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The homogenization process applied to fi ne periodic deformable saturated porous medium under dynamic solicitations leads to the macroscopic description. This method enables us to perform a complete calculation of the effective parameters. The main fact is that the farmulation so obtained-similar to Biot's results--exhibits a generalized example of Darcy's law which contains all the dynamic couplings between the two phases. After recalling the main facts of the subject this work presents some properties of the generalized Darcy coefficient and an experimental checking. An agreement between experimental and numerical results using the homogenization process is obtained.

INTRODUCTION

The macroscopic description of fluid-fi lled porous me dia was fi rst considered by Bioe directly at the macroscopic level for quasistatics, as well as for problems of dynamics. The formulation so obtained is now generally accepted by scientists in this fi eld. Plana's experimental setup, 2 which exhibits a second bulk compressional wave, has given more consistency to this theory (see also Ref. 3 ). However, no com plete test could be obtained since Biot's phenomenological approach does not lead to numerical values for the effective coefficients involved in the equations describing the macro scopic behavior. This consideration has led to truncated for mulations used by many authors."'-16 Other approaches, among which are mixture theories, give still more complicat ed possiblilities for checking. 17-1 9

On the contrary, the homogenization process , which constructs the macroscopic description from the microscop ic one, enables the computation of effective coefficients when in full use, i.e., when the pore structure is periodic (see and for a review on this subject see Ref. 24). For the problem under consideration, the "macroscopic dynamic" so obtained is similar to that ofBiot's theory, but it points out a generalized Darcy coefficient entering a generalized Darcy law and clustering all the information about the dynamic coupling between the solid and the fluid. More than this simplification, the process leads to local problems. Vari ational formulations well adapted to the finite element com putation techniques also lead to the effective parameters, which are deduced by averaging operations. Until now, few attempts at experimental checking have been performed fol lowing this p rocess . 25•2 6

The purpose of this paper is to study this generalized Darcy coefficient (in fact its inverse H with a clearer physical meaning) and to present an experimental checking. In Sec. I the principal results of the homogenization process for fluid-tilled porous media are recalled, fu-st when the skeleton is rigid and second when it is deformable. Then considerations in relation with Biot's formulation are given.

Section 11 is devoted to the asymptotic monochromatic behavior of coefficient H (w) when the pulsation w increases to infinity, in order to supply the ill-conditioned computa tional problem when the frequencies are of high value.

In Sec. Ill an experimental setup is presented. The re sults are compared with the numerical computation of the corresponding coefficient H (w).

I. HOMOGENIZATION PROCESS APPLIED TO POROUS SATURATED MEDIA

The homogenization technique can be considered when, for the medium, the microscopic and the macroscopic scales, of characteristic lengths I and L, respectively, are of different orders of magnitude. The problem with one parti cular homogenization method was investigated: the so called double-scale method described in Refs. 27 and 28. A small dimensionless parameter E = I /L and two dependent spatial variables x and y = x/E are used, which describe the macroscopic and microscopic situations, respectively. Moreover, the pore structure is assumed to be periodic with a period n (for the variable y), which implies the periodicity for the geometry and the local parameters.

Let us consider a macroscopic domain D of size L, con sisting of a large number E-1 of periods. It was required that the behavior with respect to x should be described, i.e., an homogenized continuous situation where the heterogene ities at the pore level are smoothed. A quantity v related to this medium is, in fact, dependent on the variable x and on the small heterogeneities, i.e., E. The homogenized situation is described by the asymptotic value of v when E vanishes, even when the zero value is not effectively reached in a con crete case. In the problem under consideration, for instance, the pore size is not zero-valued. Moreover, the method leads to a first approximation for the macroscopic equivalent be-havior. The heuristic method consists of seeking the un known in the form Therefore Eq. (3) on the rescaled form appears as J.L ' �Llv = -Vp + i(J)pv.

v = v .. (x) = v(x,u-1 ) = v(x,y) -( 0 ) ( . ) + (!) ( ) + -v x,y EV x,y , ... ,
(

) 6 
Other rescaled equations still meeting the relation expressed in Eq. (2) are possible, for example,

J.L ' ELlv = -Vp + i(J)pE-1 v.
Equations of this type lead to the same result in the case of a rigid skeleton.

