1− ξ2, if |ξ| ! 1;

+∞, if |ξ| > 1.
(2.7)

Proof. Let ξ ∈ ]−1, 1[ = dom∇φ = dom ∂φ = ran proxφ. Then ξ + φ′(ξ) = ξ/
√

1− ξ2 and therefore

proxφ = (Id+φ′)−1 : µ (→ µ/
√

1 + µ2.
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Example 2.10 The inverse square root linear unit activation function [16]

' : R → R : ξ (→






ξ, if ξ " 0;
ξ

√
1 + ξ2

, if ξ < 0
(2.8)

can be written as ' = proxφ, where

φ : R → ]−∞,+∞] : ξ (→






0, if ξ " 0;

1− ξ2/2−
√

1− ξ2, if − 1 ! ξ < 0;

+∞, if ξ < −1.

(2.9)

Proof. Let ξ ∈ ]−1,+∞[ = dom∇φ = ran proxφ. Then ξ + φ′(ξ) = ξ if ξ " 0, and ξ + φ′(ξ) =

ξ/
√

1− ξ2 if ξ < 0. Hence, ' = (Id+φ′)−1 is given by (2.8).

Example 2.11 The arctangent activation function (2/π)arctan is the proximity operator of

φ : R → ]−∞,+∞] : ξ (→





−
2

π
ln
(
cos
(πξ

2

))
−

1

2
ξ2, if |ξ| < 1;

+∞, if |ξ| " 1.
(2.10)

Proof. Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ. Then ξ + φ′(ξ) = tan(πξ/2) and therefore ' =
(Id+φ′)−1 = (2/π)arctan.

Example 2.12 The hyperbolic tangent activation function tanh [35] is the proximity operator of

φ : R → ]−∞,+∞] : ξ (→






(1 + ξ) ln(1 + ξ) + (1− ξ) ln(1− ξ)− ξ2

2
if |ξ| < 1;

ln(2)− 1/2 if |ξ| = 1;

+∞, if |ξ| > 1.

(2.11)

Proof. Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ. Then ξ + φ′(ξ) = arctanh(ξ) and therefore ' =
(Id+φ′)−1 = tanh.

Example 2.13 The unimodal sigmoid activation function [30]

' : R → R : ξ (→
1

1 + e−ξ
−

1

2
(2.12)

is the proximity operator of

φ : R → ]−∞,+∞]

ξ (→






(ξ + 1/2) ln(ξ + 1/2) + (1/2 − ξ) ln(1/2 − ξ)−
1

2
(ξ2 + 1/4) if |ξ| < 1/2;

−1/4, if |ξ| = 1/2;

+∞, if |ξ| > 1/2.

(2.13)

Proof. Let ξ ∈ ]−1/2, 1/2[ = dom∇φ = ran proxφ. Then ξ + φ′(ξ) = ln((1 + 2ξ)/(1 − 2ξ)) and
therefore proxφ = (Id+φ′)−1 : µ (→ (1/2)(eµ − 1)/(eµ + 1) = 1/(1 + e−µ)− 1/2.
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Remark 2.14 Examples 2.12 and 2.13 are closely related in the sense that the function of (2.12) can
be written as ' = (1/2)tanh(·/2).

Example 2.15 The Elliot activation function is [28] ' : R → R : ξ (→ ξ/(1 + |ξ|) can be written as
' = proxφ, where

φ : R → ]−∞,+∞]

ξ (→





−|ξ|− ln(1− |ξ|)−

ξ2

2
, if |ξ| < 1;

+∞, if |ξ| " 1.
(2.14)

Proof. Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ. Then ξ + φ′(ξ) = ξ/(1 − |ξ|) and therefore proxφ =
(Id+φ′)−1 : µ (→ µ/(1 + |µ|).

Example 2.16 The inverse hyperbolic sine activation function arcsinh is the proximity operator of
φ = cosh − | · |2/2.

Proof. Let ξ ∈ R. Then ξ + φ′(ξ) = sinh ξ and therefore proxφ = (Id+φ′)−1 = arcsinh.

Example 2.17 The logarithmic activation function [10]

' : R → R : ξ (→ sign(ξ) ln
(
1 + |ξ|

)
(2.15)

is the proximity operator of

φ : R → ]−∞,+∞] : ξ (→ e|ξ| − |ξ|− 1−
ξ2

2
. (2.16)

Proof. We have φ′ : ξ (→ sign(ξ)(e|ξ| − 1) − ξ. Hence (Id+φ′) : ξ (→ sign(ξ)(e|ξ| − 1) and, in turn,
proxφ = (Id+φ′)−1 : ξ (→ sign(ξ) ln(1 + |ξ|).

The class of activation functions A(R) has interesting stability properties.

Proposition 2.18 The following hold:

(i) Let α ∈ ]0,+∞[ and β ∈ ]0,+∞[ be such that αβ ! 1, and let ' ∈ A(R). Then α'(β·) ∈ A(R).

(ii) Let ('i)i∈I be a finite family in A(R) and let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi = 1.
Then

∑
i∈I ωi'i ∈ A(R).

(iii) Let '1 ∈ A(R) and '2 ∈ A(R). Then '1 ◦ '2 ∈ A(R).

(iv) Let ' ∈ A(R). Then Id−' ∈ A(R).

(v) Let '1 ∈ A(R) and '2 ∈ A(R). Then ('1 − '2 + Id)/2 ∈ A(R).

(vi) Let '1 ∈ A(R) and '2 ∈ A(R). Then '1 ◦ (2'2 − Id) + Id−'2 ∈ A(R).

Proof. (i)–(iii): This follows at once from Definition 2.2.

(iv)–(v): The fact that the resulting operators are proximity operators is established in [21, Sec-
tion 3.3]. The fact that they are proximity operators of a function φ ∈ Γ0(H) that is minimal at 0
is equivalent to the fact that proxφ0 = 0 Lemma 2.1(i). This identity is easily seen to hold in each
instance.

(vi): Set ' = '1 ◦ (2'2 − Id) + Id−'2. Then ' is firmly nonexpansive [8, Proposition 4.31(ii)]. It
is therefore increasing and nonexpansive. Finally, '(0) = 0.
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Figure 1: The function φ (top) and the corresponding proximal activation function (bottom) ' in
Proposition 2.3. Example 2.10 is in red, Example 2.11 is in blue, Example 2.17 is in green.

Remark 2.19 Using Proposition 2.18, the above examples can be combined to obtain additional
activation functions. For instance, it follows from Example 2.5 and Proposition 2.18(iv) that the soft
thresholder

' : R → R : ξ (→






ξ − 1, if ξ > 1;

0, if − 1 ! ξ ! 1;

ξ + 1, if ξ < −1

(2.17)

belongs to A(R). It was proposed as an activation function in [48].

2.2 Activation operators

In Section 2.1, we have described activation functions which model neuronal activity in terms of a
scalar function. In this section, we extend this notion to more general activation operators.

Definition 2.20 Let H be a real Hilbert space and let R : H → H. Then R belongs to the class A(H)
if there exists a function ϕ ∈ Γ0(H) which is minimal at the zero vector and such that R = proxϕ.

Property (ii) below shows that activation operators in A(H) have strong stability properties.
On the other hand, the boundedness property (iv) is important in neural network-based functional
approximation [26, 29].

Proposition 2.21 Let H be a real Hilbert space and let R ∈ A(H). Then the following hold:
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(i) R0 = 0.

(ii) Let x and y be in H. Then ‖Rx−Ry‖2 ! ‖x− y‖2 − ‖x− y −Rx+Ry‖2.

(iii) Let x ∈ H. Then ‖Rx‖ ! ‖x‖.

(iv) Let ϕ ∈ Γ0(H) be such that R = proxϕ. Then ranR is bounded if and only if domϕ is bounded.

Proof. (i): This follows from Lemma 2.1(i).

(ii): This follows from the firm nonexpansiveness of proximity operators [8, Proposition 12.28].

(iii): Set y = 0 in (ii) and use (i).

(iv): We have ranR = ran (Id+∂ϕ)−1 = dom (Id+∂ϕ) = dom ∂ϕ. On the other hand, dom ∂ϕ is
a dense subset of domϕ [8, Corollary 16.39].

