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Dynamics of porous saturated media, checking of the generalized 
lawofDarcy 

Jean-Louis Auriault, Lionel Borne, and Ren� Chambon 
lnstitut de Mecanique de Grenoble, U.A. 06 C.N.R.S., B.P. 68. 38402 Saint Martin D'Heres Cedex, France 

The homogenization process applied to fine periodic deformable saturated porous medium under 
dynamic solicitations leads to the macroscopic description. This method enables us to perform a
complete calculation of the effective parameters. The main fact is that the farmulation so 
obtained-similar to Biot's results--exhibits a generalized example of Darcy's law which 
contains all the dynamic couplings between the two phases. After recalling the main facts of the 
subject this work presents some properties of the generalized Darcy coefficient and an 
experimental checking. An agreement between experimental and numerical results using the 
homogenization process is obtained. 

INTRODUCTION 

The macroscopic description of fluid-filled porous me­
dia was first considered by Bioe directly at the macroscopic
level for quasistatics, as well as for problems of dynamics. 
The formulation so obtained is now generally accepted by 
scientists in this field. Plana's experimental setup, 2 which
exhibits a second bulk compressional wave, has given more
consistency to this theory (see also Ref. 3 ). However, no com­
plete test could be obtained since Biot's phenomenological 
approach does not lead to numerical values for the effective 
coefficients involved in the equations describing the macro­
scopic behavior. This consideration has led to truncated for­
mulations used by many authors."'-16 Other approaches,
among which are mixture theories, give still more complicat­
ed possiblilities for checking. 17-19 

On the contrary, the homogenization process, which
constructs the macroscopic description from the microscop­
ic one, enables the computation of effective coefficients when 
in full use, i.e., when the pore structure is periodic (see Refs. 
20-23, and for a review on this subject see Ref. 24). For the
problem under consideration, the "macroscopic dynamic" 
so obtained is similar to that ofBiot's theory, but it points out 
a generalized Darcy coefficient entering a generalized Darcy 
law and clustering all the information about the dynamic 
coupling between the solid and the fluid. More than this 
simplification, the process leads to local problems. Vari­
ational formulations well adapted to the finite element com­
putation techniques also lead to the effective parameters, 
which are deduced by averaging operations. Until now, few 
attempts at experimental checking have been performed fol­
lowing this process. 25•26

The purpose of this paper is to study this generalized
Darcy coefficient (in fact its inverse H with a clearer physical 

meaning) and to present an experimental checking. 
In Sec. I the principal results of the homogenization

process for fluid-tilled porous media are recalled, fu-st when
the skeleton is rigid and second when it is deformable. Then 

considerations in relation with Biot's formulation are given. 
Section 11 is devoted to the asymptotic monochromatic

behavior of coefficient H (w) when the pulsation w increases 
to infinity, in order to supply the ill-conditioned computa­
tional problem when the frequencies are of high value. 

In Sec. Ill an experimental setup is presented. The re­
sults are compared with the numerical computation of the
corresponding coefficient H (w). 

I. HOMOGENIZATION PROCESS APPLIED TO POROUS
SATURATED MEDIA 

The homogenization technique can be considered
when, for the medium, the microscopic and the macroscopic 
scales, of characteristic lengths I and L, respectively, are of
different orders of magnitude. The problem with one parti­
cular homogenization method was investigated: the so­
called double-scale method described in Refs. 27 and 28. A 
small dimensionless parameter E = I /L and two dependent
spatial variables x and y = x/E are used, which describe the 
macroscopic and microscopic situations, respectively. 
Moreover, the pore structure is assumed to be periodic with
a period n (for the variable y), which implies the periodicity
for the geometry and the local parameters. 