Such developments as in Eq. (1) for v andp are intro duced in Eqs. (4)- [START_REF] Jones | Effect of a uniform fl ow on elastic wave in a porous, saturated elastic solid[END_REF]. Remember that the classical operator Equation [START_REF] Jones | Effect of a uniform fl ow on elastic wave in a porous, saturated elastic solid[END_REF] at E0, Eq. (4) at E-1 , and Eq. (5) at� orders give

J.l ' Ll y v 1 01 = -V x i01 -V yp01 + i(J)pV 1 01 , (7) 
Vyv!01 = 0, (8

) v!01lr = 0, (9) 
v!01, and p l 11!l periodic. This is a so-called cell problem of the unknowns v ( o) and p ( l). • -Considering the space 'JP" of !l-periodic , free-diver gence, and complex-valued vectors with a zero value on r, the variational equivalent formulation is written as fol lows24:

I ( 10 
)
where a is the complex conjugate of a. This is a well-posed problem with existence and uniqueness. The linearity carries forward to the solution v 1 01 = k(y,(JJ )Vxi01, where the kij are particular solutions ofEq. ( 10). The second order tensor k is (JJ -dependent and complex-valued. Equa tion (4) at the �01 order gives Vyv01 + Vx v!ol = 0.

Integrating over !l1 and taking into account the periodicity ofv01 and the adherence condition, Eq. (5) atE order, is ob tained at the first order:

V"' (v) = 0, (v) = llll-1 1 v dll, n, (v) = KVxP• (11) ( 12)
where K, (JJ -dependent with a complex value, is a generalized Darcy coefficient. Equations (11) and ( 12) stand for the mac roscopic behavior. When a transient motion is considered the right-hand side of Eq. (12) becomes a convolution pro duct between the inverse Fourier transforms of K and V x P• The fundamental properties for K deduced from this ap proach can be recalled.

( 1) K goes to the classical quasistatic Darcy coefficient as w vanishes.

(2) K is symmetric. (The reciprocal Onsager relations are not necessary for this.)

(3) (v), which is a volume mean value, is also a flux, i.e., a Darcy velocity.

(4 V](p = H1(v) + H:z(t) -1 (-f).

) Let H = H 1 + zH2 = K-1• Equation (11)
The real part H1 ofK-1 is dissipative, the imaginary part H 2 is an inertial part, and it stands nm-1 H 2>P (13) in the isotropic case (n denotes the porosity). If the fluid is compress ible, only Eq. ( 11) is modified. The continuity equa tion [Eq. ( 4)] becomes

Vpv + imp= 0 and p = K"' Vv/im, wherep is the mass per unit volume at rest, pis its increment under the perturbation, and K"' is the bulk modulus of the fluid. At E-1 order this leads to Eq. ( 8): V Y v<ol = 0, and Eqs.

(7H9) are still valid since at if order the new isotropic vis cous term disappears from Navier -Stokes equations. So, the generalized Darcy law [Eq. (12} ] remains unchanged. On the contrary, the continuity balance equation at if order gives, using for p an asymptotic expansion such as in Eq. ( 1):

V Y (pv<l)) + VJ((pv< 0 1) = -i{l)p< 0 1 = impl 0 p/K"' .

