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AN EPIGRAPHICAL APPROACH TO THE REPRESENTER

THEOREM

VINCENT DUVAL
INRIA & CEREMADE, UNIVERSITÉ PARIS-DAUPHINE, PSL

Abstract. Describing the solutions of inverse problems arising in signal or im-
age processing is an important issue both for theoretical and numerical purposes.
We propose a principle which describes the solutions to convex variational prob-
lems involving a finite number of measurements. We discuss its optimality on
various problems concerning the recovery of Radon measures.

The recovery an unknown vector from a finite number of linear measurements
is an inverse problem which frequently arises in in signal processing or machine
learning. Convex variational approaches provide a flexible framework to address
that task, typically by solving a problem of the form

min
u∈V

R(u) + f(Φu),(P)

where V is a real vector space (e.g. the space of signals), Φ : V → RM is linear,
and R : V → R ∪ {+∞} and f : RM → R ∪ {+∞} are two convex functions.

The solutions to (P) are in general not unique, and it is of crucial importance
to understand the structure of the solution set S. As noted in [CRPW12], the
regularization term R determines the building blocks, or atoms, which constitute,
by convex combinations, the (or some) elements of S. Those atoms are the extreme
points of the level sets of R. Beside its theoretical interest, that description makes
a strong case for greedy optimization algorithms such as the conditional gradient
(a.k.a. Frank-Wolfe) [BP13, BSR17], especially in the case where V is infinite-
dimensional: even though it is not possible to encode a generic vector of V on a
computer, the atoms induced by R might be simple enough to be handled (possibly
with some approximation) numerically.

The goal of the present note is to state this representation principle as precisely
as possible, that is, the description of solutions of (P) as a convex combination of
atoms, while emphasizing the geometric essence of the property.

1. Related works and main theorem

1.1. Representer theorems. While representation results describing the spar-
sity (resp. rank) of some solutions of linear (resp. semi-definite) programs are
well-known (see e.g. [MG07, Bar95]), our main focus is on infinite dimensional
problems, for instance the Basis Pursuit for measures [dCG12, CFG14],

(1) min
m∈M(Ω)

|m| (Ω) s.t. Φm = y
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where y ∈ RM , Ω is a compact subset of Rd or the d-dimensional torus Td, M(Ω)
is the space of Radon measures on Ω and |m| (Ω) denotes the total variation of
m. The observation is Φm =

(∫

Ω
ϕi(x)dm(x)

)

16i6M
where {ϕi}16i6M is a family

of continuous functions on Ω. It is known [Zuh48] that there is a solution which
can be represented as

m =

r∑

i=1

aiδxi
where r 6M , {(xi, ai)}ri=1 ⊆ Ω× R.(2)

More precisely, Fisher and Jerome [FJ75] (see also [UFW17, FW19]) have proved
that the extreme points of the solution set S are of the form (2). Since, in a locally
convex Hausdorff space, each nonempty compact convex set is the closed convex
hull of its extreme points, knowing the solutions of the form (2) allows to recover
the whole set of solutions.

A related result was proved by L.C. Dubins [Dub62] and V. Klee [Kle63] in the
study of convex sets: the extreme points of the intersection of a linearly closed
and bounded convex set C with an affine space of codimension M are a convex
combination of at most M + 1 extreme points of C. In a variational problem

with an equality constraint such as (1) (i.e. f(w) = χ{y}(w)
def.
= 0 if w = y,

+∞ otherwise), one may regard the solution set as the intersection of the level set
{R 6 minP} with Φ(−1){y}. However, compared to (2), applying the Dubins-Klee
theorem yields one atom too many, and in [BCC+19] (together with coauthors)
we have provided an argument which reduces that number to M by exploiting the
structure of convex optimization problems.

The present note describes an alternative argument which handles the case of
general convex fidelity terms much more precisely than in [BCC+19] and makes the
statement more symmetric. Moreover, we discuss the optimality of the theorem
in the particular case of Radon measure recovery.

1.2. Main theorem. Our main result relates the dimensions of the faces in the
level sets of the regularizer and the fidelity term,

{R 6 R(p)} def.
= {u ∈ V | R(u) 6 R(p) } ,

{f 6 f(Φp)} def.
=
{
w ∈ RM | f(w) 6 f(Φp)

}
.

The notion of face used below is described in Section 2.1. Note that, possibly
changing f and M , there is no loss of generality in assuming that Φ is surjective.

Theorem 1. Let R : V → R ∪ {+∞}, f : RM → R ∪ {+∞} be two convex
functions, and let Φ : V → RM be linear surjective. Assume that p ∈ S, R(p) +
f(Φp) < +∞, and that {R 6 R(p)} is linearly closed and contains no line.

If p belongs to a face of S with dimension j < +∞, then it belongs to a face of
{R 6 R(p)} with dimension at most k, where

k
def.
=

{

M − ℓ+ j − 1 if (R(p) > inf R) or (f(Φp) > inf f),

M − ℓ+ j otherwise.
(3)

and ℓ is the dimension of the minimal face of Φp in {f 6 f(Φp)}. If, moreover, p
satisfies the double obliqueness condition described in Definition 1, the number k
can be reduced to M − ℓ+ j − 2.

We deduce the following representation for p.
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Corollary 1. Under the assumptions of Theorem 1, p can be written as a convex
combination of (at most) k + 1 extreme points of {R 6 R(p)}, or k points of
{R 6 R(p)}, each an extreme point or a point in an extreme ray.

