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Einstein and the old quantum theory

Alexander Afriat

January 14, 2020

Abstract

Objecting that Sommerfeld’s quantum conditions refer to particular coordinates,
Einstein proposes a more invariant rule. Even if the invariance is in fact canonical,
as Graffi (2005) has pointed out, Einstein may have in mind a double configuration
space invariance: with respect to loop deformations, and to point transformations—
all on a torus where features of the Liouville-Arnol’d theorem already appear.
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1 Introduction
Einstein’s role in quantum theory is well known: one associates him with the foun-
dational debate in the twenties and thirties, with the photoelectric effect, perhaps with
the quantum theory of gases—or even statistical mechanics—in general; but less with
the old quantum theory of Bohr and Sommerfeld (from 1913), or with analytical me-
chanics for that matter. “Zum Quantensatz von Sommerfeld und Epstein” (1917a),
which I propose to consider, has an unusual place in the history of science, charac-
terised by neglect, limited attention then unexpected, retarded recognition. Gutzwiller
(1990) and Graffi (2005) mention the peculiar history of its citations: practically half
a century of silence,1 then rediscovery2 in the more mathematical context of analytical
mechanics, dynamical systems. Even if analytical mechanics lay outside of Einstein’s
main mechanical interests—statistical mechanics, relativistic mechanics, foundations
of mechanics—Quantensatz should be treated more as analytical mechanics than as
quantum theory. Sommerfeld’s quantum rule3 ((1) below), referred to in the title, be-
comes little more than a point of departure, almost a pretext for the development or
at least adumbration of a futuristic, topological, highly invariant analytical mechanics;
that at any rate is what it amounts to, however Einstein himself saw it.

In a nutshell, Einstein (1917a,b) objects that Sommerfeld’s rule refers to particular
coordinates, in the sense that there’s a condition for each of the l coordinates q1, . . . , ql.
Einstein proposes another rule ((4) below), which is more invariant inasmuch as it in-
tegrates the entire momentum one-form p—not one component pi at a time—over the
l homotopy classes that characterise the topology of the torus he eventually introduces
(§2 below). Which raises the issue of why Einstein’s rule should be any better than
Sommerfeld’s. Empirical superiority is often important in physics. Not here: Einstein
never even brings it up, being only concerned with formal invariance; and even for us,
favoured as we are by hindsight, empirical adequacy can hardly be invoked to discrim-
inate theories we now know to be empirically very inadequate.4 But perhaps there are
cases where Einstein’s rule makes more sense than Sommerfeld’s, or works better. For
an elliptical Kepler motion, Einstein’s rule is no better than Sommerfeld’s, both work
well: the score there is one all. And neither rule can really handle the self-intersections
of a more complicated Rosettenbahn: nil nil (cumulatively one all). The superiority
of Einstein’s rule will only emerge on the toroidal configuration space he constructs
to resolve the self-intersections: one nil there (cumulatively two one). But even on the
torus, the advantage is only qualified: all one can say is that Einstein’s rule makes more

1Punctuated by two important wave-mechanical citations: Broglie (1924) pp. 63ff, and the footnote on
p. 495 of Schrödinger (1926). The story of how the mécanique ondulatoire emerged—see Lanczos (1952)
pp. 277ff—as if by mistake from Louis de Broglie’s remarkable misunderstandings of Quantensatz deserves
to be told, but elsewhere; and Schrödinger suggests, in the footnote, that Quantensatz was behind his Wellen-
mechanik as well.

2See Keller (1958), Gutzwiller (1990) pp. 215, 282, 315, Spivak (2010) p. 640.
3Sommerfeld (1915) p. 429, Sommerfeld (1916) p. 9; see also Epstein (1916a) p. 173, Epstein (1916b)

pp. 490, 501.
4There is no reason why the two rules should agree on motions, ruling out the same ones. But even if

that would make the rules significantly inequivalent, it would only give the preference to one if an indepen-
dent (empirical) way of checking the selections were available. We now know that an undulatory quantum
theory—with superposition, coherence, interference, resonance etc.—is needed to make any sense at all of
atomic mechanics, and select the right motions.
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sense and is more invariant, not that Sommerfeld’s rule would make no sense at all.5

The peculiarities of Quantensatz, which is paradoxically both primitive6 and decades
ahead of its time, give rise to peculiar historiographical difficulties which require a pe-
culiar, ad hoc methodology. Some of the mathematics is so futuristic that anachronisms
are needed to make any sense of it at all; but there one’s on a slippery slope that can
lead to the worst exaggerations. Anachronisms, however indispensable in such cases,
have to be kept under control, it is too easy to get carried away.

Much of my analysis will concern three central (and indeed related) themes: (i)
mechanics in configuration space Q (as opposed to phase space Γ ); (ii) integrability,
ergodicity; (iii) Liouville-Arnol’d:

(i) Even if Einstein uses the Hamiltonian function of position and momentum (and
confusingly makes a reference to Phasenraum7), his mechanics seems to be
firmly rooted in the qi-Raum he so often mentions.8 It is not a symplectic me-
chanics, in phase space.9

(ii) Einstein’s treatment of integrability and ergodicity is undeniably modern, per-
haps decades ahead of its time. But does it all make sense? Is mere configuration
space enough? Would phase space be needed after all?

(iii) One can easily identify features of the Liouville-Arnol’d theorem (§5 below) in
Quantensatz. But is it all there? Does Einstein really have a steady motion on a
rigid torus? Or just a shapeless, merely ‘topological’ torus?

Is it possible that Einstein, with little or no symplectic geometry, anticipated so much
modern, geometrical mechanics: integrability, ergodicity, Liouville-Arnol’d?

“Integrability” can mean various things. There is the purely geometrical notion,
well exemplified by the exactness of a one-form α = df : infinitesimal objects α(q)
assigned to every point q fit together in such a way as to allow ‘derivation [df ] from
a potential f ,’ as Einstein would put it. But that’s abstract; other notions are more
concretely arithmetical, and have to do with the simplicity or even the very possibility
of coordinate representation. The numbers involved10 acquire geometrical meaning by
identifying manifolds, which can simplify the representation of (integrated) motion by
adaptation—by ‘following it so as to eliminate it,’ absorbing its twists & turns into
their adapted shapes, thus enclosing and therefore representing it.

Einstein has his own notion of integrability, which is so strong it goes well be-
yond what is now called ‘complete’ integrability: it involves confining the motion to a
one-dimensional closed manifold—“die Bahn ist dann eine geschlossene, ihre Punkte
bilden ein Kontinuum von nur einer Dimension.”11 He seems to reduce integrability

5Even if it would make no invariant sense, no geometrical sense, some unfortunate coordinate-dependent
sense could perhaps be salvaged.

