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Abstract. Human-systems integration can advantageously use artificial intelli-
gence to reach socio-technical flexibility. This paper proposes a systemic ap-
proach combined human and machine intelligence based on the shift from rigid 
automation to flexible autonomy. It emphasizes various issues, including ma-
turity, life-critical systems (considering not only cognitive but also physical prop-
erties), systems as representations of people and machines, and the need to con-
sider expertise and experience. It provides a deeper definition of the concept of 
system as a system of systems, represented by a network of systems where a net-
work of functions could be dynamically allocated onto a structure of structures. 
The TOP model is introduced (technology, organizations and people). Three dual 
design and operations processes for human-machine function allocation are in-
troduced: substitution/automation; amplification/interaction; and specula-
tion/amplification. Three kinds of operational processes, leading to allocation of 
human and machine functions, are presented: procedure following that leads to 
automation of people; automation monitoring that results from automation of ma-
chines; and problem solving that involves coordination of increasingly-autono-
mous people and machines. This is precisely where AI could be efficient and 
effective by supplying tools that augment people’s capabilities in problem solv-
ing. The overall approach has been coined “FlexTech”. 

Keywords: Human-Systems Integration, Artificial Intelligence, Systemic Flexi-
bility, TOP Model, Autonomy, Automation, Function Allocation. 

Human-Systems Integration (HSI) has been defined as a combination of Human-Cen-
tered Design (HCD) and Systems Engineering (SE), and an extension of Human-Fac-
tors and Ergonomics (HFE) and Human-Computer Interaction (HCI) [7]. John McCar-
thy and Marvin Minsky presented the first artificial intelligence (AI) program at the 
Dartmouth Summer Research Project on AI in 19561. AI became big during the 1980s 
but did not go through until recently, leaving the field to HCI during the 1990s and 
2000s. We can say that HCI highly contributed to human-centered automation. It is 

                                                        
1 We should also give credit to Allen Newell, Cliff Shaw and Herbert Simon for anticipating 

artificial intelligence with the Logic Theorist, a program designed to mimic the problem-solv-
ing skills of a human and was funded by Research and Development (RAND) Corporation. 
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hoped that AI of the 2020s will contribute to the development of human-centered au-
tonomy, which should greatly provide people and machines with appropriate socio-
technical flexibility. Prior to introducing the potential shift from rigid automation to 
flexible autonomy, this paper presents a systemic approach of human and machine 
intelligence. Examples in the aerospace domain are given. 

1 Thinking about systemic human and machine intelligence 

During the 1980s, AI developed so much that we were thinking that it could invade our 
lives and replace people. Even if many people contributed to AI research, we experi-
enced an AI winter during the last three decades! Today, AI resurrects even bigger than 
before. Should we be worried about being replaced by machines? Or, should we think 
in terms of interacting and collaborating with smart machines? The Cloud, for example, 
brings more autonomy to people than any tools had provided before. However, we need 
to be cautious. We should look after AI algorithms maturity. We should make sure 
that AI does not bring ways of doing things that are more complicated. Think about 
voice menus when you call a large company; you usually end up in being extremely 
frustrated just because the system is too rigid. This is because such voice recognition 
systems were immature for a long time. 

What topics are currently main stream in the AI community? The 2020 AAAI2 con-
ference3 proposes the following topics: search; planning; knowledge representation; 
reasoning; natural language processing; robotics and perception; multiagent systems; 
statistical learning; and deep learning. Summarizing, current AI could be categorized 
into two fields: data science and robotics. 

AI should not be based on human cognition only, but on other forms of intelligence 
when it makes sense to do so. Look at a flock of birds. Isn’t it smart? Thousands of 
birds flying close to each other typically create majestic patterns. This is natural collec-
tive intelligence. In addition, look at the rise and fall of species in evolution. Look at 
interactions of people and groups in a community. Interactions in social groups, teams, 
communities and organizations have their own intelligence that is interesting to be mod-
eled and further understood. This is the reason why it is very important to have a good 
sense of systems whether they are natural or artificial. This paper tries to open a new 
way of considering systems for human systems integration (HSI), by considering not 
only human cognition but more generally natural life mixed with artificial life, 
which ends up in harmonious and symbiotic socio-technical systems. 

