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Motivated by structures that appear in deep neural networks, we investigate nonlinear composite models alternating proximity and affine operators defined on different spaces. We first show that a wide range of activation operators used in neural networks are actually proximity operators. We then establish conditions for the averagedness of the proposed composite constructs and investigate their asymptotic properties. It is shown that the limit of the resulting process solves a variational inequality which, in general, does not derive from a minimization problem. The analysis relies on tools from monotone operator theory and sheds some light on a class of neural networks structures with so far elusive asymptotic properties.

Introduction

A powerful tool from fixed point theory to analyze and solve optimization and inclusion problems in a real Hilbert space H is the class of averaged nonexpansive operators, which was introduced in [START_REF] Baillon | On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces[END_REF]. Let T : H → H be a nonexpansive operator, i.e., T is 1-Lipschitzian. Then α ∈ ]0, 1] is an averagedness constant of T if Id +α -1 (T -Id) remains nonexpansive, in which case we say that T is α-averaged; if α = 1/2, T is firmly nonexpansive. The importance of firmly nonexpansive operators in convex optimization and variational methods has long been recognized [START_REF] Combettes | Construction d'un point fixe commun à une famille de contractions fermes[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Martinet | Détermination approchée d'un point fixe d'une application pseudo-contractante[END_REF][START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF][START_REF] Tseng | On the convergence of products of firmly nonexpansive mappings[END_REF]. The broader class of averaged operators was shown in [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF] to play a prominent role in the analysis of convex feasibility problems. In this context, the underlying problem is to find a common fixed point of averaged operators. In [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF], it was shown that many convex minimization and monotone inclusion problems reduce to the more general problem of finding a fixed point of compositions of averaged operators, which provided a unified analysis of various proximal splitting algorithms. Along these lines, several fixed point methods based on various combinations of averaged operators have since been devised, see [START_REF] Aragón Artacho | A new projection method for finding the closest point in the intersection of convex sets[END_REF][START_REF] Attouch | Backward-forward algorithms for structured monotone inclusions in Hilbert spaces[END_REF][START_REF] Bargetz | Convergence properties of dynamic string-averaging projection methods in the presence of perturbations[END_REF][START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF][START_REF] Borwein | Convergence rate analysis for averaged fixed point iterations in common fixed point problems[END_REF][START_REF] Bot | A dynamical system associated with the fixed points set of a nonexpansive operator[END_REF][START_REF] Bravo | Sharp convergence rates for averaged nonexpansive maps[END_REF][START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF][START_REF] Censor | New Douglas-Rachford algorithmic structures and their convergence analyses[END_REF][START_REF] Combettes | Compositions and convex combinations of averaged nonexpansive operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Moursi | The forward-backward algorithm and the normal problem[END_REF][START_REF] Ryu | Scaled relative graph: Nonexpansive operators via 2D Euclidean geometry[END_REF][START_REF] Yamagishi | Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization[END_REF] for recent work. Motivated by deep neural network structures with thus far elusive asymptotic properties, we investigate in the present paper a novel averaged operator model involving a mix of nonlinear and linear operators.

Artificial neural networks have attracted considerable attention as a tool to better understand, model, and imitate the human brain [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF][START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF]. In a Hilbertian setting [START_REF] Barron | Universal approximation bounds for superpositions of a sigmoidal function[END_REF], an (n + 1)-layer feed-forward neural network architecture acting on real Hilbert spaces (H i ) 0 i n is defined as the composition of operators

R n •(W n •+b n )•• • ••R 1 •(W 1 •+b 1 )
where, for every i ∈ {1, . . . , n}, R i : H i → H i is a nonlinear operator known as an activation operator, W i : H i-1 → H i is a linear operator, known as a weight operator, and b i ∈ H i is a so-called bias parameter. Deep neural networks feature a (possibly large) number n of layers. In recent years, they have been found to be quite successful in a wide array of classification, recognition, and prediction tasks; see [START_REF] Lecun | Deep learning[END_REF] and its bibliography. Despite their success, the operational structure and properties of deep neural networks are not yet well understood from a mathematical viewpoint. In the present paper, we propose to analyze them within the following iterative model. We emphasize that our purpose is not to study the training of the network, which consists of optimally setting the weight operators and bias parameters from data samples, but to analyze mathematically such a structure once it is trained. Our model is also of general interest in constructive fixed point theory for monotone inclusion problems.

Model 1.1 Let m 1 be an integer, let H and (H i ) 0 i m be nonzero real Hilbert spaces, such that H m = H 0 = H. For every i ∈ {1, . . . , m} and every n ∈ N, let W i,n : H i-1 → H i be a bounded linear operator, let b i,n ∈ H i , and let R i,n : H i → H i . Let x 0 ∈ H, let (λ n ) n∈N be a sequence in ]0, +∞[, set

(∀n ∈ N)(∀i ∈ {1, . . . , m}) T i,n : H i-1 → H i : x → R i,n (W i,n x + b i,n ), (1.1) 
and iterate

for n = 0, 1, . . .

         x 1,n = T 1,n x n x 2,n = T 2,n x 1,n . . . x m,n = T m,n x m-1,n x n+1 = x n + λ n (x m,n -x n ). (1.2) 
In sharp contrast with existing algorithmic frameworks involving averaged operators (see cited works above), the operators involved in Model 1.1 are not necessarily all defined on the same Hilbert space and, in addition, they need not all be averaged. Let us also note that the relaxation parameters (λ n ) n∈N in (1.2) allow us to model skip connections [START_REF] Srivastava | Training very deep networks[END_REF], in the spirit of residual networks [START_REF] He | Deep residual learning for image recognition[END_REF]. If λ n ≡ 1, we obtain the standard feed-forward architecture [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF].

Our contributions are articulated around the following findings.

• We show that a wide range of activation operators used in neural networks are actually proximity operators, which paves the way to the analysis of such networks via fixed point theory for monotone inclusion problems.

• We provide a new analysis of compositions of proximity and affine operators, establishing mild conditions that guarantee that the resulting operator is averaged.

• We show that, under suitable assumptions, the asymptotic output of the network converges to a point defined via a variational inequality. Furthermore, in general, this variational inequality does not derive from a minimization problem.

The remainder of the paper is organized as follows. In Section 2, we bring to light strong connections between the activation functions employed in neural networks and the theory of proximity operators in convex analysis. In Section 3, we derive new results on the averagedness properties of compositions of proximity and affine operators acting on different spaces. In Section 4, we investigate the asymptotic behavior of a class of deep neural networks structures and show that their fixed points solve a variational inequality. The main assumption on this subclass of Model 1.1 is that the structure of the network is periodic in the sense that a group of layers is repeated. Finally, in Section 5, the same properties are established for a broader class of networks.

Notation. We follow standard notation from convex analysis and operator theory [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Rockafellar | Convex Analysis[END_REF]. Thus, the expressions x n

x and x n → x denote, respectively, weak and strong convergence of a sequence (x n ) n∈N to x in H, and Γ 0 (H) is the class of lower semicontinuous convex functions ϕ : H → ]-∞, +∞] such that dom ϕ = x ∈ H ϕ(x) < +∞ = ∅. Now let ϕ ∈ Γ 0 (H). The conjugate of ϕ is denoted by ϕ * , its subdifferential by ∂ϕ, and its proximity operator is prox ϕ : H → H : x → argmin y∈H (ϕ(y) + x -y 2 /2). The symbols ran T , dom T , Fix T , and zer T denote respectively the range, the domain, the fixed point set, and the set of zeros of an operator T . The space of bounded linear operators from a Banach space X to a Banach space Y is denoted by B (X , Y). Finally, 1 + denotes the set of summable sequences in [0, +∞[.

Proximal activation in neural networks

The following facts will be needed. Lemma 2.1 Let ϕ ∈ Γ 0 (H). Then the following hold:

(i) [8, Proposition 12.29] Fix prox ϕ = Argmin ϕ. (ii) [8, Corollary 24.5] Let g ∈ Γ 0 (H) be such that ϕ = g -• 2 /2. Then prox ϕ = ∇g * .

Activation functions

An activation function is a function : R → R which models the firing activity of neurons. The simplest instance, that goes back to the perceptron machine [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF], is that of a binary firing model: the neuron is either firing or at rest. For instance, if the firing level is 1 and the rest state is 0, we obtain the binary step function

: ξ → 1, if ξ > 0; 0, if ξ 0, (2.1) 
which was initially proposed in [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF]. As this discontinuous activation model may lead to unstable neural networks, various continuous approximations have been proposed. Our key observation is that a vast array of activation functions used in neural networks belong to the following class.

Definition 2.2

The set of functions from R to R which are increasing, 1-Lipschitzian, and take value 0 at 0 is denoted by A(R).