Remark 1. In the case of an equality constraint (f = χ{y}) or a strictly convex
function f , we have ℓ = 0. Hence, p belongs to a face of {R 6 R(p)} with dimension
(at most) M + j−1 if it belongs to a face of S with dimension j and R(p) < inf R.
This is coherent with [BCC+19]. On the other hand, with polyhedral fidelity terms
f such as the ℓ1 or ℓ∞ norm, non-trivial values of ℓ should be taken into account.

Remark 2. Furthermore, for j = 0, i.e. p extreme point of S, we obtain that p
belongs to a face of dimension (at most) M − 1 provided R(p) > inf R. Hence
Corollary 1 recovers the Fisher-Jerome theorem.

2. Proof of the main result

2.1. Reminder on the faces of convex sets. We first recall a few definitions
and basic properties. Given two points x and y in V , we define the closed interval

(or line segment) joining x to y as [x, y]
def.
= { tx+ (1− t)y | 0 6 t 6 1 }, and the

open interval joining x to y as ]x, y[
def.
= [x, y] \ {x, y}. A line (resp. an open half

line) is a set of the form a+Rv (resp. { a+ tv | t > 0 }) where a, v ∈ V and v 6= 0.
In the following, C ⊆ V denotes a convex set, i.e. for any x, y ∈ C, the segment
[x, y] lies in C.

The set C is linearly closed (resp. linearly bounded) if its intersection with any
line is a closed (resp. bounded) subset of that line.

We say that a point u ∈ C belongs to the relative algebraic interior (or intrinsic
core) of C if

∀v ∈ Aff C, ∃ε > 0, ∀λ ∈ ]−ε, ε[ , u+ λ(v − u) ∈ C,(4)

where Aff C denotes the affine hull of C. Equivalently (see [Kle57, Prop. 2.3]), u
is in the relative algebraic interior of C if and only if

∀v ∈ C \ {u}, ∃z ∈ C, u ∈ ]v, z[ .(5)

We say that C is internal if it is equal to its relative algebraic interior.
A point x ∈ C is an extreme point of C if there is no open interval in C

containing x, or equivalently if C \ {x} is convex. An extreme ray ρ of C is a
half-line contained in C such that any open interval I which intersects ρ must
satisfy I ⊆ ρ. More generally, a subset F of C is said to be a face of C if F is
convex and, for all x ∈ F and any open interval I ⊆ C containing x, I ⊂ F . An
alternative definition of an extreme point is “a point x such that {x} is a face of
C”. Similarly, extreme rays may be defined as the half-lines which are a face of
C. The dimension of a face, dimF , is defined as the dimension of its affine hull
Aff(F ).

A canonical choice of face is given by the notion of elementary face. Given
x ∈ C, we define F (x, C) as the intersection of all the faces of C which contain
x. It is also a face, hence it is the minimal face of C (for the inclusion) which
contains x. We call such sets the elementary faces of C. It turns out that F (x, C)
is equal to the largest internal subset of C which contains x (see [Dub62, Th.
2.1]), hence it is the union of {x} and all the open intervals of C which contain
x. Moreover, the elementary faces yield a partition of C with y ∈ F (x, C) if and
only if F (x, C) = F (y, C).
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The behavior the elementary faces when performing several operations on convex
sets is described below.

Intersection. Since the elementary face F (x, C) is the union of {x} and all the
open intervals of a convex set which contain x, one may check that if C1 and C1

are two convex sets,

F (x, C1 ∩ C2) = F (x, C1) ∩ F (x, C2) .(6)

Moreover, if W1,2, W1, W2 respectively denote the affine hulls of those faces, they
consist in the collection of lines through x which respectively intersect C1 ∩ C2,
C1, C2 through an open interval. As a consequence,

W1,2 = W1 ∩W2.(7)

Cartesian product. If C1, C2 are convex subsets of the vector spaces V1, V2, it
is possible to check that F (x1, C1) × F (x2, C2) is both a face of C1 × C2 and an
internal set. As a result,

F ((x1, x2), C1 × C2) = F (x1, C1)×F (x2, C2) .(8)

Moreover, ifW1,2,W1,W2 respectively denote the affine hulls of the above-mentioned
faces, it holds

W1,2 = W1 ×W2.(9)

Affine map. If ψ : V1 → V2 is an affine bijective map, it preserves the elementary
faces:

F (ψ(x), ψ(C)) = ψ (F (x, C)) .(10)

If W1 (resp. W2) denotes the affine hull F (x, C) (resp. F (ψ(x), ψ(C))),

W2 = ψ(W1).(11)

2.2. Epigraphical reformulation. Now, we proceed with the proof of Theo-

rem 1. We consider p as in Theorem 1, and we write fΦ
def.
= f ◦Φ, t⋆ def.

= R(p)+fΦ(p).
Instead of directly studying S and the level sets {R 6 R(p)}, {fΦ 6 fΦ(p)}, we
consider Ŝ def.

= { (u,R(u)) | u ∈ S }, as well as the epigraph of R and the hypograph
of t⋆ − fΦ,

Ê def.
= epi(R)

def.
= { (u, r) ∈ V × R | R(u) 6 r } ,

Ĥ def.
= hypo(t⋆ − fΦ)

def.
= { (u, r) ∈ V × R | t⋆ − fΦ(u) > r } .

We note that Ê and Ĥ are convex, with Ŝ = Ê ∩ Ĥ (see fig. 1 for an illustration).

➢ Indeed, if (u, r) ∈ Ê ∩ Ĥ, then R(u) 6 r 6 t⋆ − fΦ(u), hence

R(u) + fΦ(u) 6 r + fΦ(u) 6 t⋆.

Since t⋆ = inf (P), the left-hand side is bounded below by t⋆, hence

u ∈ S and r = R(u). This proves that Ê ∩ Ĥ ⊆ Ŝ. The converse
inclusion is straightforward.

