
HAL Id: hal-02424743
https://hal.science/hal-02424743v2

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-Clock Priced Timed Games with Arbitrary Weights
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, Benjamin

Monmege

To cite this version:
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, Benjamin Monmege. One-Clock
Priced Timed Games with Arbitrary Weights. Logical Methods in Computer Science, 2022, 18 (3),
pp.51. �hal-02424743v2�

https://hal.science/hal-02424743v2
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 17:1–17:51
https://lmcs.episciences.org/

Submitted Sep. 08, 2020
Published Aug. 09, 2022

ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS

THOMAS BRIHAYE a, GILLES GEERAERTS b, AXEL HADDAD a, ENGEL LEFAUCHEUX c,
AND BENJAMIN MONMEGE d

a Université de Mons, Belgium
e-mail address: thomas.brihaye@umons.ac.be, axel.haddad@umons.ac.be

b Université libre de Bruxelles, Belgium
e-mail address: gigeerae@ulb.ac.be

c Max-Planck Institute for Software Systems, Germany
e-mail address: elefauch@mpi-sws.org

d Aix Marseille Univ, LIS, CNRS, Marseille, France
e-mail address: benjamin.monmege@univ-amu.fr

Abstract. Priced timed games are two-player zero-sum games played on priced timed
automata (whose locations and transitions are labeled by weights modelling the cost of
spending time in a state and executing an action, respectively). The goals of the players
are to minimise and maximise the cost to reach a target location, respectively. We consider
priced timed games with one clock and arbitrary integer weights and show that, for an
important subclass of them (the so-called simple priced timed games), one can compute,
in pseudo-polynomial time, the optimal values that the players can achieve, with their
associated optimal strategies. As side results, we also show that one-clock priced timed
games are determined and that we can use our result on simple priced timed games to
solve the more general class of so-called negative-reset-acyclic priced timed games (with
arbitrary integer weights and one clock). The decidability status of the full class of priced
timed games with one-clock and arbitrary integer weights still remains open.

1. Introduction

Game theory is nowadays a well-established framework in theoretical computer science,
enabling computer-aided design of computer systems that are correct-by-construction. It
allows one to describe and analyse the possible interactions of antagonistic agents (or players)
as in the controller synthesis problem, for instance. This problem asks, given a model of the
environment of a system, and of the possible actions of a controller, to compute a controller

Key words and phrases: Priced timed games; Real-time systems; Game theory.
A preliminary version of this work has been published in the proceedings of FSTTCS 2015 [BGH+15].

The research leading to these results was funded by the European Union Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no601148 (CASSTING). This work was also partly supported by
the Fonds de la Recherche Scientifique - FNRS under grant noT.0027.21. During part of the preparation of
this article, the last author was (partially) funded by the ANR project DeLTA (ANR-16-CE40-0007) and the
ANR project Ticktac (ANR-18-CE40-0015).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:17)2022
© T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-5763-3130
https://orcid.org/0000-0003-0875-300X
https://orcid.org/0000-0002-4717-9955
http://creativecommons.org/about/licenses

17:2 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

`1

−2

`2

−14
`3

4 `4
3

`5

8

`6

−12

`7
−16

`f

1

2

6
−7

ν
0

1
4

1
2

3
4

9
10 1

Val(`1, ν)
−9.5

−6
−5.5
−2
−0.2

Figure 1: A simple priced timed game (left) and the lower value function of location `1
(right). Transitions without label have weight 0.

that constraints the environment to respect a given specification. Clearly, one cannot assume
in general that the two players (the environment and the controller) will collaborate, hence
the need to find a strategy for the controller that enforces the specification whatever the
environment does. This question thus reduces to computing a so-called winning strategy for
the corresponding player in the game model.

In order to describe precisely the features of complex computer systems, several game
models have been considered in the literature. In this work, we focus on the model of
Priced Timed Games (PTGs for short), which can be regarded as an extension (in several
directions) of classical finite automata. First, like timed automata [AD94], PTGs have
clocks, which are real-valued variables whose values evolve with time elapsing, and which
can be tested and reset along the transitions. Second, the locations are associated with
weights representing rates and transitions are labeled by discrete weights, as in priced timed
automata [BFH+01, ALTP04, BBBR07]. These weights allow one to associate a price with
each play (or run), which depends on the sequence of transitions traversed by the play, and
on the time spent in each visited location. Finally, a PTG is played by two players, called
Min and Max, and each location of the game is owned by either of them (we consider a
turn-based version of the game). The player who controls the current location decides how
long to wait, and which transition to take.

In this setting, the goal of Min is to reach a given set of target locations, while minimising
the price of the play to reach such a location. Player Max has an antagonistic objective:
it tries to avoid the target locations, and, if not possible, to maximise the accumulated cost
up to the first visit of a target location. To reflect these objectives, we define the upper
value Val of the game as a mapping of the configurations of the PTG to the least price that
Min can guarantee while reaching the target, whatever the choices of Max. Similarly, the
lower value Val returns the greatest price that Max can ensure (letting the price be +∞ in
case the target locations are not reached).

An example of PTG is given in Figure 1, where the locations of Min and Max are
represented by circles and rectangles respectively. The integers next to the locations are
their rates, i.e. the cost of spending one time unit in the location. Moreover, there is only
one clock x in the game, which is never reset, and all guards on transitions are x ∈ [0, 1]
which force every player to keep the clock value below or equal to 1, but do not hinder
the choice of transition (hence this guard is not displayed and transitions are only labelled
by their respective discrete weight): this is an example of a simple priced timed game (we
will define them properly later). It is easy to check that Min can force reaching the target
location `f from all configurations (`, ν) of the game, where ` is a location and ν is a real

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:3

value of the clock in [0, 1]. Let us comment on the optimal strategies for both players. From
a configuration (`4, ν), with ν ∈ [0, 1], Max better waits until the clock takes value 1, before
taking the transition to `f (it is forced to move, by the rules of the game). Hence, Max’s
optimal value is 3(1− ν)− 7 = −3ν − 4 from all configurations (`4, ν). Symmetrically, it
is easy to check that Min better waits as long as possible in `7, hence its optimal value
is −16(1−ν) from all configurations (`7, ν). However, optimal value functions are not always
that simple, see for instance the lower value function of `1 on the right of Figure 1, which
is a piecewise affine function. To understand why value functions can be piecewise affine,
consider the sub-game enclosed in the dotted rectangle in Figure 1, and consider the value
that Min can guarantee from a configuration of the form (`3, ν) in this sub-game. Clearly,
Min must decide how long it will spend in `3 and whether it will go to `4 or `7. Its optimal
value from all (`3, ν) is thus

inf
06t61−ν

min
(
4t+ 3(1− (ν + t))− 7, 4t+ 6− 16(1− (ν + t))

)
= min(−3ν − 4, 16ν − 10) .

Since 16ν − 10 > −3ν − 4 if and only if ν > 6/19, an optimal choice of Min is to move
instantaneously to `7 if ν ∈ [0, 6/19] and to move instantaneously to `4 if ν ∈ (6/19, 1], hence
the value function of `3 (in the sub-game) is a piecewise affine function with two pieces.

Related work. PTGs are a special case of hybrid games [dAHM01, MPS95, WT97],
independently investigated in [BCFL04] and [ABM04]. For (non-necessarily turn-based)
PTGs with non-negative weights, semi-algorithms are given to decide the value problem,
that is to say, whether the upper value of a location (the best price that Min can guarantee
starting with a clock value 0), is below a given threshold. It was also shown that, under the
strongly non-Zeno assumption on weights (asking the existence of κ > 0 such that every cycle
in the underlying region graph has a weight at least κ), the proposed semi-algorithms always
terminate. This assumption was justified in [BBR05, BBM06] by showing that, without it,
the existence problem, that is to decide whether Min has a strategy guaranteeing to reach
a target location with a price below a given threshold, is indeed undecidable for PTGs
with non-negative weights and three or more clocks. This result was recently extended
in [BJM14] to show that the value problem is also undecidable for PTGs with non-negative
weights and four or more clocks. In [BCJ09], the undecidability of the existence problem
has also been shown for PTGs with arbitrary weights on locations (without weights on
transitions), and two or more clocks. Finally, PSPACE-hardness of the value problem has
been established for one-clock PTGs in [FIJS20]. On a positive side, the value problem was
shown decidable by [BLMR06] for PTGs with one clock when the weights are non-negative:
a 3-exponential time algorithm was first proposed, further refined in [Rut11, HIJM13] into
an exponential time algorithm. The key point of those algorithms is to reduce the problem
to the computation of optimal values in a restricted family of PTGs called Simple Priced
Timed Games (SPTGs for short), where the underlying automata contain no guard, no reset,
and the play is forced to stop after one time unit. More precisely, the PTG is decomposed
into a sequence of SPTGs whose value functions are computed and re-assembled to yield the
value function of the original PTG. Alternatively, and with radically different techniques,
a pseudo-polynomial time algorithm to solve one-clock PTGs with arbitrary weights on
transitions, and rates restricted to two values amongst {−d, 0,+d} (with d ∈ N) was given
in [BGK+14]. More recently, a large subclass of PTGs with arbitrary weights and no
restrictions on the number of clocks was introduced in [BGMR17], whose value can be
computed in double-exponential time: they are defined via a partition of strongly connected

17:4 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

components with respect to the sign of all the cycles they contain. A survey summarising
results on PTGs can be found in [Bou15].

Contributions. Following the decidability results sketched above, we consider PTGs with
one clock. We extend those results by considering arbitrary (positive and negative) weights.
Indeed, all previous works on PTGs with only one clock (except [BGK+14]) have considered
non-negative weights only, and the status of the more general case with arbitrary weights
has so far remained elusive. Yet, arbitrary weights are an important modelling feature.
Consider, for instance, a system which can consume but also produce energy at different
rates. In this case, energy consumption could be modelled as a positive rate, and production
by a negative rate. As another example, imagine the billing system for electrical power, in a
smart house that itself produces energy: the money spent/earned while using/producing
energy contains both timed components (the more energy the house produces, the more
money the owner gets), and discrete ones (the electricity provider charges discrete costs per
month). Such a model has been studied in [BDG+16]. In the untimed setting, such extension
to negative weights has been considered in [BGHM15, BGHM16]: our result heavily builds
upon techniques investigated in these works, as we will see later. Our main contribution is a
pseudo-polynomial time algorithm to compute the value of one-clock SPTGs with arbitrary
weights. While this result might sound limited due to the restricted class of simple PTGs we
can handle, we recall that the previous works mentioned above [BLMR06, Rut11, HIJM13]
have demonstrated that solving SPTGs is a key result towards solving more general PTGs.
Moreover, this algorithm is, as far as we know, the first to handle the full class of SPTGs
with arbitrary weights, and we note that the solutions (either the algorithms or the proofs)
known so far do not generalise to this case. Notice also that previous algorithms provided

exponential-time algorithms (2O(n2) for [Rut11] and O(12n) for [HIJM13], with n the number
of locations of the game), whereas we obtain a pseudo-polynomial time complexity (see
Theorem 5.13 for the exact bound).1 Finally, as a side result, this algorithm allows us to
solve the more general class of negative-reset-acyclic one-clock PTGs that we introduce.
This also improves the previous exponential complexity for one-clock PTGs with only non-
negative prices to a pseudo-polynomial time complexity. However, the decidability (and
thus complexity) of the whole class of one-clock PTGs with arbitrary weights remains open
so far: our result may be seen as a potentially important milestone towards this goal.

2. Quantitative reachability games

The semantics of the priced timed games we study in this work can be expressed in the
setting of quantitative reachability games as defined below. Intuitively, in such a game, two
players (Min and Max) play by changing alternatively the current configuration of the game.
The game ends when it reaches a final configuration, and Min has to pay to Max a price
associated with the sequence of configurations and of transitions taken (hence, Min is trying
to minimise this price while Max wants to maximise it).

Note that the framework of quantitative reachability games that we develop here (and
for which we prove a determinacy result, see Theorem 2.2) can be applied to other settings
than priced timed games. For example, special cases of quantitative reachability games are

1In the shorter version of this article, published in the proceedings of FSTTCS 2015 [BGH+15], only
exponential-time complexity was provided: new techniques have allowed us to obtain the pseudo-polynomial
time complexity.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:5

finite quantitative reachability games—where the set of configurations is finite—that have
been thoroughly studied in [BGHM16] under the name of min-cost reachability games. In
this article, we will rely on quantitative reachability games with uncountably many states as
the semantics of priced timed games. Similarly, our quantitative reachability games could be
used to formalise the semantics of hybrid games [BBC06, BBJ+08] or any (non-probabilistic)
game with a reachability objective. We start our discussion by defining formally those games:

Definition 2.1 (Quantitative reachability games). A quantitative reachability game is a tuple
G = (CMin, CMax, F,Σ, E,Cost), where C = CMin]CMax]F is the set of configurations (that
does not need to be finite, nor countable), partitioned into the set CMin of configurations of
player Min, the set CMax of configurations of player Max, and the set F of final configurations ;
Σ is a (potentially infinite) alphabet whose elements are called letters; E ⊆ (C \ F)×Σ×C
is the transition relation; and Cost : (CΣ)∗C → R maps each finite sequence c1a1 · · · an−1cn
to a real number called the cost of c1a1 · · · an−1cn.

A play is a finite or infinite sequence ρ = c1a1c2 · · · alternating between configurations
and letters, and such that for all i > 0: (ci, ai, ci+1) ∈ E. The length of a play ρ, denoted
|ρ| is the number of configuration occurring in it. As such, if ρ is infinite, |ρ| = +∞. For the

sake of clarity, we denote a play c1a1c2 · · · as c1
a1−→ c2 · · · . A completed play is either (1) an

infinite play, or (2) a finite play ending in a deadlock, i.e. a configuration c such that the set
{(c, a, c′) ∈ E | a ∈ Σ ∧ c′ ∈ C} is empty. Note that every play reaching a final state ends in
a deadlock, hence infinite plays never visit F .

We take the viewpoint of player Min who wants to reach a final configuration. Thus, the

price of a completed play ρ = c1
a1−→ c2 · · · , denoted Price(ρ) is either +∞ if either |ρ| = +∞

or ρ is a finite play that does not end in a final state (this is the worst situation for Min,

which explains why the price is maximal in this case); or Cost(c1
a1−→ c2 · · · cn) if |ρ| = n and

cn ∈ F .
A strategy for player Min is a function σMin mapping all finite plays ending in a

configuration c ∈ CMin (excluding deadlocks) to a transition (c, a, c′) ∈ E. Strategies σMax

of player Max are defined accordingly. We let StratMin(G) and StratMax(G) be the sets of
strategies of Min and Max, respectively. A pair (σMin, σMax) ∈ StratMin(G)× StratMax(G) is
called a profile of strategies. Together with an initial configuration c1, it defines a unique

completed play CPlay(c1, σMin, σMax) = c1
a1−→ c2 · · · such that for all i > 0: (ci, ai, ci+1) =

σMin(c1
a1−→ c2 · · · ci) if ci ∈ CMin; and (ci, ai, ci+1) = σMax(c1

a1−→ c2 · · · ci) if ci ∈ CMax.
We let Play(σMin) (resp. CPlay(σMin)) be the set of plays (resp. completed plays) that

conform with σMin. That is, c1
a1−→ c2 · · · ∈ Play(σMin) iff for all i > 0: ci ∈ CMin implies

(ci, ai, ci+1) = σMin(c1
a1−→ c2 · · · ci). We let Play(c1, σMin) (resp. CPlay(c1, σMin)) be the subset

of plays from Play(σMin) (resp. CPlay(σMin)) that start in c1. We define Play(σMax) and
Play(c1, σMax) as well as the completed variants accordingly. Given an initial configuration c1,
the price of a strategy σMin of Min is:

Price(c1, σMin) = sup
ρ∈CPlay(c1,σMin)

Price(ρ) .

It matches the intuition to be the largest price that Min may pay while following strategy σMin.
This definition is equal to supσMax

Price(CPlay(c1, σMin, σMax)), which is intuitively the highest
price that Max can force Min to pay if Min follows σMin. Similarly, given a strategy σMax of

17:6 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

Max, we define the price of σMax as

Price(c1, σMax) = inf
ρ∈CPlay(c1,σMax)

Price(ρ) = inf
σMin

Price(CPlay(c1, σMin, σMax)) .

It corresponds to the least price that Min can achieve once Max has fixed its strategy σMax.
From there, two different definitions of the value of a configuration c1 arise, depending

on which player chooses its strategy first. The upper value of c1, defined as

Val(c1) = inf
σMin

sup
σMax

Price(CPlay(c1, σMin, σMax))

corresponds to the least price that Min can ensure when choosing its strategy before Max,
while the lower value, defined as

Val(c1) = sup
σMax

inf
σMin

Price(CPlay(c1, σMin, σMax))

corresponds to the least price that Min can ensure when choosing its strategy after Max. It
is easy to see that Val(c1) 6 Val(c1), which explains the chosen names. Indeed, if Min picks
its strategy after Max, it has more information, and then can, in general, choose a better
response.

In general, the order in which players choose their strategies can modify the outcome
of the game. However, for quantitative reachability games, this makes no difference, and
the value is the same whichever player picks its strategy first. This result, known as the
determinacy property, is formalised here:

Theorem 2.2 (Determinacy of quantitative reachability games). For all quantitative reach-
ability games G and configurations c1, Val(c1) = Val(c1).

Proof. To establish this result, we rely on a general determinacy result of Donald Mar-
tin [Mar75]. This result concerns qualitative games (i.e. games where players either win or
lose the game, and do not pay a price), called Gale-Stewart games. So, we first explain how
to reduce a quantitative reachability game G = (CMin, CMax, F,Σ, E,Cost) to a family of
such Gale-Stewart games Threshold(G, r) parametrised by a threshold r ∈ R.

The Gale-Stewart game Threshold(G, r) is played on an infinite tree whose vertices are
owned by either of the players. A play is then a maximal branch in this tree, built as follows:
the player who owns the root of the tree first picks a successor of the root that becomes
the current vertex. Then, the player who owns this vertex gets to choose a successor that
becomes the current one, etc. The game ends when a leaf is reached, where the winner is
declared thanks to a given set Win of winning leaves.

In our case, the vertices of Threshold(G, r) are the finite plays c1
a1−→ c2 · · · cn of G starting

from configuration c1. Such a vertex v = c1
a1−→ c2 · · · cn is owned by Min iff cn ∈ CMin;

otherwise v belongs to Max. A vertex v = c1
a1−→ c2 · · · cn has successors only if cn 6∈ F . In

this case, the successors of v are all the vertices v
a−→ c such that (cn, a, c) ∈ E. Finally, a

leaf c1
a1−→ c2 · · · cn (thus, with cn ∈ F) is winning for Min iff Cost(c1

a1−→ c2 · · · cn) 6 r.
As a consequence, the set of winning plays in Threshold(G, r) is:

Win =
⋃

v∈L s.t. Cost(v)6r

{branch(v)}

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:7

where L is the set of leaves of Threshold(G, r), and branch(v) is the (unique) branch from c1

to v. Then, we rewrite the definition of Win as:

Win =
⋃

v∈L s.t. Cost(v)6r

Cone(v)

where Cone(v) is the set of plays in Threshold(G, r) that visit v. Indeed, when v is a leaf,
the set Cone(v) reduces to the singleton containing only branch(v). Thus, the set of winning
plays (for Min) is an open set, defined in the topology generated from the Cone(v) sets,
and we can apply [Mar75] to conclude that Threshold(G, r) is a determined game for all
quantitative reachability games G and all thresholds r ∈ R i.e. either Min or Max has
a winning strategy from the root of the tree. Moreover, notice that Min wins the game
Threshold(G, r) iff it guarantees in G an upper value Val(c1) 6 r. Similarly, Max wins the
game Threshold(G, r) iff it guarantees in G a lower value Val(c1) > r.

We rely on this result to prove that Val(c1) > Val(c1) in G (the other inequality holds
by definition of Val(c1) and Val(c1)). We consider two cases:

(1) If Val(c1) = −∞, then, since Val(c1) 6 Val(c1), we have Val(c1) = −∞ too.
(2) If Val(c1) > −∞, consider any real number r such that r < Val(c1). Therefore, Min loses

in the game Threshold(G, r). By determinacy, Max wins in this game, i.e. Val(c1) > r.
Therefore, r < Val(c1) implies r 6 Val(c1). Thus, we have shown that, for all r:
r < Val(c1) implies r 6 Val(c1). This is equivalent to saying that for all r: either
r > Val(c1), or r 6 Val(c1). This can happen only when Val(c1) 6 Val(c1).

Now that we have showed that quantitative reachability games are determined, we can
denote by Val the value of the game, defined as Val = Val = Val.

3. Priced timed games

We are now ready to formally introduce the core model of this article: priced timed games.
We start by the formal definition, then study some properties of the value function of those
games (Section 3.2). Next, we introduce the restricted class of simple priced timed games
(Section 3.3) and close this section by discussing some special strategies (called switching
strategies) that we will rely upon in our algorithms to solve priced timed games.