Proposition 2.22 Let H and G be real Hilbert spaces. Then the following hold:

(i) Let L ∈ B (H,G) be such that ‖L‖ ! 1 and let R ∈ A(H). Then L∗ ◦R ◦ L ∈ A(H).

(ii) Let (Ri)i∈I be a finite family in A(H) and let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi =
1. Then

∑
i∈I ωiRi ∈ A(H).

(iii) Let R ∈ A(H). Then Id−R ∈ A(H).

(iv) Let R1 ∈ A(H) and R2 ∈ A(H). Then (R1 −R2 + Id)/2 ∈ A(H).

Proof. The fact that the resulting operators are proximity operators is established in [21, Section 3.3].
In addition, 0 is clearly a fixed point of the resulting operators. In view of Lemma 2.1(i), the proof is
complete.

Example 2.23 The softmax activation operator [15] is

R : RN → R
N : (ξk)1!k!N (→



exp(ξk)

/
N∑

j=1

exp(ξj)





1!k!N

− u, (2.18)

where u = (1, . . . , 1)/N ∈ RN . We have R = proxϕ, where ϕ = ψ(·+ u) + 〈· | u〉 and

ψ : RN → ]−∞,+∞]

(ξk)1!k!N (→






N∑

k=1

(
ξk ln ξk −

ξ2k
2

)
, if (ξk)1!i!N ∈ [0, 1]N and

N∑

k=1

ξk = 1;

+∞, otherwise,

(2.19)

with the convention 0 ln 0 = 0.

Proof. Set

g : RN → ]−∞,+∞]

(ξk)1!k!N (→






N∑

k=1

ξk ln ξk, if (ξk)1!k!N ∈ [0, 1]N and
N∑

k=1

ξk = 1;

+∞, otherwise.

(2.20)
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Then ψ = g − ‖ · ‖2/2 and [40, Section 16] asserts that

g∗ : RN → R : (ξk)1!k!N (→ ln

(
N∑

k=1

exp(ξk)

)

. (2.21)

Since ∇g∗ = R+ u, according to Lemma 2.1(ii), R = proxψ − u. We complete the proof by invoking
the shift properties of proximity operators [8, Proposition 24.8(iii)].

Separable activation operators supply another important instance of activation operators.

Proposition 2.24 Let H be a separable real Hilbert space, let (ek)k∈K⊂N be an orthonormal basis of H,
and let (φk)k∈K be a family of functions in Γ0(R) such that (∀k ∈ K) φk " φk(0) = 0. Define

R : H → H : x (→
∑

k∈K

(
proxφk〈x | ek〉

)
ek. (2.22)

Then R ∈ A(H).

Proof. The fact that R is the proximity operator of the Γ0(H) function ϕ : x (→
∑

k∈K φk(〈x | ek〉) is
established in [23, Example 2.19]. In addition, it is clear that ϕ is minimal at 0.

3 Compositions of firmly nonexpansive and affine operators

Our analysis will revolve around the following property for a family of linear operators (Wi)1!i!m+1.

Condition 3.1 Let m " 0 be an integer, let (Hi)0!i!m be real Hilbert spaces, set Hm+1 = H0, and let
α ∈ [1/2, 1]. For every i ∈ {1, . . . ,m+ 1}, let Wi ∈ B (Hi−1,Hi) and set

Li : H0 × · · ·×Hi−1 → Hi : (xk)0!k!i−1 (→
i−1∑

k=0

(
Wi ◦ · · · ◦Wk+1

)
xk. (3.1)

It is required that, for every x = (xi)0!i!m ∈ H0 × · · · ×Hm such that

(∀i ∈ {0, . . . ,m}) ‖xi‖ !

{
1, if i = 0;

‖Li(x0, . . . , xi−1)‖, if i " 1,
(3.2)

there holds

‖Lm+1x− 2m+1(1− α)x0‖+ ‖Lm+1x‖ ! 2m+1α‖x0‖. (3.3)

Remark 3.2 In Condition 3.1, we take α " 1/2 because, if x = (xi)0!i!m ∈ (H0"{0})×H1×· · ·×Hm

satisfies (3.3), then 2m+1(1− α)‖x0‖ ! ‖Lm+1x− 2m+1(1− α)x0‖+ ‖Lm+1x‖ ! 2m+1α‖x0‖.

We establish some preliminary results before providing properties that imply Condition 3.1.

Lemma 3.3 Let m " 1 be an integer, let (Hi)0!i!m be real Hilbert spaces, and set θ0 = 1. For every
i ∈ {1, . . . ,m}, let Wi ∈ B (Hi−1,Hi) and set

θi = ‖Wi ◦ · · · ◦W1‖

+
i−1∑

k=1

∑

1!j1<...<jk!i−1

‖Wi ◦ · · · ◦Wjk+1‖ ‖Wjk ◦ · · · ◦Wjk−1+1‖ · · · ‖Wj1 ◦ · · · ◦W1‖. (3.4)

Let (xi)0!i!m ∈ H0 × · · ·×Hm be such that (3.2) is satisfied. Then the following hold:
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(i) (∀i ∈ {1, . . . ,m}) θi =
∑i−1

k=0 θk‖Wi ◦ · · · ◦Wk+1‖.

(ii) (∀i ∈ {1, . . . ,m}) ‖xi‖ ! θi‖x0‖.

Proof. (i): This follows recursively from (3.4).

(ii): For every i ∈ {1, . . . ,m}, let Li be as in (3.1). We proceed by induction on m. We first observe
that the inequality is satisfied if m = 1 since ‖x1‖ ! ‖L1x0‖ = ‖W1x0‖ ! ‖W1‖ ‖x0‖ = θ1‖x0‖. Now
assume that m " 2 and that the inequalities hold for (x1, . . . , xm−1). Then, since (i) yields

θm = ‖Wm ◦ · · · ◦W1‖+
m−1∑

k=1

θk‖Wm ◦ · · · ◦Wk+1‖, (3.5)

we obtain

‖xm‖ ! ‖Lm(x0, . . . , xm−1)‖ =

∥∥∥∥
m−1∑

k=0

(Wm ◦ · · · ◦Wk+1)xk

∥∥∥∥

!

m−1∑

k=0

‖Wm ◦ · · · ◦Wk+1‖ ‖xk‖

!

(
‖Wm ◦ · · · ◦W1‖+

m−1∑

k=1

θk‖Wm ◦ · · · ◦Wk+1‖

)
‖x0‖

= θm‖x0‖, (3.6)

which concludes the proof.

Lemma 3.4 Let H be a real Hilbert space, and let x and y be in H. Then

‖x‖ ‖y‖ − 〈x | y〉 ! (‖x‖ + ‖y‖ − ‖x+ y‖)(‖x‖ + ‖y‖). (3.7)

Proof. Since ‖x+ y‖2 − 2‖x+ y‖(‖x‖ + ‖y‖) + (‖x‖+ ‖y‖)2 " 0, we have

‖x‖2 + ‖y‖2 + 〈x | y〉+ ‖x‖ ‖y‖

= ‖x‖2 + ‖y‖2 +
‖x+ y‖2 − ‖x‖2 − ‖y‖2

2
+

(‖x‖+ ‖y‖)2 − ‖x‖2 − ‖y‖2

2

=
‖x+ y‖2 + (‖x‖+ ‖y‖)2

2
" ‖x+ y‖(‖x‖+ ‖y‖), (3.8)

as claimed.

Notation 3.5 Let m " 0 be an integer, and let (Hi)0!i!m be real Hilbert spaces. Let X be the
standard vector space H0× · · ·×Hm equipped with the norm ‖ ·‖X : x = (xi)0!i!m (→ max0!i!m ‖xi‖
and let Y be the standard vector space H0 × H0 equipped with the norm ‖ · ‖Y : y = (y1, y2) (→
‖y1‖+ ‖y2‖. Henceforth, the norm of M ∈ B (X ,Y) is denoted by ‖M‖X ,Y .