Remarkably, we can precisely characterize this class of activation functions as that of proximity operators.

Proposition 2.3

Let : R → R. Then ∈ A(R) if and only if there exists a function φ ∈ Γ 0 (R), which has 0 as a minimizer, such that = prox φ .

Proof. The fact that the class of increasing, 1-Lipschitzian functions from R to R coincides with that of proximity operators of functions in Γ 0 (R) is shown in [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]Proposition 2.4]. In view of Lemma 2.1(i) and Definition 2.2, the proof is complete.

To illustrate the above results, let us provide examples of common activation functions ∈ A(R), and identify the potential φ they derive from in Proposition 2.3 (see Fig. 1).

Example 2.4

The most basic activation function is = Id = prox 0 . It is in particular useful in dictionary learning approaches, which correspond to the linear special case of Model 1.1 [START_REF] Tariyal | Deep dictionary learning[END_REF].

Example 2.5

The saturated linear activation function [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF] : Example 2. [START_REF] Barron | Universal approximation bounds for superpositions of a sigmoidal function[END_REF] The rectified linear unit (ReLU) activation function [START_REF] Nair | Rectified linear units improve restricted Boltzmann machines[END_REF] :

R → R : ξ →      1, if ξ > 1; ξ, if -1 ξ 1; -1, if ξ < -1 (2.
R → R : ξ → ξ, if ξ > 0; 0, if ξ 0 (2.3)
can be written as = prox φ , where φ is the indicator function of [0, +∞[.

Example 2.7 Let α ∈ ]0, 1].
The parametric rectified linear unit activation function [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] is

: R → R : ξ → ξ, if ξ > 0; αξ, if ξ 0. (2.4) 
We have = prox φ , where

φ : R → ]-∞, +∞] : ξ → 0, if ξ > 0; (1/α -1)ξ 2 /2, if ξ 0.
(2.5)

Proof. Let ξ ∈ R. Then φ (ξ) = 0 if ξ > 0, and φ (ξ) = (1/α -1)ξ if ξ 0. In turn (Id +φ )ξ = ξ if ξ > 0, and (Id +φ )(ξ) = ξ/α if ξ 0. Hence, = (Id +φ ) -1 is given by (2.4).

Example 2.8

The bent identity activation function : R → R : ξ → (ξ + ξ 2 + 1 -1)/2 satisfies = prox φ , where Example 2.9 The inverse square root unit activation function [START_REF] Carlile | Improving deep learning by inverse square root linear units (ISRLUs)[END_REF] is : R → R : ξ → ξ/ 1 + ξ 2 . We have = prox φ , where

φ : R → ]-∞, +∞] : ξ → ξ/2 -ln(ξ + 1/2) /4, if ξ > -1/2; +∞, if ξ -1/2. ( 2 
φ : R → ]-∞, +∞] : ξ → -ξ 2 /2 -1 -ξ 2 , if |ξ| 1; +∞, if |ξ| > 1.
(2.7)

Proof. Let ξ ∈ ]-1, 1[ = dom ∇φ = dom ∂φ = ran prox φ . Then ξ + φ (ξ) = ξ/ 1 -ξ 2 and therefore prox φ = (Id +φ ) -1 : µ → µ/ 1 + µ 2 .
Example 2. [START_REF] Bilski | The backpropagation learning with logarithmic transfer function[END_REF] The inverse square root linear unit activation function [START_REF] Carlile | Improving deep learning by inverse square root linear units (ISRLUs)[END_REF] :

R → R : ξ →    ξ, if ξ 0; ξ 1 + ξ 2 , if ξ < 0 (2.8)
can be written as = prox φ , where

φ : R → ]-∞, +∞] : ξ →      0, if ξ 0; 1 -ξ 2 /2 -1 -ξ 2 , if -1 ξ < 0; +∞, if ξ < -1.
(2.9)

Proof. Let ξ ∈ ]-1, +∞[ = dom ∇φ = ran prox φ . Then ξ + φ (ξ) = ξ if ξ 0, and ξ + φ (ξ) = ξ/ 1 -ξ 2 if ξ < 0. Hence, = (Id +φ ) -1 is given by (2.8).

Example 2.11

The arctangent activation function (2/π)arctan is the proximity operator of

φ : R → ]-∞, +∞] : ξ →    - 2 π ln cos πξ 2 - 1 2 ξ 2 , if |ξ| < 1; +∞, if |ξ| 1. 
(2.10)

Proof. Let ξ ∈ ]-1, 1[ = dom ∇φ = ran prox φ . Then ξ + φ (ξ) = tan(πξ/2) and therefore = (Id +φ ) -1 = (2/π)arctan.
Example 2.12 The hyperbolic tangent activation function tanh [START_REF] Lecun | Efficient backprop[END_REF] is the proximity operator of

φ : R → ]-∞, +∞] : ξ →        (1 + ξ) ln(1 + ξ) + (1 -ξ) ln(1 -ξ) -ξ 2 2 if |ξ| < 1; ln(2) -1/2 if |ξ| = 1; +∞, if |ξ| > 1.
(2.11)

Proof. Let ξ ∈ ]-1, 1[ = dom ∇φ = ran prox φ . Then ξ + φ (ξ) = arctanh(ξ) and therefore = (Id +φ ) -1 = tanh.
Example 2. [START_REF] Bot | A dynamical system associated with the fixed points set of a nonexpansive operator[END_REF] The unimodal sigmoid activation function [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF] :

R → R : ξ → 1 1 + e -ξ - 1 2 (2.12)
is the proximity operator of

φ : R → ]-∞, +∞] ξ →        (ξ + 1/2) ln(ξ + 1/2) + (1/2 -ξ) ln(1/2 -ξ) - 1 2 (ξ 2 + 1/4) if |ξ| < 1/2; -1/4, if |ξ| = 1/2; +∞, if |ξ| > 1/2.
(2.13)

Proof. Let ξ ∈ ]-1/2, 1/2[ = dom ∇φ = ran prox φ . Then ξ + φ (ξ) = ln((1 + 2ξ)/(1 -2ξ))
and therefore prox φ = (Id +φ ) -1 : µ → (1/2)(e µ -1)/(e µ + 1) = 1/(1 + e -µ ) -1/2.

Remark 2.14 Examples 2.12 and 2.13 are closely related in the sense that the function of (2.12) can be written as = (1/2)tanh(•/2).

Example 2.15

The Elliot activation function is [START_REF] Elliot | A better activation function for artificial neural networks[END_REF] : R → R : ξ → ξ/(1 + |ξ|) can be written as = prox φ , where

φ : R → ]-∞, +∞] ξ →    -|ξ| -ln(1 -|ξ|) - ξ 2 2 , if |ξ| < 1; +∞, if |ξ| 1. 
(2.14)

Proof. Let ξ ∈ ]-1, 1[ = dom ∇φ = ran prox φ . Then ξ + φ (ξ) = ξ/(1 -|ξ|) and therefore prox φ = (Id +φ ) -1 : µ → µ/(1 + |µ|).
Example 2. [START_REF] Carlile | Improving deep learning by inverse square root linear units (ISRLUs)[END_REF] The inverse hyperbolic sine activation function arcsinh is the proximity operator of

φ = cosh -| • | 2 /2.
Proof. Let ξ ∈ R. Then ξ + φ (ξ) = sinh ξ and therefore prox φ = (Id +φ ) -1 = arcsinh.

Example 2.17 The logarithmic activation function [START_REF] Bilski | The backpropagation learning with logarithmic transfer function[END_REF] :

R → R : ξ → sign(ξ) ln 1 + |ξ| (2.15)
is the proximity operator of

φ : R → ]-∞, +∞] : ξ → e |ξ| -|ξ| -1 - ξ 2 2 .
(2.16)

Proof. We have φ : ξ → sign(ξ)(e |ξ| -1) -ξ. Hence (Id +φ ): ξ → sign(ξ)(e |ξ| -1) and, in turn, prox φ = (Id +φ ) -1 : ξ → sign(ξ) ln(1 + |ξ|).

The class of activation functions A(R) has interesting stability properties.

Proposition 2. [START_REF] Censor | New Douglas-Rachford algorithmic structures and their convergence analyses[END_REF] The following hold:

(i) Let α ∈ ]0, +∞[ and β ∈ ]0, +∞[ be such that αβ 1, and let ∈ A(R). Then α (β•) ∈ A(R).

(ii) Let ( i ) i∈I be a finite family in A(R) and let (ω i ) i∈I be real numbers in ]0, 1] such that i∈I ω i = 1.