3.1. Notations and definitions. As usual, we let N, Z, Q, R, and R+ be the set of non-
negative integers, integers, rational numbers, real numbers, and non-negative real numbers
respectively. We also let R = R ∪ {+∞,−∞}. Let x denote a non-negative real-valued
variable called clock. A guard (or clock constraint) is an interval with endpoints in Q∪{+∞}.
We often abbreviate guards, writing for instance x 6 5 instead of [0, 5]. The set of all
guards on the clock x is called Guard(x). Let S ⊆ Guard(x) be a finite set of guards. We let
[[S]] =

⋃
I∈S I. Assuming M0 = 0 < M1 < · · · < Mk are all the endpoints of the intervals

in S (to which we add 0 if needed), we let

RegS = {(Mi,Mi+1) | 0 6 i 6 k − 1} ∪ {{Mi} | 0 6 i 6 k}

be the set of regions of S. Thus, intuitively, a region of S is either an open interval whose
endpoints are consecutive endpoints the intervals in S, or singletons containing one endpoint
from S. Observe that RegS is also a set of guards.

17:8 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

We rely on the notion of cost function to formalise the notion of optimal value function
sketched in the introduction. Formally, for a set of guards S ⊆ Guard(x), a cost function over
S is a function f : [[RegS]]→ R such that over each region r ∈ RegS , f is either infinite or it is
a continuous piecewise affine function with rational slopes and a finite set of rational cutpoints
(points where the first derivative is not defined). In particular, if f(r) = {f(ν) | ν ∈ r}
contains +∞ (respectively, −∞) for some region r, then f(r) = {+∞} (f(r) = {−∞}). We
denote by CFS the set of all cost functions over S.

In our algorithm to solve SPTGs, we will need to combine cost functions thanks to
the B operator. Let f ∈ CFS and f ′ ∈ CFS′ be two cost functions on sets of guards
S, S′ ⊆ Guard(x), such that [[S]] ∩ [[S′]] is a singleton. We let f B f ′ be the cost function
in CFS∪S′ such that (f B f ′)(ν) = f(ν) for all ν ∈ [[RegS]], and (f B f ′)(ν) = f ′(ν) for all
ν ∈ [[RegS′]] \ [[RegS]]. For example, let S = {{0}, (0, 1), {1}} and S′ = {{1}}. We define the
cost functions f1 and f2 such that f1 is equal to +∞ on the set of regions RegS and f2 is
equal to 0 on the set of regions RegS′ . The cost function f2 B f1 ∈ CFS∪S′ is equal to +∞
on [0, 1) and to 0 on {1} and the cost function f1 B f2 ∈ CFS′ is equal to +∞ on [0, 1]. Thus
f1 B f2 is equal to f1 while f2 B f1 extends f2 with a +∞ value on [0, 1).

We consider an extended notion of one-clock priced timed games (PTGs for short)
allowing for the use of urgent locations, where only a zero delay can be spent, and final cost
functions which are associated with all final locations and incur an extra cost to be paid
when ending the game in this location:

Definition 3.1. A priced timed game (PTG for short) G is a tuple (LMin, LMax, Lf ,
Lu,ϕ,∆, π) where:

• LMin and LMax are finite sets of locations belonging respectively to player Min and Max.
Lf is a finite set of final locations. We assume that LMin, LMax and Lf are disjoint and
denote L = LMin] LMax] Lf the set of all locations of the PTG;

• Lu ⊆ L \ Lf is the set of urgent locations2;
• ∆ ⊆ (L \ Lf) × Guard(x) × {>,⊥} × L is a finite set of transitions. We denote by
SG = {I | ∃`, R, `′ : (`, I, R, `′) ∈ ∆} the set of all guards occurring on some transitions of
the PTG;
• ϕ = (ϕ`)`∈Lf

associates to all locations ` ∈ Lf a final cost function, that is an affine3 cost
function ϕ` with rational coefficients;
• π : (L \ Lf) ∪∆→ Z is a mapping associating an integer weight to all non-final locations

and transitions.

Intuitively, a transition (`, I, R, `′) changes the current location from ` to `′ if the
clock has value in I and the clock is reset according to the Boolean R. We assume
that, in all PTGs, the clock x is bounded, i.e. there is M ∈ N such that for all guards
I ∈ SG , I ⊆ [0,M].4 We denote by RegG the set RegSG of regions of G. We further

denote5 by Πtr
G , Πloc

G and Πfin
G respectively the values maxδ∈∆ |π(δ)|, max`∈(L\Lf) |π(`)| and

supν∈[0,M] max`∈Lf
|ϕ`(ν)| = max`∈Lf

max(|ϕ`(0)|, |ϕ`(M)|) (the last equality holds because

2Here we differ from [BLMR06] where Lu ⊆ LMax.
3In our one-clock setting, an affine function is of the form ϕ`(ν) = a× ν + b.
4This last restriction is not without loss of generality in the case of PTGs. While all timed automata A can

be turned into an equivalent (with respect to reachability properties) A′ whose clocks are bounded [BFH+01],
this technique cannot be applied to PTGs, in particular with arbitrary weights.

5Throughout the paper, we often drop the G in the subscript of several notations when the game is clear
from the context.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:9

we have assumed that ϕ` is affine). That is, Πtr
G , Πloc

G and Πfin
G are the largest absolute values

of the transition weights, location weights and final cost functions.
As announced in the first section, the semantics of a PTG G = (LMin, LMax, Lf ,

Lu,ϕ,∆, π) is given by a quantitative reachability game

GG =
(
CMin = (LMin×R+), CMax = (LMax×R+), F = (Lf×R+),Σ = (R+×∆×R), E,Cost

)
that we describe now. Note that, from now on, we often confuse the PTG G with its
semantics GG , writing, for instance ‘the configurations of G’ instead of: ‘the configurations
of GG ’. We also lift the functions Price, Val, Val and Val, and the notions of plays from GG
to G. A configuration of G is a pair s = (`, ν) ∈ L × R+, where ` and ν are respectively
the current location and clock value of G. We denote by ConfG the set of all configurations
of G. Let (`, ν) and (`′, ν ′) be two configurations, let δ = (`, I, R, `′) ∈ ∆ be a transition
of G and t ∈ R+ be a delay. Then, ((`, ν), (t, δ, c), (`′, ν ′)) ∈ E, iff:

(1) ` ∈ Lu implies t = 0 (no time can elapse in urgent locations);
(2) ν + t ∈ I (the guard is satisfied);
(3) R = > implies ν ′ = 0 (when the clock is reset);
(4) R = ⊥ implies ν ′ = ν + t (when the clock is not reset);
(5) c = π(δ) + t× π(`) (the cost of (t, δ) takes into account the weight of `, the delay t spent

in `, and the weight of δ).

In this case, we say that there is a (t, δ)-transition from (`, ν) to (`′, ν ′) with cost c, and

we denote this by (`, ν)
t,δ,c−−→ (`′, ν ′). For two configurations s and s′, we also write s

c−→ s′

whenever there are t and δ such that s
t,δ,c−−→ s′. Observe that, since the alphabet of

GG is R+ × ∆ × R, and its set of configurations is ConfG , plays of G are of the form

ρ = (`1, ν1)
t1,δ1,c1−−−−→ (`2, ν2) · · · . Finally, the cost function Cost is obtained by summing the

costs of the play (transitions and time spent in the locations) and the final cost function if

applicable. Formally, let ρ = (`1, ν1)
t1,δ1,c1−−−−→ (`2, ν2) · · · (`n, νn) be a finite play such that for

all k < n, `k /∈ Lf . Then, Cost(ρ) =
∑n−1

i=1 ci + ϕ`n(νn) if `n ∈ Lf , and Cost(ρ) =
∑n−1

i=1 ci
otherwise.

As sketched in the introduction, we consider optimal reachability-price games on PTGs,
where the aim of player Min is to reach a location of Lf while minimising the price. Since
the semantics of PTGs is defined in terms of quantitative reachability games, we can apply
Theorem 2.2, and deduce that all PTGs G are determined. Hence, for all PTGs the value
function Val is well-defined, and we denote it by ValG when we need to emphasise the game
it refers to.

For example, consider the PTG on the left of Figure 1. Using the final cost function ϕ
constantly equal to 0, its value function for location `1 is represented on the right. The

completed play ρ = (`1, 0)
0,t1,2,0−−−−→ (`2, 0)

1/4,t2,3,−3.5
−−−−−−−−→ (`3, 1/4)

0,t3,7,6−−−−→ (`7, 1/4)
3/4,t7,f ,−12
−−−−−−−→

(`f , 1) where tn,m = (`n, [0, 1],⊥, `m) ends in the unique final location `f and its price is
Price(ρ) = 0− 3.5 + 6− 12 = −9.5.

Let us fix a PTG G with initial configuration c1. We say that a strategy σMin of
Min is optimal if Price(c1, σMin) = ValG(c1), i.e. it ensures Min to enforce the value of the
game, whatever Max does. Similarly, σMin is ε-optimal, for ε > 0, if Price(c1, σMin) 6
ValG(c1) + ε. And, symmetrically, a strategy σMax of Max is optimal (respectively, ε-optimal)
if Price(c1, σMax) = ValG(c1) (respectively, Price(c1, σMax) > ValG(c1)− ε).

17:10 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

3.2. Properties of the value. Let us now discuss useful preliminary properties of the
value functions of PTGs. We have already shown the determinacy of the game, ensuring
the existence of the value function. We will now establish a stronger (and, to the best of
our knowledge, original) result. For all locations `, let ValG(`) denote the function such that
ValG(`)(ν) = ValG(`, ν) for all ν ∈ R+. Then, we show that, for all `, ValG(`) is a piecewise
continuous function that might exhibit discontinuities only on the borders of the regions
of RegG .

Theorem 3.2. For all (one-clock) PTGs G, for all r ∈ RegG, for all ` ∈ L, ValG(`) is either
infinite or continuous over r.

Proof. The main ingredient of our proof is, given a strategy σMin of Min, a location ` of the
game, a region r ∈ RegG and valuations ν, ν ′ ∈ r, to show how to build a strategy σ′Min and
a function g such that g maps plays starting in (`, ν ′) and consistent with σ′Min to plays
starting in (`, ν) consistent with σMin with similar behaviour and cost. More precisely, we
define σ′Min and g by induction on the length of the finite play that is given as argument and
rely on the following set of induction hypothesis:

Induction hypothesis: There exists a strategy σ′Min and a function g from the plays of
length (respectively) k−1 and k, starting in (`, ν ′) and consistent with σ′Min, to (respectively)
transitions in G and plays starting in (`, ν), consistent with σMin, such that for all plays

ρ′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k) starting in (`, ν ′) and consistent with σ′Min, denoting

(`1, ν1)
c1−→ · · ·

ck′−1−−−→ (`k′ , νk′) the play g(ρ′) starting in (`, ν) we have:

(1) ρ′ and g(ρ′) have the same length, i.e. k′ = k,
(2) for every i ∈ {1, . . . , k}, νi and ν ′i are in the same region, i.e. there exists a region

r′ ∈ RegG such that νi ∈ r′ and ν ′i ∈ r′,
(3) |νk − ν ′k| 6 |ν − ν ′|,
(4) Cost(ρ′) 6 Cost(g(ρ′)) + Πloc(|ν − ν ′| − |νk − ν ′k|).
Notice that no property is required on the strategy σ′Min for finite plays that do not start
in (`, ν ′).

Let us explain how this result would imply the theorem before going through the
induction itself. Let r ∈ RegG be a region of the game and ` be a location. Remark first
that the result directly implies that if the value of the game is finite for some valuation ν in
r, then it is finite for all other valuation ν ′ in r. Indeed, a finite value of the game in (`, ν)
implies that there exists a strategy σMin such that every play consistent with it and starting
in (`, ν) reaches a final location with a time valuation such that the final cost function is
finite. Moreover, denoting σ′Min the strategy obtained from σMin thanks to the above result,
any play ρ′ starting in (`, ν ′) and consistent with σ′Min reaches a final location (since g(ρ′)
does) and the final cost function is finite as the final time valuation of ρ′ and g(ρ′) sit in the
same region and, by definition, a final cost function is either always finite or always infinite
within a region.

Now, assuming the value of the game is finite over r, in order to show that ValG(`) is
continuous over r, we need to show that, for all ν ∈ r, for all ε > 0, there exists δ > 0 s.t.
for all ν ′ ∈ r with |ν − ν ′| 6 δ, we have |Val(`, ν)− Val(`, ν ′)| 6 ε. To this end, we can show
that:

|Val(`, ν)− Val(`, ν ′)| 6 (Πloc +Kfin)|ν − ν ′| (3.1)

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:11

ν ′k
•

νk
• •

(a)

t

t′
νk
•

ν ′k• •

(b)

t

t′

νk
• •

ν ′k
•

(c)

t

t′

Figure 2: The definition of t′ when (a) ν ′k 6 νk, (b) νk < ν ′k < νk + t, (c) νk < νk + t < ν ′k.

where Kfin is the greatest absolute value of the slopes appearing in the piecewise affine
functions within ϕ. Indeed, assume that this inequality holds, and consider a clock value
ν ∈ r and a positive real number ε. Then, we let δ = ε

Πloc+Kfin
, and we consider a valuation

ν ′ s.t. |ν − ν ′| 6 δ. In this case, equation (3.1) becomes:

|Val(`, ν)− Val(`, ν ′)| 6 (Πloc +Kfin)|ν − ν ′| 6 (Πloc +Kfin)
ε

Πloc +Kfin
6 ε .

Thus, proving equation (3.1) is sufficient to establish continuity. On the other hand,
equation (3.1) is equivalent to:

Val(`, ν) 6 Val(`, ν ′)+(Πloc+Kfin)|ν−ν ′| and Val(`, ν ′) 6 Val(`, ν)+(Πloc+Kfin)|ν−ν ′| .

As those two last equations are symmetric with respect to ν and ν ′, we only have to
show either of them. We thus focus on the latter, which, by using the upper value, can
be reformulated as: for all strategies σMin of Min, there exists a strategy σ′Min such that

Price((`, ν ′), σ′Min) 6 Price((`, ν), σMin) + (Πloc +Kfin)|ν − ν ′|. Note that this last equation
is equivalent to say that there exists a function g mapping plays ρ′ from (`, ν ′), consistent
with σ′Min (i.e. such that ρ′ = Play((`, ν ′), σ′Min, σMax) for some strategy σMax of Max) to plays
from (`, ν), consistent with σMin, such that, for all such ρ′ the final time valuations of ρ′ and
g(ρ′) differ by at most |ν − ν ′| and:

Cost(ρ′) 6 Cost(g(ρ′)) + Πloc|ν − ν ′|

which is exactly what our claimed induction achieves. Thus, to conclude this proof, let us
now define σ′Min and g, by induction on the length k of ρ′.

Base case k = 1: In this case, σ′Min does not have to be defined. Moreover, in that
case, ρ′ = (`, ν ′) and g(ρ′) = (`, ν). Both plays have length 1, ν and ν ′ are in the same
region by hypothesis, and Cost(ρ′) = Cost(g(ρ′)) = 0, therefore all four properties are true.

Inductive case: Let us suppose now that the construction is done for a given k > 1,
and perform it for k + 1. We start with the construction of σ′Min. To that extent, consider

a play ρ′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k) from (`, ν ′), consistent with σ′Min (provided by

induction hypothesis) such that `k is a location of player Min. Let t and δ be the choice
of delay and transition made by σMin on g(ρ′), i.e. σMin(g(ρ′)) = (t, δ). Then, we define
σ′Min(ρ′) = (t′, δ) where t′ = max(0, νk + t− ν ′k). The delay t′ respects the guard of transition
δ, as can be seen from Figure 2. Indeed, either νk + t = ν ′k + t′ (cases (a) and (b) in the
figure) or νk 6 νk + t 6 ν ′k, in which case ν ′k is in the same region as νk + t since νk and ν ′k
are in the same region by induction hypothesis.

17:12 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

Let us now build the mapping g. Let ρ′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−→ (`k+1, ν

′
k+1) be a play

from (`, ν ′) consistent with σ′Min and let ρ̃′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k) its prefix of

length k. Let (t′, δ) be the delay and transition taken after ρ̃′. Using the construction of g

over plays of length k by induction, the play g(ρ̃′) = (`1, ν1)
c1−→ · · ·

ck−1−−−→ (`k, νk) (with
(`1, ν1) = (`, ν)) verifies properties (1), (2), (3) and (4). Then:

• if `k is a location of Min and σMin(g(ρ̃′)) = (t, δ), then g(ρ′) = g(ρ̃′)
ck−→ (`k+1, νk+1) is

obtained by applying those choices on g(ρ̃′);
• if `k is a location of Max, the last clock value νk+1 of g(ρ′) is rather obtained by choosing

action (t, δ) verifying t = max(0, ν ′k + t′− νk). Note that transition δ is allowed since both
νk + t and ν ′k + t′ are in the same region (for similar reasons as above).

By induction hypothesis |ρ̃′| = |g(ρ̃′)|, thus: 1 holds, i.e. |ρ′| = |g(ρ′)|. Moreover, νk+1

and ν ′k+1 are also in the same region as either they are equal to νk+ t and ν ′k+ t′, respectively,
or δ contains a reset in which case νk+1 = ν ′k+1 = 0 which proves 2. To prove 3, notice that we
always have either νk + t = ν ′k + t′ or νk 6 νk + t 6 ν ′k = ν ′k + t′ or ν ′k 6 ν ′k + t 6 νk = νk + t.
In all of these possibilities, we have |(νk + t) − (ν ′k + t′)| 6 |νk − ν ′k|. We finally check
property 4. In both cases:

Cost(ρ′) = Cost(ρ̃′) + π(δ) + t′π(`k)

6 Cost(g(ρ̃′)) + Πloc(|ν − ν ′| − |νk − ν ′k|) + π(δ) + t′π(`k)

= Cost(g(ρ′)) + (t′ − t)π(`k) + Πloc(|ν − ν ′| − |νk − ν ′k|) .
Let us prove that

|t′ − t| 6 |νk − ν ′k| − |ν ′k+1 − νk+1| . (3.2)

If δ contains no reset, t′ = ν ′k+1−ν ′k and t = νk+1−νk, we have |t′−t| = |ν ′k+1−ν ′k−(νk+1−νk)|.
Then, two cases are possible: either t′ = max(0, νk + t− ν ′k) or t = max(0, ν ′k + t′ − νk). So
we have three different possibilities:

• if t′ + ν ′k = t+ νk, then ν ′k+1 = νk+1, thus |t′ − t| = |νk − ν ′k| = |νk − ν ′k| − |ν ′k+1 − νk+1|.
• if t = 0, then νk = νk+1 > ν ′k+1 > ν ′k, thus |ν ′k+1 − ν ′k − (νk+1 − νk)| = ν ′k+1 − ν ′k =

(νk − ν ′k)− (νk+1 − ν ′k+1) = |νk − ν ′k| − |ν ′k+1 − νk+1|.
• if t′ = 0, then ν ′k = ν ′k+1 > νk+1 > νk, thus |ν ′k+1 − ν ′k − (νk+1 − νk)| = νk+1 − νk =

(ν ′k − νk)− (ν ′k+1 − νk+1) = |νk − ν ′k| − |ν ′k+1 − νk+1|.
If δ contains a reset, then ν ′k+1 = νk+1. If t′ = νk + t− ν ′k, we have that |t′ − t| = |νk − ν ′k|.
Otherwise, t′ = 0 and t 6 ν ′k − νk. In all cases, we have proved (3.2).

Together with the fact that |π(`k)| 6 Πloc, we conclude that:

Cost(ρ′) 6 Cost(g(ρ′)) + Πloc(|ν − ν ′| − |νk+1 − ν ′k+1|) .
Now that σ′Min and g are defined (noticing that g is stable by prefix, we extend naturally

its definition to infinite plays), notice that for all plays ρ′ from (`, ν ′) consistent with σ′Min,
either ρ′ does not reach a final location and its price is +∞, but in this case g(ρ′) has also
price +∞; or ρ′ is finite. In this case, let ν ′k be the clock value of its last configuration,
and νk be the clock value of the last configuration of g(ρ′). Combining (3) and (4) we have
Cost(ρ′) 6 Cost(g(ρ′)) + Πloc|ν − ν ′| which concludes the induction.

Remark 3.3. Let us consider the example in Figure 3 (that we describe informally since we
did not properly define games with multiple clocks), with clocks x and y. One can easily check

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:13

`0

5

`2−5

`f

`1 5

x = 0

x = 0

y = 1, y := 0

x = 1, x := 0

Figure 3: A PTG with 2 clocks whose value function is not continuous inside a region.

that, starting from a configuration (`0, 0, 0.5) in location `0 and where x = 0 and y = 0.5,

the following cycle can be taken: (`0, 0, 0.5)
0,δ0,0−−−→ (`1, 0, 0.5)

0.5,δ1,2.5−−−−−→ (`2, 0.5, 0)
0.5,δ2,−2.5−−−−−−−→

(`0, 0, 0.5), where δ0, δ1 and δ2 denote respectively the transitions from `0 to `1; from `1
to `2; and from `2 to `0. Observe that the cost of this cycle is null, and that no other
delays can be played, hence Val(`0, 0, 0.5) = 0. However, starting from a configuration

(`0, 0, 0.6), and following the same path, yields the cycle (`0, 0, 0.6)
0,δ0,0−−−→ (`1, 0, 0.6)

0.4,δ1,2−−−−→
(`2, 0.4, 0)

0.6,δ2,−3−−−−−→ (`0, 0, 0.6) with cost −1. Hence, Val(`0, 0, 0.6) = −∞, and the function
is not continuous although both clocks values (0, 0.5) and (0, 0.6) are in the same region.
Observe that this holds even for priced timed automata, since our example requires only one
player.