Proposition 3.6 Let m " 0 be an integer, let (Hi)0!i!m be nonzero real Hilbert spaces, set Hm+1 = H0,
and use Notation 3.5. For every i ∈ {1, . . . ,m+ 1}, let Wi ∈ B (Hi−1,Hi). Further, let α ∈ [1/2, 1], let
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θ0 = 1, let (θi)1!i!m+1 be as in (3.4), and set






W = Wm+1 ◦ · · · ◦W1

µ = inf
x∈H0, ‖x‖=1

〈Wx | x〉

M : X → H0 : x (→
m∑

i=0

θi(Wm+1 ◦ · · · ◦Wi+1)xi

M : X → Y : x (→
1

2m+1α

(
Mx− 2m+1(1− α)x0,Mx

)
.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

Suppose that one of the following holds:

(i) There exists i ∈ {1, . . . ,m+ 1} such that Wi = 0.

(ii) ‖M‖X ,Y ! 1.

(iii) ‖W − 2m+1(1− α) Id ‖ − ‖W‖+ 2θm+1 ! 2m+1α.

(iv) α *= 1, for every i ∈ {1, . . . ,m+ 1} Wi *= 0, and there exists η ∈ [0,α/((1 − α)θm+1)] such that
{
θm+1 ! 2m+1α

αθm+1 + (1− α)(‖ Id−ηW‖ − η‖W‖)(θm+1 − ‖W‖) ! 2m(2α − 1) + (1− α)µ.
(3.10)

Then (Wi)1!i!m+1 satisfies Condition 3.1.

Proof. We use the operators (Li)1!i!m+1 introduced in Condition 3.1. Per Notation 3.5 and (3.9d),

sup
y∈X

max
0!i!m

‖yi‖!1

‖My − 2m+1(1− α)y0‖+ ‖My‖

2m+1α
= sup

y∈X
‖y‖X!1

‖My‖Y = ‖M‖X ,Y (3.11)

and therefore

(∀y ∈ X ) max
0!i!m

‖yi‖ ! 1 ⇒ ‖My − 2m+1(1− α)y0‖+ ‖My‖ ! 2m+1α‖M‖X ,Y . (3.12)

Now let x ∈ X be such that

(∀i ∈ {0, . . . ,m}) ‖xi‖ !

{
1, if i = 0;

‖Li(x0, . . . , xi−1)‖, if i " 1.
(3.13)

(i): We assume that m " 1. For every k ∈ {i, . . . ,m}, it follows from (3.4) that θk = 0 and in turn
from Lemma 3.3(ii) and (3.13) that xk = 0. Therefore,

Lm+1x =
m∑

k=0

(Wm+1 ◦ · · · ◦Wk+1)xk =
i−1∑

k=0

(Wm+1 ◦ · · · ◦Wk+1)xk = 0, (3.14)

and (3.3) clearly holds.

(ii): In view of (i), we assume that, if m " 1, (∀i ∈ {1, . . . ,m})Wi *= 0. We then derive from (3.4)
that (∀i ∈ {1, . . . ,m}) θi "

∏i
k=1 ‖Wk‖ > 0. If x0 = 0, (3.3) trivially follows from Lemma 3.3(ii), we

therefore assume otherwise. Now set

(∀i ∈ {0, . . . ,m}) yi =
xi

θi‖x0‖
. (3.15)
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According to Lemma 3.3(ii), (∀i ∈ {0, . . . ,m}) ‖yi‖ ! 1. On the other hand, it follows from (3.9c),
(3.15), and (3.1) that My = Lm+1x/‖x0‖. Altogether, we deduce from (3.12) that (3.3) holds.

(iii)⇒(ii): Take y ∈ X such that ‖y‖X ! 1. Then it follows from (3.9c) and Lemma 3.3(i) that

‖My − 2m+1(1− α)y0‖+ ‖My‖

! ‖W − 2m+1(1 − α) Id ‖ ‖y0‖+ ‖W‖ ‖y0‖+ 2
m∑

i=1

θi‖Wm+1 ◦ · · · ◦Wi+1‖ ‖yi‖

! ‖W − 2m+1(1 − α) Id ‖ − ‖W‖+ 2θm+1

! 2m+1α. (3.16)

In turn, (3.11) yields ‖M‖X ,Y ! 1.

(iv)⇒(ii): Let y = (y0, . . . , ym) ∈ X be such that ‖y0‖ = · · · = ‖ym‖ = 1, and set

u =






m∑

i=1

θi(Wm+1 ◦ · · · ◦Wi+1)yi, if m *= 0;

0, if m = 0.

(3.17)

The assumptions and (3.9b) imply that





ηθm+1 ! α/(1 − α)

θm+1 ! 2m+1α

αθm+1 + (1− α)(‖ Id−ηW‖ − η‖W‖)(θm+1 − ‖W‖)

! 2m(2α − 1) + (1− α)〈Wy0 | y0〉.

(3.18)

On the other hand,

α‖Wy0 + u
∥∥− (1− α)〈y0 | u〉

= α‖Wy0 + u
∥∥− (1− α)〈ηWy0 + (Id−ηW )y0 | u〉

! α‖Wy0 + u
∥∥− η(1 − α)〈Wy0 | u〉+ (1− α)‖(Id−ηW )y0‖ ‖u‖. (3.19)

Since, by Lemma 3.3(i) and (3.18),

η
m∑

i=0

θi‖Wm+1 ◦ · · · ◦Wi+1‖ = ηθm+1 !
α

1− α
, (3.20)

we deduce from (3.17) that

η(1− α)(‖Wy0‖+ ‖u‖) ! α. (3.21)

However, by Lemma 3.4,

‖Wy0‖ ‖u‖ − 〈Wy0 | u〉 ! (‖Wy0‖+ ‖u‖ − ‖Wy0 + u‖)(‖Wy0‖+ ‖u‖). (3.22)

In view of (3.21), this yields

η(1− α)
(
‖Wy0‖ ‖u‖ − 〈Wy0 | u〉

)
! α(‖Wy0‖+ ‖u‖ − ‖Wy0 + u‖), (3.23)

that is,

α‖Wy0 + u‖ − η(1 − α)〈Wy0 | u〉 ! α(‖Wy0‖+ ‖u‖)− η(1 − α)‖Wy0‖ ‖u‖. (3.24)
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Therefore, since (3.21) implies that α− η(1− α)‖u‖ " 0, it results from (3.19) that

α‖Wy0 + u
∥∥− (1− α)〈y0 | u〉

! α(‖Wy0‖+ ‖u‖)− η(1− α)‖Wy0‖ ‖u‖ + (1− α)‖(Id−ηW )y0‖ ‖u‖

= α‖u‖ + (α− η(1− α)‖u‖)‖Wy0‖+ (1− α)‖(Id−ηW )y0‖ ‖u‖

! α‖u‖ + (α− η(1− α)‖u‖)‖W‖ + (1− α)‖(Id−ηW )y0‖ ‖u‖

= α‖W‖+
(
α− η(1− α)‖W‖

)
‖u‖+ (1− α)‖ Id−ηW‖ ‖u‖. (3.25)

However, since (3.20) implies that α−η(1−α)‖W‖ " 0, while (3.17) implies that ‖u‖ ! θm+1−‖W‖,
we derive from (3.25) that

α‖Wy0 + u
∥∥− (1− α)〈y0 | u〉

! α‖W‖+
(
α− η(1− α)‖W‖

)(
θm+1 − ‖W‖

)
+ (1− α)‖ Id−ηW‖ (θm+1 − ‖W‖). (3.26)

We also have

‖Wy0 + u‖ ! ‖W‖+ ‖u‖ ! θm+1. (3.27)

Hence, using (3.26), (3.27), (3.9c), (3.9a), and (3.9d) we obtain

(3.18) ⇒

{
‖Wy0 + u‖ ! 2m+1α

α‖Wy0 + u
∥∥− (1− α)〈y0 | Wy0 + u〉 ! 2m(2α− 1)

⇔

{
‖My‖ ! 2m+1α

α‖My
∥∥− (1− α)〈y0 | My〉 ! 2m

(
α2 − (1− α)2

)

⇔

{
‖My‖ ! 2m+1α∥∥My − 2m+1(1− α)y0‖2 !

(
2m+1α− ‖My

∥∥)2

⇔ ‖My − 2m+1(1− α)y0‖+ ‖My‖ ! 2m+1α

⇔ ‖My‖Y ! 1. (3.28)

Now set C =
{
y ∈ X

∣∣ ‖y0‖ = · · · = ‖ym‖ = 1
}

. Then, in view of (3.11), (3.28), and [8, Proposi-
tion 11.1(ii)], we conclude that ‖M‖X ,Y = supy∈convC ‖My‖Y = supy∈C ‖My‖Y ! 1.