Let us consider a macroscopic domain D of size L, con­
sisting of a large number E-1 of periods. It was required that
the behavior with respect to x should be described, i.e., an 
homogenized continuous situation where the heterogene­
ities at the pore level are smoothed. A quantity v related to
this medium is, in fact, dependent on the variable x and on 
the small heterogeneities, i.e., E. The homogenized situation
is described by the asymptotic value of v when E vanishes,
even when the zero value is not effectively reached in a con­
crete case. In the problem under consideration, for instance,
the pore size is not zero-valued. Moreover, the method leads 
to a first approximation for the macroscopic equivalent be-
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havior. The heuristic method consists of seeking the un­
known in the form 

v = v .. (x) = v(x,u-1) = v(x,y)
- (0)( . ) + (!)( ) + - v x,y EV x,y , ... , (1)

where the v!•1 are ll periodic, by introducing such asymptotic 
developments into the equations describing the local behav­
ior. Then the powers of E are identified. (Boldfaced symbols 
are used for tensor quantities.) In the following section, the 
case of a rigid skeleton is presented. Detailed developments 
are available in Ref. 24. 

A. Dynamics of fluid flow through a rigid porous 
medium 

In Fig. 1, a sketch view of two periods of a porous medi­
um (two-dimensional case) is presented. The fluid is assumed 
to be Newtonian and incompressible (the second hypothesis 
can be removed; refer to the end of this section). It undergoes 
a small perturbation around the rest. The velocity v is small 
enough to satisfy the linearized Navier-Stokes equations. 
On the contrary, the linear dynamical term is taken into 
account and the transient Reynold's number is of the order 
of 1:

(2) 

p denotes the mass per unit volume and J.L is the dynamic 
viscosity. Thus the set of equations for a monochromatic 
isothermic perturbation, at the microscopic level, is of the 
form 

,_ujv = - Vp + i(J)pv, 
Vv=O, 

vlr=O. 

(3) 
(4) 

(5) 

pis the increment of pressure (positive in traction) due to the 
perturbation, Ll is the Laplacian operator and V p denotes the 
gradient of p. In order to verify relation (2) let 

J.l =J.L'�. 
Therefore Eq. (3) on the rescaled form appears as 

J.L'�Llv = - Vp + i(J)pv. (6) 

Other rescaled equations still meeting the relation expressed 
in Eq. (2) are possible, for example, 

J.L'ELlv = - Vp + i(J)pE-1v. 
Equations of this type lead to the same result in the case of a 
rigid skeleton. 

Such developments as in Eq. ( 1) for v andp are intro­
duced in Eqs. (4)-(6). Remember that the classical operator 
d /dx now becomes 

a+ -1 a - E -ax ay' 
since the variables x and y are dependent. Equation (6) at E-1 
order gives 

Vyplo'=O, 
where the subscript y denotes a derivation with respect to y. 
It follows that 

plOI = p(O)(X).

Equation (6) at E0, Eq. (4) at E-1, and Eq. (5) at� orders give 
J.l 'Ll y v101 = - V xi01 - V yp01 + i(J)pV101, (7) 

Vyv!01 = 0, (8) 

v!01lr = 0, (9) 

v!01, and pl11!l periodic. This is a so-called cell problem of the 
unknowns v (o) and p(l). · 

-

Considering the space 'JP" of !l-periodic, free-diver­
gence, and complex-valued vectors with a zero value on r, 
the variational equivalent formulation is written as fol­
lows24: 

I 

(10) 

where a is the complex conjugate of a. This is a well-posed 
problem with existence and uniqueness. The linearity carries 
forward to the solution 

v101 = k(y,(JJ)Vxi01, 

where the kij are particular solutions ofEq. ( 10). The second­
order tensor k is (JJ-dependent and complex-valued. Equa­
tion (4) at the �01 order gives 

Vyv01 + Vx v!ol = 0.

Integrating over !l1 and taking into account the periodicity 
ofv01 and the adherence condition, Eq. (5) atE order, is ob­
tained at the first order: 

V"' (v) = 0, (v) = llll-11 v dll,
n, 

(v) = KVxP• 

( 1 1) 

(12)

where K, (JJ-dependent with a complex value, is a generalized 
Darcy coefficient. Equations ( 11) and (12) stand for the mac­
roscopic behavior. When a transient motion is considered 
the right-hand side of Eq. ( 12) becomes a convolution pro­
duct between the inverse Fourier transforms of K and V xP· 
The fundamental properties for K deduced from this ap­
proach can be recalled. 