Then i∈I ω i i ∈ A(R). (iii) Let 1 ∈ A(R) and 2 ∈ A(R). Then 1 • 2 ∈ A(R). (iv) Let ∈ A(R). Then Id -∈ A(R). (v) Let 1 ∈ A(R) and 2 ∈ A(R). Then ( 1 -2 + Id)/2 ∈ A(R). (vi) Let 1 ∈ A(R) and 2 ∈ A(R). Then 1 • (2 2 -Id) + Id -2 ∈ A(R).
Proof. (i)-(iii): This follows at once from Definition 2.2.

(iv)-(v): The fact that the resulting operators are proximity operators is established in [21, Section 3.3]. The fact that they are proximity operators of a function φ ∈ Γ 0 (H) that is minimal at 0 is equivalent to the fact that prox φ 0 = 0 Lemma 2.1(i). This identity is easily seen to hold in each instance.

(vi

): Set = 1 • (2 2 -Id) + Id -2 .
Then is firmly nonexpansive [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 4.31(ii)]. It is therefore increasing and nonexpansive. Finally, (0) = 0.

• • • | -1 | 1 1 - φ(x) x +∞ +∞ | | -2 -4 | | 2 3 - -2- -1- 1 - 4 (x)
x 

: R → R : ξ →      ξ -1, if ξ > 1; 0, if -1 ξ 1; ξ + 1, if ξ < -1
(2.17) belongs to A(R). It was proposed as an activation function in [START_REF] Zhang | Thresholding neural network for adaptive noise reduction[END_REF].

Activation operators

In Section 2.1, we have described activation functions which model neuronal activity in terms of a scalar function. In this section, we extend this notion to more general activation operators.

Definition 2.20

Let H be a real Hilbert space and let R : H → H. Then R belongs to the class A(H) if there exists a function ϕ ∈ Γ 0 (H) which is minimal at the zero vector and such that R = prox ϕ . Property (ii) below shows that activation operators in A(H) have strong stability properties. On the other hand, the boundedness property (iv) is important in neural network-based functional approximation [START_REF] Cybenko | Approximation by superposition of sigmoidal functions[END_REF][START_REF] Funahashi | On the approximate realization of continuous mappings by neural networks[END_REF].

Proposition 2.21 Let H be a real Hilbert space and let R ∈ A(H). Then the following hold:

(i) R0 = 0.

(ii) Let x and y be in H. Then Rx -Ry 2

x -y 2 -x -y -Rx + Ry 2 .

(iii) Let x ∈ H. Then Rx x .

(iv) Let ϕ ∈ Γ 0 (H) be such that R = prox ϕ . Then ran R is bounded if and only if dom ϕ is bounded.

Proof. (i): This follows from Lemma 2.1(i).

(ii): This follows from the firm nonexpansiveness of proximity operators [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 12.28].

(iii): Set y = 0 in (ii) and use (i).

(iv): We have ran R = ran (Id +∂ϕ) -1 = dom (Id +∂ϕ) = dom ∂ϕ. On the other hand, dom ∂ϕ is a dense subset of dom ϕ [8, Corollary 16.39].

Proposition 2.22

Let H and G be real Hilbert spaces. Then the following hold:

(i) Let L ∈ B (H, G) be such that L 1 and let R ∈ A(H). Then L * • R • L ∈ A(H). (ii) Let (R i ) i∈I be a finite family in A(H) and let (ω i ) i∈I be real numbers in ]0, 1] such that i∈I ω i = 1. Then i∈I ω i R i ∈ A(H). (iii) Let R ∈ A(H). Then Id -R ∈ A(H). (iv) Let R 1 ∈ A(H) and R 2 ∈ A(H). Then (R 1 -R 2 + Id)/2 ∈ A(H).
Proof. The fact that the resulting operators are proximity operators is established in [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF]Section 3.3].

In addition, 0 is clearly a fixed point of the resulting operators. In view of Lemma 2.1(i), the proof is complete.

Example 2.23

The softmax activation operator [START_REF] Bridle | Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition[END_REF] is

R : R N → R N : (ξ k ) 1 k N →   exp(ξ k ) N j=1 exp(ξ j )   1 k N -u, (2.18) 
where u = (1, . . . , 1)/N ∈ R N . We have R = prox ϕ , where

ϕ = ψ(• + u) + • | u and ψ : R N → ]-∞, +∞] (ξ k ) 1 k N →        N k=1 ξ k ln ξ k - ξ 2 k 2 , if (ξ k ) 1 i N ∈ [0, 1] N and N k=1 ξ k = 1; +∞, otherwise, (2.19) 
with the convention 0 ln 0 = 0.

Proof. Set

g : R N → ]-∞, +∞] (ξ k ) 1 k N →        N k=1 ξ k ln ξ k , if (ξ k ) 1 k N ∈ [0, 1] N and N k=1 ξ k = 1; +∞, otherwise.
(2.20)

Then ψ = g -• 2 /2 and [40, Section 16] asserts that

g * : R N → R : (ξ k ) 1 k N → ln N k=1 exp(ξ k ) . (2.21)
Since ∇g * = R + u, according to Lemma 2.1(ii), R = prox ψ -u. We complete the proof by invoking the shift properties of proximity operators [8, Proposition 24.8(iii)].

Separable activation operators supply another important instance of activation operators.

Proposition 2. [START_REF] Combettes | Compositions and convex combinations of averaged nonexpansive operators[END_REF] Let H be a separable real Hilbert space, let (e k ) k∈K⊂N be an orthonormal basis of H, and let (φ k ) k∈K be a family of functions in

Γ 0 (R) such that (∀k ∈ K) φ k φ k (0) = 0. Define R : H → H : x → k∈K prox φ k x | e k e k . ( 2 

.22)

Then R ∈ A(H).

Proof. The fact that R is the proximity operator of the Γ 0 (H) function ϕ :

x → k∈K φ k ( x | e k ) is established in [23, Example 2.19].
In addition, it is clear that ϕ is minimal at 0.

Compositions of firmly nonexpansive and affine operators

Our analysis will revolve around the following property for a family of linear operators (W i ) 1 i m+1 .

Condition 3.1 Let m 0 be an integer, let (H i ) 0 i m be real Hilbert spaces, set

H m+1 = H 0 , and let α ∈ [1/2, 1]. For every i ∈ {1, . . . , m + 1}, let W i ∈ B (H i-1 , H i ) and set L i : H 0 × • • • × H i-1 → H i : (x k ) 0 k i-1 → i-1 k=0 W i • • • • • W k+1 x k . (3.1)
It is required that, for every

x = (x i ) 0 i m ∈ H 0 × • • • × H m such that (∀i ∈ {0, . . . , m}) x i 1, if i = 0; L i (x 0 , . . . , x i-1 ) , if i 1, (3.2) 
there holds

L m+1 x -2 m+1 (1 -α)x 0 + L m+1 x 2 m+1 α x 0 . (3.3) Remark 3.2 In Condition 3.1, we take α 1/2 because, if x = (x i ) 0 i m ∈ (H 0 {0})×H 1 ו • •×H m satisfies (3.3), then 2 m+1 (1 -α) x 0 L m+1 x -2 m+1 (1 -α)x 0 + L m+1 x 2 m+1 α x 0 .
We establish some preliminary results before providing properties that imply Condition 3.1.

Lemma 3.3 Let m

1 be an integer, let (H i ) 0 i m be real Hilbert spaces, and set θ 0 = 1. For every i ∈ {1, . . . , m}, let W i ∈ B (H i-1 , H i ) and set

θ i = W i • • • • • W 1 + i-1 k=1 1 j 1 <...<j k i-1 W i • • • • • W j k +1 W j k • • • • • W j k-1 +1 • • • W j 1 • • • • • W 1 . (3.4) Let (x i ) 0 i m ∈ H 0 × • • • × H m be such that (3.
2) is satisfied. Then the following hold:

(i) (∀i ∈ {1, . . . , m}) θ i = i-1 k=0 θ k W i • • • • • W k+1 . (ii) (∀i ∈ {1, . . . , m}) x i θ i x 0 .
Proof. (i): This follows recursively from (3.4).

(ii): For every i ∈ {1, . . . , m}, let L i be as in (3.1). We proceed by induction on m. We first observe that the inequality is satisfied if m = 1 since x 1 L 1 x 0 = W 1 x 0 W 1 x 0 = θ 1 x 0 . Now assume that m 2 and that the inequalities hold for (x 1 , . . . , x m-1 ). Then, since (i) yields

θ m = W m • • • • • W 1 + m-1 k=1 θ k W m • • • • • W k+1 , (3.5) 
we obtain

x m L m (x 0 , . . . , x m-1 ) = m-1 k=0 (W m • • • • • W k+1 )x k m-1 k=0 W m • • • • • W k+1 x k W m • • • • • W 1 + m-1 k=1 θ k W m • • • • • W k+1 x 0 = θ m x 0 , (3.6) 
which concludes the proof.