As previously shown, the volume mean value process is car ried out, which leads to a different equation from Eq. ( 11):

V,. (v) = nimp/K.,.
For the cases of a cylindrical slit or a circular cylinder, analy tical results are available. The method gives, for a slit of thickness 2a,

K = n(imp}-1{ 1-a-1(v/im)1 ' 2 Xtanh[(im/v}11 2 a]}, v = p,p-1,
and for a cylinder of diameter 2a, K =n(imp}-1 J 2 [ia(im/v) 11 2 ]{ J 0 [ia(im/v} 11 2 ]} -1 . J 2 and J 0 are Bessel functions. This last result was used in Refs. 25 and 26 for an experimental control on a damper. It is of interest to point out that the problem of cylindrical ducts can be solved directly from Navier -Stokes equations with out the help of the homogenization method. This comes from the arbitrary periodicity along the axes of the ducts: The direct boundary problem at the macroscopic level is identical to the local boundary problem over the period in troduced by the homogenization process. So, the above mentioned results for a circular cylinder or a slit are classi cal. For more sophisticated geometries, which will be investigated, no direct solution is possible since the compu tational problem becomes more and more complicated and ill conditioned as the number of periods is increasing. More over, the direct solution does not provide the equivalent macroscopic description of the medium. In this case the ho mogenization process is necessary.

B. Dynamics of a fluid-saturated deformable porous medlum24

The skeleton is now assumed to obey an elastic equation and the stresses in the solid and the liquid are of the same order. For the liquid, the assumptions of Sec. I A are still valid. Particularly, the rescaled Eq. ( 6) can be admitted [see remark (3) of Sec. I C]. Then, after performing the homog-enization process, the set of equations for the macroscopic motion with a constant pulsation is written (the stresses are positive in traction) as follows:

V,. (aT) = (p,)ii. + p( v ), (aT) = ce]( (u,) + ap, (v)-nu, = K(V,p-pii,), V, [K(V,.p -pii.)] = -ae,.(u,) +PP.
where aT is the total stress defined by aT= {a,, the stress in the skeleton, a1, the stress in the liquid, <aT>= lfl I-1 LaTd.a, p. is the mass per unit volume in the solid, u, is the displace ment in the solid, e is the deformation, and c is the elastic tensor. The effective parameters c, a, K, and P can be com puted.

The tensor K is identical to that defined in Sec.l A for a rigid skeleton. Introducing the partial stress (a, ) in the solid by (aT) = (a.) + npi, I unit tensor, a formulation similar to Biot's was obtained:

with V]( (a,)= b(u,-li1 ) + p1 1 ii, + P 1 2ii1 , V,np = -b(u.-ai1l + P22ii1 + P2 1 ii. , (a . )= QO j-de,. (u , }, np = Qe,(u.) + RO, Q = n(a-ni)IP, R = n 2 1P, b = n 2 H 1 (m), P 11 = (p,)I-P21• P22 = n 2 H 2 (m)m-1 , P12 = P21 = npl-n 2 H 2 (co)/co.
From the relation in Eq. ( 13), in the isotropic case, P 1 1 > (p.) • P12 = P21 < 0 , P22> np was obtained.

C. Remarks

( 1) The main fact to be pointed out is the simplicity of the description in which a unique parameter H = K-1 in volves the whole dynamic coupling between the liquid and the solid.

(2) The physical meaning of macroscopic quantities is preserved, as (v), (aT), or (a.), defined as volume mean values, are fluxes and then are Cauchy stresses.

(3) Unlike the case investigated in Sec. I A, rescaled equations other than Eq. ( 6) lead to different macroscopic behaviors. In view of obtaining a Biot's description, the two necessary assumptions are relation (2): / 2 mpp, -1 = 0 ( 1) and piEp, -1 1 v 1-1 = 0 ( 1 ), which means that the viscous stress in the liquid is small [0 (E)] compared to the pressure. See Ref.

24 for diff erent situations.