6Symplectically at any rate; certainly compared to Whittaker (1917), for instance.
7Einstein (1917a) p. 90
8Einstein (1917a,b,c)
9Even today, geometric mechanics can be symplectic or Riemannian; see Calin & Chang (2005), Pettini

(2007). Needless to say, Riemannian geometry is much closer to the curved Lorentzian geometry Einstein
had practically invented and was thoroughly used to.

10In §5 below there will be the conserved quantities f = (f1, . . . , fl) ∈ Rl.
11Einstein (1917a) p. 88
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and separability12 (§6 below) to two simple ‘topological’ distinctions: whether the mo-
tion eventually closes, or never does (which would pose an irremediable problem for
quantisation); and if it does close, whether it intersects itself (which poses a reme-
diable, indeed most welcome, problem for quantisation—so welcome that Einstein’s
whole invariant, topological agenda rests on it). Again, self-intersections are remedied
by Riemannisierung, in other words enlargement of the configuration space, considered
in the next section.

2 The two quantum rules
Sommerfeld’s quantum conditions

(1) J∗i =

∮
pidqi = nih,

i = 1, . . . , l, rule out atomic motions whose actions J∗i are not integer multiples ni ∈ Z
of Planck’s constant h. Having spent the previous years immersed in the tensorial
covariance of general relativity, Einstein sees a problem here: Sommerfeld’s rule refers
to the specific coordinates q1, . . . , ql; each one of the l conditions concerns a particular
momentum component pi. Einstein replaces them with l conditions, each one of which
involves the entire momentum one-form

(2) p =

l∑
i=1

pidqi,

now integrated over the l homotopy classes H1, . . . ,Hl or ‘topological features’ of the
space—there being a quantum condition for every such feature. To understand the
construction we can begin with an annulus.

Einstein considers the example of an annulus Q bounded by circles of radii r1,
r2. Motions on Q that never close are intractable; those that close without intersect-
ing themselves are too tractable—for Sommerfeld’s rule in particular, thereby giving
Einstein no advantage. Einstein’s whole strategy relies on closed motions that intersect
themselves: the only motions combining the two virtues of being somehow tractable,
but not so much as to preclude the welcome difficulties in whose solution lies Einstein’s
real edge over Sommerfeld, and which represent the chief interest of Quantensatz.

To see the problem, the above ‘topological’ classification of motions can be re-
expressed in terms of momentum assignments to (or right around) points: [1] one, [2]
finitely many, [3] infinitely many. Einstein considers an infinitesimal region13 r ⊂ Q
crossed by the motion, the following cases can arise:

[1] The next time the motion crosses r it assigns to q ∈ r the same momentum
p—and hence every time thereafter. This is the simplest kind of periodicity: the
motion is closed (and hence confined to a loop, a one-dimensional manifold of
finite length) and never intersects itself.

12See Gutzwiller (1990) §3.7 on the modern distinction (not Einstein’s).
13To include ergodic motion in the classification Einstein broadens his purview from the point to its im-

mediate surroundings.
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[2] The motion eventually assigns a finite number N of momenta14 p1, . . . ,pN to r,
finally closing on the N -th lap. The Bahn is still eine geschlossene, ihre Punkte
bilden ein Kontinuum von nur einer Dimension; but it intersects itself.15

[3] The motion assigns an infinite number of momenta to r, without ever closing.
Being ergodic, the motion cannot be confined to a loop, an exakt geschlossene
Bahn.

The quantisation rules at issue here only make sense with a single momentum at (or
right around) a point. To make the momentum assignment amenable to quantisation,
Einstein enlarges the configuration space, thus restoring single-valuedness. But the
enlargement procedure he adopts is finite, and cannot be repeated infinitely many times
(for infinitely many momentum values). Riemannisierung cannot be applied to ergodic
motions.

So Einstein takes a closed but nontrivial Rosettenbahn, which intersects itself. He
chooses a point q ∈ Q to which the motion assigns two momenta, p1 and p2. In order
to restore the Einwertigkeit needed for quantisation he superposes a second annulus on
the first, identifying the delimiting circles, and stipulating that whenever the motion
reaches either one it changes annulus. The motion on the resulting two-torus T2 can
now be quantised since it no longer intersects itself. The topology of the torus is cap-
tured by the (nontrivial) homotopy classes16 H1 and H2, respectively made up of loops
going around the first and second circles of the torus (once).17 The integral

(3) 〈p,Hi〉 =

∮
Hi

p

vanishes for neither H1 nor H2, whereas 〈p,H0〉 does vanish for the trivial homotopy
class H0 of ‘contractible’ loops going around neither circle: Einstein specifies that
the one-form p on T2 is κlosed18 (or perhaps even exact—see §4 below). The new
quantum rule19

(4) 〈p,Hi〉 = nih

i = 1, . . . , l, which in fact applies more generally to any l-torus20 Tl, requires the loop
integrals to be integer multiples ni ∈ Z of Planck’s constant h. The methodological,
æsthetic superiority of the rule lies in the double invariance of the expression∮

Hk

∑
i

pidqi :

14Each pk ∈
∧1Q is a one-form onQ and not a coordinate ∈ R.

15See Gutzwiller (1990) figures 10 & 30.
16Graffi (2005) p. 23: “curve topologicalmente inequivalenti.”
17See Gutzwiller (1990) figure 30.
18Since I am using “closed” in two entirely different senses, I’ll write “κlosed” for this second sense

(‘locally exact’), pertaining to differential forms.
19See Graffi (2004) p. 175.
20In the paragraph on p. 90 containing figures 1 & 2 Einstein seems to have in mind an l-dimensional torus

Tl (rather than a more general manifold with Betti number l). In two dimensions, Riemannisierung clearly
produces a torus; little generality is lost in considering T2; and one wonders how the scheme can work in
general if the enlarged configuration space is not toroidal. So I’ll speak of a torus Tl even with l > 2.
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invariance with respect to the choice of coordinates qi, and also with respect to the par-
ticular loop of Hk—with respect to ‘loop deformations.’21 All ‘old quantum theories’
are empirically too inadequate to justify an empirical preference of Einstein’s rule over
Sommerfeld’s.

Again, both quantum rules work in case [1], neither one in cases [2] and [3]; but
at least in case [2], the multi-valuedness (being finite) can be resolved on a larger
configuration space Tl, where Einstein’s rule works well and makes perfect sense.
Even Sommerfeld’s conditions can be made to work on Tl—which, however, strongly
favours the double invariance of Einstein’s rule.