Lemma 3.4

Let H be a real Hilbert space, and let x and y be in H. Then

x y -x | y ( x + y -x + y )( x + y ). (3.7)
Proof. Since x + y 2 -2 x + y ( x + y ) + ( x + y ) 2 0, we have

x 2 + y 2 + x | y + x y = x 2 + y 2 + x + y 2 -x 2 -y 2 2 + ( x + y ) 2 -x 2 -y 2 2 = x + y 2 + ( x + y ) 2 2 x + y ( x + y ), (3.8) 
as claimed.

Notation 3.5 Let m 0 be an integer, and let (H i ) 0 i m be real Hilbert spaces. Let X be the standard vector space H 0 × • • •× H m equipped with the norm • X : x = (x i ) 0 i m → max 0 i m x i and let Y be the standard vector space H 0 × H 0 equipped with the norm

• Y : y = (y 1 , y 2 ) → y 1 + y 2 . Henceforth, the norm of M ∈ B (X , Y) is denoted by M X ,Y .
Proposition 3.6 Let m 0 be an integer, let (H i ) 0 i m be nonzero real Hilbert spaces, set H m+1 = H 0 , and use Notation 3.5. For every i ∈ {1, . . . , m + 1}, let (3.4), and set

W i ∈ B (H i-1 , H i ). Further, let α ∈ [1/2, 1], let θ 0 = 1, let (θ i ) 1 i m+1 be as in
                     W = W m+1 • • • • • W 1 µ = inf x∈H 0 , x =1 W x | x M : X → H 0 : x → m i=0 θ i (W m+1 • • • • • W i+1 )x i M : X → Y : x → 1 2 m+1 α M x -2 m+1 (1 -α)x 0 , Mx . (3.9a) (3.9b) (3.9c) (3.9d)
Suppose that one of the following holds:

(i) There exists i ∈ {1, . . . , m + 1} such that W i = 0. (ii) M X ,Y 1. (iii) W -2 m+1 (1 -α) Id -W + 2θ m+1 2 m+1 α.
(iv) α = 1, for every i ∈ {1, . . . , m + 1} W i = 0, and there exists η ∈ [0, α/((1 -α)θ m+1 )] such that

θ m+1 2 m+1 α αθ m+1 + (1 -α)( Id -ηW -η W )(θ m+1 -W ) 2 m (2α -1) + (1 -α)µ.
(3.10)

Then (W i ) 1 i m+1 satisfies Condition 3.1.
Proof. We use the operators (L i ) 1 i m+1 introduced in Condition 3.1. Per Notation 3.5 and (3.9d),

sup y∈X max 0 i m y i 1 M y -2 m+1 (1 -α)y 0 + M y 2 m+1 α = sup y∈X y X 1 M y Y = M X ,Y (3.11) 
and therefore

(∀y ∈ X ) max 0 i m y i 1 ⇒ M y -2 m+1 (1 -α)y 0 + M y 2 m+1 α M X ,Y . (3.12)
Now let x ∈ X be such that

(∀i ∈ {0, . . . , m}) x i 1, if i = 0; L i (x 0 , . . . , x i-1 ) , if i 1. (3.13) 
(i): We assume that m 1. For every k ∈ {i, . . . , m}, it follows from (3.4) that θ k = 0 and in turn from Lemma 3.3(ii) and (3.13) that x k = 0. Therefore,

L m+1 x = m k=0 (W m+1 • • • • • W k+1 )x k = i-1 k=0 (W m+1 • • • • • W k+1 )x k = 0, (3.14) 
and (3.3) clearly holds.

(ii): In view of (i), we assume that, if m 1, (∀i ∈ {1, . . . , m}) W i = 0. We then derive from (3.4) that (∀i ∈ {1, . . . , m}) θ i i k=1 W k > 0. If x 0 = 0, (3.3) trivially follows from Lemma 3.3(ii), we therefore assume otherwise. Now set

(∀i ∈ {0, . . . , m}) y i = x i θ i x 0 . (3.15) 
According to Lemma 3.3(ii), (∀i ∈ {0, . . . , m}) y i 1. On the other hand, it follows from (3.9c), (3.15), and (3.1) that M y = L m+1 x/ x 0 . Altogether, we deduce from (3.12) that (3.3) holds.

(iii)⇒(ii): Take y ∈ X such that y X 1. Then it follows from (3.9c) and Lemma 3.

3(i) that M y -2 m+1 (1 -α)y 0 + M y W -2 m+1 (1 -α) Id y 0 + W y 0 + 2 m i=1 θ i W m+1 • • • • • W i+1 y i W -2 m+1 (1 -α) Id -W + 2θ m+1 2 m+1 α. (3.16)
In turn, (3.11) yields M X ,Y 1.

(iv)⇒(ii): Let y = (y 0 , . . . , y m ) ∈ X be such that y 0 = • • • = y m = 1, and set

u =      m i=1 θ i (W m+1 • • • • • W i+1 )y i , if m = 0; 0, if m = 0.
(3.17)

The assumptions and (3.9b) imply that

           ηθ m+1 α/(1 -α) θ m+1 2 m+1 α αθ m+1 + (1 -α)( Id -ηW -η W )(θ m+1 -W ) 2 m (2α -1) + (1 -α) W y 0 | y 0 . (3.18) 
On the other hand,

α W y 0 + u -(1 -α) y 0 | u = α W y 0 + u -(1 -α) ηW y 0 + (Id -ηW )y 0 | u α W y 0 + u -η(1 -α) W y 0 | u + (1 -α) (Id -ηW )y 0 u . (3.19) 
Since, by Lemma 3.3(i) and (3.18),

η m i=0 θ i W m+1 • • • • • W i+1 = ηθ m+1 α 1 -α , (3.20) 
we deduce from (3.17) that

η(1 -α)( W y 0 + u ) α. (3.21)
However, by Lemma 3.4,

W y 0 u -W y 0 | u ( W y 0 + u -W y 0 + u )( W y 0 + u ). (3.22)
In view of (3.21), this yields

η(1 -α) W y 0 u -W y 0 | u α( W y 0 + u -W y 0 + u ), (3.23) 
that is,

α W y 0 + u -η(1 -α) W y 0 | u α( W y 0 + u ) -η(1 -α) W y 0 u . (3.24) Therefore, since (3.21) implies that α -η(1 -α) u 0, it results from (3.19) that α W y 0 + u -(1 -α) y 0 | u α( W y 0 + u ) -η(1 -α) W y 0 u + (1 -α) (Id -ηW )y 0 u = α u + (α -η(1 -α) u ) W y 0 + (1 -α) (Id -ηW )y 0 u α u + (α -η(1 -α) u ) W + (1 -α) (Id -ηW )y 0 u = α W + α -η(1 -α) W u + (1 -α) Id -ηW u . (3.25) 
However, since (3.20) implies that α-η(1-α) W 0, while (3.17) implies that u θ m+1 -W , we derive from (3.25) that

α W y 0 + u -(1 -α) y 0 | u α W + α -η(1 -α) W θ m+1 -W + (1 -α) Id -ηW (θ m+1 -W ). (3.26) 
We also have

W y 0 + u W + u θ m+1 . (3.27) 
Hence, using (3.26), (3.27), (3.9c), (3.9a), and (3.9d) we obtain The next result establishes a link between deep neural network structures and the operators introduced in (3.1).

(3.18) ⇒ W y 0 + u 2 m+1 α α W y 0 + u -(1 -α) y 0 | W y 0 + u 2 m (2α -1) ⇔ M y 2 m+1 α α M y -(1 -α) y 0 | M y 2 m α 2 -(1 -α) 2 ⇔ M y 2 m+1 α M y -2 m+1 (1 -α)y 0 2 2 m+1 α -M y 2 ⇔ M y -2 m+1 (1 -α)y 0 + M y 2 m+1 α ⇔ M y Y 1. (3.28) Now set C = y ∈ X y 0 = • • • = y m = 1 .