3.3. Simple priced timed games. As sketched in the introduction, our main contribution
is to solve the special case of simple one-clock priced timed games with arbitrary weights,
where the clock is never reset and takes values in some fixed interval [0, r] only. Formally,
an r-SPTG, with r ∈ Q+ ∩ [0, 1], is a PTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) such that for
all transitions (`, I, R, `′) ∈ ∆, I = [0, r] (the clock is also bounded by r) and R = ⊥. Hence,
transitions of r-SPTGs are henceforth denoted by (`, `′), dropping the guard and the reset.
Then, an SPTG is a 1-SPTG. This paper is mainly devoted to prove the following result on
SPTGs.

Theorem 3.4. Let G be an SPTG. Then, for all locations ` ∈ L, either Val(`) ∈ {−∞,+∞},
or Val(`) is continuous and piecewise-affine with at most a pseudo-polynomial number of
cutpoints (in the size of G), i.e. polynomial if the prices of the game are encoded in unary. The
value functions Val(`) for all locations `, as well as a pair of optimal strategies (σMin, σMax)
(that always exist when no values are infinite) can be computed in pseudo-polynomial time.

3.3.1. Proof strategy. Let us now highlight the main steps that will allow us to establish this
theorem. The central argument consists in showing that all SPTGs admit ‘well-behaved’
optimal strategies for both players, in the sense that these strategies can be finitely described
(and computed in pseudo-polynomial time). To this end, we rely on several new definitions
that we are about to introduce and that we first describe informally.

We start by the case of Max: we will show that Max always has a positional (aka
memoryless) optimal strategy. However, this is not sufficient to show that Max has an
optimal strategy that can be finitely described: indeed, in the case of SPTGs, a positional

17:14 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

`1 `2

`f

−W

−1

0

0

0

Figure 4: An SPTG where Min needs memory to play optimally

strategy associates a move to each configuration of the game, and there are uncountably
many such configurations because of the possible values of the clock. Thus, we introduce
the notion of finite positional strategies (FP-strategies for short). Such strategies partition
the set [0, 1] of possible clock values into finitely many intervals, and ensure that the same
move is played throughout each interval: this move can be either to wait until the clock
reaches the end of the interval, or to take immediately a given transition.

The case of Min is more involved, as shown in the next example taken from [BGHM16].
Consider the SPTG of Figure 4, where W is a positive integer, and every location has
weight 0 (thus, it is an untimed game, as originally studied). We claim that the values of
locations `1 and `2 are both −W . Indeed, consider the following strategy for Min: during
each of the first W visits to `2 (if any), go to `1; else, go to `f . Clearly, this strategy ensures
that the final location `f will eventually be reached, and that:

(1) either transition (`1, `f) (with weight −W) will eventually be traversed;
(2) or transition (`1, `2) (with weight −1) will be traversed at least W times.

Hence, in all plays following this strategy, the price will be at most −W . This strategy allows
Min to secure −W , but it cannot ensure a lower price, since Max always has the opportunity
to take the transition (`1, `f) (with cost −W) instead of cycling between `1 and `2. Hence,
Max’s optimal choice is to follow the transition (`1, `f) as soon as `1 is reached, securing a
price of −W . The strategy we have just given is optimal for Min, and there are no optimal
memoryless strategies for Min. Indeed, always playing (`2, `f) does not ensure a price at
most −W ; and, always playing (`2, `1) does not guarantee to reach the target, and this
strategy has thus value +∞.

This example shows the kind of strategies that we will prove sufficient for Min to play
optimally: first play an FP-strategy to obtain a play prefix with a sufficiently low cost, by
forcing negative cycles (if any); second play another FP-strategy that ensures that the target
will eventually be reached. Such strategies have been introduced as switching strategies
in [BGHM16], and can be finitely described by a pair (σ1

Min, σ
2
Min) of FP-strategies and a

threshold K to trigger the switch when the length of the play prefix is at least K.
Computing the latter of these two strategies is easy: σ2

Min is basically an attractor
strategy, which guarantees Min to reach the target (when possible) at a bounded cost. Thus,
the main difficulty in identifying optimal switching strategies is to characterise σ1

Min. To do
so, we further introduce the notion of negative cycle strategies (NC-strategies for short).
Those strategies are FP-strategies which guarantee that all cycles taken have cost of −1 at
most, without necessarily guaranteeing to eventually reach the target (as this will be taken
care of by σ2

Min). Among those NC-strategies, we identify so-called fake optimal strategies.
Those are the NC-strategies that guarantee Min to obtain the optimal value (or better) when

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:15

the target is reached, but do not necessarily guarantee to reach the target (they are thus
not really optimal, hence the name fake-optimal).

Based on these definitions, we will show that all SPTGs with only finite values admit
such optimal switching strategies for Min and optimal FP-strategies for Max. By definition,
these strategies can be finitely described (as a matter of fact, we will show that we can
compute them in pseudo-polynomial time). Let us now give the formal definitions of those
notions.

3.3.2. Finite positional strategies. We start with the notion of finite positional strategies,
that will formalise a class of optimal strategies for Max:

Definition 3.5 (FP-strategies). A strategy σ is a finite positional strategy (FP-strategy for

short) iff it is a memoryless strategy (i.e. for all finite plays ρ1 = ρ′1
c1−→ s and ρ2 = ρ′2

c2−→ s
ending in the same configuration, we have σ(ρ1) = σ(ρ2)) and for all locations `, there exists
a finite sequence of rationals 0 = ν`0 < ν`1 < ν`2 < · · · < ν`k = 1 and a finite sequence of
transitions δ0, . . . , δ2k ∈ ∆ such that

(1) for all 1 6 i 6 k and ν ∈ (ν`i−1, ν
`
i), either σ(`, ν) = (0, δ2i−1), or σ(`, ν) = (ν`i − ν, δ2i−1);

(2) for all 0 6 i 6 k − 1, either σ(`, ν`i) = (0, δ2i), or σ(`, ν`i) = (ν`i+1 − ν`i , δ2i); and

(3) σ(`, ν`k) = (0, δ2k).

We let pts(σ) be the set of ν`i for all ` and i, and int(σ) be the set of all successive
open intervals and singletons generated by pts(σ). Finally, we let |σ| = |int(σ)| be the size
of σ. Intuitively, in each location ` and interval (ν`i−1, ν

`
i), σ always returns the same move:

either to take immediately δ2i−1 or to wait until the clock reaches the endpoint ν`i and
then take δ2i−1 (point 1 of the definition above). A similar behaviour also happens on the
endpoints (point 2).

3.3.3. Switching strategies. On top of the definition of FP-strategies, we can now define the
notion of switching strategy:

Definition 3.6 (Switching strategies). A switching strategy is described by a pair (σ1
Min, σ

2
Min)

of FP-strategies and a switch threshold K. It consists in playing σ1
Min until the play contains

K transitions (i.e. the length of the play prefix is at least K + 1); and then to switch to
strategy σ2

Min.

The role of σ2
Min is to ensure reaching a final location: it is thus a (classical) attractor

strategy. The role of σ1
Min, on the other hand, is to allow Min to decrease the cost low enough

(possibly by forcing negative cycles) to secure a price sufficiently low, and the computation
of σ1

Min is thus the critical point in the computation of an optimal switching strategy. In
the SPTG of Figure 4, for example, σ1

Min is the strategy that goes from `2 to `1, σ2
Min is the

strategy going directly to `f and the switch occurs after the threshold of K = 2W . The
value of the game under this strategy is thus −W .

17:16 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

3.3.4. Negative cycle strategies. To characterise σ1
Min, we introduce now the notion of negative

cycle strategy (NC-strategy):

Definition 3.7 (Negative cycle strategies). An NC-strategy σMin of Min is an FP-strategy

such that for all plays ρ = (`1, ν)
c1−→ · · · ck−1−−−→ (`k, ν

′) ∈ Play(σMin) with `1 = `k, and ν, ν ′

in the same interval of int(σMin), the sum of weights of discrete transitions is at most −1,
i.e. π(`1, `2) + · · ·+ π(`k−1, `k) 6 −1.

Let us now show that this definition allows one to find an upper bound on the costs of
the plays following such an NC-strategy σMin.

Lemma 3.8. Let σMin be an NC-strategy, and let ρ ∈ Play(σMin) be a finite play. Then:

Cost(ρ) 6 Πloc + (2|σMin| − 1)× |L|Πtr − |ρ|
|L|

+ 2|σMin| .

Proof. We start by proving a bound on the cost of a finite play ρ̃ ∈ Play(σMin) such that all
clock values are in the same interval I of int(σMin) and ending in (`f , νf). In this case, we
claim that:

Cost(ρ̃) 6 |I|Πloc + |L|Πtr −
⌊
(|ρ̃| − 1)/|L|

⌋
(3.3)

(where b·c is the floor function). Indeed, the cost of ρ̃ is the sum of the weights generated
while spending time in locations, plus the discrete weights of taking transitions. The former
is bounded by |I|Πloc since the total time spent in locations is bounded by |I|. For the
discrete weights, one can delete from ρ̃ at least b(|ρ̃| − 1)/|L|c cycles, which all have a weight
bounded above by −1, since σMin is an NC-strategy. After removing those cycles from ρ̃, one
ends up with a play of length at most |L| (otherwise, the same location would be present
twice and the remaining play would still contain a cycle). This ensures that the total cost of
all transitions is bounded by |L|Πtr − b(|ρ̃| − 1)/|L|c. Hence the bound given above.

Then, we consider the general case of a finite play ρ ∈ Play(σMin) that might cross several
intervals. We achieve this by splitting the play along intervals of int(σMin). Let I1, I2, . . . , Ik
be the intervals of int(σMin) visited during ρ (with k 6 |σMin|). We split ρ into k plays ρ1,

ρ2, . . . , ρk such that ρ = ρ1
c1−→ ρ2

c2−→ · · · ρk; and, for all i, all clock values along ρi are in Ii
(remember that SPTGs contain no reset transitions). Then, we have:

Cost(ρ) =

k∑
i=1

Cost(ρi) +

k−1∑
i=1

ci . (3.4)

Let us bound these two sums. We start with the rightmost one. Since ci 6 Πtr for all i, and
since k 6 |σMin|, we have:

k−1∑
i=1

ci 6 (k − 1)Πtr 6 (|σMin| − 1)Πtr . (3.5)

Now let us bound the leftmost sum in (3.4). Using (3.3), we obtain:

k∑
i=1

Cost(ρi) 6 Πloc
k∑
i=1

|Ii|+
k∑
i=1

|L|Πtr −
k∑
i=1

b(|ρi| − 1)/|L|c (3.6)

Now, we can further bound these three new sums. The intervals Ii are consecutive,

hence
∑k

i=1 |Ii| 6 1. Next,
∑k

i=1 |L|Πtr = k|L|Πtr. But since k 6 |σMin|, we obtain

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:17

that
∑k

i=1 |L|Πtr 6 |σMin||L|Πtr. For the last sum, we observe that, by definition of the

split of ρ into ρ1, ρ2, . . . , ρk (with k − 1 extra transitions in-between), |ρ| =
∑k

i=1 |ρi|, hence∑k
i=1b(|ρi| − 1)/|L|c > |ρ|

|L| − 2|σMin|, since |σMin| > k. Plugging these three bounds in (3.6),

we obtain:
k∑
i=1

Cost(ρi) 6 Πloc + |σMin||L|Πtr − |ρ|
|L|

+ 2|σMin| . (3.7)

Finally, using the bounds (3.5) and (3.7) in (3.4), we obtain:

Cost(ρ) 6 Πloc + (|σMin| − 1)Πtr + |σMin||L|Πtr − |ρ|
|L|

+ 2|σMin| ,

which concludes the proof, using the fact that |L| > 1.

3.3.5. Fake-optimal strategies. Next, to characterise the fact that σMin must allow Min to
reach a cost which is small enough, without necessarily reaching a target location, we define
the fake value of an NC-strategy σMin from a configuration s as:

fakeσMin
G (s) = sup{Price(ρ) | ρ ∈ Play(s, σMin), ρ reaches a target}

i.e. the value obtained when ignoring the σMin-induced plays that do not reach the target:
we let sup ∅ = −∞. Thus, clearly, fakeσMin

G (s) 6 ValσMin(s). We say that an NC-strategy σMin

is fake-optimal if fakeσMin
G (s) = ValG(s) for all configurations s.

Let us now explain why this notion of fake-optimal strategy is important. As we are
about to show, we can combine any fake-optimal NC-strategy σ1

Min with an attractor strategy
σ2
Min into a switching strategy σMin, which forces to eventually reach the target with a price

that we can make as small as desired (since σ1
Min is an NC-strategy) when (negative) cycles

can be enforced in the game by Min.

Lemma 3.9. Let G be an SPTG such that ValG(s) 6= +∞, for all s. Let σ1
Min be an NC-

strategy of Min in G, and σ2
Min be an attractor strategy. Then, for all n ∈ N, the switching

strategy σMin described by the pair (σ1
Min, σ

2
Min) and the switching threshold

K = |L| ×
(
2Πloc + (2|σ1

Min|)× |L|Πtr + 3|σ1
Min| −max(−n, fakeσ

1
Min
G (s))

)
is such that ValσMin

G (s) 6 max(−n, fakeσ
1
Min
G (s)) for all configurations s.

Remark 3.10. In particular, in the case where σ1
Min is a fake-optimal NC-strategy, and

ValG(s) 6= −∞, and when we choose the parameter n in the definition of the threshold s.t.
n > −ValG(s), then, we obtain a strategy σ1

Min that is optimal for Min from configuration s.

Proof of Lemma 3.9. In order to establish that ValσMin
G (s) 6 max(−n, fakeσ

1
Min
G (s)) (under the

assumptions of the lemma), we will consider any play ρ in Play(s, σMin) and show that

Price(ρ) 6 max(−n, fakeσ
1
Min
G (s)).

There are two possibilities regarding ρ ∈ Play(s, σMin), depending on whether the switch
has happened or not:

(1) If ρ reaches the target without switching from σ1
Min to σ2

Min, then ρ ∈ Play(s, σ1
Min) and

thus Price(ρ) 6 fake
σ1
Min
G (s) 6 max(−n, fakeσ

1
Min
G (s)).

17:18 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

(2) If ρ reaches the target after the switch happened from σ1
Min to σ2

Min, we can decompose
ρ into the concatenation of a prefix ρ1 of length K + 1 conforming to σ1

Min, and a play
prefix ρ2 conforming to σ2

Min. As σ1
Min is an NC-strategy, every |L| steps, either the time

valuation of the play changed of interval of int(σ1
Min) or a cycle occured within the same

interval in which the cost of the discrete transitions is at most −1. In other words, if
(m+ |σ1

Min|)|L| steps occured, at least m cycle occured reducing the discrete cost of the
play by at least m. As a consequence, thanks to Lemma 3.8, since ρ1 has K steps with

K = |L| ×
(
Πloc + (2|σ1

Min| − 1)× |L|Πtr + 3|σ1
Min| − [max(−n, fakeσ

1
Min
G (s))−Πloc − |L|Πtr]

)
we know that Cost(ρ1) 6 max(−n, fakeσ

1
Min
G (s)) − Πloc − |L|Πtr. Moreover, Cost(ρ2) 6

Πloc + |L|Πtr since σ2
Min follows an attractor computation and must thus reach the target

in at most |L| transitions (and at most 1 unit of time). Hence,

Price(ρ) = Costρ1 + Costρ2 6 max(−n, fakeσ
1
Min
G (s)) .

This result allows us to identify the conditions we need to check to make sure than an
SPTG admits optimal strategies that can be described in a finite way. Formally, we say
that an SPTG is finitely optimal if:

(1) Min has a fake-optimal NC-strategy;
(2) Max has an optimal FP-strategy; and
(3) ValG(`) is a cost function, for all locations `.

The central point in establishing Theorem 3.4 will thus be to prove that all SPTGs are
finitely optimal (Theorem 5.9), as this guarantees the existence of well-behaved optimal
strategies and value functions. We will also show that these have a pseudo-polynomial
number of cutpoints (Theorem 5.13), which easily induces that they can be computed in
pseudo-polynomial time. The proof is by induction on the number of non-urgent locations
of the SPTG. In Section 4, we address the base case of SPTGs with urgent locations only
(where no time can elapse). Since these SPTGs are very close to the untimed min-cost
reachability games of [BGHM16], we adapt the algorithm in this work and obtain the
solveInstant function (Algorithm 1). This function can also compute ValG(`, 1) for all `
and all games G (even with non-urgent locations) since time cannot elapse anymore when
the clock has value 1. Next, using the continuity result of Theorem 3.2, we can detect
locations ` where ValG(`, ν) ∈ {+∞,−∞}, for all ν ∈ [0, 1], and remove them from the game.
Finally, in Section 5 we handle SPTGs with non-urgent locations by refining the technique
of [BLMR06, Rut11] (that work only on SPTGs with non-negative weights).

4. SPTGs with only urgent locations

Throughout this section, we consider an r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) where all
non-final locations are urgent, i.e. Lu = LMin∪LMax. We also fix an initial clock value ν. Since
all locations in G are urgent, no time will elapse, all configurations will have the same clock
value ν and no cost will be incurred by staying in the different locations of the plays. Hence,

we can simplify their representation: in this section, a play ρ = (`0, ν)
c0−→ (`1, ν)

c1−→ · · · will
be represented simply as `0`1 · · · . The price of this play is Price(ρ) = +∞ if `k 6∈ Lf for all

k > 0; and Price(ρ) =
∑k−1

i=0 π(`i, `i+1) + ϕ`k(ν) if k is the least position such that `k ∈ Lf .

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:19

4.1. Computing the game value for a particular clock value. We first explain how
we can compute the value function of the game for a fixed clock value ν ∈ [0, r]: more
precisely, we will compute the vector (Val(`, ν))`∈L of values for all locations. We will denote
by Valν(`) the value Val(`, ν), so that Valν is the vector we want to compute. Since no time
can elapse, it consists in an adaptation of the techniques developed in [BGHM16] to solve
(untimed) min-cost reachability games. The main difference concerns the weights being
rational (and not integers) and the presence of final cost functions.

Following the arguments of [BGHM16], we first observe that locations ` with values
Valν(`) = +∞ and Valν(`) = −∞ can be pre-computed (using respectively attractor and
mean-payoff techniques) and removed from the game without changing the other values.
Then, because of the particular structure of the game G (where a real cost is paid only on
the target location, all other weights being integers), for all plays ρ, Price(ρ) is a value from
the set Zν,ϕ = Z + {ϕ`(ν) | ` ∈ Lf}. We further define Z+∞

ν,ϕ = Zν,ϕ ∪ {+∞}. Clearly, Zν,ϕ
contains at most |Lf | values between two consecutive integers, i.e.

∀i ∈ Z |[i, i+ 1) ∩ Zν,ϕ| 6 |Lf | (4.1)

Then, we define an operator F : (Z+∞
ν,ϕ)L → (Z+∞

ν,ϕ)L mapping every vector x = (x`)`∈L
of (Z+∞

ν,ϕ)L to F(x) = (F(x)`)`∈L defined by

F(x)` =

ϕ`(ν) if ` ∈ Lf
max

(`,`′)∈∆

(
π(`, `′) + x`′

)
if ` ∈ LMax

min
(`,`′)∈∆

(
π(`, `′) + x`′

)
if ` ∈ LMin .

We will obtain Valν as the limit of the sequence (x(i))i>0 defined by x
(0)
` = +∞ if ` 6∈ Lf ,

and x
(0)
` = ϕ`(ν) if ` ∈ Lf , and then x(i) = F(x(i−1)) for i > 1.

The intuition behind this sequence is that x(i) is the value of the game (when the clock
takes value ν) if we impose that Min must reach the target within i steps (and pays a price
of +∞ if it fails to do so). Formally, for a play ρ = `0`1 · · · , we let Price6i(ρ) = Price(ρ) if
`k ∈ Lf for some k 6 i, and Price6i(ρ) = +∞ otherwise. We further let

Val
6i
ν (`) = inf

σMin

sup
σMax

Price6i(Play((`, ν), σMax, σMin))

where σMin and σMax are respectively strategies of Min and Max. Lemma 6 of [BGHM16]
allows us to easily obtain that:

Lemma 4.1. For all i > 0, and ` ∈ L: x
(i)
` = Val

6i
ν (`).

Sketch of proof. This is proved by induction on i. It is trivial for i = 0, and playing one
more step amounts to computing one more iterate of F .

Now, let us study how the sequence (Val
6i
ν)i>0 behaves and converges to the finite values

of the game. Using again the same arguments as in [BGHM16] (in particular, that F is a
monotonic and Scott-continuous operator over the complete lattice (Z+∞

ν,ϕ)L), the sequence

(Val
6i
ν)i>0 converges towards the greatest fixed point of F . Let us now show that Valν is

actually this greatest fixed point. First, Lemma 7 of [BGHM16] can be adapted to obtain

Lemma 4.2. For all ` ∈ L: Val
6|L|−1
ν (`) 6 (|L| − 1)Πtr + Πfin .