At this point, it is important to clarify terms used in AI and Systems Engineering 
(SE), especially terms such as “agent” and “system,” which have very similar mean-
ings. The term “agent” is used in AI almost in the same way as the term “system” is 
used in SE. In AI, “an agent is anything that can be viewed as perceiving its environ-
ment through sensors and acting upon that environment through actuators.” [16]. A 
system is a representation of: (1) a human or more generally a natural entity (e.g., a 

                                                        
2 Association for the Advancement of Artificial Intelligence. 

3 https://aaai.org/Conferences/AAAI-20/aaai20call/ 
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bird, a vegetal); (2) an organization or a social group (e.g., a team, a community); or 
(3) a machine or a technological entity (e.g., a car, a motorway) [2]. 

Distributed AI (i.e., multi-agent approaches) and system science have a lot in com-
mon. AI scientist Marvin Minsky defined an agent as an agency of agents [13]. Multi-
agent systems can then be an alternative way of talking about systems of systems, de-
fined in system science as a set of interconnected and interacting components. This is 
the reason why interdisciplinarity should be promoted (i.e., we should combine AI and 
SE, and more specifically HSI). 

Expertise and experience have been extensively studied during the late 1980s and 
1990s, especially in the field of knowledge acquisition for Knowledge-Based Systems 
(KBSs) [8]. KBSs are also known as expert systems or rule-based systems. This field 
of investigation supported some kinds of automation of expertise and experience. Un-
fortunately, it declined over the years since the mid-1990s, because it was not mature 
in terms of flexibility and support to creativity in provided services (i.e., in most cases, 
people were outperforming KBSs because of their flexibility to solve problems). 

For example, we used KBSs to support experience feedback management in order 
to preserve and reuse experience and expertise knowledge. Large knowledge bases 
were developed, but were seldom used. Today, using digital twins (i.e., digital models 
and simulations of real-world systems), we can incrementally integrate experience 
feedback knowledge in a meaningful and usable way, using supervised machine learn-
ing. More specifically, we foresee digital twins as operations support for situation 
awareness, decision making and action taking. 

2 Technology, organization and people: a systemic approach 

The concept of system has been already introduced as a representation of humans or 
machines. It should be extended to organizations of humans and machines (i.e., a sys-
tem of systems as a recursive definition of a system). A system has structures and func-
tions that can be physical and/or cognitive. Fig. 1 presents a synthetic view of what a 
system is about. 

 
Fig. 1. Synthetic view of the system representation [2]. 
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For a long time, engineers used to think about a system as an isolated system, or a 
quasi-isolated system, which has an input and produces an output. As for an agent in 
AI, which has sensors and actuators, a system has sensors to acquire an input and actu-
ators to produce an output. 

Each system should be interconnected to other systems either statically (in terms of 
system’s structure of structures) and/or dynamically (in terms of time, system’s func-
tion of functions, and their allocation). A system is a combination of technology, or-
ganization and people, which leads to the TOP model (Fig. 2), already developed in 
HCD [4]. Summarizing, a system, as a system of systems, should be represented by a 
network of systems where a network of functions could be dynamically allocated onto 
a structure of structures. 

 

Fig. 2. The TOP Model. 

3 Function allocation: looking for flexibility 

From a general standpoint, function allocation among humans and machines can be 
handled using three design processes that can be associated to three operations pro-
cesses (Table 1). 

Table 1. Design and operations processes for human-machine function allocation. 