Using (6), we get

F
(

(p, R (p)) , Ê ∩ Ĥ
)

= F
(

(p, R (p)) , Ê
)

∩ F
(

(p, R (p)) , Ĥ
)

.(12)

To understand the dimension of those faces, we need to consider their affine

hulls. Let Ŝ, Ê and Ĥ be the respective affine hulls of F
(

(p, R (p)) , Ê ∩ Ĥ
)

,
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{0} × R

V × {0}

Ê = epi(R)

Ĥ = hypo(t⋆ − fΦ)

•
(p, R(p))

S

Ŝ

•
(p, 0)

Figure 1. The solution set S is equivalent, up to an affine isomor-
phism, to the set Ŝ (see lemma 1).

F
(

(p, R (p)) , Ê
)

and F
(

(p, R (p)) , Ĥ
)

. From (7), we have Ŝ = Ê ∩ Ĥ . Up

to a translation of the origin in V × R, we assume without loss of generality that
(p, R (p)) = (0, 0), so that all the above-mentioned affine hulls are now linear hulls.

By classical results in linear algebra, dim Ê = dim(Ê ∩ Ĥ) + codimÊ(Ê ∩ Ĥ) and

codimÊ(Ê ∩ Ĥ) = codimÊ+Ĥ(Ĥ) = codimV×R Ĥ − codimV×R(Ê + Ĥ). Combining
those equalities, we get

dim Ê = codimV Ĥ + dim(Ŝ)− codimV (Ê + Ĥ).(13)

2.3. Faces in epigraph and in level sets. To relate the faces of Ŝ and S, we
note that Ŝ is the image of S by some injective linear map.

Lemma 1. There is a linear map L : Span(S) → R such that R coincides with L

on S. Moreover, the map L̂ : Span(S) → Span(Ŝ) defined by L̂(v)
def.
= (v, L(v)) is

bijective and L̂(S) = Ŝ.
The proof consists in observing that the convex function R must coincide with

the concave function t⋆ − fΦ on S. We omit it for brevity. As a consequence of

Lemma 1, we obtain j = dimF (0,S) = dimF
(

(0, 0) , Ŝ
)

= dim(Ŝ).

As for Ê and {R 6 0}, we have Ê ∩ (V × {0}) = {R 6 0} × {0}, and using (6)
and (8) we obtain

F
(

(0, 0) , Ê
)

∩ (V × {0}) = F
(

(0, 0) , Ê ∩ (V × {0})
)

= F (0, {R 6 0})× {0}.
(14)

Let E
def.
= Span (F (0, {R 6 0})) ⊆ V . From (7), we note that the linear spans Ê

and E are related through Ê ∩ (V × {0}) = E × {0}. As a result

dim Ê = dimE + codimÊ(E × {0}),(15)

where codimÊ(E × {0}) ∈ {0, 1}. If codimÊ(E × {0}) = 0, we say that the face

F
(

(0, 0) , Ê
)

is horizontal. Otherwise we say that it is oblique.

Now, we examine Ĥ and {f 6 f(0)}. Let Z be a linear complement to ker Φ
in V . Since rankΦ = M , the restriction Φ|Z : Z → RM is an isomorphism. As a
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result, the mapping

ψ :
V × R −→ ker Φ× Z × R −→ (ker Φ)× (RM × R)
(u, r) 7−→ (k, z, r) 7−→ (k, (Φz, r))

(where (k, z) is the unique element in ker Φ × Z such that u = k + z) is an

isomorphism. In particular, since ψ maps Ĥ to ker Φ× (hypo(t⋆ − f)),

ψ
(

F
(

(u, r) , Ĥ
))

= F
(

ψ (u, r) , ψ(Ĥ)
)

= F ((k, (Φz, r)), ker Φ× (hypo(t⋆ − f))

= ker Φ× F ((Φz, r), hypo(t⋆ − f)) .

Applying this to (u, r) = (p, R(p)) = (0, 0) and considering the linear spans, we
obtain

codimV×R Ĥ =M + 1− ℓ̂,(16)

where ℓ̂ is the dimension of F ((0, 0) , hypo(t⋆ − f)). Just like the faces of the

regularizer, we may define H = SpanF (0, {f 6 f(0)}) and notice that dim Ĥ =

dimH+codimĤ(H×{0}). As a result, ℓ̂ = dimF (0, {f 6 f(0)}) (in which case we

say the face F ((0, 0) , hypo(t⋆ − f)) is horizontal), or ℓ̂ = dimF (0, {f 6 f(0)})+1
(in which case we say it is oblique).

From the above discussion, we see that the horizontality or obliqueness of the
faces in Ê and Ĥ play an important role. The following condition will be useful.

Definition 1. We say that p satisfies the double obliqueness condition if both

F
(

(p, R (p)) , Ê
)

and F ((Φp, t⋆ − f(Φp)) , hypo(t⋆ − f)) are oblique. In other

words,

codimÊ(E × {R(p)}) = 1 and codimĤ(H × {R(p)}) = 1.(17)

2.4. Conclusion of the proof of Theorem 1. It remains to study the last term
of (13).

Lemma 2. The following inequality holds: codimV (Ê + Ĥ) > 1.

If both F
(

(0, 0) , Ê
)

and F ((0, 0) , hypo(t⋆ − f)) are horizontal and (R(0) >

inf R or fΦ(0) > inf fΦ), then codimV (Ê + Ĥ) > 2.