17:20 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

Algorithm 1: solveInstant(G,ν)

Input: r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π), a clock value ν ∈ [0, r]

1 foreach ` ∈ L do
2 if ` ∈ Lf then X(`) := ϕ`(ν) else X(`) := +∞
3 repeat
4 Xpre := X

5 foreach ` ∈ LMax do X(`) := max(`,`′)∈∆

(
π(`, `′) + Xpre(`

′)
)

6 foreach ` ∈ LMin do X(`) := min(`,`′)∈∆

(
π(`, `′) + Xpre(`

′)
)

7 foreach ` ∈ L such that X(`) < −(|L| − 1)Πtr −Πfin do X(`) := −∞
8 until X = Xpre
9 return X

Proof. Denoting by Attri(S) the i-steps attractor of set S (i.e. the set of locations where
player Min can enforce reaching S in at most i steps), and assuming that Attr−1(S) = ∅ for
all S, we can establish by induction on j that: for all locations ` ∈ L with 0 6 k 6 |L| such
that ` ∈ Attrk(Lf) \ Attrk−1(Lf), and for all 0 6 j 6 |L|:

(1) j < k implies Val
6j
ν (`) = +∞ and

(2) j > k implies Val
6j
ν (`) 6 jΠtr + Πfin and Val

6j
ν (`) ∈ Zν,ϕ.

Then, the result is obtained by taking j = |L| − 1 in 2.

The next step is to show that the values that can be computed along the sequence (still
assuming that Val(`, ν) is finite for all `) are taken from a finite set:

Lemma 4.3. For all i > 0 and for all ` ∈ L:

Val
6|L|+i
ν (`) ∈ PossValν = [−(|L| − 1)Πtr −Πfin, (|L| − 1)Πtr + Πfin] ∩ Zν,ϕ

where PossValν has cardinality bounded by |Lf | ×
(
2(|L| − 1)Πtr + 2Πfin + 1

)
.

Proof. Following the proof of [BGHM16, Lemma 9], it is easy to show that if Min can secure,
from some vertex `, a price less than −(|L|−1)Πtr−Πfin, i.e. Val(`, ν) < −(|L|−1)Πtr−Πfin,
then it can secure an arbitrarily small price from that configuration, i.e. Val(`, ν) = −∞,
which contradicts our hypothesis that the value is finite.

Hence, for all i > 0, for all `: Val
6i
ν (`) > Val(`, ν) > −(|L| − 1)Πtr−Πfin. By Lemma 4.2

and since the sequence is non-increasing, we conclude that, for all i > 0 and for all ` ∈ L:

−(|L| − 1)Πtr −Πfin < Val
6|L|+i
ν (`) 6 (|L| − 1)Πtr + Πfin .

Since all Val
6|L|+i
ν (`) are also in Zν,ϕ, we conclude that Val

6|L|+i
ν (`) ∈ PossValν for all i > 0.

The upper bound on the size of PossValν is established by equation (4.1).

This allows us to bound the number of iterations needed for the sequence to stabilise.
Indeed, at each step after the first |L| steps, the value of at least one location must decrease,
while remaining in a set of values that contains 2(|L| − 1)Πtr + 2Πfin + 1 elements.

Corollary 4.4. The sequence (Val
6i
ν)i>0 stabilises after a number of steps at most |Lf | ×

|L| ×
(
2(|L| − 1)Πtr + 2Πfin + 1

)
+ |L|.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:21

Next, the proofs of [BGHM16, Lemma 10 and Corollary 11] allow us to conclude that
this sequence converges towards the value Valν of the game (when all values are finite),
which proves that the value iteration scheme of Algorithm 1 computes exactly Valν for all
ν ∈ [0, r]. Indeed, this algorithm also works when some values are not finite. As a corollary,
we obtain a characterisation of the possible values of G:

Corollary 4.5. For all r-SPTGs G with only urgent locations, locations ` ∈ L and values
ν ∈ [0, r], Val(`, ν) is contained in the set PossValν ∪ {−∞,+∞} of cardinal polynomial in
|L|, Πtr, and Πfin, i.e. pseudo-polynomial with respect to the size of G.

Finally, Section 3.4 of [BGHM16] explains how to compute simultaneously optimal
strategies for both players. In our context, this allows us to obtain for every clock value
ν ∈ [0, r] and location ` of an r-SPTG, such that Val(`, ν) /∈ {−∞,+∞}, an optimal FP-
strategy for Max, and an optimal switching strategy for Min. In case of a configuration of
value −∞, the switching strategies built in Lemma 3.9, for all parameters n > 0, give a
sequence of strategies of Min that ensure a value as low as possible.

4.2. Study of the complete value functions: G is finitely optimal. So far, we have
been able to compute ValG(`, ν) for a fixed value ν. In practice, this can be achieved
by calling solveInstant (Algorithm 1). Clearly, running this algorithm for all possible
valuations ν is not feasible, so let us now explain how we can reduce the computation of
ValG(`) : ν ∈ [0, r] 7→ Val(`, ν) (for all `) to a finite number of calls to solveInstant. We
first study a precise characterisation of these functions, in particular showing that these are
cost functions of CF{[0,r]}.

We first define the set FG of affine functions over [0, r] as follows:

FG = {k + ϕ` | ` ∈ Lf ∧ k ∈ [−(|L| − 1)Πtr, (|L| − 1)Πtr] ∩ Z}

Observe that this set is finite and that its cardinality is bounded above by 2|L|2Πtr, pseudo-
polynomial in the size of G. Moreover, as a direct consequence of Corollary 4.5, this set
contains enough information to compute the value of the game in each possible value of the
clock, in the following sense:

Lemma 4.6. For all ` ∈ L, for all ν ∈ [0, r]: if Val(`, ν) is finite, then there is f ∈ FG such
that Val(`, ν) = f(ν).

Using the continuity of ValG (Theorem 3.2), this shows that all the cutpoints of ValG
are intersections of functions from FG , i.e. belong to the set of possible cutpoints

PossCPG = {ν ∈ [0, r] | ∃f1, f2 ∈ FG : f1 6= f2 ∧ f1(ν) = f2(ν)} .
This set is depicted in Figure 5 on an example. Observe that PossCPG contains at most
|FG |2 = 4|L|4(Πtr)2 points (also pseudo-polynomial in the size of G) since all functions
in FG are affine, and can thus intersect at most once with every other function. Moreover,
PossCPG ⊆ Q, since all functions of FG take rational values in 0 and r ∈ Q. Thus, for all `,
ValG(`) is a cost function (with cutpoints in PossCPG and pieces from FG). Since ValG(`) is
a piecewise affine function, we can characterise it completely by computing only its value on
its cutpoints. Hence, we can reconstruct ValG(`) by calling solveInstant on each rational
clock value ν ∈ PossCPG . From the optimal strategies computed along solveInstant, we
can also reconstruct a fake-optimal NC-strategy for Min and an optimal FP-strategy for
Max, hence:

17:22 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

ν0 r

Figure 5: Network of affine functions defined by FG : functions in bold are final affine
functions of G, whereas non-bold ones are their translations with weights k ∈
[−(|L| − 1)Πtr, (|L| − 1)Πtr] ∩ Z = {−1, 0, 1}. PossCPG is the set of abscissæ of
intersections points, represented by black disks.

Proposition 4.7. Every r-SPTG G with only urgent locations is finitely optimal. Moreover,
for all locations `, the piecewise affine function ValG(`) has cutpoints in PossCPG of cardinality
4|L|4(Πtr)2, pseudo-polynomial in the size of G.

Let us establish this proposition. Notice, that it allows us to compute Val(`) for every
` ∈ L. First, we compute the set PossCPG = {y1, y2, . . . , yk}, which can be done in pseudo-
polynomial time in the size of G. Then, for all 1 6 i 6 k, we can compute the vectors(
Val(`, yi)

)
`∈L of values in each location when the clock takes value yi using Algorithm 1.

This provides the value of Val(`) in each cutpoint, for all locations `, which is sufficient
to characterise the whole value function, as it is continuous and piecewise affine. Observe
that all cutpoints, and values at the cutpoints, in the value function are rational numbers,
so Algorithm 1 is effective. Thanks to the above discussions, this procedure consists in
a pseudo-polynomial number of calls to a pseudo-polynomial algorithm, hence, it runs in
pseudo-polynomial time. This allows us to conclude that ValG(`) is a cost function for all
`. This proves item 3 of the definition of finite optimality for r-SPTGs with only urgent
locations.

Let us conclude the proof that r-SPTGs with only urgent locations are finitely optimal
by showing that Min has a fake-optimal NC-strategy, and Max has an optimal FP-strategy.
Let ν1, ν2, . . . , νk be the sequence of elements from PossCPG in increasing order, and let us
assume ν0 = 0. For all 1 6 i 6 k, let f `i be the function from FG that defines the piece
of ValG(`) in the interval [νi−1, νi] (we have shown above that such an f `i always exists).
Formally, for all 1 6 i 6 k, f `i ∈ FG verifies Val(`, ν) = f `i (ν), for all ν ∈ [ν`i−1, ν

`
i]. Next,

for all 1 6 i 6 k, let µi be a value taken in the middle6 of [νi−1, νi], i.e. µi = νi+νi−1

2 . Note
that all µi’s are rational values since all νi’s are. By applying solveInstant in each µi,
we can compute (ValG(`, µi))`∈L, and we can extract an optimal memoryless strategy σiMax

6Taking the middle is an arbitrary choice, any point strictly within the interval would work

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:23

for Max and an optimal switching strategy σiMin for Min. Thus we know that, for all ` ∈ L,
playing σiMin (respectively, σiMax) from (`, µi) allows Min (respectively, Max) to ensure a price

at most (respectively, at least) ValG(`, µi) = f `i (µi). However, it is easy to check that the
bound given by f `i (µi) holds in every clock value, i.e. for all `, for all ν ∈ [νi−1, νi]

Price((`, ν), σiMin) 6 f `i (ν) and Price((`, ν), σiMax) > f `i (ν) .

This holds because:

(1) Min can play σiMin from all clock values (in [0, r]) since we are considering an r-SPTG;
and

(2) Max does not have more possible strategies from an arbitrary clock value ν ∈ [0, r] than
from µi, because all locations are urgent and time cannot elapse (neither from ν, nor
from µi).

And symmetrically for Max.
We conclude that Min can consistently play the same strategy σiMin from all config-

urations (`, ν) with ν ∈ [νi−1, νi] and secure a price which is at most f `i (ν) = ValG(`, ν),
i.e. σiMin is optimal on this interval. By definition of σiMin, it is easy to extract from it a fake-
optimal NC-strategy (actually, σiMin is a switching strategy described by a pair (σ1

Min, σ
2
Min),

and σ1
Min can be used to obtain the fake-optimal NC-strategy). The same reasoning applies

to strategies of Max and we conclude that Max has an optimal FP-strategy.

5. Finite optimality of general SPTGs

In this section, we consider SPTGs with non-urgent locations. We first prove that all
such SPTGs are finitely optimal. Then, we introduce Algorithm 2 to compute opti-
mal values and strategies of SPTGs. Throughout the section, we fix an SPTG G =
(LMin, LMax, Lf , Lu,ϕ,∆, π) with non-urgent locations. Before presenting our core contribu-
tions, let us explain how we can detect locations with infinite values. As already argued, we
can compute Val(`, 1) for all ` assuming all locations are urgent, since time cannot elapse
anymore when the clock has value 1. This can be done with solveInstant (Algorithm 1).
Then, from the absence of guards in SPTGs and Theorem 3.2 we have that Val(`, 1) = +∞
(respectively, Val(`, 1) = −∞) if and only if Val(`, ν) = +∞ (respectively, Val(`, ν) = −∞)
for all ν ∈ [0, 1]. We can thus remove from the game all locations with infinite value, and this
does not affect the values of other locations. Thus, we henceforth assume that Val(`, ν) ∈ R
for all (`, ν) ∈ ConfG .

5.1. The GL′,r construction. To prove finite optimality of SPTGs and to establish correct-
ness of our algorithm, we rely in both cases on a construction that consists in decomposing G
into a sequence of SPTGs with fewer non-urgent locations. Intuitively, a game with fewer
non-urgent locations is easier to solve since it is closer to an untimed game (in particular,
when all locations are urgent, we can apply the techniques of Section 4). More precisely,
given a set L′ of non-urgent locations,we will define a (possibly infinite) sequence of clock
values 1 = r0 > r1 > · · · and a sequence GL′,r0 , GL′,r1 , . . . of SPTGs such that

(1) the non-final locations of GL′,ri are exactly the ones of G, except that the locations of L′

are now urgent (some final locations are added to allow players to wait until ri); and

17:24 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

(2) for all i > 0, the value function of GL′,ri is equal to ValG on the interval [ri+1, ri]. Hence,
we can re-construct ValG by assembling well-chosen parts of the value functions of the
games GL′,ri (assuming infi ri = 0).

In fact, we will show later (see Lemma 5.8) that we can assume the sequence r0, . . . to be
finite. This basic result will be exploited in two directions. First, we prove by induction on
the number of non-urgent locations that all SPTGs are finitely optimal, by re-constructing
ValG (as well as optimal strategies) as a B-concatenation of the value functions of a finite
sequence of SPTGs with one non-urgent locations less. The base case, with only urgent
locations, is solved by Proposition 4.7. This construction suggests a recursive algorithm
in the spirit of [BLMR06, Rut11] (for non-negative weights). Second, we show that this
recursion can be avoided (see Algorithm 2). Instead of turning locations urgent one at a
time, this algorithm makes them all urgent and computes directly the sequence of SPTGs
with only urgent locations. Its proof of correctness relies on the finite optimality of SPTGs
and, again, on our basic result linking the value functions of G and games GL′,ri .

Let us formalise these constructions. Let G be an SPTG, r ∈ [0, 1] be an endpoint, and
x = (x`)`∈L be a vector of rational values. Then, wait(G, r,x) is an r-SPTG in which both
players may now decide, in all non-urgent locations `, to wait until the clock takes value r,
and then to stop the game, adding the weight x` to the current cost of the play. Formally,
wait(G, r,x) = (LMin, LMax, L

′
f , Lu,ϕ

′, T ′, π′) is such that

• L′f = Lf] {`f | ` ∈ L \ (Lu ∪ Lf)};
• for all `′ ∈ Lf and ν ∈ [0, r], ϕ′`′(ν) = ϕ`′(ν), for all ` ∈ L \ (Lu ∪ Lf), ϕ′

`f
(ν) =

(r − ν) · π(`) + x`;
• T ′ = T ∪ {(`, [0, r],⊥, `f) | ` ∈ L \ (Lu ∪ Lf)};
• for all δ ∈ T ′, π′(δ) = π(δ) if δ ∈ T , and π′(δ) = 0 otherwise.

Then, we let Gr = wait
(
G, r, (ValG(`, r))`∈L

)
, i.e. the game obtained thanks to wait by

letting x be the value of G in r. It is easy to check that this first transformation does not
alter the value of the game, for clock values before r:

Lemma 5.1. For all ν ∈ [0, r] and locations `, ValG(`, ν) = ValGr(`, ν).

Next, we make locations urgent. For a set L′ ⊆ L \ (Lu ∪ Lf) of non-urgent locations,
we let GL′,r be the SPTG obtained from Gr by making urgent every location ` of L′. Observe

that, although all locations ` ∈ L′ are now urgent in GL′,r, their clones `f allow the players
to wait until r. When L′ is a singleton {`}, we write G`,r instead of G{`},r.

While the construction of Gr does not change the value of the game, turning locations
urgent does. Yet, we can characterise an interval [a, r] on which the value functions
ofH = GL′,r andH+ = GL′∪{`},r coincide, as stated by the next proposition. The interval [a, r]
depends on the slopes of the pieces of ValH+ as depicted in Figure 6: for each location ` of
Min, the slopes of the pieces of ValH+ contained in [a, r] should be > −π(`) (and 6 −π(`)
when ` belongs to Max). It is proved by lifting optimal strategies of H+ into H, and strongly
relies on the determinacy result of Theorem 2.2. Hereafter, we denote the slope of ValG(`)

in-between ν and ν ′ by slope`G(ν, ν ′), formally defined by slope`G(ν, ν ′) = ValG(`,ν′)−ValG(`,ν)
ν′−ν .

Proposition 5.2. Let 0 6 a < r 6 1, L′ ⊆ L \ (Lu ∪ Lf) and ` /∈ L′ ∪ Lu a non-urgent
location of Min (respectively, Max). Assume that GL′∪{`},r is finitely optimal, and that, for
all a 6 ν1 < ν2 6 r:

slope`GL′∪{`},r(ν1, ν2) > −π(`) (respectively, 6 −π(`)) . (5.1)

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:25

ValG`,r(`, ν)

νa r

•

•

ν1 ν2

ValG`,r(`, ν1)

ValG`,r(`, ν2)

Figure 6: The condition (5.1) (in the case L′ = ∅ and ` ∈ LMin): graphically, it means that
the slope between every two points of the plot in [a, r] (represented with a thick
line) is greater than or equal to −π(`) (represented with dashed line). The value
function is depicted here as a non-piecewise-affine function, as this is not the
crucial property we want to highlight.

Then, for all ν ∈ [a, r] and `′ ∈ L, ValGL′∪{`},r(`′, ν) = ValGL′,r(`′, ν). Furthermore, fake-

optimal NC-strategies and optimal FP-strategies in GL′∪{`},r are also fake-optimal and optimal
over [a, r] in GL′,r.

Before proving this result, we start with an auxiliary lemma showing a property of the
rates of change of the value functions associated to non-urgent locations

Lemma 5.3. Let G be an r-SPTG, ` and `′ be non-urgent locations of Min and Max,
respectively. Then for all 0 6 ν < ν ′ 6 r:

slope`G(ν, ν ′) > −π(`) and slope`
′
G (ν, ν ′) 6 −π(`′) .

Proof. For the location `, the inequality rewrites in

ValG(`, ν) 6 (ν ′ − ν)π(`) + ValG(`, ν ′) .

Using the upper definition of the value (thanks to the determinacy result of Theorem 2.2),
it suffices to prove, for all ε > 0, the existence of a strategy σMin of Min such that for all
strategies σMax of Max:

Price(CPlay((`, ν), σMin, σMax)) 6 (ν ′ − ν)π(`) + ValG(`, ν ′) + ε . (5.2)

To prove the existence of such a σMin, we first fix, given ε, a strategy σ′Min such that for
all strategies σMax:

Price(CPlay((`, ν ′), σ′Min, σMax)) 6 ValG(`, ν ′) + ε .

Such a strategy necessarily exists by definition of the value. Then, σMin can be obtained as
follows. Under σMin, Min will all always play as indicated by σ′Min, except in the first round.

17:26 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

In this first round, the game is still in ` and Min will play like σ′Min, adding an extra delay
of ν ′ − ν time units (observe Min is allowed to do so, since ` is non-urgent). Clearly, this
extra delay in ` will incur a cost of (ν ′ − ν)π(`), hence, we obtain (5.2).

A similar reasoning allows us to obtain the result for `′.

Now, we show that, even if the locations in L′ are turned into urgent locations, we may
still obtain for them a similar result of the rates of change as the one of Lemma 5.3:

Lemma 5.4. For all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax), and ν ∈ [0, r],
ValGL′,r(`, ν) 6 (r−ν)π(`) +ValG(`, r) (respectively, ValGL′,r(`, ν) > (r−ν)π(`) +ValG(`, r)).

Proof. It suffices to notice that from (`, ν), Min (respectively, Max) may choose to go directly
in `f ensuring the value (r − ν)π(`) + ValG(`, r).

We are now ready to establish Proposition 5.2:

Proof of Proposition 5.2. Let σMin and σMax be respectively a fake-optimal NC-strategy of
Min and an optimal FP-strategy of Max in GL′∪{`},r. Notice that both strategies are also
well-defined finite positional strategies in GL′,r.

First, let us show that σMin is indeed an NC-strategy in GL′,r. Take a finite play

(`0, ν0)
c0−→ · · · ck−1−−−→ (`k, νk), of length k > 2, that conforms with σMin in GL′,r, and with

`0 = `k and ν0, νk in the same interval I of int(σMin). To show that σMin is an NC-strategy,
we need to show that the total cost of the transitions in this play is at most −1. As σMin is

finite positional and ν0 and νk are in the same interval, the play (`0, νk)
c′0−→ · · ·

c′k−1−−−→ (`k, νk)
also conforms with σMin (with possibly different weights). Furthermore, as all the delays in
this new play are 0 we are sure that this play is also a valid play in GL′∪{`},r, in which σMin

is an NC-strategy. Therefore, π(`0, `1) + · · ·+ π(`k−1, `k) 6 −1, and σMin is an NC-strategy
in GL′,r.

We now show the result for ` ∈ LMin. The proof for ` ∈ LMax is a straightforward
adaptation. Notice that every play in GL′,r that conforms with σMin is also a play in GL′∪{`},r
that conforms with σMin, as σMin is defined in GL′∪{`},r and thus plays with no delay in
location `. Thus, for all ν ∈ [a, r] and `′ ∈ L, by Lemma 3.9,

ValGL′,r(`′, ν) 6 fakeσMin
GL′,r

(`′, ν) = fakeσMin
GL′∪{`},r

(`′, ν) = ValGL′∪{`},r(`′, ν) . (5.3)

To obtain that ValGL′,r(`′, ν) = ValGL′∪{`},r(`′, ν), it remains to show the reverse inequal-

ity. To that extent, let ρ be a finite play in GL′,r that conforms with σMax, starts in a
configuration (`′, ν) with ν ∈ [a, r], and ends in a final location. We show by induction on the
length of ρ that Price(ρ) > ValGL′∪{`},r(`′, ν). If ρ has size 1 then `′ is a final configuration

and Price(ρ) = ValGL′∪{`},r(`′, ν) = ϕ′`′(ν).