Design process Operations process 
Substitution Automation 

Amplification Interaction 
Speculation Augmentation 

• substitution that consists in replacing human functions by machine functions 
and, in some cases, vice-versa with respect to context (e.g., in abnormal and 
emergency situations); 

• amplification that consists in amplifying human functions using specific ma-
chine functions, and vice-versa interpreting machine functions’ activity to enable 
people to keep appropriate situation awareness;  

• speculation that consists in inventing machine functions that enable people to do 
what they are capable of doing, and discovering emerging human functions that 
are mandatory to deal with highly automated and autonomous systems.  
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Autopilots are substitution functions (e.g., they are able to follow a heading, a speed, 
and altitude and so on). Pilots can perform these functions “manually”. Rigid automa-
tion takes care of these kinds of functions in pre-determined contexts. Therefore, sub-
stitution is directly associated with automation at operations time. 

Context-aware search algorithms have amplification functions, which enable to find 
appropriate information by typing a few keywords in context, where context is incre-
mentally learned by the machine from previous interactions for example [6]. These 
functions amplify human memory capacity since they do not only consider individual 
interactions, but also interactions from other people, “who are like you.” Therefore, 
amplification is directly associated with interaction at operations time. 

Compared to birds, people are handicapped; they cannot fly! Engineers speculated 
aircraft functions that enable people to fly. These functions are based on physical phe-
nomena, such as thrust and lift (Fig. 3), that were modeled in the form of mathematical 
equations, which in turn were used to design appropriate machine structures and func-
tions. Aircraft are prostheses that enable people to fly. In this sense, aircraft augment 
people capabilities. Therefore, speculation is directly associated with augmentation at 
operations time. 

 
Fig. 3. Four forces of flight (thrust opposed to drag, and lift opposed to weight). 

It is interesting to better understand the evolution from HFE to HCI to HSI communities 
in the light of the triptych (automation, interaction, augmentation). HFE was born from 
problems that needed to be solved in industry after World War 2, where machines were 
essentially mechanical and incrementally automated. Automation became a real issue 
because people had to adapt to it. The substitution of a human function by a machine 
function created the emergence of new human functions that were not necessarily an-
ticipated by engineers. HFE specialists had to help fixing these issues. As a conse-
quence, automation turned out to introduce rigidity when things started to go wrong. 

In the beginning of the 1980s, computers started to be extensively used and created 
new issues related to HCI. A new community was created to study these issues. People 
were able to do more things using computers because software amplified their capabil-
ities. However, these new machine functions did not remove rigidity in operations. In-
deed, machine functions, even if they were highly interactive, were designed in specific 
contexts. Outside of these contexts, these functions are not operative and may lead to 
major problems. 

Aircraft are good examples of augmentation of people’s capabilities. However, so-
lutions that have been found so far, such as on fixed wing aircraft, provide rigidity 
compared to what a flock of birds can do. Birds are far more autonomous and flexible 
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that aircraft. Consequently, a new round of speculation should be carried out! More 
specifically, we should move from traditional single-agent-to-single-agent interaction 
to multi-agent function allocation. 

4 From rigid automation to flexible autonomy 

Control and management of life-critical systems is typically supported by operations 
procedures and automation. Automation is usually thought as automation of machine 
functions. Analogously, operation procedures can be thought as automation of people 
[3]. Problems come when unexpected situations occur, and rigid assistance (i.e., proce-
dures and automation) may not work any longer, because system’s activity is out of its 
validity context. Problem solving is at stake, and more specifically human problem 
solving. Instead of following procedures and monitoring automation, people need au-
tonomy, first for themselves (i.e., human autonomy) and from machines (i.e., machine 
autonomy). We then deal with a multi-agent system, where agents incrementally be-
come more autonomous through learning, and therefore should be coordinated. Fig. 4 
presents these three options, which lead to the difficult problem of function allocation. 
Solving a problem requires enough technological, organizational and/or human flexi-
bility (i.e., the TOP model is back again!). 

Function allocation cannot be thought as a static a priori process. It is highly dynamic 
and systems should be flexible enough to be able to be modified incrementally. Flexi-
bility has to be found along with the TOP model. 