Lemma 3.7 Let m

1 be an integer and let (H i ) 0 i m+1 be nonzero real Hilbert spaces. For every i ∈ {1, . . . , m + 1}, let W i ∈ B (H i-1 , H i ) and let L i be as in (3.1). Further, for every i ∈ {1, . . . , m}, let P i : H i → H i be firmly nonexpansive. Set

T m = W m+1 • P m • W m • • • • • P 1 • W 1 , (3.29) 
let x and y be distinct points in H 0 , and set v 0 = (x -y)/ x -y . Then there exists

(v 1 , . . . , v m ) ∈ H 1 × • • • × H m such that      (∀i ∈ {1, . . . , m}) v i L i (v 0 , . . . , v i-1 ) 2 m (T m x -T m y) x -y = L m+1 (v 0 , . . . , v m ).
(3.30)

Proof. For every i ∈ {1, . . . , m}, since P i is firmly nonexpansive, there exists a nonexpansive operator

Q i : H i → H i such that P i = Id +Q i 2 . (3.31)
We proceed by induction on m. Suppose that m = 1 and set

v 1 = Q 1 (W 1 x) -Q 1 (W 1 y) x -y , (3.32) 
which implies that v 1 W 1 (x -y) / x -y = L 1 v 0 . Then 2(T 1 x -T 1 y) = (W 2 • W 1 )(x -y) + (W 2 • Q 1 • W 1 )x -(W 2 • Q 1 • W 1 )y = x -y (W 2 • W 1 )v 0 + W 2 v 1 ) . (3.33)
Thus, (3.30) holds for m = 1. Next, we assume that m > 1 and that there exists

(v 1 , . . . , v m-1 ) ∈ H 1 × • • • × H m-1 such that      (∀i ∈ {1, . . . , m -1}) v i L i (v 0 , . . . , v i-1 ) 2 m-1 T m-1 x -T m-1 y x -y = L m (v 0 , . . . , v m-1 ), (3.34) 
and we set 

v m = 2 m-1 (Q m • T m-1 )x -(Q m • T m-1 )y x -y . ( 3 
T m x -T m y = (W m+1 • T m-1 )x -(W m+1 • T m-1 )y 2 + (W m+1 • Q m • T m-1 )x -(W m+1 • Q m • T m-1 )y 2 = x -y 2 m (W m+1 • L m )(v 0 , . . . , v m-1 ) + W m+1 v m = x -y 2 m L m+1 (v 0 , . . . , v m ). (3.36) 
In addition, it follows from (3.34) and (3.35) that

v m 2 m-1 T m-1 x -T m-1 y x -y = L m (v 0 , . . . , v m-1 ) , (3.37) 
which completes the proof.

We now establish connections between Condition 3.1 for linear operators and the concept of averagedness for composite nonlinear operators. Theorem 3.8 Let m 1 be an integer, let (H i ) 0 i m-1 be nonzero real Hilbert spaces, set H m = H 0 , and let α ∈ [1/2, 1]. For every i ∈ {1, . . . , m}, let W i ∈ B (H i-1 , H i ) and let P i : H i → H i be firmly nonexpansive. Suppose that 

(W i ) 1 i m satisfies Condition 3.1. Then P m •W m •• • ••P 1 •W 1 is α-averaged. Proof. Set T = P m • W m • • • • • P 1 • W 1 . We must show that Q = 1 - 1 α Id + 1 α T (3.
v = (v 0 , . . . , v m-1 ) ∈ H 0 × • • • × H m-1 such that              v 0 = x -y x -y (∀i ∈ {1, . . . , m -1}) v i L i (v 0 , . . . , v i-1 ) 2 m-1 (W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y x -y = L m v.
(3.39) Condition 3.1 imposes that

L m v -2 m (1 -α)v 0 + L m v 2 m α v 0 = 2 m α, (3.40) 
which is equivalent to

(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y -2(1 -α)(x -y) + (W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y 2α x -y . (3.41)
In turn, we derive from (3.38) and (3.31) that

Qx -Qy 1 α Id +Q m 2 • W m • • • • • P 1 • W 1 x - Id +Q m 2 • W m • • • • • P 1 • W 1 y -(1 -α)(x -y) 1 2α (W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y -2(1 -α)(x -y) + (Q m • W m • P m-1 • • • • • P 1 • W 1 )x -(Q m • W m • P m-1 • • • • P 1 • W 1 )y 1 2α (W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y -2(1 -α)(x -y) + (W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • P 1 • W 1 )y x -y , (3.42) 
which establishes the nonexpansiveness of Q.

Example 3.9 Consider Theorem 3.8 with m = 2. In view of Proposition 3.6(iii),

P 2 • W 2 • P 1 • W 1 is α-averaged if W 2 • W 1 -4(1 -α) Id + W 2 • W 1 + 2 W 2 W 1 4α.
In particular, if α = 1, this condition is obviously less restrictive than requiring that W 1 and W 2 be nonexpansive.

A variational inequality model

In this section, we first investigate an autonomous version of Model 1.1. Model 4.1 This is the special case of Model 1.1 in which, for every i ∈ {1, . . . , m}, there exist

R i ∈ A(H i ), say R i = prox ϕ i for some ϕ i ∈ Γ 0 (H i ) with ϕ i (0) = inf ϕ i (H i ), W i ∈ B (H i-1 , H i ), and b i ∈ H i such that (∀n ∈ N) R i,n = R i , W i,n = W i , b i,n = b i . We set (∀i ∈ {1, . . . , m}) T i : H i-1 → H i : x → R i (W i x + b i ) (4.1) and                                  F = Fix (T m • • • • • T 1 ) H = H 1 ⊕ • • • ⊕ H m-1 ⊕ H m → H = H m ⊕ H 1 ⊕ • • • ⊕ H m-1 S : H → → H : (x 1 , . . . , x m-1 , x m ) → (x m , x 1 , . . . , x m-1 ) W : → H → H : (x m , x 1 , . . . , x m-1 ) → (W 1 x m , W 2 x 1 , . . . , W m x m-1 ) ϕ : H → ]-∞, +∞] : x → m i=1 ϕ i (x i ) ψ : H → ]-∞, +∞] : x → m i=1 ϕ i (x i ) -x i | b i F = x ∈ H x 1 = T 1 x m , x 2 = T 2 x 1 , . . . , x m = T m x m-1 , (4.2)
where x = (x 1 , . . . , x m ) denotes a generic element in H.

Static analysis

We start with a property of the compositions of the operators (T i ) 1 i m of (4.1). Proposition 4.2 Consider the setting of Model 4.1, let i and j be integers such that 1 j i m, and let x ∈ H j-1 . Then

(T i • • • • • T j )x x i k=j W k + i q=j b q i k=q+1 W k . (4.3)
Proof. In view of (4.1), the property is satisfied when i = j. We now assume that i > j. Since R i ∈ A(H i ), Proposition 2.21(i) yields

(T i • • • • • T j )x = R i (W i (T i-1 • • • • • T j )x + b i ) = R i (W i (T i-1 • • • • • T j )x + b i ) -R i 0 W i (T i-1 • • • • • T j )x + b i W i (T i-1 • • • • • T j )x + b i . (4.4)
We thus obtain (4.3) recursively.

Next, we establish a connection between Model 4.1 and a variational inequality. Then the following hold:

Proposition 4.3 In the setting of Model 4.1, consider the variational inequality problem

find x 1 ∈ H 1 , . . . , x m ∈ H m such that            b 1 ∈ x 1 -W 1 x m + ∂ϕ 1 (x 1 ) b 2 ∈ x 2 -W 2 x 1 + ∂ϕ 2 (x 2 ) . . . b m ∈ x m -W m x m-1 + ∂ϕ m (x m ).
(i) The set of solutions to (4.5) is F .

(ii) F = zer (Id -W • S + ∂ψ) = Fix (prox ψ • W • S). (iii) F = (T 1 x m , (T 2 • T 1 )x m , . . . , (T m-1 • • • • • T 1 )x m , x m ) x m ∈ F .
(iv) Suppose that (W i ) 1 i m satisfies Condition 3.1 for some α ∈ [1/2, 1]. Then F is closed and convex.

(v) Suppose that (W i ) 1 i m satisfies Condition 3.1 for some α ∈ [1/2, 1] and that one of the following holds:

(a) ran (T m • • • • • T 1 ) is bounded. (b)
There exists j ∈ {1, . . . , m} such that dom ϕ j is bounded.

Then F and F are nonempty.

(vi) Suppose that Id -W • S is monotone. Then F is closed and convex. In addition, F and F are nonempty if any of the following holds: 

(a) Id -W • S + ∂ϕ is surjective. (b) ∂ϕ -W • S is maximally monotone. (c) max 1 i m W i 1, S * -W
ϕ i = H i . (g) For every i ∈ {1, . . . , m}, dom ϕ i is bounded. Proof. We first observe that S ∈ B (H, → H), W ∈ B ( → H, H), ϕ ∈ Γ 0 (H), and ψ ∈ Γ 0 (H). (i): Let x ∈ H. Then x solves (4.5) ⇔            W 1 x m + b 1 ∈ x 1 + ∂ϕ 1 (x 1 ) W 2 x 1 + b 2 ∈ x 2 + ∂ϕ 2 (x 2 )
. . .

W m x m-1 + b m ∈ x m + ∂ϕ m (x m ). (4.6) ⇔            x 1 = prox ϕ 1 (W 1 x m + b 1 ) = T 1 x m x 2 = prox ϕ 2 (W 2 x 1 + b 2 ) = T 2 x 1 . . . x m = prox ϕm (W m x m-1 + b m ) = T m x m-1 . (4.7) (ii): Let x ∈ H. Using (4.
2), we obtain

x solves (4.5) ⇔ 0 ∈ x -W (Sx) + ∂ψ(x) ⇔ x = prox ψ W (Sx) . (4.8)
(iii): Clear from the definitions of F and F .