3 Loops, trajectoires, gauge
Einstein’s loops are meaningless on their own and only acquire significance collec-
tively as elements of the homotopy classes H1, . . . ,Hl which capture the topological
peculiarities of the enlarged configuration space. Even if Einstein goes to the trouble
of writing “irgendeine geschlossene Kurve, welche durchaus keine ”Bahnkurve“ des
mechanischen Systems zu sein braucht,” Broglie (1924) p. 63 nonetheless speaks of
“trajectoires fermées.” But Broglie’s misunderstanding is in fact more interesting than
one may imagine, interesting enough to deserve a few words.

Consider such a mechanical trajectoire22 ξ in the plane P, and the action integral

(5) J∗ =

∮
ξ

(p1dq1 + p2dq2)

calculated with respect to the coordinates q1, q2. To simplify we can confine the
‘source’23 to the origin 0 ∈ P; in other words the curl dp of the momentum one-form

p = p1dq1 + p2dq2

vanishes everywhere else, on all of P̄ = P−{0}. The integral (5) has various interesting
symmetries24 which are worth looking at. A diffeomorphism

γ : P→ P ; q 7→ Q = γ(q) ; ξ 7→ Ξ = γ(ξ)

defined on all of P displaces everything—trajectoire, source at the origin, and other
points P̄—so as to preserve the relations of inclusion and exclusion, and hence the
integral J∗ itself. Even a diffeomorphism γ̄ : P̄ → P̄ on P̄ (as opposed to P)—
which only displaces points where dp vanishes, and the trajectoire itself, but not the
source 0—would be just as symmetric, as it could never drag ξ over the source. For a
diffeomorphism to alter the topological relations on which (5) depends it would have
to displace selectively, telling apart origin and points of ξ.

21Cf. Graffi (2005) p. 22.
22If the Hamiltonian has no explicit dependence on time, the trajectoire is best viewed as a mere (one-

dimensional) manifold, since the progression of its (temporal) parameter would be trivial; see §4 below.
23The term “source” comes from the ‘divergence’ version of Stokes’s theorem (attributed to Gauß or

Ostrogradsky or perhaps Green), here it is more metaphorical. Here the ‘source’ at the origin produces a
turbulence which by the theorem manifests itself on the loop ξ as the circulation J∗.

24See Epstein (1916a) p. 172, Whittaker (1917) pp. 271ff, Levi-Civita & Amaldi (1974) pp. 353ff.
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Since γ pulls a real-valued function

Qi : P→ R ; Q 7→ Qi(Q)

defined on the range P back25 to the domain P of γ, yielding a function

qi = γ~Qi = Qi ◦ γ : P→ R ; q 7→ qi(q) = (γ~Qi)(q)

on the domain P, it pulls the differential dQi back accordingly—and hence the basis
dQ1, dQ2, and with it the linear combination:

p = γ~P = p1γ
~dQ1 + p2γ

~dQ2,

where I have written ~ to avoid confusion with the asterisk Einstein uses to denote the
Maupertuis action J∗. We can write

J∗ =

∮
ξ

p =

∮
Ξ

P,

or even
J∗ =

∮
Ξ

p =

∮
ξ

P,

and

J∗ =

∮
γ′(ξ)

γ~p

=

∮
H
γ~p = 〈γ~p,H〉

(6)

for all diffeomorphisms
γ, γ′ : P→ P

leaving the source inside the trajectoire. Broglie’s trajectoires thus become highly
transformable, invariant entities—little more than deformable loops expressive of topo-
logical properties. It remains a mistake to think of Einstein’s loops ξ ∈ H as trajec-
toires, but not an uninteresting one.

In Hamiltonian mechanics one distinguishes between point transformations γ (on
the l-dimensional qi-Raum) and canonical transformations (on the 2l-dimensional phase
space Γ ).26 So far we haven’t gone beyond the rather restrictive ‘point’ condition

(7) p =
∑
i

pidqi =
∑
i

PidQi

of Lagrangian mechanics (where the configuration spaceQ characterised by q1, . . . , ql
maintains its identity, without ‘getting lost’ in the 2l-dimensional state space); but in

25The case is so trivial (domain and range coincide etc.) that pulling back and pushing forward can be
legitimately confused; so the abuse of notation γ~p, for instance, is venial. A diffeomorphism can be taken
to map from the domain P to the range P, or the other way around.

26See Landau & Lifschitz (1970) § 45.
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fact the weaker ‘symplectic’ condition

ω = dp = dp′ = d(p + dF )

=
∑
i

dpi ∧ dqi =
∑
i

dpi ∧ dqi + d2F(8)

also preserves J∗, where

(9) p 7→ p′ = p + dF

and the generating function F is a zero-form. So in addition to the diffeomorphic
freedom γ (or γ̄) and the homotopic freedom ξ 7→ Ξ (keeping clear of the source), we
have the ‘gauge’ or ‘symplectic’ freedom (8) to add an exact term dF :

J∗ = 〈γ~p + dF,H〉.

While a diffeomorphism γ affects the momentum one-form indirectly by first dragging
points, the gauge transformation (9) is fibre-preserving and therefore acts directly on
each p(q), point by point. The canonical transformation generated by F also corre-
sponds to a deformation of curves in P̄, reminiscent of the loop deformation ξ 7→ Ξ.
Even if the curl at the origin (or the corresponding circulation J∗) prevents the one-
form p from having a global primitive, one can think of a local primitive λ satisfying
p = dλ locally.27 In much the same way as one can take ξ to be displaced by the point
transformation γ, one can take the level sets λ = const. to be deformed by F .

Graffi (2005) has rightly pointed out that Einstein’s rule (4) is canonically invariant.
The symplectic freedom (8) is undeniably available; but Einstein’s mechanics is so
unsymplectic, so firmly rooted in the qi-Raum he so often mentions, that I doubt he
had in mind anything beyond the two genuinely qi-Raum symmetries represented in
(6).

4 Hamilton-Jacobi-Einstein
The old quantum theory, including Quantensatz, was formulated in terms of Hamilton-
Jacobi theory,28 which therefore deserves some attention.

The principle of least action29 exists in two versions, which in Einstein’s notation
would be distinguished by a star indicating neglect of time.

[i] The ‘space-time’ Hamiltonian version determines the spatial shape of trajectories
as well as motion along them by minimising the full Hamiltonian action30

J =

∫ t

t0

L dt,

27“Locally” could mean, for instance, on any simply-connected region of P̄.
28See Hamilton (1833, 1834), Jacobi (1884) pp. 143ff, Appell (1909) pp. 556ff, Epstein (1916b) pp. 493ff,

Whittaker (1917) pp. 288ff, Carathéodory (1937) pp. 66ff, Brillouin (1938) pp. 168ff, Appell (1953)
pp. 429ff, Levi-Civita & Amaldi (1974) pp. 355ff, Arnol’d (1988) §9.4, Jacobi (1996) pp. 216ff, Fasano
& Marmi (2002) §11.1, Graffi (2004) p. 51, Benci & Fortunato (2014) §1.4.