Proof. First, in the general case, we prove that codimV (Ê + Ĥ) > 1 by arguing

that ({0} × R) ∩ (Ê + Ĥ) = {0}. Indeed, assume by contradiction that ({0} ×
R) ⊆ (Ê + Ĥ). Then, for all ε > 0, there exists a vector (e, α) ∈ Ê, a vector

(h, β) ∈ Ĥ , such that (0,−ε) = (e, α) + (h, β). Possibly reducing ε, we may

assume that (e, α) and (h, β) are so small that (e, α) ∈ F
(

(0, 0) , Ê
)

and (h, β) ∈

F
(

(0, 0) , Ĥ
)

. Arguing as in Lemma 1, it is possible to prove that R (resp. (t⋆ −

fΦ) coincides with a linear function on
{

e′ | (e′, α′) ∈ F
(

(0, 0) , Ê
)}

(resp. on
{

h′ | (h′, β ′) ∈ F
(

(0, 0) , Ĥ
)}

), with R(e′) = α′ and β ′ = t⋆ − fΦ(h
′).

Hence,

(R + fΦ)(e) = R(e) + fΦ(−h) = R(e) + (fΦ(−h)− t⋆) + t⋆ = α + β + t⋆ = t⋆ − ε < t⋆,

which contradicts the fact that t⋆ is the minimal value of (P).
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Now, we assume that both F
(

(0, 0) , Ê
)

and F
(

(0, 0) , Ĥ
)

are horizontal and

thatR(0) > inf R (the case fΦ(0) > inf fΦ being similar), and we prove codimV (Ê+

Ĥ) > 2. Note that, both faces being horizontal, we have Ê + Ĥ ⊆ (V × {0}). As
a result Ê = E × {0} and Ĥ = H × {0}, and it is sufficient to prove that E +H
has a nontrivial complement in V . By assumption, there exists x′ ∈ V such that
R(x′) < R(0). By contradiction, if E + H = V , we may write x′ = e + h with
e ∈ E, h ∈ H . For θ > 0, we consider the point

xθ
def.
=

θ

1 + θ
x′ +

1

1 + θ
(−θe) = θ

1 + θ
h.

Since 0 is internal to F (0, {R 6 0}) (resp. F (0, {fΦ 6 fΦ(0)}), for θ > 0 small
enough, (−θe) ∈ F (0, {R 6 0}) (resp. θ

1+θ
h ∈ F (0, {fΦ 6 fΦ(0)})). Hence,

(R + fΦ)(xθ) 6
θ

1 + θ
R(x′)
︸ ︷︷ ︸

<R(0)

+
1

1 + θ
R(−θe)
︸ ︷︷ ︸

=R(0)

+fΦ(xθ) < (R + fΦ)(0),(18)

which contradicts the fact that 0 is a minimizer.
As a result, E + H ( V . If W is a linear complement to E + H in V , then
(W × {0}) ⊕ ({0} × R) is thus a linear complement to Ê + Ĥ in V × R, with
dimension > 2. �

Now, we can finish the proof of theorem 1. From (13) and (16), we note that

dim Ê =M + 1− ℓ̂+ j − codimV (Ê + Ĥ).

First, we assume that both F
(

(0, 0) , Ê
)

and F ((0, 0) , hypo(t⋆ − f)) are hori-

zontal: dim Ê = dimE and ℓ̂ = ℓ. If R(0) = inf R and fΦ(0) = inf fΦ, the inequal-
ity of lemma 2 yields dimE 6 M − ℓ + j. On the other hand, if R(0) > inf R or
fΦ(0) > inf fΦ, the stronger inequality of lemma 2 yields dimE 6M − ℓ+ j − 1

Now, if F
(

(0, 0) , Ê
)

is oblique, dim Ê = dimE + 1 and R(0) > inf R. If

F ((0, 0) , hypo(t⋆ − f)) is oblique, then ℓ̂ = ℓ + 1 and f(0) > inf f . Using that

codimV (Ê + Ĥ) > 1, we obtain dimE 6 M − ℓ+ j − 1 if only one of the faces is
oblique, and dimE 6M − ℓ+ j− 2 if both are oblique. This concludes the proof.

2.5. Proof of Corollary 1. We derive the representation of p = 0 as a convex
combination. Let k < +∞ be the above-mentioned upper-bound on dimE and
let F be the linear closure of F (0, {R 6 R(0)}). As F (0, {R 6 R(0)}) ⊆ E, we
know that F is in fact its closure for the finite-dimensional topology of E. By
the Carathéodory-Klee theorem [Kle63, Th. 3], since F is closed and contains no
line, its points are convex combinations of at most k + 1 extreme points of F or
k points, each an extreme point or a point in an extreme ray. To conclude, we
note that F is a face of {R 6 R(0)}, its extreme points are thus extreme points of
{R 6 R(0)}. �

3. Level sets containing lines

3.1. The generalized splines problem. In [FJ75], Fisher and Jerome have in
fact considered the more general problem

(19) min
u∈V

|Lu| (Ω) s.t. Lu ∈ M(Ω) and Φu = y,
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where V ⊆ D′(Ω) is a suitably defined space of distributions, and the differential
operator L : D′(Ω) → D′(Ω) maps V onto M(Ω). We refer to [FJ75] for precise
assumptions and to [UFW17, FW19, GFU18] for extensions to a more general set-
ting. Under some topological assumptions, the results in [UFW17, FW19] describe
the extreme points of the solution set to (19) as generalized splines

u(x) =

r∑

k=1

akL
+δxk

+ P (x)(20)

where ak ∈ R, L+ is some pseudo-inverse of L (one may see L+δxk
as a Green

function for L) and P ∈ Ker L. Moreover, r 6M − dimΦ(ker L).
For Ω = R and L = Dn, where D denotes the differentiation operator, one

obtains the polynomial splines

u(x) =

r∑

k=1

(x− xk)
n
+

n!
+ P (x),

where P ∈ Rn−1[X ]. In this section, we examine how our discussion can be
extended to the case of level set containing lines so as to obtain representations of
the form (20).