(iv): Define m firmly nonexpansive operators by (∀i ∈ {1, . . . , m}) P i :

H i → H i : y → R i (y + b i ).
Then it follows from (4.1) and Theorem 3.8 applied to

(P i ) 1 i m that T m • • • • • T 1 is nonexpansive.
In turn, we derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 4.24] that its fixed point set F is closed and convex. (b)⇒(a): We have ran T j ⊂ ran R j = ran prox ϕ j = dom (Id +∂ϕ j ) = dom ∂ϕ j ⊂ dom ϕ j . Hence ran T j is bounded and Proposition 4.2 (with i = m) implies that Remark 4.5 Let x ∈ H be a solution to the variational inequality (4.5). A natural question is whether x solves a minimization problem. In general the answer is negative. For instance, for m 3 layers, even if the Hilbert spaces (H i ) 1 i m are identical, W = Id , the vectors (b i ) 1 i m are zero, and the functions (ϕ i ) 1 i m are indicator functions of closed convex sets (C i ) 1 i m , the solutions to (4.5) do not minimize any function Φ : H → R [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF]. A rather restrictive scenario in which the answer is positive is when Id -W • S is monotone and

ran T ⊂ ran T m , if j = m; (T m • • • • • T j+1 )(ran T j ), if 1 j m -1 (4.9) is likewise. (vi): Set A = Id -W • S + ∂ψ. Since Id -W • S is
S = W = max 1 i m W i 1. Therefore, -W • S is nonexpan- sive, which implies that (Id -W • S)/2 is firmly nonexpansive [8, Corollary 4.5], that is (∀x ∈ H) x -W (Sx) | x x -W (Sx) 2 /2. Consequently, Id -W • S is 3 * monotone [8, Proposi- tion 25.16], while ∂ϕ is also 3 * monotone [8, Example 25.13]. Finally, since S is unitary, ran Id -W • S = ran S * -W = ran S -W * * = ker S -W * ⊥ = H, (4.10) 
W • S is self-adjoint. Then x is a minimizer of Φ : x → (1/2) x -W (Sx) | x + ψ(x).
Example 4.6 In Model 4.1, suppose that, for every i ∈ {1, . . . , m}, H i = R N i for some strictly positive integer N i . In addition, assume that, for every i ∈ {1, . . . , m}, R i is a separable activation operator with respect to the canonical basis of R N i (see Proposition 2.24), and that it employs the ReLU activation functions of Example 2.6. For every i ∈ {1, . . . , m}, let

x i = (ξ i,k ) 1 k N i ∈ R N i and set b i = (β i,k ) 1 k N i . Then it follows from Proposition 4.3(i) that (x 1 , . . . , x m ) ∈ F if and only if, for every i ∈ {1, . . . , m}, x i ∈ [0, +∞[ N i and                  (∀k ∈ {1, . . . , N 1 }) [W 1 x m ] k + β 1,k -ξ 1,k ∈ I(ξ 1,k ) (∀k ∈ {1, . . . , N 2 }) [W 2 x 1 ] k + β 2,k -ξ 2,k ∈ I(ξ 2,k )
. . .

(∀k ∈ {1, . . . , N m-1 }) [W m-1 x m-2 ] k + β m-1,k -ξ m-1,k ∈ I(ξ m-1,k ) (∀k ∈ {1, . . . , N m }) [W m x m-1 ] k + β m,k -ξ m,k ∈ I(ξ m,k ) (4.11)
where, given

x ∈ H i-1 , [W i x] k is the kth component of W i x and (∀ξ ∈ [0, +∞[) I(ξ) = {0}, if ξ ∈ ]0, +∞[ ; ]-∞, 0] , if ξ = 0. (4.12) 
Altogether, we conclude that F is a closed convex polyhedron.

Asymptotic analysis

Next, we investigate the asymptotic behavior of (1.2) in the context of Model 4.1. (c) One of the following is satisfied:

(i) λ n ≡ 1/α = 1 and T x n -x n → 0. (ii) (λ n ) n∈N lies in ]0, 1/α[ and n∈N λ n (1 -αλ n ) = +∞.
Then (x n ) n∈N converges weakly to a point x m ∈ F and

(T 1 x m , (T 2 • T 1 )x m , . . . , (T m-1 • • • • • T 1 )
x m , x m ) solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) For every i ∈ {1, . . . , m -1}, R i is weakly sequentially continuous.

(iv) For every i ∈ {1, . . . , m -1}, R i is a separable activation operator in the sense of Proposition 2.24.

(v) For every i ∈ {1, . . . , m -1}, H i is finite-dimensional.

(vi) For some ε ∈ ]0, 1/2[, (λ n ) n∈N lies in [ε, (1 -ε)(ε + 1/α)] and, for every i ∈ {1, . . . , m}, H i = H and there exists

β i ∈ ]0, 1[ such that W i -2(1 -β i ) Id + W i 2β i .
Then, for every i ∈ {1, . . . , m -1}, (x i,n ) n∈N converges weakly to

x i = (T i • • • • • T 1 )
x m and (x 1 , . . . , x m ) solves (4.5).

Proof. We first derive from (1.2) and Model 4.1 that We now prove the convergence of the individual sequences under each assumption.

(∀n ∈ N) x n+1 = x n + λ n (T x n -x n ). ( 4 
(iii): We have already established that x n

x m . Since W 1 is weakly continuous as a bounded linear operator, so is T 1 in (4.1). Hence, (1.2) implies that

x 1,n = T 1 x n T 1 x m = x 1 . Likewise, we obtain successively x 2,n = T 2 x 1,n T 2 x 1 = x 2 , x 3,n = T 3 x 2,n T 3 x 2 = x 3 ,. . . , x m,n = T m x m-1,n T m x m-1 = x m .
(iv)⇒(iii): See [8, Proposition 24.12(iii)].

(v)⇒(iii): A proximity operator is nonexpansive and therefore continuous, hence weakly continuous in a finite-dimensional setting.

(vi): As shown above, x n

x m ∈ F . It follows from Proposition 3.6(iii) and Theorem 3.8 (applied with m = 1) that, for every i ∈ {1, . . . , m}, T i is β i -averaged. Hence, upon applying [24, Theorem 3.5(ii)] with α as an averaging constant of T , we infer that

           (Id -T 1 )x n -(Id -T 1 )x m → 0 (Id -T 2 )(T 1 x n ) -(Id -T 2 )(T 1 x m ) → 0 . . . (Id -T m )((T m-1 • • • • • T 1 )x n ) -(Id -T m )((T m-1 • • • • • T 1 )x m ) → 0. (4.15) Thus, x 1,n -x n = T 1 x n -x n → T 1 x m -x m , which implies that x 1,n = (x 1,n -x n ) + x n (T 1 x m - x m ) + x m = T 1 x m . However, since x 2,n -x 1,n = (T 2 • T 1 )x n -T 1 x n → (T 2 • T 1 )x m -T 1 x m , we obtain x 2,n (T 2 • T 1 )x m .
Continuing this telescoping process yields the claim.

The next result covers the case when the variational inequality problem (4.5) has no solution.

Proposition 4.8 In the setting of Model 4.1, suppose that

(W i ) 1 i m satisfies Condition 3.1 with α ∈ [1/2, 1], that (λ n ) n∈N lies in [ε, (1/α) -ε],
for some ε ∈ ]0, 1/2[, and that F = ∅. Then x n → +∞.