29See Brillouin (1938) pp. 159ff.
30Cf. Carathéodory (1937) p. 10.
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where the ‘momentum’ or ‘covariant’ Lagrangian can be written

L =
∑
i

pi
∂H

∂pi
−H .

[ii] The ‘spatial’ version attributed to Maupertuis only gives the spatial shape of the
trajectory, by minimising the purely spatial part

(10) J∗ =

∫ q

q0

p =

∫ q

q0

∑
i

pidqi

of the action.

Hamilton’s principle is in a sense more general; but the generality it adds to Mauper-
tuis’ is only of any interest if the Hamiltonian H depends explicitly on time. Since
Einstein takes it not to, the motion is confined to a level surface where the Hamilto-
nian remains equal to some constant E; and the action assumes the degenerate additive
form31

J = J∗ − Et.
Let us write H = T + U (and L = T − U ), where the potential U depends only on
position and the kinetic energy

T =
‖p‖2

2m
=

1

2

∑
i

piq̇i

=
1

2

∑
i

pi
∂H

∂pi

is quadratic in the momenta. Only the spatial shape of the trajectory would then remain
interesting. To confine our attention to that shape, ignoring the trivial time evolution
given by the term −Et, we just take the spatial ‘Maupertuis’ part of J , namely (10).
Viewing q0 as a fixed initial position and q as a variable final position, we can radi-
ate q in all directions from q0 (now reminiscent of a source in geometrical optics32)
along dynamical trajectories derived from the action function J∗(q,q0) satisfying the
Hamilton-Jacobi equation33

(11) H (q, dJ∗) = E,

or rather
‖p‖2 = ‖dJ∗‖2 = 2m(E − U).

Choosing an infinitesimal action δJ∗, we first have the sphere σ(q0, δJ
∗) of radius

ζ(q0, δJ
∗) =

δJ∗√
2m(E − U (q0))

31See Jacobi (1884) Einundzwanzigste Vorlesung, Appell (1953) pp. 430ff, Levi-Civita & Amaldi (1974)
pp. 362ff.

32See Hamilton (1833, 1834), Whittaker (1917) pp. 288ff.
33See Graffi (2004) p. 51.
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around q0. The momentum p at any q on the sphere is the differential

p(q) = dJ∗(q) =

l∑
i=1

∂J∗(q)
∂qi

dqi

of J∗ viewed as a function of the final position q. Once we have a level surface
σ(q0, δJ

∗) of J∗, we might as well generalise and propagate from an arbitrary (l−1)-
dimensional initial surface

Σ1 = ΣJ∗
[1]

(which could be a sphere σ or not), viewed as a level surface of action J∗[1]. I’ll follow
Schrödinger (1926, pp. 492-3) on the way to his Wellenmechanik.34 We can again take
the same increment35 δJ∗, which provides a distance ζ(q1, δJ

∗) at the generic point
q1 ∈ Σ1. Then there are two possible constructions: Either we repeat the above con-
struction, now treating q1 as the source of a ‘secondary’ wave,36 a sphere σ(q1, δJ

∗) of
radius ζ(q1, δJ

∗) emanated from every point of the ‘primary’ wavefront Σ1, in which
case the surface Σ2 of action

J∗[2] = J∗[1] + δJ∗

is the envelope of the secondary waves. Alternatively one lays off ζ(q1, δJ
∗) nor-

mally at every point, to define Σ2 even more directly. ‘Normally’ can be understood as
follows: The (l − 1)-dimensional linear space

Tq1
Σ1 ⊂ Tq1

Q

tangent to Σ1 at q1 determines a ray ρ[1 in the cotangent space T∗q1
Q. The direction of

the momentum p1 at q1 is given by p1 ∈ ρ[1, the length by

‖p1‖ =
√

2m(E − U (q1)).

The inverse m] of the mass tensor37 m[ determines a vector p]1 = m]p1, indeed a ray
ρ]1 containing p]1 in the tangent space Tq1Q. The action increment δJ∗ fixes the length
ζ(q1, δJ

∗) of the required vector p̂]1 ∈ ρ
]
1, which goes from Σ1 to the corresponding

point of Σ2.
So that’s one way (specificially a rather Hamiltonian way) of understanding the

Hamilton-Jacobi equation (11)—which is so central to the old quantum theory, and
even to wave mechanics: as an infinitesimal condition governing the orthogonal prop-
agation in configuration space Q of a solution J∗ from an initial surface (which could
be as small as a point). But the orthogonal construction also serves to elucidate, by op-
position, the somewhat different logic of the ‘oblique’ construction Einstein proposes
in § 3 of Quantensatz. In Schrödinger’s construction, the direction of propagation

34See also Brillouin (1938) pp. 169ff, Arnol’d (1988) pp. 251ff.
35A smaller increment would be even better, if secondary waves are propagated from an already infinites-

imal primary wavefront σ(q0, δJ∗).
36See Huygens (1690), Whittaker (1917) pp. 289ff, Carathéodory (1937) pp. 13ff, Arnol’d (1988) §9.3.
37See Brillouin (1938) p. 143.
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from the initial surface Σ1 is determined by the local slant of the surface itself,38 not
by initial data freely assigned to it, point by point. Einstein also propagates from an
(l − 1)-dimensional surface in the qi-Raum Q, but obliquely—at an ‘angle,’ relative
to the surface, that varies from point to point. Schrödinger’s orthogonal propagation,
which makes the initial surface Σ1 a level surface of J∗, also makes the propagated
field exact, indeed consistent with a Hamilton-Jacobi potential J∗; Einstein’s ‘oblique’
construction has to require exactness independently, as it is not provided by orthogo-
nality.

The difference between κlosed and exact, it should be noted, may not have been
entirely clear to Einstein (or others in 1917). Important progress is made in Rham’s
Thèse (1931), where the distinction is used for analysis situs. Even if the distinction is
clear to Weyl (1939), he confusingly uses the word “exact” to mean κlosed: “A differ-
ential ω whose derivative vanishes is called exact.” Weyl’s understanding of κlosed is
already rather modern:

What we mean by ω ∼ 0 (ω homologous zero) may be explained in two
ways: either differentially as indicating that ω is the derivative of a dif-
ferential of next lower rank, or integrally as demanding that the integral
of ω over any cycle vanishes. Every differential ∼ 0 is exact; one read-
ily proves this in both ways. “In the small” both notions, exact and ∼ 0,
coincide, but not in the large.