( 1) K goes to the classical quasistatic Darcy coefficient 
as w vanishes. 

(2) K is symmetric. (The reciprocal Onsager relations 
are not necessary for this.) 

(3) (v), which is a volume mean value, is also a flux, i.e., 
a Darcy velocity. 

(4) Let H = H1 + zH2 = K-1• Equation ( 11) becomes 
the momentum balance 

11£ 

FIG. I. Sketch of two periods of a porous medium. 111 =liquid part, 
IJs =solid part, r =contact surface. 
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V](p = H1(v) + H:z(t)-1(-f).

The real part H1 ofK-1 is dissipative, the imaginary part H2 
is an inertial part, and it stands 

nm-1H2>P (13) 

in the isotropic case (n denotes the porosity). If the fluid is 
compressible, only Eq. ( 11) is modified. The continuity equa­
tion [Eq. (4)] becomes 

Vpv +imp= 0

and 

p = K"' Vv/im, 

wherep is the mass per unit volume at rest, pis its increment 
under the perturbation, and K"' is the bulk modulus of the 
fluid. At E-1 order this leads to Eq. (8): V Y v<ol = 0, and Eqs.
(7H9) are still valid since at if order the new isotropic vis­
cous term disappears from Navier-Stokes equations. So, the 
generalized Darcy law [Eq. (12}] remains unchanged. On the
contrary, the continuity balance equation at if order gives,
using for p an asymptotic expansion such as in Eq. ( 1 ): 

VY(pv<l)) + VJ((pv<01) = - i{l)p<01 = impl0p/K"'.

As previously shown, the volume mean value process is car­
ried out, which leads to a different equation from Eq. ( 11 ): 

V,. (v) = nimp/K.,. 

For the cases of a cylindrical slit or a circular cylinder, analy­
tical results are available. The method gives, for a slit of 
thickness 2a, 

K = n(imp}-1{ 1- a-1(v/im)1'2

Xtanh[(im/v}112a]}, v = p,p-1,

and for a cylinder of diameter 2a, 

K = - n(imp}-1J2[ia(im/v)112]{J0[ia(im/v}112]} -1.

J2 and J0 are Bessel functions. This last result was used in
Refs. 25 and 26 for an experimental control on a damper. It is 
of interest to point out that the problem of cylindrical ducts 
can be solved directly from Navier-Stokes equations with­
out the help of the homogenization method. This comes 
from the arbitrary periodicity along the axes of the ducts: 
The direct boundary problem at the macroscopic level is 
identical to the local boundary problem over the period in­
troduced by the homogenization process. So, the above­
mentioned results for a circular cylinder or a slit are classi­
cal. For more sophisticated geometries, which will be 
investigated, no direct solution is possible since the compu­
tational problem becomes more and more complicated and 
ill conditioned as the number of periods is increasing. More­
over, the direct solution does not provide the equivalent 
macroscopic description of the medium. In this case the ho­
mogenization process is necessary. 

B. Dynamics of a fluid-saturated deformable porous 
medlum24 

The skeleton is now assumed to obey an elastic equation 
and the stresses in the solid and the liquid are of the same 
order. For the liquid, the assumptions of Sec. I A are still 
valid. Particularly, the rescaled Eq. (6) can be admitted [see 
remark (3) of Sec. I C]. Then, after performing the homog-

enization process, the set of equations for the macroscopic 
motion with a constant pulsation is written (the stresses are 
positive in traction) as follows: 

V,.(aT) = (p,)ii. +p(v),

(aT) = ce]( (u,) + ap, 
(v)- nu, = K(V,p- pii,), 
V, [K(V,.p -pii.)] = - ae,.(u,) +PP.

where aT is the total stress defined by 

aT= 
{a,, the stress in the skeleton, 

a1, the stress in the liquid,

<aT>= lfl I-1LaTd.a,

p. is the mass per unit volume in the solid, u, is the displace­
ment in the solid, e is the deformation, and c is the elastic
tensor. The effective parameters c, a, K, and P can be com­
puted. 