Proof. We derive from (4.13) and (4.14) that, for every n ∈ N, Remark 4.9 When assumptions (a)-(c) in Theorem 4.7 are satisfied, the neural network described in Model 1.1 is robust to perturbations of its input. Indeed, since T is α-averaged in (4.13), we can write the updating rule as x n+1 = Q n x n , where Q n is nonexpansive. In turn, if x 0 and x 0 are two inputs in H 0 , for a given n ∈ N, the resulting outputs x n and x n are such that x n -x n x 0 -x 0 .

x n+1 = x n + µ n (Qx n -x n ), where Q = (1 -1/α) Id +(1/α)T is
(5.1), the nonexpansiveness of R i , and Assumption 5.1 that 

(∀n ∈ N)(∀x ∈ H i-1 ) T i,n x -T i x R i,n (W i,n x + b i,n ) -R i (W i,n x + b i,n ) + R i (W i,n x + b i,n ) -R i (W i x + b i ) ρ n W i,n x + b i,n + η n + W i,n x + b i,n -W i x -b i ρ n ( W i,n x + b i,n ) + η n + W i,n -W i x + b i,n -b i ρ n ( W i,n x + b i,n ) + η n + ω n x + ν n = χ i,n x + ζ i,n , (5.3 
(∀n ∈ N)(∀x ∈ H) (T i,n • • • • • T 1,n )x -(T i • • • • • T 1 )x τ i,n x + θ i,n . ( 5 
(∀n ∈ N)            τ i+1,n = ( W i+1 + χ i+1,n )τ i,n + χ i+1,n i k=1 W k θ i+1,n = ( W i+1 + χ i+1,n )θ i,n + χ i+1,n i j=1 b j i k=j+1 W k + ζ i+1,n . (5.5) 
Then the sequences (τ i+1,n ) n∈N and (θ i+1,n ) n∈N belong to 1 + . Now let n ∈ N and x ∈ H. Upon invoking Proposition 5.2, the nonexpansiveness of R i+1 , and Proposition 4.2, we obtain

(T i+1,n • • • • • T 1,n )x -(T i+1 • • • • • T 1 )x (T i+1,n • T i,n • • • • • T 1,n )x -(T i+1 • T i,n • • • • • T 1,n )x + (T i+1 • T i,n • • • • • T 1,n )x -(T i+1 • T i • • • • • T 1 )x χ i+1,n (T i,n • • • • • T 1,n )x + ζ i+1,n + (T i+1 • T i,n • • • • • T 1,n )x -(T i+1 • T i • • • • • T 1 )x χ i+1,n ( (T i,n • • • • • T 1,n )x -(T i • • • • • T 1 )x + (T i • • • • • T 1 )x ) + ζ i+1,n + R i+1 (W i+1 • T i,n • • • • T 1,n )x + b i+1 -R i+1 (W i+1 • T i • • • • • T 1 )x + b i+1 ( W i+1 + χ i+1,n ) (T i,n • • • • • T 1,n )x -(T i • • • • • T 1 )x + χ i+1,n (T i • • • • • T 1 )x + ζ i+1,n ( W i+1 + χ i+1,n )(τ i,n x + θ i,n ) + χ i+1,n x i k=1 W k + i j=1 b j i k=j+1 W k + ζ i+1,n = τ i+1,n x + θ i+1,n , (5.6) 
which proves the result by induction.

We can now present the main result of this section on the asymptotic behavior of Model 1.1. The proof of this result relies on Theorem 4.7, which it extends. (c) One of the following is satisfied: (4.5). Now suppose that, in addition, any of the following holds: (iii) For every i ∈ {1, . . . , m -1}, R i is weakly sequentially continuous.

(i) λ n ≡ α = 1 and T x n -x n → 0. (ii) (λ n ) n∈N lies in ]0, 1/α[ and n∈N λ n (1 -αλ n ) = +∞. Then (x n ) n∈N converges weakly to a point x m ∈ F and (T 1 x m , (T 2 • T 1 )x m , . . . , (T m-1 • • • • • T 1 )x m , x m ) solves
(iv) For every i ∈ {1, . . . , m -1}, R i is a separable activation function in the sense of Proposition 2.24.

(v) For every i ∈ {1, . . . , m -1}, H i is finite-dimensional. (vi) For some ε ∈ ]0, 1/2[, (λ n ) n∈N lies in [ε, (1 -ε)(ε + 1/α)]
and, for every i ∈ {1, . . . , m}, H i = H and there exists

β i ∈ ]0, 1[ such that W i -2(1 -β i ) Id + W i 2β i .
Then, for every i ∈ {1, . . . , m -1}, (x i,n ) n∈N converges weakly to

x i = (T i • • • • • T 1 )
x m and (x 1 , . . . , x m ) solves (4.5).

Proof. Let (y n ) n∈N be the sequence defined by y 0 = x 0 and for n = 0, 1, . . . (iii)-(v): If one of these assumptions holds, by proceeding as in the proof of Theorem 4.7(iii)-(v), we obtain that, for every i ∈ {1, . . . , m -1}, (

T i • • • • • T 1 )x n x i = (T i • • • • • T 1 )
x m and that, furthermore, (x 1 , . . . , x m ) solves (4.5). However, Proposition 5.3 asserts that, for every i ∈ {1, . . . , m -1}, there exist (τ i,n ) n∈N ∈ 1 + and (θ i,n ) n∈N ∈ 1 + such that, for every n ∈ N,

x i,n -(T i • • • • • T 1 )x n = (T i,n • • • • • T 1,n )x n -(T i • • • • • T 1 )
x n τ i,n x n + θ i,n . (5.17)

Since (x n ) n∈N is bounded, x i,n -(T i • • • • • T 1 )
x n → 0 and therefore x i,n x i .

(vi): For every i ∈ {1, . . . , m}, set 

(∀n ∈ N) e i,n = (T i,n • T i-1,n • • • • • T 1,n )x n -(T i • T i-1,n • • • • • T 1,n )x n , (5.18 
) n∈N ∈ 1 + )(∃ (θ i-1,n ) n∈N ∈ 1 + )(∀n ∈ N) e i,n χ i,n (T i-1,n • • • • • T 1,n )x n + ζ i,n χ i,n (T i-1,n • • • • • T 1,n )x n -(T i-1 • • • • • T 1 )x n + (T i-1 • • • • • T 1 )x n + ζ i,

2 )

 2 can be written as = prox φ , where φ is the indicator function of [-1, 1].

Figure 1 :

 1 Figure 1: The function φ (top) and the corresponding proximal activation function (bottom) in Proposition 2.3. Example 2.10 is in red, Example 2.11 is in blue, Example 2.17 is in green.

  Then, in view of (3.11), (3.28), and [8, Proposition 11.1(ii)], we conclude that M X ,Y = sup y∈conv C M y Y = sup y∈C M y Y 1.

. 35 )

 35 Then (3.29), (3.31), and (3.34) yield

  has closed range, and ker(S -W * ) = {0}. (d) max 1 i m W i 1 and, for every i ∈ {1, . . . , m}, dom ϕ * i = H i . (e) For every i ∈ {1, . . . , m}, dom ϕ i = H and dom ϕ * i = H i . (f) S * -W has closed range, ker(S -W * ) = {0}, and, for every i ∈ {1, . . . , m}, dom

  (v): Thanks to (iii), it is enough to show that F = ∅. Set T = T m • • • • • T 1 and recall that it is nonexpansive by virtue of Theorem 3.8. (a): Let C be a closed ball such that ran T ⊂ C and set S = T | C . Then S : C → C is nonexpansive and therefore [8, Proposition 4.29] asserts that Fix T = Fix S = ∅.

  monotone and continuous, it is maximally monotone [8, Corollary 20.28], with H as its domain. Since ∂ψ is also maximally monotone [8, Theorem 20.25], A is likewise [8, Corollary 25.5(i)] and hence F = zer A is closed and convex [8, Proposition 23.39]. Next, we note that, in view of (iii), F = ∅ ⇔ F = ∅. (a): The hypothesis implies that (b i ) 1 i m ∈ ran (Id -W • S + ∂ϕ) and therefore that (4.5) has a solution, i.e., F = ∅. (b)⇒(a): The claim follows from Minty's theorem [8, Theorem 21.1]. (c)⇒(a): We have W •

Remark 4 . 4

 44 which shows that Id -W • S is surjective. Altogether, since[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Corollary 25.5(i)] implies that Id -W •S +∂ϕ is maximally monotone, it follows from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Corollary 25.27(i)] that Id -W •S +∂ϕ is surjective. (d)⇒(a): We have dom ϕ * = H. Hence since int dom ϕ * ⊂ dom ∂ϕ * [8, Proposition 16.27], we have ran ∂ϕ = dom (∂ϕ) -1 = dom ∂ϕ * = H. Hence, ∂ϕ is surjective. We conclude using the same arguments as in (c): ∂ϕ and Id -W • S are both 3 * monotone and their sum is maximally monotone, which allows us to invoke [8, Corollary 25.27(i)]. (e)⇒(a): As seen in (d), ∂ϕ is surjective. We have H = int dom ϕ ⊂ dom ∂ϕ [8, Proposition 16.27]. Consequently, H = dom (Id -W • S) ⊂ dom ∂ϕ. Altogether, since ∂ϕ is 3 * monotone, it follows from [8, Corollary 25.27(ii)] that Id -W • S + ∂ϕ is surjective. (f)⇒(a): As seen in (c), Id -W • S is surjective and ∂ϕ is 3 * monotone. In addition, dom (Id -W • S) ⊂ dom ∂ϕ since H = int dom ϕ ⊂ dom ∂ϕ [8, Proposition 16.27]. Altogether, it follows from [8, Corollary 25.27(ii)] that Id -W • S + ∂ϕ is surjective. (g): Here dom A = dom ∂ϕ ⊂ dom ϕ = × m i=1 dom ϕ i is bounded. Hence, F = zer A = ∅ [8, Proposition 23.36(iii)]. In Proposition 4.3(vi), it is required that Id -W • S be monotone, or equivalently, that its self-adjoint part Id -(W • S + S * • W * )/2 be positive. In a finite-dimensional setting, this just means that the eigenvalues of the matrix W S + S * W * are in ]-∞, 2].