But one can imagine how roughly, if at all, the distinction was understood in 1917. In
(1917c) Einstein seems to treat his equations (7) and (7a) as equivalent; in Quantensatz
he writes “bzw.” between his equations 10) and 10a)—but then does draw a related
distinction, between einwertig and vielwertig, on the next page:

Ist aber der in Betracht kommende Raum der qi ein mehrfach zusam-
menhängender, so gibt es geschlossene Bahnen, welche nicht durch stetige
Änderung auf einen Punkt zusammengezogen werden können; ist dann J∗

keine einwertige (sondern eine ∞ vielwertige) Funktion der qi, so wird
das Integral [

∫ ∑
pidqi] für eine solche Kurve im allgemeinen von Null

verschieden sein.

Indeed if the one-form p is only

CMC: closed on a multiply-connected region,

it may or may not be exact, the loop integral (3) may or may not vanish. If p is
not exact,39 the loop integral 〈p,H〉 will not vanish, but its Vielwertigkeit will be the
denkbar einfachste: every point q on a given loop acquires an additional 〈p,H〉 on
every lap:

J∗(n+1)(q) = J∗(n)(q) + 〈p,H〉
= J∗(1)(q) + n〈p,H〉,

38Here the normal direction of propagation is determined by the mass tensor m. With a more general
Hamiltonian (and Lagrangian), the duality relations ] [ between level surface and motions are given by the
fibre derivatives, with components ∂H /∂pi, ∂L /∂q̇i.

39The ‘topological interpretation’ of the Aharonov-Bohm effect shows how important it is to distinguish
between not exact and the above condition CMC: not necessarily exact.
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where the integer n stands for the lap. In terms of the Ein/Vielwertigkeit of the primitive
J∗, exact means has a single-valued global primitive J∗; merely κlosed means exact
“in the small”—the primitive J∗ is locally einwertig but may be globally vielwertig.

Returning to Einstein’s construction, he freely assigns momenta p1(q1) to the points
q1 of Σ1, then radiates dynamical (Hamiltonian) trajectories40 L satisfying

L̇(q1) = p]1(q1) = m]p1(q1)

throughout Σ1. The dynamical vector field L̇ thus determined by the one-form p1 =
p|Σ1

provides a one-form p = m[L̇ on an l-dimensional region U ⊂ Q covered by L̇.
Einstein then wonders when the one-form p determined by the Hamiltonian vec-

tor field L̇ will also satisfy the Hamilton-Jacobi equation; for the radiated congruence
can, confusingly, be ‘Hamiltonian’ (in other words made up of dynamical trajecto-
ries) without being ‘Hamilton-Jacobi’—consistent with a potential J∗ satisfying the
Hamilton-Jacobi equation. It turns out that p1 has to be κlosed, for then p will be too;
and as long as U is topologically simple, κlosed means exact:

(dp1 = 0)⇔ (dp = 0)⇔ (∃ J∗ : p = dJ∗).

The potential J∗ is slightly underdetermined by its derivative dJ∗, in other words

d−1p = [J∗] = [J∗ + η]η ,

where η is a constant on U . A value J∗(q) at a single q ∈ U is enough to overcome
the underdetermination and fix all of J∗. Summing up, the theorem can be given as
follows: Only a κlosed momentum field p (radiated dynamically from the momenta p1

freely assigned to an initial surface Σ1 ⊂ Q) can be derived from a potential

J∗ = d−1p− η

satisfying the Hamilton-Jacobi equation.
Einstein seems to change his mind in the Nachtrag zur Korrektur, p. 91:

LB: Liefert eine Bewegung ein pi-Feld, so besitzt dieses notwendig ein
Potential J∗.

Whatever he means has to do with § 4 of Quantensatz: “die zweite der in § 4 angegebe-
nen Bedingungen für die Anwendbarkeit der Formel 11) stets von selbst erfüllt sein
muß [ . . . ]”; at the end of § 4 we discover that

Die Anwendung der Quantenbedingung 11) verlangt, daß derartige Bah-
nen existieren, daß d i e e i n z e l n e B a h n ein pi-Feld bestimmt, für
welches ein Potential J∗ existiert.

40The almost superfluous curves L and vectors L̇ used to extend the one-form p0 on Σ0 to a one-form
p on the l-dimensional region U are only introduced because Einstein seems to have such objects in mind.
They can easily be dispensed with, the one-forms are enough.
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To try to make sense of this we can start with the primitive notion of Bewegung: a
motion, a trajectory in configuration space—however it may be defined or generated.
Returning to the above classification, the motion can be closed (case [1] or [2]) or
ergodic (case [3]). If it is closed, it will assign to no point q (or neighbourhood) of
Q more than finitely many momenta p1, . . . ,pN . That’s what Einstein means by a
pi-Feld: an assignment of at most finitely many momenta to (certain) points of Q. If
the momentum is finitely multi-valued here and there, the configuration space can be
enlarged to restore single-valuedness—but not if it is ergodic.

There remains the issue of how a single Bewegung, confined as it is to a one-
dimensional manifold, can yield a Feld, a field on an l-dimensional manifold. Since
Einstein goes to the trouble of emphasising d i e e i n z e l n e B a h n with S p e r -
r d r u c k, he really does seem to mean a single trajectory. He may simply be unaware
of the problem; or perhaps it somehow doesn’t bother him and he just ignores it; or
perhaps he has a way of dealing with it. But if he does, it would surely have to involve
a congruence, a S c h a r, somehow or other—despite the arresting S p e r r d r u c k
of d i e e i n z e l n e B a h n.

Indeed Einstein’s use of Hamilton-Jacobi theory is most peculiar, perhaps even
contradictory or downright wrong. It is a theory that undeniably involves congruences
of trajectories. In § 3 of Quantensatz and in (1917c), Einstein considers the entire
congruence; but elsewhere in Quantensatz he seems to use the same theory to produce a
single trajectory. The integral (3) only makes invariant sense if p is defined everywhere
on Q, not just on a single trajectory—Einstein accordingly speaks of an entire pi-
Feld. But Einstein’s whole analysis and classification of trajectories (our cases [1]-
[3])—which would get confused, perhaps even undermined, by congruences—seems
to depend on single trajectories. We may simply have a case of Einstein wanting to
have his cake and eat it.

Returning to LB, the issue of a Hamilton-Jacobi potential J∗ or of a vanishing curl
dp does not even arise with a single trajectory. With a whole congruence of motions
radiated from an initial surface, the curl dp automatically vanishes if the propagation is
orthogonal, as in Schrödinger’s construction. If the propagation is only transversal, as
in § 3 of Quantensatz, the curl has to vanish for the motions to admit a Hamilton-Jacobi
potential J∗.