The next result establishes a link between deep neural network structures and the operators
introduced in (3.1).

Lemma 3.7 Let m " 1 be an integer and let (Hi)0!i!m+1 be nonzero real Hilbert spaces. For every
i ∈ {1, . . . ,m + 1}, let Wi ∈ B (Hi−1,Hi) and let Li be as in (3.1). Further, for every i ∈ {1, . . . ,m},
let Pi : Hi → Hi be firmly nonexpansive. Set

Tm = Wm+1 ◦ Pm ◦Wm ◦ · · · ◦ P1 ◦W1, (3.29)

let x and y be distinct points in H0, and set v0 = (x − y)/‖x − y‖. Then there exists (v1, . . . , vm) ∈
H1 × · · ·×Hm such that






(∀i ∈ {1, . . . ,m}) ‖vi‖ ! ‖Li(v0, . . . , vi−1)‖

2m(Tmx− Tmy)

‖x− y‖
= Lm+1(v0, . . . , vm).

(3.30)
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Proof. For every i ∈ {1, . . . ,m}, since Pi is firmly nonexpansive, there exists a nonexpansive operator
Qi : Hi → Hi such that

Pi =
Id+Qi

2
. (3.31)

We proceed by induction on m. Suppose that m = 1 and set

v1 =
Q1(W1x)−Q1(W1y)

‖x− y‖
, (3.32)

which implies that ‖v1‖ ! ‖W1(x− y)‖/‖x− y‖ = ‖L1v0‖. Then

2(T1x− T1y) = (W2 ◦W1)(x− y) + (W2 ◦Q1 ◦W1)x− (W2 ◦Q1 ◦W1)y

= ‖x− y‖
(
(W2 ◦W1)v0 +W2v1)

)
. (3.33)

Thus, (3.30) holds for m = 1. Next, we assume that m > 1 and that there exists (v1, . . . , vm−1) ∈
H1 × · · ·×Hm−1 such that






(∀i ∈ {1, . . . ,m− 1}) ‖vi‖ ! ‖Li(v0, . . . , vi−1)‖

2m−1
(
Tm−1x− Tm−1y

)

‖x− y‖
= Lm(v0, . . . , vm−1),

(3.34)

and we set

vm =
2m−1

(
(Qm ◦ Tm−1)x− (Qm ◦ Tm−1)y

)

‖x− y‖
. (3.35)

Then (3.29), (3.31), and (3.34) yield

Tmx− Tmy

=
(Wm+1 ◦ Tm−1)x− (Wm+1 ◦ Tm−1)y

2
+

(Wm+1 ◦Qm ◦ Tm−1)x− (Wm+1 ◦Qm ◦ Tm−1)y

2

=
‖x− y‖

2m
(
(Wm+1 ◦ Lm)(v0, . . . , vm−1) +Wm+1vm

)

=
‖x− y‖

2m
Lm+1(v0, . . . , vm). (3.36)

In addition, it follows from (3.34) and (3.35) that

‖vm‖ !
2m−1‖Tm−1x− Tm−1y‖

‖x− y‖
= ‖Lm(v0, . . . , vm−1)‖, (3.37)

which completes the proof.

We now establish connections between Condition 3.1 for linear operators and the concept of
averagedness for composite nonlinear operators.

Theorem 3.8 Let m " 1 be an integer, let (Hi)0!i!m−1 be nonzero real Hilbert spaces, set Hm = H0,
and let α ∈ [1/2, 1]. For every i ∈ {1, . . . ,m}, let Wi ∈ B (Hi−1,Hi) and let Pi : Hi → Hi be firmly
nonexpansive. Suppose that (Wi)1!i!m satisfies Condition 3.1. Then Pm◦Wm◦· · ·◦P1◦W1 is α-averaged.
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Proof. Set T = Pm ◦Wm ◦ · · · ◦ P1 ◦W1. We must show that

Q =

(
1−

1

α

)
Id+

1

α
T (3.38)

is nonexpansive. By assumption, for every i ∈ {1, . . . ,m}, there exists a nonexpansive operator
Qi : Hi → Hi such that (3.31) holds. Let (Li)1!i!m be as in (3.1) and let x and y be distinct points
in H0. According to Lemma 3.7, there exists v = (v0, . . . , vm−1) ∈ H0 × · · ·×Hm−1 such that






v0 =
x− y

‖x− y‖
(∀i ∈ {1, . . . ,m− 1}) ‖vi‖ ! ‖Li(v0, . . . , vi−1)‖

2m−1
(
(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y

)

‖x− y‖
= Lmv.

(3.39)

Condition 3.1 imposes that

‖Lmv − 2m(1− α)v0‖+ ‖Lmv‖ ! 2mα‖v0‖ = 2mα, (3.40)

which is equivalent to

‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y − 2(1 − α)(x− y)‖

+ ‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y‖ ! 2α‖x − y‖. (3.41)

In turn, we derive from (3.38) and (3.31) that

‖Qx−Qy‖

!
1

α

∥∥∥
(Id+Qm

2
◦Wm ◦ · · · ◦ P1 ◦W1

)
x−

( Id+Qm

2
◦Wm ◦ · · · ◦ P1 ◦W1

)
y − (1 − α)(x − y)

∥∥∥

!
1

2α

(
‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y − 2(1− α)(x − y)‖

+ ‖(Qm ◦Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Qm ◦Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y‖
)

!
1

2α

(
‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y − 2(1− α)(x − y)‖

+ ‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦W1)x− (Wm ◦ Pm−1 · · · ◦ P1 ◦W1)y‖
)

! ‖x− y‖, (3.42)

which establishes the nonexpansiveness of Q.

Example 3.9 Consider Theorem 3.8 with m = 2. In view of Proposition 3.6(iii), P2 ◦W2 ◦P1 ◦W1 is
α-averaged if ‖W2 ◦W1 − 4(1− α) Id ‖+ ‖W2 ◦W1‖+ 2‖W2‖ ‖W1‖ ! 4α. In particular, if α = 1, this
condition is obviously less restrictive than requiring that W1 and W2 be nonexpansive.

4 A variational inequality model

In this section, we first investigate an autonomous version of Model 1.1.
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Model 4.1 This is the special case of Model 1.1 in which, for every i ∈ {1, . . . ,m}, there exist
Ri ∈ A(Hi), say Ri = proxϕi

for some ϕi ∈ Γ0(Hi) with ϕi(0) = inf ϕi(Hi), Wi ∈ B (Hi−1,Hi), and
bi ∈ Hi such that (∀n ∈ N) Ri,n = Ri, Wi,n = Wi, bi,n = bi. We set

(∀i ∈ {1, . . . ,m}) Ti : Hi−1 → Hi : x (→ Ri(Wix+ bi) (4.1)

and





F = Fix (Tm ◦ · · · ◦ T1)

H = H1 ⊕ · · ·⊕Hm−1 ⊕Hm
→
H = Hm ⊕H1 ⊕ · · ·⊕Hm−1

S : H →
→
H : (x1, . . . , xm−1, xm) (→ (xm, x1, . . . , xm−1)

W :
→
H → H : (xm, x1, . . . , xm−1) (→ (W1xm,W2x1, . . . ,Wmxm−1)

ϕ : H → ]−∞,+∞] : x (→
∑m

i=1 ϕi(xi)

ψ : H → ]−∞,+∞] : x (→
∑m

i=1

(
ϕi(xi)− 〈xi | bi〉

)

F =
{
x ∈ H

∣∣ x1 = T1xm, x2 = T2x1, . . . , xm = Tmxm−1

}
,

(4.2)

where x = (x1, . . . , xm) denotes a generic element in H.

4.1 Static analysis

We start with a property of the compositions of the operators (Ti)1!i!m of (4.1).