Theorem 4 . 7

 47 In the setting of Model 4.1, set T = T m • • • • • T 1 , let α ∈ [1/2, 1], and suppose that the following hold: (a) F = ∅. (b) (W i ) 1 i m satisfies Condition 3.1 with parameter α.

. 13 )

 13 Now set (∀i ∈ {1, . . . , m}) P i :H i → H i : y → R i (y + b i ). Then (4.1) yields T = P m •W m •• • ••P 1 •W 1and, since the operators (R i ) 1 i m are firmly nonexpansive, the operators (P i ) 1 i m are likewise. Hence, it follows from (b), Theorem 3.8, and (4.2) that T is α-averaged and Fix T = F. (4.14) (i): In view of (4.14), T is nonexpansive and hence we derive from [8, Theorem 5.14(i)] that (x n ) n∈N converges weakly to a point in F . The second assertion follows from Proposition 4.3(iii). (ii): In view of (4.13) and (4.14), [8, Theorem 5.15(iii) and Proposition 5.16(iii)] imply that (x n ) n∈N converges weakly to a point in F , and we conclude by invoking Proposition 4.3(iii).

  nonexpansive and such that Fix Q = F , and µ n = αλ n ∈ ]0, 1[. Hence the claims follows from [8, Proposition 4.29] and [12, Corollary 9(b)].

Theorem 5 . 4

 54 Consider the setting of Model 1.1 and let α ∈ [1/2, 1]. Suppose that Assumption 5.1 is satisfied as well as the following: (a) F = Fix T = ∅, where T = T m • • • • • T 1 . (b) (W i ) 1 i m satisfies Condition 3.1 with parameter α.

  n = T 1 y n y 2,n = T 2 y 1,n . . . y m,n = T m y m-1,n y n+1 = y n + λ n (y m,n -y n ).

(5. 7 )( 1 - 15 )

 7115 For every n ∈ N, set S n = T m,n • • • • • T 1,n . We derive from (1.2) and (5.7) that(∀n ∈ N) x n+1 -y n+1 = x n + λ n (S n x n -x n ) -y n -λ n (T y n -y n ) λ n S n x n -T x n + x n -y n + λ n (T x n -T y n -x n + y n ) . (5.8)At the same time, by Proposition 5.3, there exist (τ m,n) n∈N ∈ 1 + and (θ m,n ) n∈N ∈ 1 + such that (∀n ∈ N) S n x n -T x n τ m,n x n + θ m,n(5.9)τ m,n ( x n -y n + y n ) + θ m,n .(5.10)On the other hand, by Theorem 3.8, Assumption 5.1(ii), and (b), T is α-averaged. Hence, there exists a nonexpansive operatorQ : H → H such that T = (1 -α) Id +αQ. Since (c) implies that (λ n ) n∈N lies in ]0, 1/α],we deduce that(∀n ∈ N) x n -y n + λ n (T x n -T y n -x n + y n ) = (1 -αλ n )(x n -y n ) + αλ n (Qx n -Qy n ) αλ n ) x n -y n + αλ n Qx n -Qy nx n -y n .(5.11)Altogether (5.8), (5.10), and (5.11) yield(∀n ∈ N) x n+1 -y n+1 1 + τ m,n α x n -y n + 1 α τ m,n y n + θ m,n .(5.12)However, Theorem 4.7 guarantees that δ = sup n∈N y n < +∞ and therefore that(∀n ∈ N) x n+1 -y n+1 1 + τ m,n α x n -y n + 1 α τ m,n δ + θ m,n . (5.13) Since (τ m,n ) n∈N and (τ m,n δ + θ m,n ) n∈N are in 1 + , there exists ν ∈ [0, +∞[ such that x n -y n → ν [8, Lemma 5.31]. Consequently, δ = sup n∈N x n δ + sup n∈N x n -y n < +∞. Now, set(∀n ∈ N) e n = 1 α (S n x n -T x n ).In view of (1.2), we have(∀n ∈ N) x n+1 = x n + µ n (Qx n + e n -x n ), where µ n = αλ n ∈ ]0, 1[ . (5.16) (i): The weak convergence of (x n ) n∈N to a point x m ∈ Fix Q = F follows from (5.16) and [8, Theorem 5.33(iv)] by arguing as in the proof of [8, Theorem 5.14(i)]. (ii): It follows from (5.16) that n∈N µ n (1 -µ n ) = +∞. Hence [8, Proposition 5.34(iii)] implies that (x n ) n∈N converges weakly to a point x m ∈ Fix Q = F . In (i)-(ii) above, Proposition 4.3(iii) ensures that (T 1 x m , (T 2 • T 1 )x m , . . . , (T m-1 • • • • • T 1 )x m , x m ) solves (4.5).

1 k=1

 1 n χ i,n τ i-1,n x n + θ i-1,n + x n iζ i,n . (5.20) Thus, since (x n ) n∈N is bounded, (∀i ∈ {1, . . . , m}) ( e i,n ) n∈N ∈ 1 + .(5.21)In addition, by(5.18) and (1.2),(∀n ∈ N) x n+1 = x n + λ n T m (T m-1 (• • • T 2 (T 1 x n + e 1,n ) + e 2,n • • • ) + e m-1,n ) + e m,n -x n . (5.22)Thus, since Proposition 3.6(iii) and Theorem 3.8 imply that the operators (T i ) 1 i m are averaged, the proof can be completed as that of Theorem 4.7(vi) since [24, Theorem 3.5(ii)] asserts that (4.15) remains valid under (5.21).

  [START_REF] Moursi | The forward-backward algorithm and the normal problem[END_REF] is nonexpansive. By assumption, for every i ∈ {1, . . . , m}, there exists a nonexpansive operator Q i : H i → H i such that (3.31) holds. Let (L i ) 1 i m be as in (3.1) and let x and y be distinct points in H 0 . According to Lemma 3.7, there exists

  In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied. Then, for every i ∈ {1, . . . , m}, there exist(τ i,n ) n∈N ∈ 1 + and (θ i,n ) n∈N ∈ 1 + such that

	)
	as claimed.
	Proposition 5.3

  )and let (χ i,n ) n∈N and (ζ i,n ) n∈N be defined as in(5.2). By Propositions 4.2, 5.2, and 5.3, we have(∀n ∈ N) e 1,n χ 1,n x n + ζ 1,n(5.19) and(∀i ∈ {2, . . . , m})(∃ (τ i-1,n
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Remark 4. [START_REF] Bilski | The backpropagation learning with logarithmic transfer function[END_REF] In connection with Theorem 4.7 and Remark 4.5, let us underline that in general the weak limit x m of (x n ) n∈N does not solve a minimization problem. A very special case in which it does is the following. Suppose that m = 2, H 1 = H, W 1 1, and

It follows from [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF]Remark 3.10(iv)] that there exists a function ϑ ∈ Γ 0 (H) such that W * 1 • prox ψ 1 • W 1 = prox ϑ . Thus, x 2 is a fixed point of the backward-backward operator prox ψ 2 • prox ϑ . It then follows from [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Remark 6.13] that x 2 is a minimizer of 1 ϑ + ψ 2 , where 1 ϑ : x → inf y∈H (ϑ(y) + x -y 2 /2) is the Moreau envelope of ϑ.

Remark 4.11

To model closely existing deep neural networks, we have chosen the activation operators in Definition 2.20 and Model 4.1 to be proximity operators. However, as is clear from the results of Section 3 and in particular the central Theorem 3.8, an activation operator R i : H i → H i could more generally be a firmly nonexpansive operator that admits 0 as a fixed point. By [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 23.9], this means that R i is the resolvent of some maximally monotone operator such

) such that 0 ∈ A i 0. In this context, the variational inequality (4.5) assumes the more general form of a system of monotone inclusions, namely,

(4.16)

Analysis of nonperiodic networks

We analyze the deep neural network described in Model 1.1 in the following scenario.

Assumption 5.1 In the setting of Model 1.1, there exist sequences

+ , and (ν n ) n∈N ∈ 1 + for which the following hold for every i ∈ {1, . . . , m}:

In addition, we set 

Proof. According to Assumptions 5.1(i) and 5.1(iii), sup n∈N W i,n < +∞ and sup n∈N b i,n < +∞. It then follows from (5.2) that (χ i,n ) n∈N ∈ 1 + and (ζ i,n ) n∈N ∈ 1 + . Hence, we deduce from (1.1),