 
On the technology side, machines should be flexible enough to be modified if required. 
HSI requires integration of experience and expertise, which is often available in the 
form of cases solved in the past and potentially reusable in similar situations. AI exten-
sively developed knowledge-based systems and case-based reasoning, which can be 
very effective when associated with supervised machine learning. Handling cases re-
quires appropriate situation awareness, and therefore AI can supply approaches such as 
intelligent visualization, which involves deep learning. Case-based reasoning [1] is 
very useful in the context of experience feedback management. Case-based reasoning 
(CBR)4 is based on four main processes: retrieval of one (or several) similar case(s) 
similar to a current case; reuse of previously used cases to elaborate a working-in-pro-
gress solution; revision of the working-in-progress solution by modifying its structures 
and functions until a satisfactory solution is found; recording of the successful solution 
for later reuse. CBR should be develop within a statistical framework in order to per-
form probabilistic inference as opposed to deterministic inference [18]. 

 

                                                        
4 Case-based reasoning is rooted in Roger Schank’s research work on human dynamic memory 

(Schank, 1982). 



7 

 
Fig. 4. Four forces of flight (thrust opposed to drag, and lift opposed to weight). 

Machine Learning (ML) and even more importantly Deep Learning (DL) have be-
come very dominant during the last few years. Obviously, ML can be very interesting 
within our flexible autonomy endeavor. Indeed, flexible autonomy should be based on 
experience, which is acquired incrementally through a large number of try-and-error 
activities. As a matter of fact, positive experience is as important as negative experi-
ence. If incidents and accidents are very well documented and can serve as useful data 
for learning, we should focus even more on positive experience (i.e., things that went 
well). ML algorithms are developed to make sense of large amounts of data (i.e., the 
now famous “big data”). They enable the elicitation of patterns, information organiza-
tion, anomalies and relationships detection, as well as projections making. These algo-
rithms will enable fine tuning the way increasingly-autonomous systems will perform 
more safely, efficiently and comfortably. They can contribute to improve task execution 
precision. DL enables the management of higher abstraction levels than ML (e.g., im-
age and speech recognition). DL is based on many kinds of multilayer neural network 
technology. It enables content generation and improve existing contents, such as auto-
mated coloring of black and white images for example. 

Intelligent visualization [9,11,17] is a growing field of investigation that attempts 
to develop visualization methods and tools that enable complex data to be better under-
stood by people. In other words, it helps people to be more familiar with complex sys-
tems when they are appropriately visualized. Remember the adage, “A picture is worth 
a thousand words.”  In addition to static pictures, dynamic animations, simulations and 
movies can be displayed to improve understanding of complex data and concepts. AI 
can support intelligent visualization as recent developments show in visual analytics 
[10]. More specifically, it is highly suggested that human visual exploration should be 
mixed with data mining for the creation or management of existing knowledge, which 
in turn can be used to select the right data (Fig. 5). 
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Fig. 5. Human (visual) and machine data analysis (HSI) – adapted from Keim et al. [10]. 
 
On the organizational side, it should be easy to switch from supervision to mediation 
to cooperation, and vice versa all the way. Indeed, there are three main systemic inter-
action models presented on Fig. 6 [2]. 
 

 
  

Supervision of 
systems by a system 

Mediation among systems 
through a mediation space 

Systems cooperating among 
each other thanks to their 
knowledge of the others 

Fig. 6. Three systemic interaction models of multi-agent systems. 

• Supervision is when a system (i.e., a supervisor) supervises interactions among 
other systems that interact among each other. Supervision is about coordination. 
This interaction model is used when systems do not know each other or do not 
have enough resources to properly interact among each other toward a satisfac-
tory performance of their constituting system of systems. 

• Mediation is when systems are able to interact among each other through a me-
diation space composed of a set of mediating systems, such as ambassadors and 
diplomats. This interaction model is used when systems barely know each other, 
but easily understand how to use the mediation space. 