Otherwise ρ = (`′, ν)
c−→ ρ′ where ρ′ is a play that conforms with σMax, starting in

a configuration (`′′, ν ′′) and ending in a final configuration. By induction hypothesis, we
have Price(ρ′) > ValGL′∪{`},r(`′′, ν ′′). We now distinguish three cases, the two first being

immediate:

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:27

• If `′ ∈ LMax, then σMax(`
′, ν) leads to the next configuration (`′′, ν ′′), thus

ValGL′∪{`},r(`′, ν) = PriceGL′∪{`},r((`′, ν), σMax)

= c+ PriceGL′∪{`},r((`′′, ν ′′), σMax)

6 c+ Price(ρ′) = Price(ρ) .

• If `′ ∈ LMin, and `′ 6= ` or ν ′′ = ν, we have that (`′, ν)
c−→ (`′′, ν ′′) is a valid transition

in G′L′∪{`},r. Therefore, ValGL′∪{`},r(`′, ν) 6 c+ ValGL′∪{`},r(`′′, ν ′′), hence

Price(ρ) = c+ Price(ρ′) > c+ ValGL′∪{`},r(`′′, ν ′′) > ValGL′∪{`},r(`′, ν).

• Finally, if `′ = ` and ν ′′ > ν, then c = (ν ′′ − ν)π(`) + π(`, `′′). As (`, ν ′′)
π(`,`′′)−−−−→ (`′′, ν ′′)

is a valid transition in GL′∪{`},r, we have ValGL′∪{`},r(`, ν ′′) 6 π(`, `′′) + ValGL′∪{`},r(`′′, ν ′′).

Furthermore, since ν ′′ ∈ [a, r], we can use (5.1) to obtain

ValGL′∪{`},r(`, ν) 6 ValGL′∪{`},r(`, ν ′′) + (ν ′′ − ν)π(`)

6 ValGL′∪{`},r(`′′, ν ′′) + π(`, `′′) + (ν ′′ − ν)π(`) .

Therefore

Price(ρ) = (ν ′′ − ν)π(`) + π(`, `′′) + Price(ρ′)

> (ν ′′ − ν)π(`) + π(`, `′′) + ValGL′∪{`},r(`′′, ν ′′) > ValGL′∪{`},r(`′, ν) .

This concludes the induction. As a consequence,

inf
σ′Min∈StratMin(GL′,r)

PriceGL′,r(CPlay((`′, ν), σ′Min, σMax)) > ValGL′∪{`},r(`′, ν)

for all locations `′ and ν ∈ [a, r], which finally proves that ValGL′,r(`′, ν) > ValGL′∪{`},r(`′, ν).

Fake-optimality of σMin over [a, r] in GL′∪{`},r is then obtained by (5.3).

Given an SPTG G and some finitely optimal GL′,r, we now characterise precisely the
left endpoint of the maximal interval ending in r where the value functions of G and GL′,r
coincide. To this end, we use the operator leftL′ : (0, 1]→ [0, 1] defined as:

leftGL′(r) = inf{r′ 6 r | ∀` ∈ L ∀ν ∈ [r′, r] ValGL′,r(`, ν) = ValG(`, ν)} .

Most of the time, we will forget about the G exponent in leftGL′(r), but we keep it since it
will become useful in later proofs. By continuity of the value (Theorem 3.2), the infimum in
the definition exists and ValG(`, leftL′(r)) = ValGL′,r(`, leftL′(r)). Moreover, ValG(`) is a cost

function on [leftL′(r), r], since GL′,r is finitely optimal.
However, this definition of leftL′(r) is semantical. Yet, building on the ideas of Proposi-

tion 5.2, we can effectively compute leftL′(r), given ValGL′,r . We claim that leftL′(r) is the

minimal clock value such that for all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax),
the slopes of the affine sections of the cost function ValGL′,r(`) on [leftL′(r), r] are at least

(at most) −π(`). Notice that while this condition (that we show formally in Lemma 5.5)

only speaks about locations of L′ that are made urgent, the semantical definition of leftGL′(r)
gives an equality of values for all locations of L. Via this condition, leftL′(r) can be obtained
(see Figure 7) by inspecting iteratively, for all ` of Min (respectively, Max), the slopes of
ValGL′,r(`), for ` ∈ L′, by decreasing clock values until we find a piece with a slope greater

than −π(`) (respectively, smaller than −π(`)). This enumeration of the slopes is effective as

17:28 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

ValGL′,r has finitely many pieces, by hypothesis. Moreover, this guarantees that leftL′(r) < r,

as shown in the following lemma.

Lemma 5.5. Let G be an SPTG, L′ ⊆ L \ (Lu ∪ Lf), and r ∈ (0, 1], such that GL′′,r is
finitely optimal for all L′′ ⊆ L′. Then, leftL′(r) is the minimal clock value such that for all
locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax), the slopes of the affine sections of the
cost function ValGL′,r(`) on [leftL′(r), r] are at least (respectively, at most) −π(`). Moreover,

leftL′(r) < r.

Proof. Since ValGL′,r(`) = ValG(`) on [leftL′(r), r], and as ` is non-urgent in G, Lemma 5.3

states that all the slopes of ValG(`) are at least (respectively, at most) −π(`) on [leftL′(r), r].
We now show the minimality property by contradiction. Therefore, let r′ < leftL′(r)

such that all cost functions ValGL′,r(`) are affine on [r′, leftL′(r)], and assume that for all

`′ ∈ L′ ∩ LMin (respectively, `′ ∈ L′ ∩ LMax), the slopes of ValGL′,r(`′) on [r′, leftL′(r)] are

at least (respectively, at most) −π(`′). Hence, this property holds on [r′, r]. Then, by
applying Proposition 5.2 |L′| times (here, we use the finite optimality of the games GL′′,r with
L′′ ⊆ L′), we have that for all ν ∈ [r′, r] ValGr(`, ν) = ValGL′,r(`, ν). Using Lemma 5.1, we

also know that for all ν 6 r, and `, ValGr(`, ν) = ValG(`, ν). Thus, ValGL′,r(`, ν) = ValG(`, ν).

As r′ < leftL′(r), this contradicts the definition of leftL′(r).
We finally prove that leftL′(r) < r. This is immediate in case leftL′(r) = 0, since r > 0.

Otherwise, from the result obtained previously, we know that there exists r′ < leftL′(r), and
`? ∈ L′ such that ValGL′,r(`?) is affine on [r′, leftL′(r)] of slope smaller (respectively, greater)

than −π(`?) if `? ∈ LMin (respectively, `? ∈ LMax), i.e.{
ValGL′,r(`?, r′) > ValGL′,r(`?, leftL′(r)) + (leftL′(r)− r′)π(`?) if `? ∈ LMin

ValGL′,r(`?, r′) < ValGL′,r(`?, leftL′(r)) + (leftL′(r)− r′)π(`?) if `? ∈ LMax .

From Lemma 5.4, we also know that{
ValGL′,r(`?, r′) 6 ValGL′,r(`?, r) + (r − r′)π(`?) if `? ∈ LMin

ValGL′,r(`?, r′) > ValGL′,r(`?, r) + (r − r′)π(`?) if `? ∈ LMax .

Both equations combined imply{
ValGL′,r(`?, r) > ValGL′,r(`?, leftL′(r)) + (leftL′(r)− r)π(`?) if `? ∈ LMin

ValGL′,r(`?, r) < ValGL′,r(`?, leftL′(r)) + (leftL′(r)− r)π(`?) if `? ∈ LMax

which is not possible if leftL′(r) = r.

Thus, one can reconstruct ValG on [infi ri, r0] from the value functions of the (potentially
infinite) sequence of games GL′,r0 , GL′,r1 , . . . where ri+1 = leftL′(ri) for all i such that ri > 0,
for all possible choices of non-urgent locations L′. Another interesting fact, that we formally
state and prove in the next lemma, is that just on the left of such a point ri the slope of
ValG(`), for ` ∈ L′, is −π(`):

Lemma 5.6. Let G be an SPTG, L′ ⊆ L \ (Lu ∪ Lf) and r0 ∈ (0, 1] such that GL′,r0 is
finitely optimal. Suppose that r1 = leftL′(r0) > 0, and let r2 = leftL′(r1). Then, there exists
r′ ∈ [r2, r1) and ` ∈ L′ such that

(1) ValG(`) is affine on [r′, r1], of slope equal to −π(`), and
(2) ValG(`, r1) 6= ValG(`, r0) + π(`)(r0 − r1).

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:29

As a consequence, ValG(`) has a cutpoint in [r1, r0).

Proof. We denote by r′ the smallest clock value (smaller than r1) such that for all locations `,
ValG(`) is affine over [r′, r1]. Then, the proof goes by contradiction: using Lemma 5.5, we
assume that for all ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax)

• either (¬1) the slope of ValG(`) on [r′, r1] is greater (respectively, smaller) than −π(`),
• or (1 ∧ ¬2) for all ν ∈ [r′, r1], ValG(`, ν) = ValG(`, r0) + π(`)(r0 − ν).

Let σ0
Min and σ0

Max (respectively, σ1
Min and σ1

Max) be a fake-optimal NC-strategy and
an optimal FP-strategy in GL′,r0 (respectively, GL′,r1). Let r′′ = max([r′, r1) ∩ (pts(σ1

Min) ∪
pts(σ1

Max))), so that strategies σ1
Min and σ1

Max have the same behaviour on all clock values
of the interval (r′′, r1), i.e. either always play urgently the same transition, or wait, in a
non-urgent location, until reaching some clock value greater than or equal to r1 and then play
the same transition (recall that pts represent the set of endpoints in which an FP-strategy
may change its behaviour).

Observe first that for all ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax), if on the interval
(r′′, r1), σ1

Min (respectively, σ1
Max) goes to `f then the slope on [r′′, r1] (and thus on [r′, r1]) is

−π(`). This implies that (1) holds and as either (¬ 1) or (1 ∧ ¬2) is true by assumption, for
such a location `, we know that (1 ∧ ¬2) holds (by letting r′ = r′′).

For other locations ` (notice that there necessarily exists a location that does not satisfy
(1∧¬2) otherwise leftL′(r0) 6 r′ < r1), we will construct a new pair of NC- and FP-strategies
σMin and σMax in GL′,r0 such that for all locations ` and clock values ν ∈ (r′′, r1)

fakeσMin
GL′,r0

(`, ν) 6 ValG(`, ν) 6 PriceGL′,r0
((`, ν), σMax) . (5.4)

As a consequence, with Lemma 3.9 (over game GL′,r0), one would have that ValGL′,r0
(`, ν) =

ValG(`, ν), which will raise a contradiction with the definition of r1 as leftL′(r0) < r0 (by
Lemma 5.5), and conclude the proof.

We only show the construction for σMin, as it is very similar for σMax. Strategy σMin is
obtained by combining strategies σ1

Min over [0, r1], and σ0
Min over [r1, r0]: a special care has

to be spent in case σ1
Min performs a jump to a location `f , since then, in σMin, we rather glue

this move with the decision of strategy σ0
Min in (`, r1). Formally, let (`, ν) be a configuration

of GL′,r0 with ` ∈ LMin. We construct σMin(`, ν) as follows:

• if ν > r1, σMin(`, ν) = σ0
Min(`, ν);

• if ν < r1, ` 6∈ L′ and σ1
Min(`, ν) =

(
t, (`, `f)

)
for some delay t (such that ν + t > r1), we let

σMin(`, ν) =
(
r1 − ν + t′, (`, `′)

)
where (t′, (`, `′)) = σ0

Min(`, r1);

• otherwise σMin(`, ν) = σ1
Min(`, ν).

For all finite plays ρ in GL′,r0 that conform to σMin, start in a configuration (`, ν) such

that ν ∈ (r′′, r0] and ` /∈ {`′f | `′ ∈ L}, and end in a final location, we show by induction
that PriceGL′,r0

(ρ) 6 ValG(`, ν). Note that ρ either only contains clock values in [r1, r0], or is

of the form (`, ν)
c−→ (`f , ν ′), or is of the form (`, ν)

c−→ ρ′ with ρ′ a play that satisfies the
above restriction.

• If ν ∈ [r1, r0], then ρ conforms with σ0
Min, thus, as σ0

Min is fake-optimal, PriceGL′,r0
(ρ) 6

ValGL′,r0
(`, ν) = ValG(`, ν) (the last inequality comes from the definition of r1 = leftL′(r0)).

Therefore, in the following cases, we assume that ν ∈ (r′′, r1).

• Consider then the case where ρ is of the form (`, ν)
c−→ (`f , ν ′).

17:30 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

– if ` ∈ L′ ∩ LMin, ` is urgent in GL′,r0 , thus ν ′ = ν. Furthermore, since ρ conforms

with σMin, by construction of σMin, the choice of σ1
Min on (r′′, r1) consists in going to `f ,

thus, as observed above, 1 ∧ ¬2 holds for `. Therefore,

ValG(`, ν) = ValG(`, r0) + π(`)(r0 − ν) = ϕ`f (ν) = PriceGL′,r0
(ρ) .

– If ` ∈ LMin \L′, by construction, it must be the case that σMin(`, ν) =
(
r1−ν+ t′, (`, `f)

)
where

(
t, (`, `f)

)
= σ1

Min(`, ν) and
(
t′, (`, `f)

)
= σ0

Min(`, r1). Thus, ν ′ = r1 + t′. In
particular, observe that

PriceGL′,r0
(ρ) = (r1 − ν)π(`) + PriceGL′,r0

(ρ′)

where ρ′ = (`, r1)
c′−→ (`f , ν ′). As ρ′ conforms with σ0

Min which is fake-optimal in GL′,r0 ,
and r1 = leftL′(r0),

PriceGL′,r0
(ρ′) 6 ValGL′,r0

(`, r1) = ValG(`, r1) .

Thus

PriceGL′,r0
(ρ) 6 (r1 − ν)π(`) + ValG(`, r1) = PriceGL′,r1

(ρ′′)

where ρ′′ = (`, ν)
c′′−→ (`f , ν + t) conforms with σ1

Min which is fake-optimal in GL′,r1 .
Therefore, since r1 = leftL′(r0),

PriceGL′,r0
(ρ) 6 ValGL′,r1

(`, ν) = ValG(`, ν) .

– If ` ∈ LMax then

PriceGL′,r0
(ρ) = (ν ′ − ν)π(`) + ϕ`f (ν ′)

= (ν ′ − ν)π(`) + (r0 − ν ′)π(`) + ValG(`, r0)

= (r0 − ν)π(`) + ValG(`, r0) .

By Lemma 5.3, since ` ∈ LMax \ (Lu ∪ Lf) (` is not urgent in G since `f exists),
ValG(`, r1) > (r0 − r1)π(`) + ValG(`, r0). Furthermore, observe that if we define ρ′ as

the play (`, ν)
c′−→ (`f , ν) in GL′,r1 , then ρ′ conforms with σ1

Min and

PriceGL′,r1
(ρ′) = (r1 − ν)π(`) + ValG(`, r1)

> (r1 − ν)π(`) + (r0 − r1)π(`) + ValG(`, r0)

= (r0 − ν)π(`) + ValG(`, r0)

= PriceGL′,r0
(ρ) .

Thus, as σ1
Min is fake-optimal in GL′,r1 ,

PriceGL′,r0
(ρ) 6 PriceGL′,r1

(ρ′) 6 ValGL′,r1
(`, ν) = ValG(`, ν) .

• We finally consider the case where ρ = (`, ν)
c−→ ρ′ with ρ′ that starts in configuration (`′, ν ′)

such that `′ /∈ {`′′f | `′′ ∈ L}. By induction hypothesis PriceGL′,r0
(ρ′) 6 ValG(`′, ν ′).

– If ν ′ 6 r1, let ρ′′ be the play of GL′,r1 starting in (`′, ν ′) that conforms with σ1
Min and

σ1
Max. If ρ′′ does not reach a final location, since σ1

Min is an NC-strategy, the costs of its
prefixes tend to −∞. By considering the switching strategy of Lemma 3.9, we would
obtain a completed play conforming with σ1

Max of price smaller than ValGL′,r1
(`′, ν ′)

which would contradict the optimality of σ1
Max. Hence, ρ′′ reaches the target. Moreover,

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:31

since σ1
Max is optimal and σ1

Min is fake-optimal, we finally know that PriceGL′,r1
(ρ′′) =

ValGL′,r1
(`′, ν ′) = ValG(`′, ν ′) (since ν ′ ∈ [leftL′(r1), r1]). Therefore,

PriceGL′,r0
(ρ) = (ν ′ − ν)π(`) + π(`, `′) + PriceGL′,r0

(ρ′)

6 (ν ′ − ν)π(`) + π(`, `′) + ValG(`′, ν ′)

= (ν ′ − ν)π(`) + π(`, `′) + Price(ρ′′) = Price((`, ν)
c′−→ ρ′′)

Since the play (`, ν)
c′−→ ρ′′ conforms with σ1

Min, we finally have

PriceGL′,r0
(ρ) 6 Price((`, ν)

c′−→ ρ′′) 6 ValGL′,r1
(`, ν) = ValG(`, ν) .

– If ν ′ > r1 and ` ∈ LMax, let ρ1 be the play in GL′,r1 defined by ρ1 = (`, ν)
c′−→ (`f , ν) and

ρ0 the play in GL′,r0 defined by ρ0 = (`, r1)
c′′−→ ρ′. We have

PriceGL′,r0
(ρ) = (ν ′ − ν)π(`) + π(`, `′) + PriceGL′,r0

(ρ′)

= ϕ`f (ν)︸ ︷︷ ︸
= PriceGL′,r1

(ρ1)

−ValG(`, r1) + (ν ′ − r1)π(`) + π(`, `′) + PriceGL′,r0
(ρ′)︸ ︷︷ ︸

= PriceGL′,r0
(ρ0)

.

Since ρ0 conforms with σ0
Min, fake-optimal, and reaches a final location, and since

r1 = leftL′(r0),

PriceGL′,r0
(ρ0) 6 ValGL′,r0

(`, r1) = ValG(`, r1) .

We also have that ρ1 conforms with σ1
Min, so the previous explanations already proved

that PriceGL′,r1
(ρ1) 6 ValG(`, ν). As a consequence PriceGL′,r0

(ρ) 6 ValG(`, ν).

– If ν ′ > r1 and ` ∈ LMin, we know that ` is non-urgent, so that ` 6∈ L′. Therefore,
by definition of σMin, σMin(`, ν) = (r1 − ν + t′, (`, `′)) where σ1

Min(`, ν) = (t, (`, `f)) for
some delay t, and σ0

Min(`, r1) = (t′, (`, `′)). If we let ρ1 be the play in GL′,r1 defined by

ρ1 = (`, ν)
c′−→ (`f , ν) and ρ0 the play in GL′,r0 defined by ρ0 = (`, r1)

c′′−→ ρ′, as in the
previous case, we obtain that PriceGL′,r0

(ρ) 6 ValG(`, ν).

As a consequence of this induction, we have shown that for all ` ∈ L, and ν ∈ (r′′, r1),
fakeσMin

GL′,r0
(`, ν) 6 ValG(`, ν), which shows one inequality of (5.4), the other being obtained

very similarly.

Next, we will define two different ways of choosing the subset L′ ⊆ L \ (Lu ∪ Lf): the
former (one at a time) to prove finite optimality of all SPTGs, the latter (all at once) to
bound the number of cutpoints of the value functions and obtain an efficient algorithm to
solve them.

5.2. SPTGs are finitely optimal. To prove finite optimality of all SPTGs we reason by
induction on the number of non-urgent locations and instantiate the previous results to
the case where L′ = {`?} where `? is a non-urgent location of minimum weight (i.e. for all
` ∈ L \ (Lf ∪ Lu), π(`?) 6 π(`)). Given r0 ∈ [0, 1], we let r0 > r1 > · · · be the decreasing
sequence of clock values such that ri = left`?(ri−1) for all i > 0 with ri−1 > 0. As explained
before, we will build ValG on [infi ri, r0] from the value functions of games G`?,ri . Assuming
finite optimality of those games, this will prove that G is finitely optimal under the condition

17:32 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

ValG`?,r(`?, ν)

ν

ValG(`?, r)

left`?(r) r

Figure 7: In this example L′ = {`?} and `? ∈ LMin. left`?(r) is the leftmost point such that
all slopes on its right are at least −π(`?) in the graph of ValG`?,r(`?, ν). Dashed

lines have slope −π(`?).

that r0 > r1 > · · · eventually stops, i.e. ri = 0 for some i. Lemma 5.8 will prove this
property. First, we relate the optimal value functions with the final cost functions.

Lemma 5.7. Assume that G`?,r is finitely optimal. If ValG`?,r(`?) is affine on a non-singleton

interval I ⊆ [0, r] with a slope greater7 than −π(`?), then there exists f ∈ FG (see definition
in page 21) such that for all ν ∈ I, ValG`?,r(`?, ν) = f(ν).

Proof. Let σ1
Min and σMax be some fake-optimal NC-strategy and optimal FP-strategy in G`?,r.