3.2. Convex sets and their lineality space. We first need to recall several
properties of convex sets containing lines (see for instance [Kle57] or [Roc97, Ch.8]).
We say that a nonempty convex set C ⊆ V is invariant in the direction v ∈ V if

C + Rv ⊆ C.(21)

The collection of all vectors v ∈ V such that (21) holds is a vector space called the
lineality space of C, denoted by lin(C).

If C is internal or linearly closed, given v ∈ V \ {0}, it is equivalent to say that
C is invariant in the direction v, or to say that C contains a line directed by v, i.e.
(x0 + Rv) ⊆ C for some x0 ∈ V . As a consequence, if C1, C2 are two nonempty
convex sets, then lin(C1) ∩ lin(C2) ⊆ lin(C1 ∩ C2), with equality if C1 and C2 are
internal or linearly closed.

If C is invariant by some subspaceK, i.e. K ⊆ lin(C), it is sometimes convenient
to quotient the ambient space by K. Considering a linear complement1 W to K,
we note that there is a linear isomorphism

ψ :
V −→ K ×W −→ K × (V�K)
u 7−→ (k, w) 7−→ (k, πK(w))

where (k, w) is the unique element in K ×W such that u = k +w, and πK : V →
V�K is the canonical surjection. In other words πK(w) = πK(u)

def.
= u+K is the

coset of u.
From (10), we note that ψ (F (u, C)) = K ×F (πK(u), πK(C)) so that the faces

of πK(C) can be easily deduced from those of C and conversely, with

πK(F (u, C)) = F (πK(u), πK(C)) .(22)

If C is internal (resp. linearly closed), then πK(C) is internal (resp. linearly
closed) and, if K = lin(C), πK(C) contains no line.

1We use freely the axiom of choice, hence any subspace of V admits a complement subspace.
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3.3. Back the optimization problem. Let K = lin({R 6 R(p)}) and N
def.
=

ker Φ. We note that F (p,S) is invariant by K ∩N .

➢ Indeed, the face of the epigraph F
(

(p, R (p)) , Ê
)

is internal and

contains K×{R(p)}, hence it is invariant by K̂ def.
= K×{0}. On the

other hand, the hypograph Ĥ (hence F
(

(p, R (p)) , Ĥ
)

) is invariant

by N̂
def.
= N ×{0}. From (12) we deduce that F

(

(p, R (p)) , Ê ∩ Ĥ
)

is invariant by K̂ ∩ N̂ = (K ∩N)×{0}. Since F (p,S) is its projec-
tion onto the horizontal hyperplane (see Lemma 1), it is invariant
by K ∩N .

Therefore, F (p,S) is linearly isomorphic to (K ∩N)× πK∩N (F (p,S)). Instead
of considering the dimension of F (p,S) to describe the point p, the following
theorem relies on the dimension of the coset πK∩N (F (p,S)).

Theorem 2. Let R : V → R ∪ {+∞}, f : RM → R ∪ {+∞} be two con-
vex functions, and let Φ : V → RM be linear surjective. Assume that p ∈ S,
with R(p) + f(Φp) < +∞, and that {R 6 R(p)} is linearly closed. Let K

def.
=

lin({R 6 R(p)}), d def.
= dimΦ(K), and N

def.
= kerΦ.

If dim (πK∩N (F (p,S))) = j < +∞, then πK(p) belongs to a face of πK({R 6 R(p)})
with dimension at most k, where

k
def.
=

{

M − ℓ+ j − d− 1 if (R(p) > inf R) or (f(Φp) > inf f),

M − ℓ+ j − d otherwise.
(23)

and ℓ is the dimension of the minimal face of Φp in {f 6 f(Φp)}.
In particular, πK(p) can be written as a convex combination of (at most):

◦ k + 1 extreme points of πK({R 6 R(p)}),
◦ or k points of πK({R 6 R(p)}), each an extreme point or a point in an
extreme ray.

If, moreover, p satisfies the obliqueness condition described in definition 1, the
number k can be reduced to M − ℓ+ j − d− 2.

In particular, if p1, . . . , pr ∈ {R 6 R(p)} are such that πK(p1), . . . , πK(pr) denote
those extreme points (or points in extreme rays),

(24) p =
r∑

i=1

θipi + uK , where θi > 0,
r∑

i=1

θi = 1, and uK ∈ K.

Remark 3. In practice, if Ê is linearly closed (e.g. if R is lower semi-continuous
for some topology), then the whole solution set S is invariant by (K ∩ N), and
πK∩N (F (p,S)) = (F (πK∩N(p), πK∩N(S))). However, notice that the solution set
S may have more invariant directions than just (K ∩N).

Proof. We assume, up to a change of the origin in V × R, that (p, R (p)) = (0, 0).

As noted above, F
(

(p, R (p)) , Ê
)

is invariant by K̂ = K × {0}, hence K̂ ⊆ Ê.

Similarly, N̂ ⊆ Ĥ, and classical results on quotient spaces [Lan02, Ch. 3, Sec. 1]
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imply






Ê
�K̂ ≈

(

Ê
�(K̂ ∩ N̂)

)

�

(

K̂
�(K̂ ∩ N̂)

)

Ê
�(Ê ∩ Ĥ) ≈

(

Ê
�(K̂ ∩ N̂)

)

�

(

(Ê ∩ Ĥ)
�(K̂ ∩ N̂)

)(25)

hence, provided the corresponding dimensions are finite (we prove below that they
are),

dim(Ê�K̂) = dim
(

Ê�(Ê ∩ Ĥ)
)

+ dim
(

(Ê ∩ Ĥ)�(K̂ ∩ N̂)
)

− dim
(

K̂�(K̂ ∩ N̂)
)

.