The tensor K is identical to that defined in Sec.l A for a
rigid skeleton. Introducing the partial stress (a, ) in the solid 
by 

(aT) = (a.) + npi, I unit tensor,

a formulation similar to Biot's was obtained: 

with 

V]( (a,)= b(u,- li1) + p11ii, + P12ii1,

V,np = - b(u.- ai1l + P22ii1 + P21ii.,

(a.)= QO j- de,. (u, },
np = Qe,(u.) + RO, 

Q = n(a- ni)IP, R = n21P,

b = n2H1(m),

P11 = (p,)I- P21• P22 = n2H2(m)m-1,

P12 = P21 = npl- n2H2(co)/co.

From the relation in Eq. (13), in the isotropic case, 

P11 > (p.) • P12 = P21 <0,

P22>np 

was obtained. 

C. Remarks 

( 1) The main fact to be pointed out is the simplicity of 
the description in which a unique parameter H = K-1 in­
volves the whole dynamic coupling between the liquid and 
the solid. 

(2) The physical meaning of macroscopic quantities is 
preserved, as (v), (aT), or (a.), defined as volume mean 
values, are fluxes and then are Cauchy stresses. 

(3) Unlike the case investigated in Sec. I A, rescaled 
equations other than Eq. (6) lead to different macroscopic 
behaviors. In view of obtaining a Biot's description, the two 
necessary assumptions are relation (2): /2mpp, -1 = 0 ( 1) and
piEp,-11 v 1-1 = 0 ( 1 ), which means that the viscous stress in 
the liquid is small [0 (E)] compared to the pressure. See Ref. 
24 for different situations. 
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11. THE GENERALIZED DARCY COEFFICIENT AT HIGH 
FREQUENCIES 

As the pulsation ads increasing, the numerical problem 
associated with the variational formulation, Eq. (10), be­
comes more and more ill conditioned. Therefore, a study of 
K(w) as w-oo is useful/9 even if, for a large w, the macro­
scopic description presented in Sec. I is no longer valid. As w 
is increasing, the wavelength decreases and becomes 0 (I); 
the !J periodicity is no longer available for the velocity v and 
the homogenization process as described above is not heuris­
tic. Scattering appears. 

The set of Eqs. (7H9) when w is large are considered.
Let us assume v<ol and pm to be of the form

V(O) = V(O) + 1JV(I) + •••, 

p<U = P<ol + 1JP(Il + ... ,
where 1J = w-1<1 and vi,pi!J periodic. At lower orders 

ipV(O) = 0, V .I' V(O) = 0, Vo lr = 0
is obtained, and obviously v(o) = 0. Then

vxp<O) + V.l'p(O)- iwpv(l) = 0,
Vyv(1l =0, 
v(ll lr = 0 

(14) 
(15) 
(16) 

arrives. From Eq. ( 14) there is rot v(ll = 0. This system is not
well posed: Eqs. ( 14) and ( 15) describe an incompressible and 
irrotational perfect fluid with the body forces, V xi0l, not 
compatible with the adherence equation (16). The problem 
can be classically solved by considering first Eqs. (14) and 
(15) with an impermeability condition on r and second, in­
troducing a viscous boundary layer along r, matching the 
perfect fluid solution with the adherence condition. The per­
fect fluid will give a first approximation for H with respect to 
w -I. Since the viscosity is zero at this initial step, the first
approximation for v(ll will only concern the inertial part H2 
of H. In this case all v(ll for i>-2 are zero valued. A second­
order approximation will be introduced by the boundary lay-
er. 

The velocity vP and the pressure pP in the perfect fluid
are defined by 

vxp<O) + V.l'pP - iwpvp = 0, 
V.l'vP =0, VP·Nir =0, 

(17) 

where N is the unit external normal of !J 1 tor and v P, pP are
periodic. Note that rot vP = 0. The velocity potential t/J is
introduced by v P = grad t/J and the problem is the determin­
ation of t/J with

Liyl/>=0, 

Vyt/J·Nir = 0, 

(18) 
(19) 

where Vyl/> is !J-periodic, but not necessary r/J. So a solution
of the form 

rp =a +AiYi
is sought, where A is a constant vector to be specified for­
ward and a is a real scalar field, !J-periodic with
S n,a d!J = 0. (Since f/J is defined to an arbitrary additive con­

. stant, this external condition is not restrictive.) 