As I is a non-singleton interval, there exists a subinterval I ′ ⊂ I, which is not a singleton
and is contained in an interval of σ1

Min and of σMax. Let σMin be the switching strategy
obtained from σ1

Min in Lemma 3.9: notice that both strategies have the same intervals.
Let ν ∈ I ′. Since ValG`?,r(`?, ν) /∈ {+∞,−∞}, the completed play

CPlay((`?, ν), σMin, σMax)

necessarily reaches a final location and has price ValG`?,r(`?, ν). Thus it is a finite completed

play (`0, ν0)
c0−→ · · · (`k, νk) where (`0, ν0) = (`?, ν) and `k ∈ L′f . We also let ν ′ ∈ I ′ be a

clock value such that ν < ν ′. We now explain successively why:

(1) for all i, νi = ν;
(2) `k ∈ Lf ;
(3) CPlay((`?, ν), σMin, σMax) contains no cycles.

We will then use these properties to conclude.

(1) Assume by contradiction that there exists an index i such that ν < νi and let i be
the smallest of such indices. For each j < i, if `j ∈ LMin, let (t, δ) = σMin(`j , ν)
and (t′, δ′) = σMin(`j , ν

′). Similarly, if `j ∈ LMax, we let (t, δ) = σMax(`j , ν) and
(t′, δ′) = σMax(`j , ν

′). As I ′ is contained in an interval of σMin and σMax, we have δ = δ′

7For this result, the order does not depend on the owner of the location, but on the fact that `? has
minimal weight amongst locations of G.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:33

and either t = t′ = 0, or ν + t = ν ′ + t′. Applying this result for all j < i, we obtain that

(`0, ν
′)

c′0−→ · · · (`i−1, ν
′)

c′i−1−−→ (`i, νi)
ci−→ · · · (`k, νk) is a prefix of CPlay((`?, ν ′), σMin, σMax):

notice moreover that, as before, this prefix has cost ValG`?,r(`?, ν ′). In particular,

ValG`?,r(`?, ν ′) = ValG`?,r(`?, ν)− (ν ′ − ν)π(`i−1) 6 ValG`?,r(`?, ν)− (ν ′ − ν)π(`?)

which implies that the slope of ValG`?,r(`?) is at most −π(`?), and therefore contradicts
the hypothesis. As a consequence, we have that νi = ν for all i.

(2) Again by contradiction, assume now that `k = `f for some ` ∈ L\(Lu∪Lf). By the same
reasoning as before, we then would have ValG`?,r(`?, ν ′) = ValG`?,r(`?, ν)− (ν ′ − ν)π(`),
which again contradicts the hypothesis. Therefore, `k ∈ Lf .

(3) Suppose, for a contradiction, that the prefix (`0, ν)
c0−→ · · · (`k, ν) contains a cycle. Since

σMin is a switching strategy and σMax is a memoryless strategy, this implies that the
cycle is contained in the part of σMin where the decision is taken by the strategy σ1

Min:
since it is an NC-strategy, this implies that the sum of the weights along the cycle
is at most −1. But if this is the case, we may modify the switching strategy σMin to
loop more in the same cycle (this is indeed a cycle in the timed game, not only in the
untimed region game): against the optimal memoryless strategy σMax, this would imply
that Min has a sequence of strategies to obtain a value as small as it wants, and thus
ValG`?,r(`?, ν) = −∞. This contradicts the absence of values −∞ in the game. Thus,

the prefix (`0, ν)
c0−→ · · · (`k, ν) contains no cycles.

We now explain how to conclude. The absence of cycles implies that the sum of the discrete
weights w = π(`0, `1) + · · ·+ π(`k−1, `k) belongs to the set [−(|L| − 1)Πtr, (|L| − 1)Πtr] ∩ Z,
and we have ValG`?,r(`?, ν) = w + ϕ`k(ν). Notice that the previous developments also

show that for all ν ′ ∈ I ′ (here, ν < ν ′ is not needed), ValG`?,r(`?, ν ′) = w + ϕ`k(ν ′), with

the same location `k, and length k. Since this equality holds on I ′ ⊆ I which is not a
singleton, and ValG`?,r(`?) is affine on I, it holds everywhere on I. This shows the result
since w + ϕ`k ∈ FG .

We now prove the termination of the sequence of ri’s described earlier. This is achieved by
showing why, for all i, the owner of `? has a strictly better strategy in configuration (`?, ri+1)
than waiting until ri in location `?.

Lemma 5.8. If G`?,ri is finitely optimal for all i > 0 for which ri is defined, then

(1) there exists j 6 |FG |2 + 2 such that rj = 0; and
(2) denoting j the number such that rj = 0 we have for all 0 6 i 6 j − 2 that if `? ∈

LMin (respectively, LMax), ValG(`?, ri+1) < ValG(`?, ri) + (ri − ri+1)π(`?) (respectively,
ValG(`?, ri+1) > ValG(`?, ri) + (ri − ri+1)π(`?)).

Proof. (1) We consider first the case where `? ∈ LMax, showing a better bound j 6 |FG |+ 2.
The main ingredient is to show that a function of FG cannot be used twice in ValG(`?).
Let i > 0 such that ri 6= 0 (if there exist no such i then r1 = 0). Recall from Lemma 5.5
that there exists r′i < ri such that ValG`?,ri−1

(`?) is affine on [r′i, ri], of slope greater than

−π(`?). In particular,

ValG`?,ri−1
(`?, ri)− ValG`?,ri−1

(`?, r′i)

ri − r′i
> −π(`?) .

17:34 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

ValG(`?, ν)

ν

−π(`?)

fi

fj

rj ri

Figure 8: The case `? ∈ LMax: a geometric proof of fi 6= fj . The dotted lines represents fi
and fj , the dashed lines have slope −π(`?), and the plain line depicts ValG(`?).
Because the slope of fi is strictly smaller than −π(`?), and the value at rj is above
the dashed line it cannot be the case that fi(rj) = ValG(`?, rj) = fj(rj).

Lemma 5.7 states that on [r′i, ri], ValG`?,ri−1
(`?) is equal to some fi ∈ FG . As fi is an

affine function, fi(ri) = ValG`?,ri−1
(`?, ri), and fi(r

′
i) = ValG`?,ri−1

(`?, r′i). Thus, for all ν,

fi(ν) = ValG`?,ri−1
(`?, ri) +

ValG`?,ri−1
(`?, r′i)− ValG`?,ri−1

(`?, ri)

ri − r′i
(ri − ν).

Since G`?,ri−1
is assumed to be finitely optimal, we know that ValG`?,ri−1

(`?, ri) =

ValG(`?, ri), by definition of ri = left`?(ri−1). Therefore, combining both equalities above,
for all clock values ν < ri, we have fi(ν) < ValG(`?, ri) + π(`?)(ri − ν).

Consider then j > i such that rj 6= 0. We claim that fj 6= fi. Indeed, we have
ValG(`?, rj) = fj(rj). As, in G, `? is a non-urgent location, Lemma 5.3 ensures that

ValG(`?, rj) > ValG(`?, ri) + π(`?)(ri − rj) .

As for all i′, ValG(`?, ri′) = fi′(ri′), the equality above is equivalent to fj(rj) > fi(ri) +
π(`?)(ri − rj). Recall that fi has a slope strictly greater that −π(`?), therefore fi(rj) <
fi(ri) + π(`?)(ri − rj) 6 fj(rj). As a consequence fi 6= fj (this is depicted in Figure 8).

Therefore, there cannot be more than |FG | + 1 non-null elements in the sequence
r0 > r1 > · · · , which proves that there exists i 6 |FG |+ 2 such that ri = 0.

We continue with the case where `? ∈ LMin. We generalise the previous arguments
that may no longer be true in this case (the same function of FG could be used twice in
ValG(`?)), by showing that in-between two successive points ri+1 and ri, there is always
one “full segment” of FG (i.e. it encounters at least one point that is the intersection of
two functions of FG , and there are |FG |2 many such points). Let r∞ = inf{ri | i > 0}. In
this case, we look at the affine parts of ValG(`?) with a slope greater than −π(`?), and
we show that there can only be finitely many such segments in [r∞, 1]. We then show
that there is at least one such segment contained in [ri+1, ri] for all i, bounding the size
of the sequence.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:35

a

b

e

g

α

c

d

•
x

Figure 9: In order for the segments [a, b] and [c, d] to be aligned, there must exist a segment
with a biggest slope crossing f[a,b] (represented by a dashed line) between b and c.

In the following, we call segment every interval [a, b] ⊂ (r∞, 1] such that a and b are
two consecutive cutpoints of the cost function ValG(`?) over (r∞, 1]. Recall that it means
that ValG(`?) is affine on [a, b], and if we let a′ be the greatest cutpoint smaller than a,
and b′ be the smallest cutpoint greater than b, the slopes of ValG(`?) on [a′, a] and [b, b′]
are different from the slope on [a, b]. We abuse the notations by referring to the slope of
a segment [a, b] for the slope of ValG(`?) on [a, b] and simply call cutpoint a cutpoint of
ValG(`?).

To every segment [a, b] with a slope greater than −π(`?), we associate a function
f[a,b] ∈ FG as follows. Let i be the smallest index such that [a, b] ∩ [ri+1, ri] is a non
singleton interval [a′, b′]. Lemma 5.7 ensures that there exists f[a,b] ∈ FG such that for
all ν ∈ [a′, b′], ValG(`?, ν) = f[a,b](ν).

Consider now two disjoint segments [a, b] and [c, d] with a slope greater than −π(`?),
and assume that f[a,b] = f[c,d] (in particular both segments have the same slope). Without
loss of generality, assume that b < c. We claim that there exists a segment [e, g] in-
between [a, b] and [c, d] with a slope greater than the slope of [c, d], and that f[e,g] and
f[a,b] intersect over x ∈ [b, c], i.e. f[e,g](x) = f[a,b](x) (depicted in Figure 9). We prove it
now.

Let α be the greatest cutpoint smaller than c. We know that the slope of [α, c]
is different from the one of [c, d]. If it is greater then define e = α and x = g = c,
those indeed satisfy the property. If the slope of [α, c] is smaller than the one of [c, d],
then for all ν ∈ [α, c), ValG(`?, ν) > f[c,d](ν). Let x be the greatest point in [b, α]
such that ValG(`?, x) = f[c,d](x). We know that it exists since ValG(`?, b) = f[c,d](b),
and ValG(`?) is continuous. Observe that ValG(`?, ν) > f[c,d](ν), for all x < ν < c.
Finally, let g be the smallest cutpoint of ValG(`?) strictly greater than x, and e the
greatest cutpoint of ValG(`?) smaller than or equal to x. By construction, [e, g] is a

segment that contains x. The slope of the segment [e, g] is s[e,g] = ValG(`?,g)−ValG(`?,x)
g−x ,

17:36 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

ValG(`?, ν)

ν

−π(`?)

ri+1 ri

•

•

ValG(`?, ri)+
π(`?)(ri− ri+1)

Figure 10: The case `? ∈ LMin: as the value at ri+1 is strictly below ValG(`?, ri) + π(`?)(ri−
ri+1), as the slope on the left of ri and of ri+1 is −π(`?), there must exist a
segment (represented with a double line) with slope greater than −π(`?) in
[ri+1, ri).

and the slope of the segment [c, d] is equal to s[c,d] =
f[c,d](g)−f[c,d](x)

g−x . Remembering that

ValG(`?, x) = f[c,d](x), and that ValG(`?, g) > f[c,d](g) since g ∈ (x, c), we obtain that
s[e,g] > s[c,d]. Finally, since ValG(`?, x) = f[c,d](x) = f[e,g](x), x is indeed the intersection
point of f[c,d] = f[a,b] and f[e,g], which concludes the proof of the previous claim.

For every function f ∈ FG , there are less than |FG | intersection points between f and
the other functions of FG (at most one for each pair (f, f ′)). If f has a slope greater
than −π(`?), thanks to the previous paragraph, we know that there are at most |FG |
segments [a, b] such that f[a,b] = f . Summing over all possible functions f , there are at

most |FG |2 segments with a slope greater than −π(`?).
Now, we link those segments with the clock values ri’s, for i > 0. By item 2, thanks to

the finite-optimality of G`?,ri , ValG(`?, ri+1) < (ri−ri+1)π(`?)+ValG(`?, ri). Furthermore,
Lemma 5.6 states that the slope of the segment directly on the left of ri is equal to −π(`?).
With the previous inequality in mind, this cannot be the case if ValG(`?) is affine over
the whole interval [ri+1, ri]. Thus, there exists a segment [a, b] of slope strictly greater
than −π(`?) such that b ∈ [ri+1, ri]. As we also know that the slope left to ri+1 is
−π(`?), it must be the case that a ∈ [ri+1, ri]. Hence, we have shown that in-between
ri+1 and ri, there is always a segment (this is depicted in Figure 10). As the number
of such segments is bounded by |FG |2, we know that the sequence ri is stationary in at
most |FG |2 + 1 steps, i.e. that there exists i 6 |FG |2 + 1 such that ri = 0.

(2) We assume `? ∈ LMin, since the proof of the other case only differs with respect to
the sense of the inequalities. From Lemma 5.5, we know that in G`?,ri , if ri+1 > 0,
there exists r′ < ri+1 such that ValG`?,ri (`

?) is affine on [r′, ri+1] and its slope is smaller

than −π(`?), i.e. ValG`?,ri (`
?, ri+1) < ValG`?,ri (`

?, r′)− (ri+1 − r′)π(`?). Lemma 5.4 also

ensures that ValG`?,ri (`
?, r′) 6 ValG(`?, ri) + (ri − r′)π(`?). Combining both inequalities

allows us to conclude.

We iterate this construction to obtain the finite optimality:

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:37

Theorem 5.9. Every SPTG G is finitely optimal.

Proof. We show by induction on n > 0 that every r-SPTG G with n non-urgent non-final
locations is finitely optimal.

The base case n = 0 is given by Proposition 4.7.
Now, assume that G has at least one non-urgent location, and assume `? is a non-urgent

location with minimum weight. By induction hypothesis, all r′-SPTGs G`?,r′ are finitely
optimal for all r′ ∈ [0, r]. Let r0 > r1 > · · · be the decreasing sequence defined by r0 = r
and ri = left`?(ri−1) for all i > 1. By Lemma 5.8, there exists j 6 |FG |2 + 2 such that rj = 0.
Moreover, for all 0 < i 6 j, ValG = ValG`?,ri−1

on [ri, ri−1] by definition of ri = left`?(ri−1),

so that ValG(`) is a cost function on this interval by induction hypothesis. Finally, by
using Proposition 5.2, we can reconstruct fake-optimal and optimal strategies in G from the
fake-optimal and optimal strategies of G`?,ri .

5.3. SPTGs have a pseudo-polynomial number of cutpoints. To prove that the
number of cutpoints of value functions of SPTGs is at most pseudo-polynomial, we will need
more knowledge about the left`? operator for all SPTGs G. First, if we are at the left of a
given position r1, the next jump is further than left`?(r1):

Lemma 5.10. Let G be an SPTG and `? be a non-urgent location of minimum weight. Let
r1 and r2 be such that r2 6 r1. Then, left`?(r2) 6 left`?(r1).

Proof. Let r′1 = left`?(r1). If r2 6 r′1, then the result is trivially true. We now suppose that
r′1 < r2 < r1. By definition, it suffices to show that

∀ν ∈ [r′1, r2] ValG`?,r1 (`?, ν) = ValG`?,r2 (`?, ν) (5.5)

Indeed, since ValG`?,r1 (`?, ν) = ValG(`?, ν) for all ν ∈ [r′1, r1], this implies that for all

ν ∈ [r′1, r2], ValG`?,r2 (`?, ν) = ValG(`?, ν), and thus that left`?(r2) 6 r′1.

To show (5.5), for ε > 0, we will need ε-optimal strategies for both players in G`?,r1 and
Gr1 . We build them considering two separate cases.

• if `? belongs to Max, let σ∗Max be an ε-optimal strategy of Max in G`?,r1 : then it is also
ε-optimal strategy in Gr1 since the values of those games are the same on [r′1, r1], and
strategies of Min are identical too;
• if `? belongs to Min, let σ∗Max be an ε-optimal strategy of Max in Gr1 : then it is also
ε-optimal in G`?,r1 since Min has less capabilities in this game than in Gr1 , while strategies
of Max are unchanged.

We do the same case distinction to define an ε-optimal strategy σ∗Min both in G`?,r1 and Gr1 .
In particular, we have, for all ν ∈ [r′1, r1]

ValGr1 (`, ν)− ε 6 Val
σ∗Max
Gr1

(`, ν) and Val
σ∗Min
Gr1

(`, ν) 6 ValGr1 (`, ν) + ε

First, let us show that ValG`?,r1 (`?, ν) 6 ValG`?,r2 (`?, ν), i.e. ValGr1 (`?, ν) 6 ValG`?,r2 (`?, ν).

To do so, we consider the definition of the value and show that for all ν ∈ [r′1, r2],

Val
σ∗Max
Gr1

(`?, ν) 6 sup
σMax

inf
σMin

Price(CPlay((`?, ν), σMin, σMax)) + ε (5.6)

where the play on the right is a play of the game G`?,r2 . In particular, this will imply that
ValGr1 (`?, ν)− ε 6 ValG`?,r2 (`?, ν) + ε which allows us to conclude by letting ε go to 0. We

17:38 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

thus build a strategy σMax in G`?,r2 as follows: it simply follows what σ∗Max prescribes to do

in Gr1 (especially when it jumps from `? to `?f if `? belongs to Max) except when σ∗Max wants

to jump on the right of r2, from any location `, in which case σMax goes to the location `f

in valuation r2. We now explain why

Val
σ∗Max
Gr1

(`?, ν) 6 inf
σMin

Price(CPlay((`?, ν), σMin, σMax)) + ε

To do so, we consider any strategy σMin of Min in G`?,r2 , and build a strategy σ′Min of Min in
Gr1 that gets a smaller payoff. The strategy σ′Min mimics σMin except when it jumps in a

location `f : instead σ′Min delays in ` until r2 and then performs the action prescribed by
σ∗Min in (`, r2). Notice that this is a legal move since we play in Gr1 where the location `?

has not been made urgent.
We now compare the prices of two plays:

• the play ρ1 obtained from (`, ν) in Gr1 by following σ∗Max (the ε-optimal strategy we have
fixed) and σ′Min (that we have built);
• and the play ρ2 obtained from (`, ν) in G`?,r2 by following σMax (that we have built) and
σMin (that we have fixed).

We need to show that Price(ρ1) 6 Price(ρ2) + ε to conclude.
If ρ2 stops in a location different from `f for any `, then this play is also a play of Gr1

conforming to σ∗Max (by construction of σMax) and σ′Min (that we have built), and is thus
equal to ρ1. We conclude directly that Price(ρ1) = Price(ρ2).

Otherwise, ρ2 stops in a configuration (`f , ν). Let ρ′2 be the partial play obtained from
ρ2 by removing its last transition. Then,

Price(ρ2) = Price(ρ′2) + (r2 − ν)π(`) + ValG`?,r1 (`, r2)

Let ρ′1 be the play obtained by following σ∗Min and σ∗Max in Gr1 from (`, r2): ρ′1 has price

at most Val
σ∗Min
Gr1

(`, r2) 6 ValGr1 (`, r2) + ε since it follows σ∗Min. However, the play ρ1 is the

concatenation of the play ρ′2, a delay of r2 − ν in `, and the play ρ′1. Thus

Price(ρ1) = Price(ρ′2) + (r2 − ν)π(`) + Price(ρ′1)

= Price(ρ2)− ValG`?,r1 (`, r2) + Price(ρ′1)

6 Price(ρ2) + ε

This concludes all the cases and thus the proof of (5.6).
The other inequality ValG`?,r1 (`?, ν) > ValG`?,r2 (`?, ν) is obtained symmetrically by

showing that

Val
σ∗Min
Gr1

(`?, ν) > inf
σMin

sup
σMax

Price(CPlay((`?, ν), σMin, σMax))− ε

Then, we change our policy to make locations urgent: instead of making them urgent
one by one by increasing order of weight, we make them all urgent at once. We now show
that this makes us progress at least as fast in the left functions (from now on, we reuse the
exponents in the left function to explain which game we consider):

Lemma 5.11. Let G be an SPTG with non-urgent locations L′ = {`1, . . . , `n} ordered in
increasing order of weight. Then for all valuations r 6 1,

leftGL′(r) 6 max
16i6n

left
G{`1,...,`i−1},r
`i

(r)

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:39

Proof. Let r′ = max16i6n left
G{`1,...,`i−1},r
`i

(r). By definition of left function, for all ` ∈ L, 0 6
i 6 n− 1, and ν ∈ [r′, r], ValG`0,...,`i−1

(`, ν) = ValG`0,...,`i (`, ν). Thus ValG(`, ν) = ValGL′,r(`, ν)

for all ν ∈ [r′, r], meaning that leftGL′(r) 6 r′.

This allows us to bound the number of steps of left when making all locations urgent at
once, generalising the bound obtained in Lemma 5.8 when making only one location urgent:

Lemma 5.12. Let G be an SPTG with non-urgent locations L′. Denoting (rk)k∈N the

sequence defined by r0 = 1 and for all i, ri+1 = leftGL′(ri), then there exists j 6 |L|(|FG |2 + 2)
such that rj = 0.