(26)

The term dim
(

Ê�(Ê ∩ Ĥ)
)

= codimÊ(Ê∩Ĥ) has already been studied in Sec-

tions 2.2 and 2.3. Now, we prove that dim
(

(Ê ∩ Ĥ)�(K̂ ∩ N̂)
)

= j. Since L̂ (see

lemma 1) satisfies L̂(K ∩ N) = (K ∩ N) × {0}, it induces a map ˆ̃L which makes
the following diagram commutative.

S Ŝ

S�K ∩N
Ŝ
�K̂ ∩ N̂

L̂

πK∩N
π
K̂∩N̂

ˆ̃L

Since L̂ is bijective, ˆ̃L is surjective by construction. Let us observe that it is also
injective.

➢ Consider any coset in S�K ∩N , say πK∩N(s) for some s ∈ S. If
ˆ̃L(πK∩N (s)) = 0, it means that πK̂∩N̂(L̂(s)) = 0, that is (s, L(s)) ∈
(K ×N)× {0}. Hence πK∩N(s) = 0, and ˆ̃L is injective.

As a result dim
(

Ŝ�K̂ ∩ N̂
)

= dim (S�K ∩N). But by linearity,

S�K ∩N = πK∩N (S) = πK∩N (Span (F (0,S))) = Span (πK∩N (F (0,S))) ,

so that dim
(

Ŝ�K̂ ∩ N̂
)

= j.

It remains to identify dim
(

K̂�(K̂ ∩ N̂)
)

. By the first isomorphism theorem,

if Φ|K denotes the restriction of Φ to K,

ImΦ|K≈
(
K�ker Φ|K

)

=
(
K�K ∩N

)

≈
(

K̂
�K̂ ∩ N̂

)

.

As a result, dim(K̂�K̂ ∩ N̂) = dimΦ(K) = d.

To conclude, we deal with Ê. As in Section 2.3, we note that dim(Ê�K̂) =

dim(E�K) + (0 or 1), depending on whether F
(

0, Ê
)

is horizontal or oblique.

Hence, dim(E�K) 6 k where k is given by (23). Moreover,

E�K = πK(Span(F (0, {R 6 0}))) = Span (πK(F (0, {R 6 0})))
so that dim(E�K) is the dimension of the elementary face of πK(p) in πK({R 6 R(p)}).
As {R 6 R(p)} is linearly closed andK is its lineality space, we note that πK({R 6 R(p)})
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is linearly closed and contains no line. The representation of πK(p) as a convex
combination follows from the same argument as in the proof of corollary 1.

�

3.4. Link with the Fisher-Jerome result. The conclusions of Theorem 2 and
(24) recover the representation result (20) for the Fisher-Jerome problem. Indeed,
assuming that there is a point p such that j = 0 (e.g. if πK∩N(S) is compact for
some topology), we obtain that πK(p) belongs to a face with dimension at most
M − d − 1. The quantities ak

|ak |
L+δxk

are some specific choices of points pk such

that πK(pk) = ak
|ak |
δxk

is an extreme point of the total variation unit ball. The

operator L+ is determined by choosing some specific linear complement W to K.
Conversely, if W (hence L+) is fixed and p1, . . . , pr are given as in (24), one can
recover (20) by adding some elements of K (i.e. changing uK).

4. Is it optimal?

4.1. Optimality in the general class of convex problems. For each different
case of Theorem 1 and Corollary 1, it is possible to exhibit a convex function for
which the upper-bounds are attained. In that sense, the results stated above are
optimal. Moreover, due to their geometric essence (they do not rely on topolog-
ical assumptions) and the weakness of their assumptions, they are quite general.
In comparison, an approach relying on the subdifferential and optimality condi-
tions would require a constraint qualification argument together with a suitable
choice of topology. Moreover, it is not clear to the author whether exploiting the
subdifferential could describe precisely the extreme points that are not exposed.

On the other hand, for several specific problems that we discuss below, the
bounds provided by Theorem 1 are not tight.

4.2. The Carathéodory number. A first example, discussed in [BCC+19], is
the case of Semi-Definite Programs (SDP), such as the feasibility problem

min
Q
χS+

n (R)(Q) s.t. ΦQ = y,

where S+
n (R) denotes the cone of symmetric positive semi-definite matrices of size

n. While Corollary 1 predicts that an extreme point of the solution set is a convex
combination of at most M rank-one matrices (i.e. the points in the extreme rays
of S+

n (R)), it is known [Bar95] that there is a solution which is made of at most
1
2

(√
8M + 1− 1

)
6M such atoms. As it turns out, even though the solution does

belong to a face of S+
n (R) with dimension M , the Carathéodory-Klee theorem is

not sharp, as one needs less than M points in extreme rays to represent the points
of that face. That phenomenon is quite common with non-polyhedral sets: for
instance, in the Euclidean closed unit ball, every point is a convex combination of
at most two extreme points (regardless of the ambient dimension). More generally,
if F ⊆ V is convex, linearly bounded, linearly closed and each point of F is internal
or an extreme point (e.g. if F is strictly convex), the same property holds.

On the other hand, if F ⊆ V is anM-dimensional convex polytope, it is possible
to check that almost every point of F (in the sense of the Lebesgue measure) is a
convex combination of M + 1 (and not less) extreme points of F .
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4.3. Nonnegative measures. Another interesting case is the truncated trigono-
metric moment problem,

min
m

χM+(T)(m) s.t.