5 Liouville-Einstein-Arnol’d?
In the second-last paragraph of the Nachtrag Einstein formulates an integrability theo-
rem that deserves attention:

ITQ: Existieren l Integrale der 2l Bewegungsgleichungen von der Form

(12) Rk(qi, pi) = konst.,

wobei die Rk algebraische Funktionen der pi sind, so ist
∑
i pidq immer

ein vollständiges Differential, wenn man die pi vermöge (12) durch die qi
ausgedrückt denkt.
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The formulation is misleading, he may be groping towards the theorem now attributed
to Liouville41 and Arnol’d.42

We can begin anachronistically with (features of) the Liouville-Arnol’d theorem,
and then try to understand how much of it is already in Quantensatz. The theorem uses
l functions

Fi : Γ → R

on an 2l-dimensional phase space Γ to reduce the number of dynamically relevant
dimensions from 2l to l; in the sense that by l − 1 intersections of level surfaces of
appropriately compatible and independent functions it confines the dynamics to an
l-dimensional manifold. A function F foliates the phase space into (2l−1)-dimensional
level surfaces on which F = const.; specifying a value f of F already eliminates one
dimension by fixing a level surface. But the theorem concerns dynamics; the issue is
whether a given dynamics43

XG = (dG)] = ω](dG)

is tangent to the level surfaces F = const., or transversal to them. If the dynamics XG

were transversal to the level surfaces of F , the dimension lost by choosing a level sur-
face would be thus restored, with no net progress in the effort to eliminate dimensions.

The relevant notion is Poisson compatibility44

{F,G} = 0,

which can either be understood as compatibility between the dynamics XF generated
by F and the level surfaces of G, or the other way around. {F,G} vanishes if the
vector fieldXF is tangent to the level surfaces ofG, in other words if the graph of each
integral curve of XF is confined to a level surface of G. We can take the first function
F1 to be the Hamiltonian H , whose generic valueE singles out a (2l−1)-dimensional
energy surface. The two compatibilities

{H , F2} = 0 = {H , F3}

and values F2 = f2, F3 = f3 only eliminate both dimensions (and not just one) if
dF2 and dF3 are independent; if dF2 and dF3 were parallel, F2 and F3 would have the
same level surfaces, which would be redundant.45 Complete integrability is given by l
values

f = (f1, . . . , fl)

of the compatible, independent functions F1, . . . , Fl, which eliminate l of the initial 2l
dimensions of phase space, leaving an l-dimensional manifoldMf . Einstein’s integra-
bility theorem ITQ suggests he may have got this far. But the two cases at the bottom

41See Appell (1909) pp. 576ff, Appell (1953) pp. 437ff, Fasano & Marmi (2002) §11.4.
42See Fasano & Marmi (2002) §11.5, Graffi (2004) §1.7.1, Graffi (2005) §2, Lowenstein (2012) pp. 56ff.
43See Arnol’d (1988) §8.1.3, Sternberg & Guillemin (1984) p. 88, Graffi (2004) p. 51.
44See Graffi (2004) p. 50.
45In the aforementioned ‘effort to eliminate dimensions,’ Poisson incompatibility {F,G} 6= 0 would

be counterproductive (reversing progress already made by effectively restoring an eliminated dimension),
whereas linear dependence dF = kdG would be merely unproductive (producing neither loss nor gain,
leaving the number of dimensions unchanged).
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of p. 87 of Quantensatz give the impression that Einstein wants to reduce the dynam-
ically available dimensions of qi-Raum, not phase space; that he wants to confine the
Bahnkurve to a lower-dimensional manifold of configuration space:

Die Bahnkurve läßt sich ganz in einem Kontinuum von weniger als l Di-
mensionen unterbringen.

The kind of integrability he has in mind, taken as far as possible, would confine the
Bahnkurve to a one-dimensional submanifold of Q, not Γ :

Hierzu gehört als spezieller Fall derjenige der Bewegung in exakt ge-
schlossener Bahn. [ . . . ] die Bahn ist dann eine geschlossene, ihre Punkte
bilden ein Kontinuum von nur einer Dimension.

This brings us to the next part of the Liouville-Arnol’d theorem. So far we have little
more than a number l of dimensions. Without compactness, the l-dimensional manifold
Mf could be a product of lines and loops; compactness rules out the lines, leaving a
torus Tl, a product of l topological circles. It is worth noting that Arnol’d and Einstein
obtain their tori in different ways: Arnol’d by imposing compactness, Einstein by Rie-
mannisierung, to eliminate self-intersections. The two ways, however different, are not
unrelated: if the l-dimensional manifoldMf were a product of l lines, it would amount
to Rl; compactness prevents immersion in Rl by ‘swelling’Mf . A two-dimensional
torus T2, for instance, is an enlarged two-dimensional configuration space inasmuch
as it cannot be embedded in the plane. Suppose for definiteness that T2 is not just a
‘topological torus’ (a product of two loops) but a ‘rigid torus’ (a product of two rigid
circles S1)—literally a doughnut, with a shape and a size, embedded in R3 parallel
to the xy plane. Take the simplest possible motion, given by fixed rates of rotation
around both circles of such a T2: projected onto the xy plane it would intersect itself
(at regular intervals). That’s how compactness is related, albeit indirectly, to Einstein’s
Riemannisierung.

The distinction between rigid and topological tori, introduced above for mere defi-
niteness of representation, will actually prove quite relevant. According to the Liouville-
Arnol’d theorem, a completely integrable (and compact) dynamics can be represented
as l constant rates

(13) ϕ̇i = ωi =
∂H

∂J∗i

of rotation on an l-dimensional torus Tl, where the l angles46 ϕi with linear evolutions

ϕi(t) = ωit+ ϕi(0)

are canonically conjugate

(14) {ϕi, J∗j } = δij

to the actions J∗i ; i, j = 1, . . . , l.

46See Sternberg & Guillemin (1984) pp. 356ff, Lowenstein (2012) pp. 68ff.
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Einstein seems to construct a topological, l-dimensional torus (topologically equiv-
alent to a rigid torus) to resolve self-intersections; his l integrals (3) are undeniably
action integrals; but that’s not enough to provide the ‘symplectic’ rigidity that turns a
topological torus into a rigid one. To do so, Einstein would have needed something
along the lines of (13) or (14)—which were by no means obvious in 1917, especially
to a physicist, and cannot be taken for granted. To obtain a rigid torus one has to recog-
nise that the angles ϕi yielding the constant frequencies ωi are canonically conjugate to
the actions J∗i ; but nowhere does Einstein betray such symplectic awareness. The rigid
torus of the Liouville-Arnol’d theorem is really quite different from Einstein’s merely
topological torus: it has a metrically definite shape and is twice as big, with 2l degrees
freedom (l areas and l angles), not just l (l arbitrary parameters along l loops). Even
if steady motions on a rigid torus are ultimately needed to make sense of his intuitive
differentiation of ergodic and closed motions, that distinction alone hardly warrants
the attribution of so much definite structure to Einstein’s loose, highly topological con-
structions.