Proof. Let `1, . . . , `n be the locations of L′ by increasing order of weight. By Lemma 5.8,

for all 1 6 i 6 n, the sequence (j
(i)
k)k∈N defined by j

(i)
0 = 1 and j

(i)
k+1 = left

G`1,...,`i−1

`i
(j

(i)
k)

for all k ∈ N is stationary to 0: there exists ki 6 |FG |2 + 2 such that jiki = 0. We now

build the decreasing sequence (jk)06k6t by interleaving those n sequences. We thus have
t 6 |L′|(|FG |2 + 2) 6 |L|(|FG |2 + 2).

For all k 6 t, we have rk 6 jk. Indeed, r0 = 1 = j0 (as j
(i)
0 = 1 for all i 6 n). Assume

that rk 6 jk for some k 6 t and, for all 1 6 i 6 n, let ni be the greatest index such

that jk 6 j
(i)
ni , so that rk 6 j

(i)
ni . By definition of the sequence (jk)06k6t, we then have

jk+1 = max16i6n(j
(i)
ni+1). Thus

rk+1 = leftGL′(rk) 6 max
16i6n

left
G`1,...,`i−1

`i
(rk) (by Lemma 5.11)

6 max
16i6n

left
G`1,...,`i−1

`i
(j(i)
ni

) (by Lemma 5.10)

= max
16i6n

(j
(i)
ni+1) = jk+1

which concludes the induction. Hence the sequence (rk)k∈N reaches 0 in at most t steps,
thus in at most than |L|(|FG |2 + 2) steps.

Theorem 5.13. Let G be an SPTG. For all locations `, ValG(`) has at most O
(
(Πtr)4|L|9

)
cutpoints.

Proof. By using the notations of Lemma 5.12, it suffices to show that the number of cutpoints

of ValG(`) in the interval [ri+1, ri] (with i from 1 to j− 1 6 |L|(|FG |2 + 2)− 1 = O
(
Πtr2|L|5

)
)

is at most O((Πtr)2|L|4). However, on such an interval, we know that the value function
ValG(`) is equal to ValGL′,ri

(`). But GL′,ri is a game where all locations are urgent, and thus

by Proposition 4.7, its number of cutpoints is indeed bounded by O((Πtr)2|L|4).

5.4. Algorithms to compute the value function. The finite optimality of SPTGs allows
us to compute the value functions. The proof of Theorem 5.9 suggests a recursive algorithm
to do so: from an SPTG G with minimal non-urgent location `?, solve recursively G`?,1,
G`?,left`? (1), G`?,left`? (left`? (1)), etc. handling the base case where all locations are urgent with
Algorithm 1. While our results above show that this is correct and terminates with a
pseudo-polynomial time complexity, we propose instead to solve—without the need for
recursion—the sequence of games GL\(Lu∪Lf),1, GL\(Lu∪Lf),leftL\(Lu∪Lf)(1), . . . i.e. making all

17:40 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

Algorithm 2: solve(G)

Input: SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π)

1 f = (f`)`∈L := solveInstant(G, 1) /* f` : {1} → R */

2 r := 1

3 while 0 < r do /* Invariant: f` : [r, 1]→ R */

4 G′ := wait(G, r,f(r)) /* r-SPTG G′ = (LMin, LMax, L
′
f , L

′
u,ϕ

′, T ′, π′) */

5 L′u := L′u ∪ L /* every location is made urgent */

6 b := r

7 repeat /* Invariant:f` : [b, 1]→ R */

8 a := max(PossCPG′ ∩ [0, b))

9 x = (x`)`∈L := solveInstant(G′, a) /* x` = ValG′(`, a) */

10 if ∀` ∈ LMin
f`(b)−x`
b−a 6 −π(`) ∧ ∀` ∈ LMax

f`(b)−x`
b−a > −π(`) then

11 foreach ` ∈ L do f` :=
(
ν ∈ [a, b] 7→ f`(b) + (ν − b)f`(b)−x`b−a

)
B f`

12 b := a ; stop := false

13 else stop := true

14 until b = 0 or stop

15 r := b

16 return f

locations urgent at once. Lemma 5.12 explains why this sequence of games correctly computes
the value function of G and terminates after a pseudo-polynomial number of steps.

Algorithm 2 implements these ideas. Each iteration of the while loop computes a
new game in the sequence GL\(Lu∪Lf),1, GL\(Lu∪Lf),leftL\(Lu∪Lf)(1), . . .; solves it thanks to

solveInstant; and thus computes a new portion of ValG on an interval on the left of
the current point r ∈ [0, 1]. More precisely, the vector (ValG(`, 1))`∈L is first computed in
line 1. Then, the algorithm enters the while loop, and the game G′ obtained when reaching
line 6 is GL\(Lu∪Lf),1. Then, the algorithm enters the repeat loop to analyse this game.

Instead of building the whole value function of G′, Algorithm 2 builds only the parts of
ValG′ that coincide with ValG . It proceeds by enumerating the possible cutpoints a of ValG′ ,
starting in r, by decreasing clock values (line 8), and computes the value of ValG′ in each
cutpoint thanks to solveInstant (line 9), which yields a new piece of ValG′ . Then, the if
in line 10 checks whether this new piece coincides with ValG , using the condition given by
Proposition 5.2. If it is the case, the piece of ValG′ is added to f` (line 11); repeat is stopped
otherwise. When exiting the repeat loop, variable b has value leftL\(Lu∪Lf)(1). Hence, at

the next iteration of the while loop, G′ = GL\(Lu∪Lf),leftL\(Lu∪Lf)(1) when reaching line 6. By

continuing this reasoning inductively, one concludes that the successive iterations of the
while loop compute the sequence GL\(Lu∪Lf),1, GL\(Lu∪Lf),leftL\(Lu∪Lf)(1), . . . as announced,

and rebuilds ValG from them.
Termination of the while loop in pseudo-polynomially many steps is then ensured

by Lemma 5.12. Similarly, the termination of the internal repeat loop is ensured by the
at most pseudo-polynomial number of possible cutpoints and the stop variable. As each
of the non-trivial calls requires at most pseudo-polynomial time, Algorithm 2 finishes in

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:41

pseudo-polynomial time, in total. Note that some SPTGs indeed have a pseudo-polynomial
number of cutpoints [FIJS20] (even in the case of only non-negative prices), which shows
that our bound is asymptotically tight.

Remark 5.14. The pseudo-polynomial lower-bound on the number of cutpoints shown
in [FIJS20] helps getting a PSPACE-hardness of the value problem consisting in deciding
whether the value ValG(`, 0) is below a given rational threshold. We might thus wonder
whether our upper-bound techniques help closing the gap. Unfortunately, this does not
seem to be the case. Indeed, even if we transform our algorithm to only record the current
values (f`(r))`∈L of the value function, we are not able to obtain that such values can
be stored in polynomial space (should we obtain such a result, it would easily imply a
polynomial space algorithm to compute the initial values (f`(0))`∈L, since the rest of the
algorithm, in particular solveInstant, performs in polynomial space). The problem comes
from the growth of the various coefficients appearing during the algorithm, in particular
the granularity of the rational cutpoints we encounter through the computation. Though
unrealistic, if the cutpoint on the left of r was always in the middle of the interval [0, r],
cutpoints would have the shape 1/2x with x an integer bounded pseudo-polynomially.
Unfortunately, the denominator of this ratio cannot be stored in polynomial space. Thus,
getting a polynomial space algorithm to solve SPTGs requires a better understanding of the
granularity of cutpoints, and not only a bound on their number.

Example 5.15. Figure 11 shows the value functions of the SPTG of Figure 1. Here is
how Algorithm 2 obtains those functions. During the first iteration of the while loop, the
algorithm computes the correct value functions until the cutpoint 3

4 : in the repeat loop, at
first a = 9/10 but the slope in `1 is smaller than the slope that would be granted by waiting,
as depicted in Figure 1. Then, a = 3/4 where the algorithm gives a slope of value −16 in `2
while the weight of this location of Max is −14. During the first iteration of the while loop,
the inner repeat loop thus ends with r = 3/4. The next iterations of the while loop end
with r = 1

2 (because `1 does not pass the test in line 10); r = 1
4 (because of `2) and finally

with r = 0, giving us the value functions on the entire interval [0, 1].

6. Towards more complex PTGs

In [BLMR06, Rut11, HIJM13], general PTGs with non-negative weights are solved by
reducing them to a finite sequence of SPTGs, by eliminating guards and resets. It is thus
natural to try and adapt these techniques to our general case, in which case Algorithm 2
would allow us to solve general PTGs with arbitrary weights. Let us explain where are the
difficulties of such a generalisation.

The technique used to remove strict guards from the transitions of the PTGs, i.e. guards
of the form (a, b], [b, a) or (a, b) with a, b ∈ N, consists in enhancing the locations with regions
while keeping an equivalent game. This technique can be adapted to arbitrary weights.
Formally, let G = (LMin, LMax, Lf , Lu,ϕ,∆, π) be a PTG. We define the region-PTG of G as
G′ = (L′Min, L

′
Max, L

′
f , L

′
u,ϕ

′,∆′, π′) where:

• L′Min = {(`, I) | ` ∈ LMin, I ∈ RegG};
• L′Max = {(`, I) | ` ∈ LMax, I ∈ RegG};
• Lf = {(`, I) | ` ∈ Lf , I ∈ RegG};
• Lu = {(`, I) | ` ∈ Lu, I ∈ RegG};

17:42 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

x
0

1
4

1
2

3
4

1

Val(`2, x)
−9.5

−6 −5.5

−2
1

x
0

1
4

1
2

3
4

9
10 1

Val(`1, x)
−9.5

−6 −5.5

−2
−0.2

x
0

1
4

1
2 1

Val(`3, x)

−10

−6 −5.5
−7

x
0 1

Val(`4, x)

−4

−7

x
0

3
4 1

Val(`5, x)
−14

−2
1

x
0 1

Val(`6, x)

−11

1

x
0 1

Val(`7, x)
−16

0

Figure 11: Value functions of the SPTG of Figure 1

• for all (`, I) ∈ L′f , if I is a singleton {a} then ϕ′`,I(a) = ϕ`(a), otherwise I is an interval

(a, b), we then define for x ∈ I, ϕ′`,I(x) = ϕ`(x) and extend ϕ′`,I on the borders of I by
continuity;
• transitions given by

∆′ =

{
((`, I), Ig ∩ I,R, (`′, I ′)) | (`, Ig, R, `′) ∈ ∆, I ′ =

{
I if R = ⊥
{0} otherwise

}
∪WaitTr

with

WaitTr =
{

((`, (Mk,Mk+1)), {Mk+1},⊥, (`, {Mk+1})) | ` ∈ L, (Mk,Mk+1) ∈ RegG
}

∪
{

((`, {Mk}), {Mk},⊥, (`, (Mk,Mk+1))) | ` ∈ L, (Mk,Mk+1) ∈ RegG
}

;

• ∀(`, I) ∈ L′, π′(`, I) = π(`); and ∀δ′ ∈ ∆′, we let π′(δ′) being the maximal (resp. minimal)
weight of a transition of ∆ giving rise to δ′ in the definition above, knowing that transitions
coming from WaitTr are given weight 0, if ` belongs to Max (resp. Min).8

8Indeed, notice that a transition ((`, I), I ′′, R, (`′, I ′)) ∈ ∆′ can be originated from two different transitions
(`, Ig, R, `

′) and (`, I ′g, R, `
′) of ∆ if Ig and I ′g both intersect I.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:43

It is easy to check that the region-PTG fulfils certain invariants. In all configurations
((`, {Mk}), ν) reachable from the clock value 0, the clock value ν is Mk. More interestingly,
in all configurations ((`, (Mk,Mk+1)), ν) reachable from the clock value 0, the clock value
ν is in [Mk,Mk+1], and not only in (Mk,Mk+1) as one might expect. Intuitively, we rely
on ν = Mk, for example, to denote a configuration of the original game with a clock value
arbitrarily close to Mk, but greater than Mk. The game can thus take transitions with guard
x > Mk, but cannot take transitions with guard x = Mk anymore.

Lemma 6.1. Let G be a PTG, and G′ be its region-PTG defined as before. For (`, I) ∈
L× RegG and ν ∈ I, ValG(`, ν) = ValG′((`, I), ν). Moreover, we can transform an ε-optimal

strategy of G′9 into an ε′-optimal strategy of G with ε′ < 2ε and vice-versa.

Proof. Intuitively, the proof consists in replacing strategies of G′ where players can play on
the borders of regions, by strategies of G that play increasingly close to the border as time
passes. If played close enough, the loss created can be chosen as small as we want.

Formally, let G be a PTG, G′ be its region-PTG. First, for ε > 0, we create a transfor-
mation g of the plays of G′ which do not end with a waiting transition to the plays of G. It
is defined by induction on the length n of the plays so that for a play ρ of length n we have

• |Cost(ρ)− Cost(g(ρ))| 6 2Πloc(1− 1
2n)ε; and

• there exists ` ∈ L and I ∈ RegG such that g(ρ) and ρ end in the respective locations `

and (`, I), and their clock values are both in I and differ of at most 1
2n+1 ε.

If n = 0, let ρ = ((`, I), ν) be a play of G′ of length 0, then g(ρ) = (`, ν ′), where
ν ′ = ν ± ε

2 if I is not a singleton and ν is an endpoint of I, and ν ′ = ν otherwise (so that
ν ′ ∈ I in every case).

For n > 0, we suppose g defined on every play of length at most n which does not end with

a waiting transition. Let ρ = ((q1, I1), ν1)
t1,δ1,c1−−−−→ . . .

tn,δn,cn−−−−−→ ((qn, In), νn)
tn+1,δn+1,cn+1−−−−−−−−−→

((qn+1, In+1), νn+1) with δn+1 /∈ WaitTr. Let last = max({k 6 n | trk /∈ WaitTr}) (with
max ∅ = 0). Then, by induction, there exists ρ′ = (q1, ν1) → · · · → (qlast+1, v

′
last+1) such

that

• g(ρ|last) = ρ′ (where ρ|last is the prefix of length last of ρ),

• |Cost(ρ|last)− Cost(g(ρ|last))| 6 2Πloc(1− 1
2last

)ε, and

• |ν ′last+1 − νlast+1| 6 1
2last+1 ε.

Then we choose g(ρ) = ρ′
t,δ′n+1,c−−−−−→ (qn+1, ν

′
n+1), with δ′n+1 the transition giving rise to δn+1

(with the correct price) in the definition of the region-PTG, and where

• if δn+1 is enabled in configuration (qlast+1 = qn, νn + tn+1) of G, then, t = νn + tn+1− ν ′last;
• otherwise, as the guards of G′ are contained in the closure10 of the guards of G, then there

exists z ∈ {1,−1} such that for t = νn + tn+1 − ν ′last + zε
2n+2 , δn+1 is enabled in G and

ν ′last + t and νn + tn+1 belong to the same region.

9Recall that a strategy σMin of Min is ε-optimal from location ` in G if Price(`, σMin) 6 ValG(`) + ε.
10By closure, we mean that, for example, a guard of the form x > 1 becomes x > 1 in the region [1, 2].

17:44 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

Thus, in both cases, |νn+1 − ν ′n+1| 6 ε
2n+2 and νn+1 6= ν ′n+1 iff I is not a singleton, νn+1 is

on a border, ν ′n+1 is close to this border and δn+1 does not contain a reset. Moreover,

|Cost(ρ)− Cost(g(ρ))| = |Cost(ρ|last) + (νn+1 − νlast)π(qlast) + π(δn+1)− Cost(g(ρ))|
6 |Cost(ρ|last)− Cost(g(ρ|last))|

+ |(νn+1 − νlast)π(qlast) + π(δn+1) + Cost(g(ρ|last))− Cost(g(ρ))|

6 2Πloc(1− 1

2last
)ε+ |(ν ′last − νlast)π(qlast) + (νn+1 − ν ′n+1)π(qlast)|

6 2Πloc(1− 1

2last
)ε+

∣∣∣ ε

2last+1
π(qlast)

∣∣∣+
∣∣∣ ε

2n+2
π(qlast)

∣∣∣
6 2Πloc(1− 1

2last
)ε+

Πlocε

2last+1
+

Πlocε

2n+2

6 2Πloc(1− 1

2last+1
)ε

6 2Πloc(1− 1

2n+1
)ε .

Let σMin be a strategy of Min in G. Using the transformation g, we will build by induction
a strategy σ′Min in G′ such that, for all plays ρ whose last transition does not belong to
WaitTr and conforming with σ′Min: g(ρ) conforms with σMin.

Let ρ be a play of G′ whose last transition does not belong to WaitTr such that g(ρ)
conforms with σMin (which is the case of all plays of length 0). Then, ρ and g(ρ) end in
locations (q, I) and q respectively.

• If ρ ends in a configuration of Max, then the choice of the next (t, δ)-transition does not
depend on σMin or σ′Min. Let (t, δ) be a choice of Max in G′ with cost c. If δ belongs to
WaitTr, then the new configuration also belongs to Max where it will make another choice.
Let ρ′ be the extension of ρ until the first transition δ′ such that δ′ /∈WaitTr. The play
g(ρ′) conforms with σMin as the configuration where g(ρ) ends is controlled by Max and
g(ρ′) only has one more transition than g(ρ).

• If ρ ends in a configuration of Min, then there exists t, δ, c, q′, ν ′ such that g(ρ)
t,δ,c−−→ (q′, ν ′)

conforms with σMin. As taking a waiting transition does not change the ownership of
the configuration, we consider here multiple successive choices of Min as one choice:

σ′Min(ρ) is such that ρ′ = ρ
t1,δ1,c1−−−−→ · · · tk,δk,ck−−−−−→ ((q, I ′′), ν)

tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), ν ′) where
∀i 6 k, δi ∈WaitTr conforms with σ′Min. This is possible as if δ is allowed in a configuration
(q, ν) in G then it is allowed too in a configuration ((q, I), ν) with the appropriate I. Then

g(ρ′) = g(ρ)
δ,tr,c−−−→ (q′, ν ′), thus g(ρ′) conforms with σMin.

As no completed plays of G′ end with a transition of WaitTr, every completed play ρ
conforming with σ′Min verifies that g(ρ) is a completed play conforming with σMin. Moreover,
the time valuation of ρ and g(ρ) differ by at most ε and belong to the same interval (potentially
on one border), thus by definition of ϕ′ the difference in final cost is bounded by Kfinε where
Kfin is the greatest absolute value of the slopes appearing in the piecewise affine functions

within ϕ. Thus for every configuration s, PriceG′(s, σ
′
Min) 6 PriceG(s, σMin) + (2Πloc +Kfin)ε.

Therefore ValG′(s) 6 ValG(s).

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:45

Reciprocally, let σ′Min be a strategy of Min in G′. We will now build by induction a
strategy σMin in G such that for all plays ρ conforming with σMin, there exists a play in g−1(ρ)
that conforms with σ′Min.

Let ρ be a play of G conforming with σMin such that there exists ρ′ ∈ g−1(ρ) con-
forming with σ′Min (which is the case of all plays of length 0). Plays ρ′ and ρ end in the
configurations ((q, I), ν ′) and (q, ν) respectively.

• If ρ ends in configuration of Max, then the choice does not depend on σMin or σ′Min.
Let (t, δ) be a choice of Max in G with cost c and let ρ̃ be the extension of ρ by this choice.
There exists (t1, δ1, c1), . . . , (tk+1, δk+1, ck+1) such that ∀i 6 k, δi ∈WaitTr, δk+1 = δ and∑k+1

i=1 ti = ν + t− ν ′. Let ρc = ρ′
t1,δ1,c1−−−−→ · · · tk,δk,ck−−−−−→ ((q, I ′′), νk)

tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), νk+1),
then ρc conforms with σ′Min (as Min did not take a single decision) and g(ρc) = ρ̃.

• If ρ ends in a configuration of Min, then there exists a play ρc = ρ
t1,δ1,c1−−−−→ · · · tk,δk,ck−−−−−→

((q, I ′′), νk)
tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), νk+1) such that ρc conforms with σ′Min. We choose σMin(ρ) =

(t, δ) such that for the adequate cost c, g(ρc) = ρ
t,δ,c−−→ (q′, v′′). This is possible as t+ν ′ ∈ I ′′.

Every completed play ρ conforming with σMin verifies ∃ρ′ ∈ g−1(ρ) conforming with σMin.
Thus, taking the final cost function into account as before, for every configuration s,
PriceG(s, σMin) 6 PriceG′(s, σMin) + (2Πloc + Kfin)ε. Therefore ValG′(s) > ValG(s). Hence
ValG′(s) = ValG(s).

The technique used in [BLMR06, Rut11, HIJM13] to remove resets from PTGs, however,
consists in bounding the number of clock resets that can occur in each play following an
optimal strategy of Min or Max. Then, the PTG can be unfolded into a reset-acyclic PTG
with the same value. By reset-acyclic, we mean that no cycles in the configuration graph
visit a transition with a reset. This reset-acyclic PTG can be decomposed into a finite
number of components that contain no reset and are linked by transitions with resets. These
components can be solved iteratively, from the bottom to the top, turning them into SPTGs.
Thus, if we assume that the PTGs we are given as input are reset-acyclic, we can solve
them in pseudo-polynomial time, and show that their value functions are cost functions with
at most a pseudo-polynomial number of cutpoints, using our techniques.