Proposition 4.2 Consider the setting of Model 4.1, let i and j be integers such that 1 ! j ! i ! m, and
let x ∈ Hj−1. Then

‖(Ti ◦ · · · ◦ Tj)x‖ ! ‖x‖
i∏

k=j

‖Wk‖+
i∑

q=j

(

‖bq‖
i∏

k=q+1

‖Wk‖

)

. (4.3)

Proof. In view of (4.1), the property is satisfied when i = j. We now assume that i > j. Since
Ri ∈ A(Hi), Proposition 2.21(i) yields

‖(Ti ◦ · · · ◦ Tj)x‖ = ‖Ri(Wi(Ti−1 ◦ · · · ◦ Tj)x+ bi)‖

= ‖Ri(Wi(Ti−1 ◦ · · · ◦ Tj)x+ bi)−Ri0‖

! ‖Wi(Ti−1 ◦ · · · ◦ Tj)x+ bi‖

! ‖Wi‖ ‖(Ti−1 ◦ · · · ◦ Tj)x‖+ ‖bi‖. (4.4)

We thus obtain (4.3) recursively.

Next, we establish a connection between Model 4.1 and a variational inequality.

Proposition 4.3 In the setting of Model 4.1, consider the variational inequality problem

find x1 ∈ H1, . . . , xm ∈ Hm such that






b1 ∈ x1 −W1xm + ∂ϕ1(x1)

b2 ∈ x2 −W2x1 + ∂ϕ2(x2)
...

bm ∈ xm −Wmxm−1 + ∂ϕm(xm).

(4.5)

Then the following hold:
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(i) The set of solutions to (4.5) is F .

(ii) F = zer (Id −W ◦ S + ∂ψ) = Fix (proxψ ◦W ◦ S).

(iii) F =
{
(T1xm, (T2 ◦ T1)xm, . . . , (Tm−1 ◦ · · · ◦ T1)xm, xm)

∣∣ xm ∈ F
}

.

(iv) Suppose that (Wi)1!i!m satisfies Condition 3.1 for some α ∈ [1/2, 1]. Then F is closed and convex.

(v) Suppose that (Wi)1!i!m satisfies Condition 3.1 for some α ∈ [1/2, 1] and that one of the following
holds:

(a) ran (Tm ◦ · · · ◦ T1) is bounded.

(b) There exists j ∈ {1, . . . ,m} such that domϕj is bounded.

Then F and F are nonempty.

(vi) Suppose that Id −W ◦ S is monotone. Then F is closed and convex. In addition, F and F are
nonempty if any of the following holds:

(a) Id −W ◦ S + ∂ϕ is surjective.

(b) ∂ϕ−W ◦ S is maximally monotone.

(c) max1!i!m ‖Wi‖ ! 1, S∗ −W has closed range, and ker(S −W ∗) = {0}.

(d) max1!i!m ‖Wi‖ ! 1 and, for every i ∈ {1, . . . ,m}, domϕ∗
i = Hi.

(e) For every i ∈ {1, . . . ,m}, domϕi = H and domϕ∗
i = Hi.

(f) S∗ −W has closed range, ker(S−W ∗) = {0}, and, for every i ∈ {1, . . . ,m}, domϕi = Hi.

(g) For every i ∈ {1, . . . ,m}, domϕi is bounded.

Proof. We first observe that S ∈ B (H,
→
H), W ∈ B (

→
H,H), ϕ ∈ Γ0(H), and ψ ∈ Γ0(H).

(i): Let x ∈ H. Then

x solves (4.5) ⇔






W1xm + b1 ∈ x1 + ∂ϕ1(x1)

W2x1 + b2 ∈ x2 + ∂ϕ2(x2)
...

Wmxm−1 + bm ∈ xm + ∂ϕm(xm).

(4.6)

⇔






x1 = proxϕ1
(W1xm + b1) = T1xm

x2 = proxϕ2
(W2x1 + b2) = T2x1

...

xm = proxϕm
(Wmxm−1 + bm) = Tmxm−1.

(4.7)

(ii): Let x ∈ H. Using (4.2), we obtain

x solves (4.5) ⇔ 0 ∈ x−W (Sx) + ∂ψ(x) ⇔ x = proxψ
(
W (Sx)

)
. (4.8)

(iii): Clear from the definitions of F and F .

(iv): Define m firmly nonexpansive operators by (∀i ∈ {1, . . . ,m}) Pi : Hi → Hi : y (→ Ri(y + bi).
Then it follows from (4.1) and Theorem 3.8 applied to (Pi)1!i!m that Tm ◦ · · · ◦ T1 is nonexpansive.
In turn, we derive from [8, Corollary 4.24] that its fixed point set F is closed and convex.

(v): Thanks to (iii), it is enough to show that F *= ∅. Set T = Tm ◦ · · · ◦ T1 and recall that it is
nonexpansive by virtue of Theorem 3.8.
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(a): Let C be a closed ball such that ranT ⊂ C and set S = T |C . Then S : C → C is nonexpansive
and therefore [8, Proposition 4.29] asserts that FixT = FixS *= ∅.

(b)⇒(a): We have ranTj ⊂ ranRj = ran proxϕj
= dom (Id+∂ϕj) = dom ∂ϕj ⊂ domϕj . Hence

ranTj is bounded and Proposition 4.2 (with i = m) implies that

ranT ⊂

{
ranTm, if j = m;

(Tm ◦ · · · ◦ Tj+1)(ran Tj), if 1 ! j ! m− 1
(4.9)

is likewise.

(vi): Set A = Id −W ◦S + ∂ψ. Since Id −W ◦S is monotone and continuous, it is maximally
monotone [8, Corollary 20.28], with H as its domain. Since ∂ψ is also maximally monotone [8,
Theorem 20.25], A is likewise [8, Corollary 25.5(i)] and hence F = zerA is closed and convex [8,
Proposition 23.39]. Next, we note that, in view of (iii), F *= ∅ ⇔ F *= ∅.

(a): The hypothesis implies that (bi)1!i!m ∈ ran (Id −W ◦S + ∂ϕ) and therefore that (4.5) has
a solution, i.e., F *= ∅.

(b)⇒(a): The claim follows from Minty’s theorem [8, Theorem 21.1].

(c)⇒(a): We have ‖W ◦ S‖ = ‖W ‖ = max1!i!m ‖Wi‖ ! 1. Therefore, −W ◦ S is nonexpan-
sive, which implies that (Id −W ◦ S)/2 is firmly nonexpansive [8, Corollary 4.5], that is (∀x ∈ H)
〈x−W (Sx) | x〉 " ‖x − W (Sx)‖2/2. Consequently, Id − W ◦ S is 3∗ monotone [8, Proposi-
tion 25.16], while ∂ϕ is also 3∗ monotone [8, Example 25.13]. Finally, since S is unitary,

ran
(
Id −W ◦ S

)
= ran

(
S∗ −W

)
= ran

(
S −W ∗

)∗
=
(
ker
(
S −W ∗

))⊥
= H, (4.10)

which shows that Id − W ◦ S is surjective. Altogether, since [8, Corollary 25.5(i)] implies that
Id −W ◦S+∂ϕ is maximally monotone, it follows from [8, Corollary 25.27(i)] that Id −W ◦S+∂ϕ
is surjective.

(d)⇒(a): We have domϕ∗ = H. Hence since int domϕ∗ ⊂ dom ∂ϕ∗ [8, Proposition 16.27],
we have ran ∂ϕ = dom (∂ϕ)−1 = dom ∂ϕ∗ = H. Hence, ∂ϕ is surjective. We conclude using the
same arguments as in (c): ∂ϕ and Id − W ◦ S are both 3∗ monotone and their sum is maximally
monotone, which allows us to invoke [8, Corollary 25.27(i)].

(e)⇒(a): As seen in (d), ∂ϕ is surjective. We have H = int domϕ ⊂ dom ∂ϕ [8, Proposi-
tion 16.27]. Consequently, H = dom (Id −W ◦S) ⊂ dom ∂ϕ. Altogether, since ∂ϕ is 3∗ monotone,
it follows from [8, Corollary 25.27(ii)] that Id −W ◦ S + ∂ϕ is surjective.

(f)⇒(a): As seen in (c), Id −W ◦S is surjective and ∂ϕ is 3∗ monotone. In addition, dom (Id −
W ◦ S) ⊂ dom ∂ϕ since H = int domϕ ⊂ dom ∂ϕ [8, Proposition 16.27]. Altogether, it follows
from [8, Corollary 25.27(ii)] that Id −W ◦ S + ∂ϕ is surjective.

(g): Here domA = dom ∂ϕ ⊂ domϕ = ×m
i=1

domϕi is bounded. Hence, F = zerA *= ∅ [8,
Proposition 23.36(iii)].