THE GENERALIZED DARCY COEFFICIENT AT HIGH

FREQUENCIES

As the pulsation ads increasing, the numerical problem associated with the variational formulation, Eq. (10), be comes more and more ill conditioned. Therefore, a study of K(w) as w-oo is useful/9 even if, for a large w, the macro scopic description presented in Sec. I is no longer valid. As w is increasing, the wavelength decreases and becomes 0 (I); the !J periodicity is no longer available for the velocity v and the homogenization process as described above is not heuris tic. Scattering appears.

The set of Eqs. (7H9) when w is large are considered. Let us assume v< o l and pm to be of the form 

V( O ) = V(O) + 1JV( I ) + •••,
arrives. From Eq. ( 14) there is rot v(ll = 0. This system is not well posed: Eqs. ( 14) and ( 15) describe an incompressible and irrotational perfect fluid with the body forces, V xi0l, not compatible with the adherence equation ( 16). The problem can be classically solved by considering first Eqs. ( 14) and ( 15) with an impermeability condition on rand second, in troducing a viscous boundary layer along r, matching the perfect fluid solution with the adherence condition. The per fect fluid will give a fi rst approximation for H with respect to w -I . Since the viscosity is zero at this initial step, the first approximation for v(ll will only concern the inertial part H 2 of H. In this case all v(ll for i>-2 are zero valued. A second order approximation will be introduced by the boundary layer.

The velocity vP and the pressure p P in the perfect fluid are defined by

vxp<O) + V.l'pP -iwpvp = 0, V.l'v P =0, V P •Nir = 0, ( 17 
)
where N is the unit external normal of !J 1 tor and v P, p P are periodic. Note that rot vP = 0. The velocity potential t/J is introduced by v P = grad t/J and the problem is the determin ation of t/J with Liyl/>=0, Vyt/J•Nir = 0, [START_REF] Green | A Dynamical Theory oflnteracting Con tinua[END_REF] (19)

where Vyl/> is !J-periodic, but not necessary r/J. So a solution of the form rp = a +AiYi is sought, where A is a constant vector to be specified for ward and a is a real scalar field, !J-periodic with S n, a d!J = 0. (Since f/J is defined to an arbitrary additive con . stant, this external condition is not restrictive.)

The space E of real scalar functions a , defined over !J 1, !J-periodic, with a zero-mean value and the scalar product, is introduced:

(a,/3) = ( aa ap d!J.

J n , ay i ay i Multiplying Eq. ( 18) by PE E, integrating over!J1, using the divergence theorem, the !J periodicity, and Eq. ( 19), we ob tain:

vp e E, o = ( Pilyf/l dn J n, 

where A. is a constant. Since p P is !J-periodic the following relation stands for the determination of A:

---ipAI =0, AI=--lp. dp<O) dp<O)f • dx1 d x1
The corresponding Darcy law is obtained by integrating Eq. ( 21) over !11:

-1 dp<O) (v)1 =W (v ) = K 1• --, Pt g d xi K _ n Bli lj--.
-,

zwp I 1 -li ( atj ) Bli = !J Ili +-d!J, n , ay /
where B is a real symmetrical tensor. As expected, the prin cipal part, as w becomes infinite, is imaginary, i.e., an inertial part:

n H2/pw = B-1•
The second approximation v c for v(l l is given by . the boundary viscous layer, itself considered as a plane layer in first approximation. The calculation is quite classical, keep ing in mind that the outward value for the v(ll corrector is the perfect fluid solution, Eq. The correction term for the Darcy law is given by inte grating over 121: To illustrate this, we have plotted in Figs. 2 -5 the di--mensionless values of H1 and H2 against the dimensionless frequency for a cylindrical slit and a circular cylinder where analytical results have been mentioned above. As expected, for all cylindrical pores we get B 11 = 1. In fact, this value represents the minimum value for B (( 1[see Eq. ( 13)]. When the tortuosity is larger, B 1!1 can be found to be far greater than one (see Ref. 29 and the sequel).