The space E of real scalar functions a, defined over !J 1,
!J-periodic, with a zero-mean value and the scalar product, 
is introduced: 

(a,/3) 
= 

( aa ap d!J. Jn, ayi ayi
Multiplying Eq. (18) by PE E, integrating over!J1, using the
divergence theorem, the !J periodicity, and Eq. (19), we ob­
tain: 

vp e E, o = ( Pilyf/l dnJn, 

(20) 

Equation (20) represents a variational relation, equivalent to 
Eqs. ( 17) and ( 18). The solution is unique and because of the
linearity, may be written as a 

= tiA i. Here, ti is the solution
corresponding toA1 =la. The velocity vP is given in the first
approximation by 

a,p ( 

atj 'A vp, =ay/= 1/j + 
ayl rj · 

By integrating Eq. (17),pp is obtained: 

dp<O) • 
PP= ---y1-zp(lliy1 +ti)Ai +A.,dx1 

(21) 

where A. is a constant. Since pP is !J-periodic the following
relation stands for the determination of A:

---ipAI =0, AI=-- lp. dp<O) dp<O)f· 
dx1 dx1 

The corresponding Darcy law is obtained by integrating Eq. 
(21) over !11: 

-1 dp<O) (v)1 =W (v ) =K1· --,Pt g d xi 
K _nBli lj--.-, 

zwp 

I 1-li ( atj ) 
Bli = !J Ili +- d!J,

n, ay/ 

where B is a real symmetrical tensor. As expected, the prin­
cipal part, as w becomes infinite, is imaginary, i.e., an inertial 
part: 

nH2/pw = B-1• 
The second approximation v c for v(l l is given by .the 

boundary viscous layer, itself considered as a plane layer in 
first approximation. The calculation is quite classical, keep­
ing in mind that the outward value for the v(ll corrector is the 
perfect fluid solution, Eq. (21) on r. If z denotes a dilated
normal coordinate to r, we have30:

vc = - vP lr exp[- (1 + i)(w/2v')112z], v' = p,'/p,
and the corresponding correction pc for Pp is zero .
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FIG. 2. Cylindrical slit: H1 against frequency: --- analytical result, 
----asymptotic approximation (�oo ). 

The correction term for the Darcy law is given by inte­
grating over 121: 

(U1-1vc) = - nU�-1111 l-1 i vPklr
n, 

Xexp[ - (1 + z1(w/2v')112]dl2

= 
- nUI-1,12 ,-1 L VPkds 

xf" exp[- (1 + l)((t)/2v')112z]dz

= -nw-11121-1(1 +z1-1(2v'/w)112 

X lkl +- s -- ipi ( at,� 

ap
<o,f 

r 
iJyk dx, 

(Uiv') l/2 dp101
= n(l + l)(U12p)-1 - Dk, --, 2 dx1 

with 

1.4 

12 

Q8 

Q.2 

I -• ( ( at,) 
Dkl = n I Jr lkl + iJyk 

ds.

nH2 
� 

'I ',, 'I 
' 

', 

= 

-

wa2 
o������·�·����LU·�'������2-�+ 

0.1 0.2 2 345678910 20 !10 100 

FIG. 3. Cylindrical slit: H2 against frequency: --- analytical result, 
---asymptotic approximation (� oo ). 
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0.1 Q.2 Q.5 2 3 4 5 10 20 30«1!10 100 

FIG. 4. Cylindrical duct: H2 against frequency: --- analytical result, 
----asymptotic approximation (� oo ). 