Remark 4.4 In Proposition 4.3(vi), it is required that Id −W ◦S be monotone, or equivalently, that
its self-adjoint part Id − (W ◦ S + S∗ ◦W ∗)/2 be positive. In a finite-dimensional setting, this just
means that the eigenvalues of the matrix WS + S∗W ∗ are in ]−∞, 2].

Remark 4.5 Let x ∈ H be a solution to the variational inequality (4.5). A natural question is
whether x solves a minimization problem. In general the answer is negative. For instance, for m " 3
layers, even if the Hilbert spaces (Hi)1!i!m are identical, W = Id , the vectors (bi)1!i!m are zero,
and the functions (ϕi)1!i!m are indicator functions of closed convex sets (Ci)1!i!m, the solutions to
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(4.5) do not minimize any function Φ : H → R [4]. A rather restrictive scenario in which the answer
is positive is when Id − W ◦ S is monotone and W ◦ S is self-adjoint. Then x is a minimizer of
Φ : x (→ (1/2)〈x−W (Sx) | x〉+ψ(x).

Example 4.6 In Model 4.1, suppose that, for every i ∈ {1, . . . ,m}, Hi = RNi for some strictly
positive integer Ni. In addition, assume that, for every i ∈ {1, . . . ,m}, Ri is a separable activation
operator with respect to the canonical basis of RNi (see Proposition 2.24), and that it employs the
ReLU activation functions of Example 2.6. For every i ∈ {1, . . . ,m}, let xi = (ξi,k)1!k!Ni

∈ RNi and
set bi = (βi,k)1!k!Ni

. Then it follows from Proposition 4.3(i) that (x1, . . . , xm) ∈ F if and only if, for

every i ∈ {1, . . . ,m}, xi ∈ [0,+∞[Ni and






(∀k ∈ {1, . . . , N1}) [W1xm]k + β1,k − ξ1,k ∈ I(ξ1,k)

(∀k ∈ {1, . . . , N2}) [W2x1]k + β2,k − ξ2,k ∈ I(ξ2,k)
...

(∀k ∈ {1, . . . , Nm−1}) [Wm−1xm−2]k + βm−1,k − ξm−1,k ∈ I(ξm−1,k)

(∀k ∈ {1, . . . , Nm}) [Wmxm−1]k + βm,k − ξm,k ∈ I(ξm,k)

(4.11)

where, given x ∈ Hi−1, [Wix]k is the kth component of Wix and

(∀ξ ∈ [0,+∞[) I(ξ) =

{
{0}, if ξ ∈ ]0,+∞[ ;

]−∞, 0] , if ξ = 0.
(4.12)

Altogether, we conclude that F is a closed convex polyhedron.

4.2 Asymptotic analysis

Next, we investigate the asymptotic behavior of (1.2) in the context of Model 4.1.

Theorem 4.7 In the setting of Model 4.1, set T = Tm ◦ · · · ◦ T1, let α ∈ [1/2, 1], and suppose that the
following hold:

(a) F *= ∅.

(b) (Wi)1!i!m satisfies Condition 3.1 with parameter α.

(c) One of the following is satisfied:

(i) λn ≡ 1/α = 1 and Txn − xn → 0.

(ii) (λn)n∈N lies in ]0, 1/α[ and
∑

n∈N λn(1− αλn) = +∞.

Then (xn)n∈N converges weakly to a point xm ∈ F and (T1xm, (T2 ◦T1)xm, . . . , (Tm−1 ◦ · · ·◦T1)xm, xm)
solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) For every i ∈ {1, . . . ,m− 1}, Ri is weakly sequentially continuous.

(iv) For every i ∈ {1, . . . ,m−1}, Ri is a separable activation operator in the sense of Proposition 2.24.

(v) For every i ∈ {1, . . . ,m− 1}, Hi is finite-dimensional.

(vi) For some ε ∈ ]0, 1/2[, (λn)n∈N lies in [ε, (1 − ε)(ε + 1/α)] and, for every i ∈ {1, . . . ,m}, Hi = H
and there exists βi ∈ ]0, 1[ such that ‖Wi − 2(1− βi) Id ‖+ ‖Wi‖ ! 2βi.
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Then, for every i ∈ {1, . . . ,m−1}, (xi,n)n∈N converges weakly to xi = (Ti ◦ · · ·◦T1)xm and (x1, . . . , xm)
solves (4.5).

Proof. We first derive from (1.2) and Model 4.1 that

(∀n ∈ N) xn+1 = xn + λn(Txn − xn). (4.13)

Now set (∀i ∈ {1, . . . ,m}) Pi : Hi → Hi : y (→ Ri(y+bi). Then (4.1) yields T = Pm◦Wm◦ · · ·◦P1◦W1

and, since the operators (Ri)1!i!m are firmly nonexpansive, the operators (Pi)1!i!m are likewise.
Hence, it follows from (b), Theorem 3.8, and (4.2) that

T is α-averaged and FixT = F. (4.14)

(i): In view of (4.14), T is nonexpansive and hence we derive from [8, Theorem 5.14(i)] that
(xn)n∈N converges weakly to a point in F . The second assertion follows from Proposition 4.3(iii).

(ii): In view of (4.13) and (4.14), [8, Theorem 5.15(iii) and Proposition 5.16(iii)] imply that
(xn)n∈N converges weakly to a point in F , and we conclude by invoking Proposition 4.3(iii).

We now prove the convergence of the individual sequences under each assumption.

(iii): We have already established that xn ⇀ xm. Since W1 is weakly continuous as a bounded
linear operator, so is T1 in (4.1). Hence, (1.2) implies that x1,n = T1xn ⇀ T1xm = x1. Likewise, we
obtain successively x2,n = T2x1,n ⇀ T2x1 = x2, x3,n = T3x2,n ⇀ T3x2 = x3,. . . , xm,n = Tmxm−1,n ⇀
Tmxm−1 = xm.

(iv)⇒(iii): See [8, Proposition 24.12(iii)].

(v)⇒(iii): A proximity operator is nonexpansive and therefore continuous, hence weakly contin-
uous in a finite-dimensional setting.

(vi): As shown above, xn ⇀ xm ∈ F . It follows from Proposition 3.6(iii) and Theorem 3.8
(applied with m = 1) that, for every i ∈ {1, . . . ,m}, Ti is βi-averaged. Hence, upon applying [24,
Theorem 3.5(ii)] with α as an averaging constant of T , we infer that






(Id−T1)xn − (Id−T1)xm → 0

(Id−T2)(T1xn)− (Id−T2)(T1xm) → 0
...

(Id−Tm)((Tm−1 ◦ · · · ◦ T1)xn)− (Id−Tm)((Tm−1 ◦ · · · ◦ T1)xm) → 0.

(4.15)

Thus, x1,n − xn = T1xn − xn → T1xm − xm, which implies that x1,n = (x1,n − xn) + xn ⇀ (T1xm −
xm)+xm = T1xm. However, since x2,n−x1,n = (T2 ◦T1)xn−T1xn → (T2 ◦T1)xm−T1xm, we obtain
x2,n ⇀ (T2 ◦ T1)xm. Continuing this telescoping process yields the claim.

The next result covers the case when the variational inequality problem (4.5) has no solution.

Proposition 4.8 In the setting of Model 4.1, suppose that (Wi)1!i!m satisfies Condition 3.1 with α ∈
[1/2, 1], that (λn)n∈N lies in [ε, (1/α) − ε], for some ε ∈ ]0, 1/2[, and that F = ∅. Then ‖xn‖ → +∞.

Proof. We derive from (4.13) and (4.14) that, for every n ∈ N, xn+1 = xn + µn(Qxn − xn), where
Q = (1 − 1/α) Id+(1/α)T is nonexpansive and such that FixQ = F , and µn = αλn ∈ ]0, 1[. Hence
the claims follows from [8, Proposition 4.29] and [12, Corollary 9(b)].