But let us nonetheless consider a rigid torus, which with little loss of generality
can be taken to be two-dimensional, with frequencies ω1, ω2. The motion can in any
case be confined to a one-dimensional manifold; the issue is its length (finite or not),
its topology (closed or open)—whether we have a Bewegung in exakt geschlossener
Bahn, whose Punkte bilden ein Kontinuum von nur einer Dimension. The relevant
criterion is rational dependence: if ω1/ω2 is rational, the motion can be confined to a
one-dimensional Kontinuum which, being geschlossen, is of finite length; whereas if
ω1/ω2 is irrational the motion can still be confined to a one-dimensional Kontinuum,
but not of finite length.47 Einstein clearly understands the geometrical significance
of confining motion to intersections of level surfaces of appropriately compatible and
independent functions; what may be less clear to him is the numerical—rational vs.
irrational—rather than set-theoretical (or ‘manifold-theoretical’) character of the last
step, needed to bring the (appropriately finite) dimensions down to one. Indeed in the
very last paragraph of the Nachtrag he seems to suggest that ergodic motion is only
possible with an incomplete set R1, . . . , Rj (j < l). We now know that ergodicity can
be a merely numerical matter, of irrational dependence—compatible with a ‘complete’
set of l functions R1, . . . , Rl.

Returning to Einstein’s integrability theorem ITQ, he mentions that the momentum
(2) would be a vollständiges Differential. I think the point is not exact vs. κlosed, but
that once ergodic motion is ruled out, with its ‘infinite-valued’ momentum, the momen-
tum just makes sense, being single-valued on an appropriate configuration space. He
seems to understand the theorem as follows: his l conserved quantities R1, . . . , Rl are
numerous enough to provide a well-defined momentum p by confining the motion to
an exakt geschlossene Bahn whose Punkte bilden ein Kontinuum von nur einer Dimen-
sion, thus ruling out ergodic motion which, being ‘infinite-valued,’ is unmanageable.

Einstein’s letter (1917b) to Ehrenfest puts it all pretty clearly:

ITE : Es liege ein Problem vor, bei dem soviel Integrale

L(qν , pν) = konst
47See Born (1933) pp. 80ff, Fasano & Marmi (2002) §11.7.
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existieren, als Freiheitsgrade. Dann können die Impulse als (mehrwertige)
Funktionen der qν ausgedrückt werden. Andererseits erfülle die Bahnkurve
einen gewissen qν-Raum vollständig, sodass sie jeden Punkt desselben be-
liebig nahe kommt. Dann liefert die Bahn des Systems im qν-Raum ein
Vektorfeld der pν .

Andererseits refers to the number of integrals: if there aren’t enough conserved quan-
tities, the motion is ergodic (case [3] above). The implication being that if there are
enough functions L, we have a Bewegung in exakt geschlossener Bahn, whose Punkte
bilden ein Kontinuum von nur einer Dimension ([1] or [2]); l integrals are enough to
provide a finitely-many-valued one-form p (on configuration space Q), which can be
made single-valued by Riemannisierung.

6 Einwertigkeit, separability, quantisation
Einstein’s imaginative, idiosyncratic treatment of integrability and ergodicity is of the
greatest interest; as is the torus he constructs to restore Einwertigkeit, not to mention
what he puts on it. For us the point is more what Einstein does to restore single-
valuedness, than why single-valuedness should ever be important in the first place; but
a few words on the matter may nonetheless not go amiss.

Even if it could be enough to say that integrals, like (1) or (3), only make sense
for single-valued integrands, Einstein seems to view it as a matter of separability:48

quantisation relies on separability, which in turn depends on single-valuedness.
It may be best to think of separability backwards, starting with canonical coordi-

nates
(J∗, ϕ) = (J∗1 , . . . , J

∗
l , ϕ1, . . . , ϕl)

which are separable by construction, in the sense that the total action can be written as
a sum

(15) J∗ =

l∑
i=1

J∗i

of the l actions Ji = J∗i (Hi). The Hamiltonian breaks up accordingly:

H (J∗1 , . . . , J
∗
l ) =

l∑
i=1

Hi(J
∗
i ),

where the decomposition into l pieces corresponds to the constitution of the torus

Tl = Tl(H1, . . . ,Hl) =

l∏
i=1

S1
l

48See Appell (1909) pp. 576ff, Epstein (1916a) pp. 170ff, Epstein (1916b) pp. 494ff, Born (1925) §14,
Appell (1953) pp. 437ff, Levi-Civita & Amaldi (1974) pp. 405ff, Fasano & Marmi (2002) §11.2, Graffi
(2004) p. 175, Lowenstein (2012) pp. 57ff.
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itself, a product of l circles S1. A general canonical transformation

(J∗1 , . . . , J
∗
l , ϕ1, . . . ϕl) 7→ (p1, . . . , pl, q1, . . . , ql)

from (J∗, ϕ) cuts across the decomposition by producing new canonical coordinates
(p, q) whose lines are transversal to those of (J∗, ϕ): the entangled general transfor-
mation entangles the unentangled coordinates. But the entanglement of coordinates is
avoided if the canonical transformation itself is unentangled, in the sense that it breaks
up into l canonical transformations

(J∗1 , ϕ1) 7→ (p1, q1), . . . , (J∗l , ϕl) 7→ (pl, ql),

one for every part Hi of the torus, where the symplectic two-form

ω =

l∑
i=1

ωi =

l∑
i=1

dJ∗i ∧ dϕi =

l∑
i=1

d(J∗i dϕi + dF )

=

l∑
i=1

dpi ∧ dqi.

If the canonical transformation is generated by an unentangled function

F (ϕ1, . . . , ϕl, q1, . . . , ql) =

l∑
i=1

Fi(ϕi, qi)

that decomposes accordingly, the new coordinates (p, q) will be just as separable as
(J∗, ϕ). Being even-dimensional, each two-dimensional submanifold determined by
(J∗i , ϕi)—by fixing the other 2l− 2 coordinates of phase space—is a symplectic man-
ifold Γi in its own right, with its own symplectic two-form

ωi = dJ∗i ∧ dϕi = d(J∗i dϕi + dFi)

= dpi ∧ dqi

and its own canonical transformations

(J∗i , ϕi) 7→ (pi, qi)

produced by its own generating functions Fi. If the covector dFi(z) ∈ T∗zΓi is in the
coplane

span{dJ∗i (z), dϕi(z)} ⊂ T∗zΓi

spanned by the covectors dJ∗i (z) and dϕi(z), it will put both dpi(z) and dqi(z) in the
same coplane. If that holds at every z ∈ Γi, the new pair (pi, qi) will determine the
same symplectic submanifold Γi as the action-angle pair (J∗i , ϕi).