(U1-1 v c) = -nU�-11 11 l-1 i v Pklr

Ill. EXPERIMENTAL CHECKING

The experimental setup29 is sketched in Fig. 6. A peri odic porous medium undergoes a harmonic given flux at one end, a constant level reservoir ensuring a constant pressure at the other end. A low pressure membrane sensor ( ± 33 kPa) is flush-mounted in the injection room for the determin ation of the macroscopic gradient pressure. The porous me dium is of high tortuosity: A period is shown in Fig. porous model consists of a hundred periods, related to a small value for E. The liquid is a disaerated water. The pore size is such that the frequency range of interest, from 0.05-8

Hz, can be produced in a mechanical 'manner. The model is large enough to ensure a two-dimensional behavior (this is easily verifi ed comparing analytical results for a cylindrical slit to a rectangular cylinder) and its rigidity is such that the deformation of the porous matrix is negligible. The harmon ic flux is provided by a 1-cm-diam piston with variable am plitude, with a view to satisfying the condition Re< 1. A dis placement sensor with a response time corresponding to 100

Hz is used for the flux control. In the numerical computation with the two meshes and the two types of elements. The characteristic length a involved in the dimensionless frequency is 4.10-3 m. As expected, the ele ments with a bulb function lead to best results. An agree ment is found between the experimental data and the nu merical results. In a similar way Figs. 12 and 13 give the dimensionless real and imaginary parts of H. The major part of the discrepancy is here introduced by the behavior of the cosinus and sinus functions near zero and 1T'/2 values of the phase. The asymptotic behavior, as {t) increases, is also sketched in Figs. 10, 12, and 13. Note that for the geometry under consideration the quantity nH2/p{t) reaches the value 2.7 instead of 1 for cylindrical ducts, as {t) goes to infinity.

As a final example, the case of a slit (where analytical results are available) can be compared to the case of a double system of connected perpendicular slits (numerical results following Sec. Ill). Partial results are plotted in Figs. 14 and 15, for the dimensionless values of H1 and H2 versus the dimensionless frequency. The values discrepancy is quite im portant: The presence of connected perpendicular ducts no tably increases the inertial part and in a minor way the dissi pative part. The limit of nH2/ p{t), as {t) goes to infinity, is 1.5.

IV. CONCLUSION

The results of the present analysis lead us to outline the importance of the geometry, when the generalized Darcy

( 1 )

 1 where the v!•1 are ll periodic, by introducing such asymptotic developments into the equations describing the local behav ior. Then the powers of E are identified. (Boldfaced symbols are used for tensor quantities.) In the following section, the case of a rigid skeleton is presented. Detailed developments are available in Ref. 24. A. Dynamics of fluid flow through a rigid porous medium In Fig. 1, a sketch view of two periods of a porous medi um (two-dimensional case) is presented. The fluid is assumed to be Newtonian and incompressible (the second hypothesis can be removed; refer to the end of this section). It undergoes a small perturbation around the rest. The velocity v is small enough to satisfy the linearized Navier-Stokes equations. On the contrary, the linear dynamical term is taken into account and the transient Reynold's number is of the order of 1: (2) p denotes the mass per unit volume and J.L is the dynamic viscosity. Thus the set of equations for a monochromatic isothermic perturbation, at the microscopic level, is of the form ,_ujv = -Vp + i(J)pv, Vv=O, v lr =O.

  of pressure (positive in traction) due to the perturbation, Ll is the Laplacian operator and V p denotes the gradient of p. In order to verify relation (2) let J.l =J.L ' �.

  x and y are dependent. Equation(6) at E-1 order gives Vyp l o'=O, where the subscript y denotes a derivation with respect to y. It follows that p l OI = p ( O) (X).