In [BLMR06] the authors showed that with one-clock PTG and non-negative weights
only we could bound the number of resets by the number of locations, without changing the
value functions. Unfortunately, these arguments do not hold for arbitrary weights, as shown
by the PTG in Figure 12. In that PTG, we claim that Val(`0) = 0; that Min has no optimal
strategies, but a family of ε-optimal strategies σεMin each with value ε; and that each σεMin
requires memory whose size depends on ε and might yield a play visiting at least 1/ε times
the reset between `1 and `0 (hence the number of resets cannot be bounded). For all ε > 0,
σεMin consists in: waiting 1− ε time units in `0, then going to `1 during the d1/εe first visits
to `0; and to go directly to `f afterwards. Against σεMin, Max has several possible choices:

(1) either wait η ∈ [0, ε] time units in `1, wait ε− η time units in `2, then reach `f ; or
(2) wait ε time unit in `1 to have the clock equal to 1, and force the cycle by going back to

`0, where the game will wait for Min’s next move.

Thus, all plays according to σεMin will visit a sequence of locations which is either of the

form `0(`1`0)k`1`2`f , with 0 6 k < d1/εe; or of the form `0(`1`0)d1/εe`f . In the former
case, the price of the play will be −kε − η + (ε − η) = −(k − 1)ε − 2η 6 ε; in the latter,
−ε(d1/εe) + 1 6 0. This shows that Val(`0) = 0, but there are no optimal strategies as none

17:46 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

`0

0

`1

−1

`2 1

`f

x = 1

x 6 1

x 6 1

x = 1, x := 0

1

Figure 12: A PTG where the number of resets in optimal plays cannot be bounded a priori.

of these strategies allow one to guarantee a price of 0 (neither does the strategy that waits 1
time unit in `0).

If bounding the number of resets is not possible in the general case, it could be done if
one adds constraints on the cycles of the game. This kind of restriction was used in [BCR14]
where the authors introduce the notion of robust games (and a more restrictive one of
divergent games was used in [BGMR17]). Such games require among other things that there
exists κ > 0 such that every play starting and ending in the same pair location and time
region has either a positive cost or a cost smaller than −κ. Here we require a less powerful
assumption as we put this restriction only on cycles containing a reset.

Definition 6.2. Given κ > 0, a κ-negative-reset-acyclic PTG (κ-NRAPTG) is a PTG where
for every location ` ∈ L and every cyclic finite play ρ starting and ending in (`, 0), either
Cost(ρ) > 0 or Cost(ρ) < −κ.

The PTG of Figure 12 is not a κ-NRAPTG for any κ > 0 as the play (`0, 0)
0−→

(`1, 1−κ/2)
−κ/2−−−→ (`0, 0) is a cycle containing a reset and with a negative cost strictly greater

than −κ. On the contrary, in Figure 13 we show a 1-NRAPTG and its region PTG. Here,
every cycle containing a reset is between `0 and `1 and such cycles have at most cost −1.
The value of this PTG is 0 but no strategies for Max can achieve it because of the guard
x > 0 on the transition from `1 to `f . As this guard is not strict anymore in the region
PTG, both players have an optimal strategy in this game (this is not always the case).

In order to bound the number of resets of a κ-NRAPTG, we first prove a bound on the
value of such games, that will be useful in the following. We let k = |RegG | be the number
of regions. Recall that M is a bound on the valuations taken by the clock in G, as discussed
on page 8.

Lemma 6.3. For all κ-NRAPTGs G and (`, ν) ∈ ConfG: either ValG(`, ν) ∈ {−∞,+∞}, or

−|L|MΠloc − |L|2(|L|+ 2)Πtr −Πfin 6 ValG(`, ν) 6 |L|MΠloc + |L|kΠtr + Πfin .

Proof. Consider the case where ValG(`, ν) /∈ {−∞,+∞}. Let κ > 2ε > 0. Then, there exist
σMin and σMax ε-optimal strategies for Min and Max, respectively.

Let σ¬cMin be any memoryless strategy of Min in the reachability timed game induced by G
such that no play consistent with σ¬cMin goes twice in the same couple (location, region). If such

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:47

`00 `1 −1

`f

1, x < 1 0 < x < 1

x < 1

−1, x < 1, x := 0
`0, {0}0

`0, [0, 1]0 `1, [0, 1] −1

`1, {0} −1

`f

x = 0 x = 0

11

−1, x :=
0

−1

Figure 13: A 1-NRAPTG and its region PTG (some guards removed for better readability)

a strategy does not exist, as the clock constraints are the same during the first and second
occurrences of this couple, Max can enforce the cycle infinitely often, thus the reachability
game is winning for Max and the value of G is +∞. Let us note ρ = CPlay((`, ν), σ¬cMin, σMax).

By ε-optimality of σMax, Price(ρ) > ValG(`, ν) − ε. Let Costtr(ρ) be the price of ρ due

to the weights of the transitions, and Costloc(ρ) be the weight due to the time elapsed

in the locations of the game: Cost(ρ) = Costtr(ρ) + Costloc(ρ). As there are no cycles in
the game according to couples (location, region), there are at most |L|k transitions, thus
Costtr(ρ) 6 |L|kΠtr. Moreover, the absence of cycles also implies that we do not take two
transitions with a reset ending in the same location or one transition with a reset ending in
the initial location, thus we take at most |L| − 1 such transitions. Therefore at most |L|M
units of time elapsed and Costloc(ρ) 6 |L|MΠloc. Adding the final cost, this implies that

ValG(`, ν)− ε 6 Price(ρ) 6 |L|MΠloc + |L|kΠtr + Πfin .

By taking the limit of ε towards 0, we obtain the announced upper bound.
We now prove the lower bound on the value. To that extent, consider now the completed

play ρ = CPlay((`, ν), σMin, σMax). We have that Price(ρ) 6 ValG(`, ν) + ε.
We want to lower bound the price of ρ, therefore non-negative cycles can be safely

ignored. Let us show that there are no negative cycles around a transition with a reset. If it
was the case, since the game is a κ-NRAPTG, this cycle has cost at most −κ. Since the
strategy σMax is ε-optimal, and κ > ε, it is not possible that σMax decides alone to take this
bad cycle. Therefore, σMin has the capability to enforce this cycle, and to exit it (otherwise,
Max would keep it inside to get value +∞): but then, Min could decide to cycle as long
as it wants, then guaranteeing a value as low as possible, which contradicts the fact that
Val(`, ν) /∈ {−∞,+∞}. Therefore, the only cycles in ρ around transitions with resets, are
non-negative cycles. This implies that its price is bounded below by the price of a sub-play
obtained by removing the cycles in ρ.

We now consider a play where each reset transition is taken at most once in ρ, and
lower-bound its price.

17:48 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

If ρ contains a cycle around a location `′ ∈ LMax without reset transitions, this cycle

has the form (`′, ν ′)
c′−→ (`′′, ν ′ + t) · · · c

′′
−→ (`′, ν ′′) with ν ′′ > ν ′, followed in ρ by a transition

towards configuration (`′′′, ν ′′ + t′). Thus, another strategy for Max could have consisted
in skipping the cycle by choosing as delay in the first location `′, ν ′′ − ν ′ + t′ instead of t.
This would get a new strategy that cannot make the price increase above ValG(`, ν) + ε,
since it is still playing against an ε-optimal strategy of Min. Therefore, we can consider the
sub-play ρf of ρ where all such cycles are removed: we still have Price(ρf) 6 ValG(`, ν) + ε.

Suppose now that ρf contains a cycle around a location `′ ∈ LMin without reset

transitions, of the form (`′, ν ′)
c′−→ (`′′, ν ′+ t) · · · c

′′
−→ (`′, ν ′′) with ν ′ and ν ′′ in the same region,

composed of Min’s locations only, and followed in ρ by a transition towards configuration
(`′′′, ν ′′ + t′). Then, the transition weight of this cycle is non-negative, otherwise Min could
enforce this cycle it entirely controls, while letting only a bounded time pass (smaller and
smaller as the number of cycles grow). This is not possible.

Therefore, we have that two occurrences of a same Max’s location in ρf are separated
by a reset transition and two occurrences of a same Min’s couple (location, region) are either
separated by a reset or by a Max’s location. As there are at most |L| − 1 resets, |L| locations
of Max and |L|k couples (location, region) for Min, ρt contains at most |L|2 locations of Max
and |L|k(|L|2 + |L| − 1 + 1) locations of Min, which makes for at most |L|2(|L|k + k + 1)

locations. Thus Costloc(ρt) > −|L|2(|L|k + k + 1)Πloc. Moreover, as at most |L| − 1 resets

are taken in ρf and that the game is bounded by M , Costloc(ρf) > −|L|MΠloc. Adding the
final cost, this implies that

ValG(`, ν) + ε > Costloc(ρf) + Costtr(ρt) > −|L|MΠloc − |L|2(|L|k + k + 1)Πtr −Πfin .

Taking the limit when ε tends to 0, we obtain the desired lower bound.

Using this bound on the value of a κ-NRAPTG, one can give a bound on the number of
cycles needed to be allowed. The idea is that if a reset is taken twice and the generated
cycle has positive cost, either Min can modify its strategy so that it does not take this cycle
or the value of the game is +∞ as Max can prevent Min from reaching a final location. On
the contrary if the cycle has negative cost, then by definition of a κ-NRAPTG, this cost is
less than −κ. Thus by allowing enough such cycles, as we have bounds on the values of the
game, we know when we will have enough cycles to get under the lower bound of the value
of the game. By solving the copies of the game, if we reach a value that is smaller than the
lower bound of the value, then it means that the value is −∞.

Lemma 6.4. For all κ > 0, the value of a κ-NRAPTG can be computed by solving
d2n(Valsup −Valinf)/κe PTGs without resets and using the same set of guards, where Valsup

and Valinf are the upper and lower bounds of the value of the game given by Lemma 6.3.
Moreover, from ε-optimal strategies on those k games, we can build εd2n(Valsup−Valinf)/κe-
optimal strategies in the original game.

Solving the PTGs without resets can be done by using the same algorithms as the one
described before for SPTGs: indeed, since we play in a region-PTG, we can focus on the
resolution of a subgame staying in the same region until the final transition, and such a
game can even be decomposed into simpler games where every region has length 1, which
can then be interpreted as a SPTG. Another possibility would be to rescale the time and
the weights in order to transform a region (a, b) into (a, a+ 1), avoiding to split the region
into b− a different subregions.

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:49

The values Valsup and Valinf , and therefore also d2n(Valsup − Valinf)/κe, are pseudo-
polynomial in the size of the original game, which allows us to conclude:

Theorem 6.5. Let κ > 0 and G be a κ-NRAPTG. Then for every location q ∈ Q, the
function ν 7→ ValG(q, ν) is computable in pseudo-polynomial time and is piecewise-affine with
at most a pseudo-polynomial number of cutpoints. Moreover, for every ε > 0, there exist
(and we can effectively compute) ε-optimal strategies for both players.

The robust games defined in [BCR14] restricted to one-clock are a subset of the NRAPTG,
therefore their value is computable with the same complexity. While we cannot extend the
computation of the value to all (one-clock) PTGs, we can still obtain information on the
nature of the value function:

Theorem 6.6. The value functions of all one-clock PTGs are cost functions with at most a
pseudo-polynomial number of cutpoints.

Proof. Let G be a one-clock PTG. Let us replace all transitions (`, g,>, `′) resetting the
clock by (`, g,⊥, `′′), where `′′ is a new final location with ϕ`′′ = ValG(`′, 0)—observe that
ValG(`, 0) exists even if we cannot compute it, so this transformation is well-defined. This
yields a reset-acyclic PTG G′ such that ValG′ = ValG . The pseudo-polynomial number of
cutpoints of reset-acyclic PTG, as for SPTGs, does not depend on the size of final prices
(but only on the price of transitions, and the number of locations), which allows us to
conclude.

As a consequence, in the particular case of non-negative prices only where transitions with
a reset can be unfolded to remove cycles in which they are contained, this ensures that the
exponential-time algorithms of [BLMR06, Rut11, HIJM13] indeed have a pseudo-polynomial
time complexity.

Corollary 6.7. The value functions of all one-clock PTGs with only non-negative prices
can be computed in pseudo-polynomial time.

7. Conclusion

In this work, we study, for the first time, priced timed games with arbitrary weights and one
clock, showing how to compute optimal values and strategies in pseudo-polynomial time for
the special case of simple games. This complexity result is better than previously obtained
results in the case of non-negative weights only [HIJM13, Rut11] (where an exponential
complexity was obtained), and we follow different paths to prove termination and (partial)
correctness (due to the presence of negative weights). In order to push our algorithm as far
as we can, we introduce the class of negative-reset-acyclic games for which we obtain the
same result: as a particular case, we can solve all priced timed games with one clock for
which the clock is reset in every cycle of the underlying region automaton. As future works,
it is appealing to solve the full class of priced timed games with arbitrary weights and one
clock. We have shown why our technique seems to break in this more general setting, thus
it could be interesting to study the difficult negative cycles without reset as their own, with
different techniques.

17:50 T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege Vol. 18:3

References

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed
games. In Proceedings of the 31st International Colloquium on Automata, Languages and Program-
ming (ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages 122–133. Springer,
2004. doi:10.1007/978-3-540-27836-8_13.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.

[ALTP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. Theoretical Computer Science, 318(3):297–322, 2004. doi:10.1016/j.tcs.2003.10.
038.

[BBBR07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the optimal
reachability problem of weighted timed automata. Formal Methods in System Design, 31(2):135–
175, 2007. doi:10.1007/s10703-007-0035-4.

[BBC06] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control in o-minimal hybrid systems.
In Proceedings of the Twenty-first Annual IEEE Symposium on Logic In Computer Science
(LICS’06), pages 367–378. IEEE Computer Society Press, 2006. doi:10.1109/LICS.2006.22.

[BBJ+08] Patricia Bouyer, Thomas Brihaye, Marcin Jurdziński, Ranko Lazić, and Micha l Rutkowski.
Average-price and reachability-price games on hybrid automata with strong resets. In Proceedings
of the 6th international conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS’08), volume 5215 of Lecture Notes in Computer Science, pages 63–77. Springer, 2008.
doi:10.1007/978-3-540-85778-5_6.

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194, 2006. doi:10.1016/j.
ipl.2006.01.012.

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies. In
Proceedings of the Third international conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer Science, pages 49–64.
Springer, 2005. doi:10.1007/11603009_5.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in
priced timed game automata. In Proceedings of the 24th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of Lecture Notes in
Computer Science, pages 148–160. Springer, 2004. doi:10.1007/978-3-540-30538-5_13.

[BCJ09] J. Berendsen, T. Chen, and D. Jansen. Undecidability of cost-bounded reachability in priced
probabilistic timed automata. In Theory and Applications of Models of Computation, volume
5532 of Lecture Notes in Computer Science, pages 128–137. Springer, 2009. doi:10.1007/

978-3-642-02017-9_16.
[BCR14] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and mean-payoff timed

games. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and
Control, HSCC’14, Berlin, Germany, April 15-17, pages 283–292. Association for Computing
Machinery, 2014. doi:10.1145/2562059.2562116.

[BDG+16] Thomas Brihaye, Amit Kumar Dhar, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
Efficient energy distribution in a smart grid using multi-player games. In Thomas Brihaye, Benôıt
Delahaye, Nicolas Markey, and Jǐŕı Srba, editors, Proceedings of the Cassting Workshop on Games
for the Synthesis of Complex Systems (Cassting’16) and the 3rd International Workshop on
Synthesis of Complex Parameters (SynCoP’16), volume 220, pages 1–12, Eindhoven, Netherlands,
April 2016. EPTCS. doi:10.4204/EPTCS.220.1.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi Romijn, and Frits W.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proceedings of the 4th
International Workshop on Hybrid Systems: Computation and Control (HSCC’01), volume
2034 of Lecture Notes in Computer Science, pages 147–161. Springer, 2001. doi:10.1007/

3-540-45351-2_15.
[BGH+15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege.

Simple priced timed games are not that simple. In Prahladh Harsha and G. Ramalingam, editors,
Proceedings of the 35th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’15), volume 45 of Leibniz International Proceedings in

https://doi.org/10.1007/978-3-540-27836-8_13
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1007/s10703-007-0035-4
https://doi.org/10.1109/LICS.2006.22
https://doi.org/10.1007/978-3-540-85778-5_6
https://doi.org/10.1016/j.ipl.2006.01.012
https://doi.org/10.1016/j.ipl.2006.01.012
https://doi.org/10.1007/11603009_5
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1145/2562059.2562116
https://doi.org/10.4204/EPTCS.220.1
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15

Vol. 18:3 ONE-CLOCK PRICED TIMED GAMES WITH NEGATIVE WEIGHTS 17:51

Informatics (LIPIcs), pages 278–292. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, December
2015. doi:10.4230/LIPIcs.FSTTCS.2015.278.

[BGHM15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not to
reach? Efficient algorithms for total-payoff games. In Luca Aceto and David de Frutos Escrig,
editors, Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of LIPIcs, pages 297–310. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, September
2015. doi:10.4230/LIPIcs.CONCUR.2015.297.

[BGHM16] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolynomial
iterative algorithm to solve total-payoff games and min-cost reachability games. Acta Informatica,
2016. doi:10.1007/s00236-016-0276-z.

[BGK+14] Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Ben-
jamin Monmege, and Ashutosh Trivedi. Adding Negative Prices to Priced Timed Games.
In Proceedings of the 25th International Conference on Concurrency Theory (CONCUR’13),
volume 8704 of Lecture Notes in Computer Science, pages 560–575. Springer, 2014. doi:

10.1007/978-3-662-44584-6_38.
[BGMR17] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal reachability in

divergent weighted timed games. In Javier Esparza and Andrzej S. Murawski, editors, Proceedings
of the 20th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’17), volume 10203 of Lecture Notes in Computer Science, pages 162–178,
Uppsala, Sweden, April 2017. Springer. doi:10.1007/978-3-662-54458-7_10.

[BJM14] Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed
games. Research Report LSV-14-12, Laboratoire Spécification et Vérification, ENS Cachan,
France, October 2014. 24 pages. URL: http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/
PDF/rr-lsv-2014-12.pdf.

[BLMR06] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost optimal
strategies in one-clock priced timed games. In Proceedings of the 26th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture
Notes in Computer Science, pages 345–356. Springer, 2006. doi:10.1007/11944836_32.

[Bou15] Patricia Bouyer. On the optimal reachability problem in weighted timed automata and games.
In Proceedings of the 7th Workshop on Non-Classical Models of Automata and Applications
(NCMA’15), volume 318 of books@ocg.at, pages 11–36. Austrian Computer Society, 2015.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for infinite-
state games. In Proceedings of the 12th International Conference on Concurrecy Theory (CON-
CUR’01), volume 2154 of Lecture Notes in Computer Science, pages 536–550. Springer, 2001.
doi:10.1007/3-540-44685-0_36.

[FIJS20] John Fearnley, Rasmus Ibsen-Jensen, and Rahul Savani. One-clock priced timed games are
PSPACE-hard. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Sciences (LICS’20), pages 397–409. ACM, 2020. doi:10.1145/3373718.3394772.

[HIJM13] Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster algorithm for
solving one-clock priced timed games. In Proceedings of the 24th International Conference on
Concurrency Theory (CONCUR’13), volume 8052 of Lecture Notes in Computer Science, pages
531–545. Springer, 2013. doi:10.1007/978-3-642-40184-8_37.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. doi:

10.2307/1971035.
[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed

systems. In Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), volume 900 of Lecture Notes in Computer Science, pages 229–242. Springer,
1995. doi:10.1007/3-540-59042-0_76.

[Rut11] Micha l Rutkowski. Two-player reachability-price games on single-clock timed automata. In
Proceedings of the 9th Workshop on Quantitative Aspects of Programming Languages (QAPL’11),
volume 57 of Electronic Proceedings in Theoretical Computer Science, pages 31–46, 2011.

[WT97] Howard Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proceedings of the
36th IEEE Conference on Decision and Control (CDC’97), pages 4607–4612. IEEE Computer
Society Press, 1997. doi:10.1109/CDC.1997.649708.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2015.278
https://doi.org/10.4230/LIPIcs.CONCUR.2015.297
https://doi.org/10.1007/s00236-016-0276-z
https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.1007/978-3-662-54458-7_10
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2014-12.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2014-12.pdf
https://doi.org/10.1007/11944836_32
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1145/3373718.3394772
https://doi.org/10.1007/978-3-642-40184-8_37
https://doi.org/10.2307/1971035
https://doi.org/10.2307/1971035
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1109/CDC.1997.649708

	1. Introduction
	Related work.
	Contributions.

	2. Quantitative reachability games
	3. Priced timed games
	3.1. Notations and definitions
	3.2. Properties of the value
	3.3. Simple priced timed games

	4. SPTGs with only urgent locations
	4.1. Computing the game value for a particular clock value
	4.2. Study of the complete value functions: G is finitely optimal

	5. Finite optimality of general SPTGs
	5.1. The GL',r construction
	5.2. SPTGs are finitely optimal
	5.3. SPTGs have a pseudo-polynomial number of cutpoints
	5.4. Algorithms to compute the value function

	6. Towards more complex PTGs
	7. Conclusion
	References