∫

T

ϕk(t)dm(t) = yk (0 6 k 6 2fc),(27)

whereM+(T) is the set of nonnegative measures on the torus T = R/Z, y ∈ R2fc+1,
and ϕ0(t) = 1, ϕ2j−1(t) = cos(j2πt) and ϕ2j(t) = sin(j2πt) for 1 6 j 6 fc.

The Carathéodory-Toeplitz theorem [Car07, Toe11] states that there is a solu-
tion to (27) if and only if the matrix

T (c)
def.
=








c0 c1 · · · cfc

c∗1 c0
. . .

...
...

. . .
. . . c1

c∗fc · · · c∗1 c0







, where cj

def.
= y2j−1 − iy2j , c0

def.
= y0,

is positive semi-definite. If r
def.
= rankT (c) 6 fc, the solution m is unique, and its

support has cardinality r. If T (c) is invertible, there is an infinity of solutions with
cardinality fc+1 (and more). In particular for any t0 ∈ T there is a solution which
charges {t0}. Note that similar results hold for T-systems on an interval [KN77,
Ch. 4, Sec. 4].

That result contrasts with Corollary 1 which would predict a sum of at most
2fc+1 Dirac masses. Here, the situation is different from the case of S+

n (R), since
any measure belonging to a d-dimensional elementary face of M+(T) is a sum of
exactly d Dirac masses. Therefore we must have dimF (m,M+(T)) < 2fc+1 and,

recalling (13), we deduce that the lower bound on codimV×R(Ê + Ĥ) provided by
Lemma 2 is far too pessimistic. In other words, the affine spaces determined by
the Fourier coefficients only intersect very specific faces of the cone M+(T).

An intuitive explanation consists in counting the “degrees of freedom” of the
problem (we do not consider the statistical notion used in [PP19], but simply the
“number of variables that should be fixed”). Informally, to fix the positions and
amplitudes of k Dirac masses, that is 2k variables, we need at least 2k equations,
i.e. 2k 6 2fc + 1.

4.4. The Basis-Pursuit for measures. Surprisingly, things are different when
considering the Basis Pursuit for measures,

min
m∈M(T)

|m| (T) s.t.

∫

T

ϕk(t)dm(t) = yk (0 6 k 6 2fc),(28)

where {ϕk}2fck=0 is again the trigonometric system. In [Con19], Laurent Condat has
observed that when y is the Fourier coefficient vector of two opposite close spikes,

a solution to (28) is a Dirac comb. More precisely, if y = Φm0
def.
=
(∫

T
ϕkdm0

)2fc

k=0

with m0 = δh/2 − δ−h/2 and 0 < h < 1
2fc

, he notices that the solution to (28) is
given by

m =

fc−1
∑

j=−fc

ajδtj , where tj
def.
=

1

4fc
+

j

2fc
, and(29)

aj = (−1)j
cos(πhfc)

2fc

(

cotan(π(
1

4fc
+

j

2fc
− h/2))− cotan(π(

1

4fc
+

j

2fc
+ h/2))

)

.

(30)
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While this observation in [Con19] seems to rely on numerical experiments, we
provide in Appendix A a proof relying on a duality argument.

Proposition 1. For y = Φm0 with m0 = δh/2 − δ−h/2 and 0 < h < 1/(2fc), the
unique solution to (28) is given by (29) and (30).

As a consequence of Proposition 1, the number of Dirac masses predicted by
Corollary 1 is almost optimal (2fc + 1 Dirac masses are predicted whereas 2fc
actually appear). In fact, one cannot do “better”: it is proved in [Con19] that for
every y ∈ R2fc+1, there is a solution to (28) which is a sum of at most 2fc Dirac
masses.

Arguing informally in terms of “degrees of freedom”, we see that the above
situation is quite peculiar: the relative positions of the Dirac masses are fixed,
they can only move by a global translation. As a result, the 2fc + 1 variables
determine the 2fc amplitudes of the spikes and the last degree of freedom which
is a global shift of the Dirac comb.

5. Conclusion

The representer theorem presented in this note describes, under very weak as-
sumptions, the solutions of variational problems as a combination of a few atoms.
It is optimal in the sense that for each described configuration, there is a varia-
tional problem for which the predicted number of atoms is attained. However, in
some specific problems, the solutions may be sparser than predicted by the the-
orem. It is for instance the case of the truncated trigonometric moment problem
involving the positivity constraint in the space of measures. On the other hand,
with the total variation regularization for signed Radon measures, the prediction
of the theorem is almost optimal.
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Appendix A. Proof of Proposition 1

We endow M(T) with the weak-* topology, and C (T) with the norm topology,
so that M(T) and C (T) are paired spaces (in the sense of, e.g. [Roc89]). A dual
problem to (28) is

sup
p∈R2fc+1

∫

T

(
∑

k

pkϕk(t)

)

dm0(t) s.t.

∥
∥
∥
∥
∥

∑

k

pkϕk

∥
∥
∥
∥
∥
∞

6 1.(31)

It can be shown that strong duality holds (see [DP15]) and that (31) has a solution.
Moreover, any admissible measure m is a solution to (28) and p is a solution to (31)
if and only if they satisfy the following extremality condition: the trigonometric

polynomial η
def.
=
∑

k pkϕk satisfies η(t) = 1 for all t ∈ supp(m+) and η(t) = −1
for all t ∈ supp(m−), where m+ and m− denote the positive and negative parts in
the Jordan decomposition of m. Therefore, it suffices to solve (31) to discover the
possible support and sign of all the solutions to (28).