• Cooperation is when systems are able to have a socio-cognitive model of the 
system of systems which they are part of. Each system uses its socio-cognitive 
model of its environment to interact with the other systems to maximize some 
kinds of performance metrics. Note that this principle is collective and demo-
cratic. Other principles could be used such as dominance of a system over the 
other systems (i.e., a dictatorial principle). This interaction model is used when 
systems know each other through their own socio-cognitive model, which is able 
to adapt through learning from positive and negative interactions.  
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On the human side, people can be designers, engineers, developers, certifiers, main-
tainers, operators or end-users, trainers and dismantlers (not an exhaustive list). People, 
in the TOP model, have activities and jobs. Anytime technology and/or organization 
change, people may change their activities and/or jobs. Sometimes, new technology 
may lead to people losing their jobs, or conversely new jobs (i.e., functions) should be 
created and therefore a new set of people might be hired (i.e., a new structure should 
be created within the organization). People have their own human factors issues, such 
as fatigue, workload, physical and cognitive limitations, and creativity [2]. 

System-of-systems infrastructure can be hierarchical or heterarchical for example. 
Evolution of digital organizations drastically changed people’s jobs going from old 
army hierarchical to heterarchical orchestra structures and functions (Boy, 2013), 
with musicians, some of them being conductors and compositors. More formally, play-
ing a symphony (i.e., a product), the orchestra organization requires five kinds of com-
ponents: 

1. music theory that is the common language (i.e., a framework and language for 
collaborative work); 

2. scores produced and coordinated by composers (i.e., coordinated tasks to be exe-
cuted); 

3. workflow coordinated by a conductor (i.e., system of systems activity); 
4. musicians performing the actual symphony (i.e., the actual system of systems); 
5. audience listening produced symphony (i.e., end users of the product). 
 
Fig. 7 presents a workflow that integrates these AI techniques from the real world to 
databases and back to the real world, using a digital twin. Note that we deliberately 
choose a multi-agent framework that is well suited for carrying out function allocation. 

 
Fig. 7. Information workflow integrating AI techniques for various types of processing, such as 
experience feedback management and integration, decision making, diagnostic and repair. 
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5 Conclusion 

This paper was produced to support the first workshop on the application of Artifi-
cial Intelligence for Systems Engineering (AI4SE 2019), and encourage research and 
innovation that mixes HSI and AI toward more flexible technology. 

Flexible autonomy is mostly needed in abnormal and emergency situations, that is 
in problem-solving where people have to speculate appropriate solutions. This is pre-
cisely where AI could be efficient and effective by supplying tools that augment peo-
ple’s capabilities in problem solving. 

Automation (software) should be reliable at any time in order to support safe, effi-
cient and comfortable work. There are many ways to test software reliability [12,15]. 
However, what is most important is HSI reliability. We know that there is a co-adap-
tation of people and machines (via designers and engineers, as well as trainers and 
accumulated experience). This makes even more important to understand when ma-
chine become “intelligent” in the AI sense. 

Human operators may accept some unreliable situations where the machine fails as 
long as safety, efficiency and comfort costs are not too high (i.e., acceptable degraded 
modes of operations). However, when these costs become too high for them, the ma-
chine is just rejected. This states the problem of product maturity [5]; the conventional 
capacity maturity model (CMMi) for software development [14], systematically used 
in most industries, does not guarantee product maturity, but manufacturing process ma-
turity. Product maturity requires continuous investment of end-users in design and de-
velopment processes. At the very beginning, they must be involved with domain spe-
cialists to set up high-level requirements right; this is an important role of participatory 
design. During the design and development phase, formative evaluations should be per-
formed involving appropriate potential end-users in order to incrementally “invent” and 
discover the most appropriate future use of the product in an agile way. 

Along these lines, human-systems integration and artificial intelligence should be 
cross-fertilized for the design of more flexible TOP-centered systems. This is a contrib-
uting account to the FlexTech approach currently developed at CentraleSupélec and 
ESTIA Institute of Technology. 
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