That at any rate is a modern notion of separability, which is worth bearing in mind
to understand Einstein’s. He of course sees things differently. Again, he may not even
have the idea of an angle ϕi canonically conjugate to an action J∗i . He has l actions

J∗1 (q1, . . . , ql), . . . , J
∗
l (q1, . . . , ql),
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or perhaps

J∗1 (p1, . . . , pl, q1, . . . , ql), . . . , J
∗
l (p1, . . . , pl, q1, . . . , ql),

where each
pi = pi(q1, . . . , ql)

can in general be a function of all l coordinates q1, . . . , ql of qi-Raum. Separability
holds when “jedes pν nur von dem zugehörigen qν abhängt,”49 in other words

J∗ =

l∑
i=1

J∗i (pi(qi), qi).

The lines50 of the coordinates qi then turn the Hamilton-Jacobi PDE into l ODEs,
each on its own one-dimensional manifold51 Ui; so that the Unabhängigkeit on which
separability rests is encoded into the very framework (U1, . . . ,Ul) of the ODEs. Rather
than as a ‘symplectic alignment’ of each (pi, qi) along each (J∗i , ϕi), Einstein sees
separability as a matter of adapting the l coordinates q1, . . . , ql of qi-Raum to the shape
of the solution J∗; as a condition

τ [J∗; (q1, . . . , ql)]

relating the coordinates—or the Kontinua (U1, . . . ,Ul)—to the level surfaces of J∗.
Locally, around a point q ∈ U in Q, the coordinates can always be adapted to satisfy
the condition: since the infinitesimal behaviour dJ∗ of J∗ is captured by l derivatives
in l independent directions, one can always find l terms J∗i such that (15) and

dJ∗i
dqi

=
∂J∗

∂qi
.

The real problem is global, not local. As Einstein explains in the Nachtrag, J∗ may
eventually52 reach the same q from different directions; coordinates that satisfy the re-
lationship τ on the first pass may not satisfy it on the next: coordinates can be adapted
to a single J∗, but not to two different passes53 J∗(1), J

∗
(2). Which is why Einstein has

to enlarge the configuration space to resolve self-intersections; in the larger toroidal
configuration space, not only are self-intersections eliminated, but separability is re-
stored, since the coordinates can be adapted everywhere to the single-valued trajectory.
One can see the problem around a point q ∈ U ⊂ Q on the annulus: suppose the
self-intersecting motion, the propagation of J∗, first assigns one momentum

p (q, t1) = p1(q) = dJ(q, t1) = dJ∗(1)(q)

49Einstein (1917b)
50The lines of qi can be understood as the integral curves of the vector field ∂/∂qi.
51In fact U is partitioned into l independent congruences of one-dimensional manifolds Ui.
52Even if we are in a configuration space Q in which time has no more than an implicit role, Einstein

himself uses explicitly temporal language: “im Laufe der Zeit.”
53In an (l+ 1)-dimensional configuration spaceQ×R, enlarged to include time, the two passes would of

course take place at different times t1 and t2.
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to q, then a second

p (q, t2) = p2(q) = dJ(q, t2) = dJ∗(2)(q);

separabilty would require one coordinate system q1, q2 for the first pass J∗(1), another
Q1, Q2 for the second J∗(2). Once there are two annuli Q1, Q2 forming a torus T2,
everything gets split: q becomes two points

q1 ∈ U1 ⊂ Q1

q2 ∈ U2 ⊂ Q2,

with

p (q1, t1) = p1(q1) = dJ(q1, t1) = dJ∗(1)(q1)

=
∂J∗(1)

∂q1
dq1(q1) +

∂J∗(1)

∂q2
dq2(q1)

at q1 and

p (q2, t2) = p2(q2) = dJ(q2, t2) = dJ∗(2)(q2)

=
∂J∗(2)

∂Q1
dQ1(q2) +

∂J∗(2)

∂Q2
dQ2(q2)

at q2. Separability is restored by adapting the coordinates

q1, q2 : U1 → R

Q1, Q2 : U2 → R

to J∗, thus satisfying τ . An example would be alignment of q1 along the level curves
of J∗(1), with q2 perpendicular and appropriately normalised, so that ∂J∗(1)/∂q1 vanishes
and

p1 = dJ∗(1) = dq2;

and likewise on the second pass:

p2 = dJ∗(2) = dQ2.

The double condition
∂J∗(1)

∂q1
= 0 =

∂J∗(2)

∂q1

would be very restrictive and hard to satisfy.

7 Final remarks
Einstein situates his mechanics pretty firmly in the qi-Raum he so often refers to; sym-
plectic abstractions seem rather foreign to him. But one wonders how to make sense
of the configuration space integrability referred to in the two cases at the bottom of
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p. 87. Integrability is closely related to conservation, which surely depends on position
and momentum. Einstein appears to have the right modern geometrical intuitions—
enclosing motion in intersections of level sets of appropriate functions—but in the
wrong space. His symplectic ignorance makes Quantensatz all the more impressive; a
real feat of economy, efficiency: making relatively little go a very long way.

The ‘complete’ integrability one comes across in the modern literature is hardly
complete by Einstein’s standards, being compatible with both ergodic and periodic
motions. The more extreme kind of integrability Einstein has in mind corresponds to
closed, not ergodic motions: tertium non datur. He needs a self-intersecting motion
assigning more than one momentum here and there—to justify the enlarged configu-
ration space whose topological peculiarities are captured by the homotopy classes he
integrates over—but not the infinitely many momenta of ergodic motion; his Rieman-
nisierung is necessarily finite. And once on the torus, where the greater invariance of
Einstein’s integrals 〈p,Hi〉 is evident, the score against Sommerfeld is (an admittedly
mathematical, nonempirical) 2-1.

I thank Ermenegildo Caccese, Sandro Graffi, Stefano Marmi and Nic Teh for many
useful conversations; and audiences in Urbino, at Paris Diderot and Notre Dame for
valuable feedback.
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degli studi di Pavia, Dipartimento di fisica nucleare e teorica

Gutzwiller, M. (1990) Chaos in classical and quantum mechanics, Springer, New York

Hamilton, W. (1833) “On a general method of expressing the paths of light, and of the
planets, by the coefficients of a characteristic function” Dublin university review and
quarterly magazine 1, 795-826

Hamilton, W. (1834) “On the application to dynamics of a general mathematical
method previously applied to optics” Report of the fourth meeting of the British
association for the advancement of science; held at Edinburgh in 1834, 513-8
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