Lemma 3. For 0 < h < 1
2fc

, the unique solution to (31) is p∗ = (0, . . . , 0, 1),

corresponding to the function η∗ : t 7→ sin(2πfct).
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Proof. As m0 = δh/2 − δ−h/2, Equation (31) reformulates as the maximization
problem

max
η

(η(h/2)− η(−h/2))(32)

where the maximization is over all the trigonometric polynomials η with degree
at most fc and ‖η‖∞ 6 1. Let η be a solution to (32). Note that its odd part,

ηodd(t)
def.
= 1

2
(η(t)− η(−t)), is also a solution to (32), so we first study ηodd.

Since ‖ηodd‖∞ 6 1 and η∗(tj) = (−1)j for j ∈ {−fc, . . . , fc − 1}, we note that
(−1)j(η∗ − ηodd)(tj) > 0. Moreover,

ηodd(h/2) =
1

2
[ηodd(h/2)− ηodd(−h/2)] >

1

2
[η∗(h/2)− η∗(−h/2)] = η∗(h/2),

and by oddness ηodd(−h/2) 6 η∗(−h/2). As a result, if we define

∀j ∈ {−fc − 2 . . . , fc − 1}, t′j
def.
=







tj+2 for −fc 6 j 6 −3,

−h/2 for j = −2,

h/2 for j = −1,

tj for 0 6 j 6 fc − 1,

we have 2fc+2 distinct points such that (−1)j(η∗− ηodd)(t
′
j) > 0. Thus, η∗ − ηodd

has at least 2fc + 2 roots (counting multiplicity): it is clear by the mean value
theorem if each inequality is strict, and it can also be checked by approximation
and counting the roots (with multiplicity) of the limit in the general case. As a
consequence, η∗ − ηodd has at least 2fc + 2 roots and degree (at most) fc: it must
be identically zero.

We have proved that ηodd = η∗, it remains to deal with the even part: we
write η = η∗ + ηeven, where ηeven is the even part of η. Since (−1)jη(tj) 6 1 for
−fc 6 j 6 fc − 1, we get

1 + (−1)jηeven(tj) 6 1,

so that (−1)jηeven(tj) 6 0. Since ηeven(tj) = ηeven(t−j−1) we deduce that in fact
ηeven(tj) = 0, so that ηeven has 2fc roots. But, since η and η∗ reach their maximum
or minimum at each tj , we also have 0 = η′(tj) = η′∗(tj) + η′even(tj) = η′even(tj), so
that tj is a double root of ηeven. Hence ηeven = 0 and η = η∗. �

As a consequence, the support of every solution to (28) is contained in {t−fc , . . . , tfc−1}.
Since that set is equispaced in T, we notice as in [Con19] that, to recover the am-
plitudes aj , we may invert the system

fc−1
∑

j=−fc

aje
−2iπktj = ck (−fc 6 k 6 fc − 1)(33)

(where c0 = y0, ck = y2k−1 − iy2k for k > 1 and c−k = c∗k otherwise) using the
Discrete Fourier Transform. We obtain

aℓ =
1

2fc

fc−1
∑

k=−fc

e2iπk(
1

4fc
+ ℓ

2fc
)ck.
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Recalling that ck = e−2iπk h
2 − e2iπk

h
2 , we introduce the function

f(x)
def.
=

1

2fc

fc−1
∑

k=−fc

e2iπkx = e−iπx sin(2πfcx)

2fc sin(πx)
=

sin(2πfcx)

2fc
(cotan(πx)− i) ,(34)

so that aℓ = f( 1
4fc

+ ℓ
2fc

− h/2)− f( 1
4fc

+ ℓ
2fc

+ h/2).

Since sin
(
π
2
+ πℓ+ πhfc

)
= sin

(
π
2
+ πℓ− πhfc

)
= (−1)ℓ cos(πhfc), we get

aℓ = (−1)ℓ
cos(πhfc)

2fc

(

cotan(π(
1

4fc
+

ℓ

2fc
− h/2))− cotan(π(

1

4fc
+

ℓ

2fc
+ h/2))

)

.

Since the function cotan is (strictly) decreasing on ]0, π[, we see that aℓ 6= 0 with
sign(aℓ) = sign(η∗(tℓ)), which is the desired optimality condition.

It remains to check that (33) also holds for k = fc. Since aℓ ∈ R for all ℓ, we
obtain it by taking the conjugate of (33) for k = −fc.

To summarize, there is only one measure m such that
(∫

T
ϕkdm(t)

)

k
= y and

η∗(t) = 1 for all t ∈ supp(m+) and η∗(t) = −1 for all t ∈ supp(m−). It is given by
(29). The extremality conditions imply that it is the only solution to (28).

Remark 4. For h = 1
2fc

, a slight variation on the argument shows that the con-

clusions of Lemma 3 still hold, and that the unique solution m satisfies a0 = 1,
a−1 = −1 and aℓ = 0 otherwise. In other words, the measure m0 = δh/ − δ−h/2 is
perfectly recovered by (28).

References

[Bar95] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete & Computational Geometry, 13(2):189–202, March 1995.

[BCC+19] Claire. Boyer, Antonin. Chambolle, Yohann De. Castro, Vincent. Duval, Frédéric.
de Gournay, and Pierre. Weiss. On Representer Theorems and Convex Regulariza-
tion. SIAM Journal on Optimization, 29(2):1260–1281, January 2019.

[BP13] Kristian Bredies and Hanna Katriina Pikkarainen. Inverse problems in spaces of
measures. ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218,
January 2013.

[BSR17] Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent
conditional gradient method for sparse inverse problems. SIAM J. Optim., 27(2):616–
639, 2017.
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