Finally, an approximate solution to Eqs. ( 14H 16) leading to 

Kjm = nBjm/iwp + (1 + z)v'(w/2v')112 Djmlw2p 
is obtained and, up to the second order: 

�m = n-I(Uipj..l'/2)1/2 c;m 
+iJ)Uin-1[Bi;;;1+(v'/2UI)112] c;m, (22)· 

where 

Cim = B i. 1D1,B ;;;,1

is a shape coefficient the dimension of which is the inverse of 
a length. The asymptotic approximation [Eq. (22)] is quite 
correct for H2 since this quantity appears in the dynamic 
equation in the form H:zt0-1• But H1 needs a third-order 
approximation, which is a constant, and may be introduced 
taking into account the curvature of the boundary layer. Fin­
ally, let us notice that the calculation of tensors B, D, and C 
needs only volume or surface mean value processes from the 
solution of relation (20). The numerical cost is far below that
of the full problem [Eq. (10)]. 

14 

12 

10 

8 

6 

4--------------------

2 
1 

0.1 2 3 4 5 678910 

/ I 

/ / I 

50 100 

FIG. S. Cylindrical duct: H, against frequency: --- analytical result, 
----asymptotic approximation (� oo ). 
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l 
FIG. 6. Experimental setup. 

To illustrate this, we have plotted in Figs. 2-5 the di-
- mensionless values of H1 and H2 against the dimensionless 

frequency for a cylindrical slit and a circular cylinder where 
analytical results have been mentioned above. As expected, 
for all cylindrical pores we get B 11 = 1. In fact, this value 
represents the minimum value for B ((1 [see Eq. ( 13)]. When
the tortuosity is larger, B 1!1 can be found to be far greater 
than one (see Ref. 29 and the sequel). 

Ill. EXPERIMENTAL CHECKING 

The experimental setup29 is sketched in Fig. 6. A peri­
odic porous medium undergoes a harmonic given flux at one 
end, a constant level reservoir ensuring a constant pressure 
at the other end. A low pressure membrane sensor ( ± 33 
kPa) is flush-mounted in the injection room for the determin­
ation of the macroscopic gradient pressure. The porous me­
dium is of high tortuosity: A period is shown in Fig. 7. The 

pa.s Pressure Amplitude X 10-8 

m3 Flux Amplitude 

1_ 
0 .. �0 J!i.. l!l 

11! 

X2 

x2 
9mm 

�------------------------·� 
�---------------------------------� 

FIG. 7. A period of the porous medium. 

porous model consists of a hundred periods, related to a 
small value for E. The liquid is a disaerated water. The pore 
size is such that the frequency range of interest, from 0.05-8 
Hz, can be produced in a mechanical 'manner. The model is 
large enough to ensure a two-dimensional behavior (this is 
easily verified comparing analytical results for a cylindrical 
slit to a rectangular cylinder) and its rigidity is such that the 
deformation of the porous matrix is negligible. The harmon­
ic flux is provided by a 1-cm-diam piston with variable am­
plitude, with a view to satisfying the condition Re< 1. A dis­
placement sensor with a response time corresponding to 100 
Hz is used for the flux control. In Fig. 8 the pressure ampli­
tude-flux amplitude ratios are plotted versus the frequency 

FIG. 8. Experimental data for di1t'erent 
piston amplitudes (in mm): 0 1.6 mm, 
· 2.2 mm, 0 3.4 mm, A 6.3 nun, + 6.6 
mm, • 23.8 mm, 0 59 A mm. 

0 0 G WlfPlF T 

o�---L--�+�·�·-r�����·�--�--�._+_.�_.-_���·����---L���·�uu�------� 
10 0.01 0.1 1 2 3 4 567 Frequency (Hz) 
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M2 

M a 

FIG. 9. Triangular element. 

for different flux amplitudes. The experimental points show 
the apparition of nonlinearities when the frequencies in­
crease and give the upper limits for this investigation. 

The numerical computation is carried out by using for­
mulations expressed in Eqs. ( 10) and (20) and a finite element 
method. More details are available in Refs. 29 and 31. Two 
meshes were considered: a rough mesh A and a mesh B, 
using the hydrodynamical streamlines of a perfect fluid. 32 

With these two meshes, two types of triangular elements 
were used. 