Remark 4.9 When assumptions (a)–(c) in Theorem 4.7 are satisfied, the neural network described
in Model 1.1 is robust to perturbations of its input. Indeed, since T is α-averaged in (4.13), we can
write the updating rule as xn+1 = Qnxn, where Qn is nonexpansive. In turn, if x0 and x̃0 are two
inputs in H0, for a given n ∈ N, the resulting outputs xn and x̃n are such that ‖xn− x̃n‖ ! ‖x0− x̃0‖.
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Remark 4.10 In connection with Theorem 4.7 and Remark 4.5, let us underline that in general the
weak limit xm of (xn)n∈N does not solve a minimization problem. A very special case in which it does
is the following. Suppose that m = 2, H1 = H, ‖W1‖ ! 1, and W2 = W ∗

1 . Set ψ1 = ϕ1 − 〈· | b1〉
and ψ2 = ϕ2 − 〈· | b2〉, and let x2 ∈ F , i.e., x2 = (proxψ2

◦ W ∗
1 ◦ proxψ1

◦ W1)x2. It follows from
[21, Remark 3.10(iv)] that there exists a function ϑ ∈ Γ0(H) such that W ∗

1 ◦ proxψ1
◦W1 = proxϑ.

Thus, x2 is a fixed point of the backward-backward operator proxψ2
◦ proxϑ. It then follows from

[20, Remark 6.13] that x2 is a minimizer of 1ϑ+ψ2, where 1ϑ : x (→ infy∈H(ϑ(y) + ‖x− y‖2/2) is the
Moreau envelope of ϑ.

Remark 4.11 To model closely existing deep neural networks, we have chosen the activation op-
erators in Definition 2.20 and Model 4.1 to be proximity operators. However, as is clear from the
results of Section 3 and in particular the central Theorem 3.8, an activation operator Ri : Hi → Hi

could more generally be a firmly nonexpansive operator that admits 0 as a fixed point. By [8,
Corollary 23.9], this means that Ri is the resolvent of some maximally monotone operator such
Ai : Hi → 2Hi (i.e., Ri = (Id+Ai)−1) such that 0 ∈ Ai0. In this context, the variational inequality
(4.5) assumes the more general form of a system of monotone inclusions, namely,

find x1 ∈ H1, . . . , xm ∈ Hm such that






b1 ∈ x1 −W1xm +A1x1

b2 ∈ x2 −W2x1 +A2x2
...

bm ∈ xm −Wmxm−1 +Amxm.

(4.16)

5 Analysis of nonperiodic networks

We analyze the deep neural network described in Model 1.1 in the following scenario.

Assumption 5.1 In the setting of Model 1.1, there exist sequences (ωn)n∈N ∈ &1+, (ρn)n∈N ∈ &1+,
(ηn)n∈N ∈ &1+, and (νn)n∈N ∈ &1+ for which the following hold for every i ∈ {1, . . . ,m}:

(i) There exists Wi ∈ B (Hi−1,Hi) such that (∀n ∈ N) ‖Wi,n −Wi‖ ! ωn.

(ii) There exists Ri ∈ A(Hi) such that (∀n ∈ N)(∀x ∈ Hi) ‖Ri,nx−Rix‖ ! ρn‖x‖+ ηn.

(iii) There exists bi ∈ Hi such that (∀n ∈ N) ‖bi,n − bi‖ ! νn.

In addition, we set

(∀i ∈ {1, . . . ,m}) Ti : Hi−1 → Hi : x (→ Ri(Wix+ bi). (5.1)

Proposition 5.2 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied, let i ∈ {1, . . . ,m},
and set

(∀n ∈ N) χi,n = ρn‖Wi,n‖+ ωn and ζi,n = ρn‖bi,n‖+ ηn + νn. (5.2)

Then (χi,n)n∈N ∈ &1+, (ζi,n)n∈N ∈ &1+, and (∀n ∈ N)(∀x ∈ Hi−1) ‖Ti,nx− Tix‖ ! χi,n‖x‖+ ζi,n.

Proof. According to Assumptions 5.1(i) and 5.1(iii), supn∈N ‖Wi,n‖ < +∞ and supn∈N ‖bi,n‖ < +∞.
It then follows from (5.2) that (χi,n)n∈N ∈ &1+ and (ζi,n)n∈N ∈ &1+. Hence, we deduce from (1.1),
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(5.1), the nonexpansiveness of Ri, and Assumption 5.1 that

(∀n ∈ N)(∀x ∈ Hi−1) ‖Ti,nx− Tix‖

! ‖Ri,n(Wi,nx+ bi,n)−Ri(Wi,nx+ bi,n)‖+ ‖Ri(Wi,nx+ bi,n)−Ri(Wix+ bi)‖

! ρn‖Wi,nx+ bi,n‖+ ηn + ‖Wi,nx+ bi,n −Wix− bi‖

! ρn(‖Wi,n‖ ‖x‖ + ‖bi,n‖) + ηn + ‖Wi,n −Wi‖ ‖x‖ + ‖bi,n − bi‖

! ρn(‖Wi,n‖ ‖x‖ + ‖bi,n‖) + ηn + ωn ‖x‖+ νn

= χi,n‖x‖+ ζi,n, (5.3)

as claimed.

Proposition 5.3 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied. Then, for every
i ∈ {1, . . . ,m}, there exist (τi,n)n∈N ∈ &1+ and (θi,n)n∈N ∈ &1+ such that

(∀n ∈ N)(∀x ∈ H) ‖(Ti,n ◦ · · · ◦ T1,n)x− (Ti ◦ · · · ◦ T1)x‖ ! τi,n‖x‖ + θi,n. (5.4)

Proof. For every i ∈ {1, . . . ,m}, define (χi,n)n∈N and (ζi,n)n∈N as in (5.2), According to Proposi-
tion 5.2, (5.4) is satisfied for i = 1 by setting (∀n ∈ N) τ1,n = χ1,n and θ1,n = ζ1,n. Next, let us
assume that (5.4) holds for i ∈ {1, . . . ,m− 1} and set

(∀n ∈ N)






τi+1,n = (‖Wi+1‖+ χi+1,n)τi,n + χi+1,n

i∏

k=1

‖Wk‖

θi+1,n = (‖Wi+1‖+ χi+1,n)θi,n + χi+1,n

i∑

j=1

(

‖bj‖
i∏

k=j+1

‖Wk‖

)

+ ζi+1,n.

(5.5)

Then the sequences (τi+1,n)n∈N and (θi+1,n)n∈N belong to &1+. Now let n ∈ N and x ∈ H. Upon
invoking Proposition 5.2, the nonexpansiveness of Ri+1, and Proposition 4.2, we obtain

‖(Ti+1,n ◦ · · · ◦ T1,n)x− (Ti+1 ◦ · · · ◦ T1)x‖

! ‖(Ti+1,n ◦ Ti,n ◦ · · · ◦ T1,n)x− (Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x‖

+ ‖(Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x− (Ti+1 ◦ Ti ◦ · · · ◦ T1)x‖

! χi+1,n‖(Ti,n ◦ · · · ◦ T1,n)x‖+ ζi+1,n + ‖(Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x− (Ti+1 ◦ Ti ◦ · · · ◦ T1)x‖

! χi+1,n(‖(Ti,n ◦ · · · ◦ T1,n)x− (Ti ◦ · · · ◦ T1)x‖+ ‖(Ti ◦ · · · ◦ T1)x‖) + ζi+1,n

+
∥∥Ri+1

(
(Wi+1 ◦ Ti,n ◦ · · ·T1,n)x+ bi+1

)
−Ri+1

(
(Wi+1 ◦ Ti ◦ · · · ◦ T1)x+ bi+1

)∥∥

! (‖Wi+1‖+ χi+1,n)‖(Ti,n ◦ · · · ◦ T1,n)x− (Ti ◦ · · · ◦ T1)x‖+ χi+1,n‖(Ti ◦ · · · ◦ T1)x‖+ ζi+1,n

! (‖Wi+1‖+ χi+1,n)(τi,n‖x‖+ θi,n) + χi+1,n

(

‖x‖
i∏

k=1

‖Wk‖+
i∑

j=1

(

‖bj‖
i∏

k=j+1

‖Wk‖

))

+ ζi+1,n

= τi+1,n‖x‖+ θi+1,n, (5.6)

which proves the result by induction.

We can now present the main result of this section on the asymptotic behavior of Model 1.1. The
proof of this result relies on Theorem 4.7, which it extends.

Theorem 5.4 Consider the setting of Model 1.1 and let α ∈ [1/2, 1]. Suppose that Assumption 5.1 is
satisfied as well as the following:
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(a) F = FixT *= ∅, where T = Tm ◦ · · · ◦ T1.