  FIG. I. Sketch of two periods of a porous medium. 111 =liquid part, IJs =solid part, r =contact surface.

  p< U = P<ol + 1J P ( Il + ... , where 1J = w-1<1 and vi,pi!J periodic. At lower orders ipV(O) = 0, V .I' V( O ) = 0, V o lr = 0 is obtained, and obviously v(o) = 0. Then vxp<O) + V .l' p( O )-iwpv(l) = 0,

  Equation (20) represents a variational relation, equivalent to Eqs. ( 17) and (18). The solution is unique and because of the linearity, may be written as a = tiA i. Here, ti is the solution corresponding toA1 =la. The velocity vP is given in the first approximation by --y 1 -z p (lliy 1 +t i) A i +A., dx1

  (21) on r. If z denotes a dilated normal coordinate to r, we have30: vc = -v P lr exp[-(1 + i)(w/2v' )11 2 z], v' = p,'/p, and the corresponding correction pc for P p is zero .

FIG. 2 .

 2 FIG.2. Cylindrical slit: H1 against frequency: ---analytical result, ----asymptotic approximation (�oo ).

IFIG. 3 .

 3 FIG.3. Cylindrical slit: H2 against frequency: ---analytical result, ---asymptotic approximation (� oo ).

FIG. 4 .

 4 FIG. 4. Cylindrical duct: H2 against frequency: ---analytical result, ----asymptotic approximation (� oo ).

Finally

  , an approximate solution to Eqs. ( 14H 16) leading to Kjm = nBjm/iwp + (1 + z)v'(w/2v')112 Djmlw2p is obtained and, up to the second order: �m = n-I(Uipj..l '/2)1 / 2 c;m +iJ)Uin-1[Bi;;; 1+(v'/2UI)112] c;m, (22)• where Cim = B i. 1D1,B ;;;, 1 is a shape coefficient the dimension of which is the inverse of a length. The asymptotic approximation [Eq. (22)] is quite correct for H 2 since this quantity appears in the dynamic equation in the form H:zt0-1• But H 1 needs a third-order approximation, which is a constant, and may be introduced taking into account the curvature of the boundary layer. Fin ally, let us notice that the calculation of tensors B, D, and C needs only volume or surface mean value processes from the solution of relation (20). The numerical cost is far below that of the full problem [Eq. (10)].

FIG+FIG. 6 .

 6 FIG. S. Cylindrical duct: H, against frequency:---analytical result, ----asymptotic approximation (� oo ).

  FIG.7. A period of the porous medium.

Fig. 8

 8 FIG.8. Experimental data for di1t'erent piston amplitudes (in mm): 0 1.6 mm,• 2.2 mm, 0 3.4 mm, A 6.3 nun, + 6.6 mm, • 23.8 mm, 0 59 A mm.

  (a) Elements with a constant complex pressure and a quadratic complex vectorial function for velocity, defi ned • through six points M;, i = 1, ... ,6 ( the vertices and the mid dle point of each edge, see Fig. 9). Let ( z 1, z2, z3) be the bary centric coordinates defined on an element, with z 1 + z2 + z3 = 1 and consider the six second-degree func tions: M) = z;( 2z;-1}, for i= 1, 2, 3, <P4(M) = 4z1z2, <P5(M) = 4z�3, <P 6(M) = 4z1z 3 • Then the velocity at a point M of the element is taken as 6 V(M)= _LV(M;)<P;(M), i-=.1 where the six vectors V(M;) are the nodal unknowns. (b) Elements with a "bulb function" (as defined in Ref. 33) where the pressure is a complex linear function defined at the vertices and the velocity a comple_x vectorial function of the third degree. Consider the three functions: I/I;(M) =Z;, i= 1, 2, 3. The press ure is defined �y 3 p( M) = L I/I;(M)p(M;).

  FIG. 10. H against frequency: + ex perimental data, -asymptotic ap proximation; numerical results:� mesh A without bulb function, .&. mesh A with bulb function, 0 mesh 8 without bulb function, e mesh 8 with bulb func tion.
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FIG. 11 .FIG. 14 .

 1114 FIG.11. Phase against frequen cy. Notations as in Fig.10.