(a) Elements with a constant complex pressure and a 
quadratic complex vectorial function for velocity, defined 

· through six points M;, i = 1, ... ,6 (the vertices and the mid­
dle point of each edge, see Fig. 9). Let (z 1, z2, z3) be the bary­
centric coordinates defined on an element, with
z 1 + z2 + z3 = 1 and consider the six second-degree func­
tions: 

na21HI 
21J. 

1000 

500 

0 

I 

++ 

1 5 10 20 50 

<P;(M) = z;(2z;- 1}, for i= 1, 2, 3,

<P4(M) = 4z1z2, <P5(M) = 4z�3, 
<P6(M) = 4z1z3• 

Then the velocity at a point M of the element is taken as
6 

V(M)= _LV(M;)<P;(M), 
i-=.1 

where the six vectors V(M;) are the nodal unknowns. 
(b) Elements with a "bulb function" (as defined in Ref.

33) where the pressure is a complex linear function defined at
the vertices and the velocity a comple_x vectorial function of 
the third degree. Consider the three functions: 

I/I;(M) =Z;, i= 1, 2, 3.

The pressure is defined �y 
3 

p(M) = L I/I;(M)p(M;). 
i= I 

where the p(M;) are the nodal unknowns for pat the vertices 
of the element. The "bulb function" B (M) is introduced by 

B(M) =z1z�3 
and the velocity is expressed as 

6 
V(M) = L V(M;)<P;(M) + ()B(M),

i-1 

where p denotes a complex constant vector. Since B (M) is 
zero valued in M;, the V(M;) represent the velocity values at 
point M;. The introduction of this third-degree term enables 
a minimization of the error. 33 

The difficulty related to the incompressibility condition 
is solved with the help of Uzawa's algorithm (see Refs. 34 
and 29 for the stationary Stokes problem) and the numerical 
process is tested on the cylindrical slit problem where analy­
tical result is available. The experimental data for the dimen­
sionless modulus and the phases of H are plotted against the 
dimensionless frequency in Figs. 10 and 11  and compared to 

I 
+ 

100 150 2QO 

FIG. 10. H against frequency: + ex­
perimental data, - asymptotic ap­
proximation; numerical results:� mesh 
A without bulb function, .&. mesh A 
with bulb function, 0 mesh 8 without 
bulb function, e mesh 8 with bulb func­
tion. 
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FIG. 11. Phase against frequen­
cy. Notations as in Fig. 10. 

FIG. 13. H2 against frequency. No-
tations as in Fig. 10. 
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sult) and two slits systems (numerical re­
sult). H1 against frequency: • without 
bulb function, e with bulb function. 
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the numerical computation with the two meshes and the two 
types of elements. The characteristic length a involved in the 
dimensionless frequency is 4.10-3 m. As expected, the ele­
ments with a bulb function lead to best results. An agree­
ment is found between the experimental data and the nu­
merical results. In a similar way Figs. 12 and 13 give the 
dimensionless real and imaginary parts of H. The major part
of the discrepancy is here introduced by the behavior of the 
cosinus and sinus functions near zero and 1T'/2 values of the
phase. The asymptotic behavior, as {t) increases, is also
sketched in Figs. 10, 12, and 13. Note that for the geometry
under consideration the quantity nH2/p{t) reaches the value
2.7 instead of 1 for cylindrical ducts, as {t) goes to infinity.

As a final example, the case of a slit (where analytical
results are available) can be compared to the case of a double
system of connected perpendicular slits (numerical results 
following Sec. Ill). Partial results are plotted in Figs. 14 and 

15, for the dimensionless values of H1 and H2 versus the
dimensionless frequency. The values discrepancy is quite im­
portant: The presence of connected perpendicular ducts no­
tably increases the inertial part and in a minor way the dissi­
pative part. The limit of nH2/ p{t), as {t) goes to infinity, is 1.5.

IV. CONCLUSION 

The results of the present analysis lead us to outline the 
importance of the geometry, when the generalized Darcy 
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coefficient is considered. Consequently, great care should be 
taken when using the analytical model of cylindrical ducts. 
A precise description of the dynamic behavior of porous sat­
urated media needs either an experimental determination of 
K (m) or a computation permitted by the periodicity. 
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