(b) (Wi)1!i!m satisfies Condition 3.1 with parameter α.

(c) One of the following is satisfied:

(i) λn ≡ α = 1 and Txn − xn → 0.

(ii) (λn)n∈N lies in ]0, 1/α[ and
∑

n∈N λn(1− αλn) = +∞.

Then (xn)n∈N converges weakly to a point xm ∈ F and (T1xm, (T2 ◦T1)xm, . . . , (Tm−1 ◦ · · ·◦T1)xm, xm)
solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) For every i ∈ {1, . . . ,m− 1}, Ri is weakly sequentially continuous.

(iv) For every i ∈ {1, . . . ,m− 1}, Ri is a separable activation function in the sense of Proposition 2.24.

(v) For every i ∈ {1, . . . ,m− 1}, Hi is finite-dimensional.

(vi) For some ε ∈ ]0, 1/2[, (λn)n∈N lies in [ε, (1 − ε)(ε + 1/α)] and, for every i ∈ {1, . . . ,m}, Hi = H
and there exists βi ∈ ]0, 1[ such that ‖Wi − 2(1− βi) Id ‖+ ‖Wi‖ ! 2βi.

Then, for every i ∈ {1, . . . ,m−1}, (xi,n)n∈N converges weakly to xi = (Ti ◦ · · ·◦T1)xm and (x1, . . . , xm)
solves (4.5).

Proof. Let (yn)n∈N be the sequence defined by y0 = x0 and

for n = 0, 1, . . .

y1,n = T1yn
y2,n = T2y1,n

...
ym,n = Tmym−1,n

yn+1 = yn + λn(ym,n − yn).

(5.7)

For every n ∈ N, set Sn = Tm,n ◦ · · · ◦ T1,n. We derive from (1.2) and (5.7) that

(∀n ∈ N) ‖xn+1 − yn+1‖ = ‖xn + λn(Snxn − xn)− yn − λn(Tyn − yn)‖

! λn‖Snxn − Txn‖+ ‖xn − yn + λn(Txn − Tyn − xn + yn)‖. (5.8)

At the same time, by Proposition 5.3, there exist (τm,n)n∈N ∈ &1+ and (θm,n)n∈N ∈ &1+ such that

(∀n ∈ N) ‖Snxn − Txn‖ ! τm,n‖xn‖+ θm,n (5.9)

! τm,n(‖xn − yn‖+ ‖yn‖) + θm,n. (5.10)

On the other hand, by Theorem 3.8, Assumption 5.1(ii), and (b), T is α-averaged. Hence, there
exists a nonexpansive operator Q : H → H such that T = (1 − α) Id+αQ. Since (c) implies that
(λn)n∈N lies in ]0, 1/α], we deduce that

(∀n ∈ N) ‖xn − yn + λn(Txn − Tyn − xn + yn)‖ = ‖(1− αλn)(xn − yn) + αλn(Qxn −Qyn)‖

! (1− αλn)‖xn − yn‖+ αλn‖Qxn −Qyn‖

! ‖xn − yn‖. (5.11)

Altogether (5.8), (5.10), and (5.11) yield

(∀n ∈ N) ‖xn+1 − yn+1‖ !

(
1 +

τm,n

α

)
‖xn − yn‖+

1

α

(
τm,n‖yn‖+ θm,n

)
. (5.12)
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However, Theorem 4.7 guarantees that δ = supn∈N ‖yn‖ < +∞ and therefore that

(∀n ∈ N) ‖xn+1 − yn+1‖ !

(
1 +

τm,n

α

)
‖xn − yn‖+

1

α

(
τm,nδ + θm,n

)
. (5.13)

Since (τm,n)n∈N and (τm,nδ + θm,n)n∈N are in &1+, there exists ν ∈ [0,+∞[ such that ‖xn − yn‖ → ν
[8, Lemma 5.31]. Consequently, δ′ = supn∈N ‖xn‖ ! δ + supn∈N ‖xn − yn‖ < +∞. Now, set

(∀n ∈ N) en =
1

α
(Snxn − Txn). (5.14)

Then it follows from (5.9) that

∑

n∈N

‖en‖ !
1

α

∑

n∈N

(
τm,n‖xn‖+ θm,n

)
!
δ′

α

∑

n∈N

τm,n +
1

α

∑

n∈N

θm,n < +∞. (5.15)

In view of (1.2), we have

(∀n ∈ N) xn+1 = xn + µn(Qxn + en − xn), where µn = αλn ∈ ]0, 1[ . (5.16)

(i): The weak convergence of (xn)n∈N to a point xm ∈ FixQ = F follows from (5.16) and [8,
Theorem 5.33(iv)] by arguing as in the proof of [8, Theorem 5.14(i)].

(ii): It follows from (5.16) that
∑

n∈N µn(1−µn) = +∞. Hence [8, Proposition 5.34(iii)] implies
that (xn)n∈N converges weakly to a point xm ∈ FixQ = F .

In (i)–(ii) above, Proposition 4.3(iii) ensures that (T1xm, (T2 ◦T1)xm, . . . , (Tm−1 ◦ · · · ◦T1)xm, xm)
solves (4.5).

(iii)–(v): If one of these assumptions holds, by proceeding as in the proof of Theorem 4.7(iii)–
(v), we obtain that, for every i ∈ {1, . . . ,m − 1}, (Ti ◦ · · · ◦ T1)xn ⇀ xi = (Ti ◦ · · · ◦ T1)xm

and that, furthermore, (x1, . . . , xm) solves (4.5). However, Proposition 5.3 asserts that, for every
i ∈ {1, . . . ,m− 1}, there exist (τi,n)n∈N ∈ &1+ and (θi,n)n∈N ∈ &1+ such that, for every n ∈ N,

‖xi,n − (Ti ◦ · · · ◦ T1)xn‖ = ‖(Ti,n ◦ · · · ◦ T1,n)xn − (Ti ◦ · · · ◦ T1)xn‖ ! τi,n‖xn‖+ θi,n. (5.17)

Since (xn)n∈N is bounded, xi,n − (Ti ◦ · · · ◦ T1)xn → 0 and therefore xi,n ⇀ xi.

(vi): For every i ∈ {1, . . . ,m}, set

(∀n ∈ N) ei,n = (Ti,n ◦ Ti−1,n ◦ · · · ◦ T1,n)xn − (Ti ◦ Ti−1,n ◦ · · · ◦ T1,n)xn, (5.18)

and let (χi,n)n∈N and (ζi,n)n∈N be defined as in (5.2). By Propositions 4.2, 5.2, and 5.3, we have

(∀n ∈ N) ‖e1,n‖ ! χ1,n‖xn‖+ ζ1,n (5.19)

and

(∀i ∈ {2, . . . ,m})(∃ (τi−1,n)n∈N ∈ &1+)(∃ (θi−1,n)n∈N ∈ &1+)(∀n ∈ N)

‖ei,n‖ ! χi,n‖(Ti−1,n ◦ · · · ◦ T1,n)xn‖+ ζi,n

! χi,n

(
‖(Ti−1,n ◦ · · · ◦ T1,n)xn − (Ti−1 ◦ · · · ◦ T1)xn‖+ ‖(Ti−1 ◦ · · · ◦ T1)xn‖

)
+ ζi,n

! χi,n

(

τi−1,n‖xn‖+ θi−1,n + ‖xn‖
i−1∏

k=1

‖Wk‖+
i−1∑

j=1

‖bj‖

(
i−1∏

k=j+1

‖Wk‖

))

+ ζi,n. (5.20)
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Thus, since (xn)n∈N is bounded,

(∀i ∈ {1, . . . ,m}) (‖ei,n‖)n∈N ∈ &1+. (5.21)

In addition, by (5.18) and (1.2),

(∀n ∈ N) xn+1 = xn+λn
(
Tm(Tm−1(· · · T2(T1xn+e1,n)+e2,n · · · )+em−1,n)+em,n−xn

)
. (5.22)

Thus, since Proposition 3.6(iii) and Theorem 3.8 imply that the operators (Ti)1!i!m are averaged,
the proof can be completed as that of Theorem 4.7(vi) since [24, Theorem 3.5(ii)] asserts that (4.15)
remains valid under (5.21).
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