
HAL Id: hal-02424743
https://hal.science/hal-02424743v1

Preprint submitted on 28 Dec 2019 (v1), last revised 27 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-Clock Priced Timed Games with Arbitrary Weights
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, Benjamin

Monmege

To cite this version:
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, Benjamin Monmege. One-Clock
Priced Timed Games with Arbitrary Weights. 2019. �hal-02424743v1�

https://hal.science/hal-02424743v1
https://hal.archives-ouvertes.fr

One-Clock Priced Timed Games with Arbitrary
WeightsI

Thomas Brihayea, Gilles Geeraertsb, Axel Haddada, Engel Lefaucheuxc,
Benjamin Monmeged,1

aUniversité de Mons, Belgium
bUniversité libre de Bruxelles, Belgium
cLSV, ENS Paris-Saclay, Inria, France

dAix Marseille Univ, Université de Toulon, LIS, CNRS, Marseille, France

Abstract

Priced timed games are two-player zero-sum games played on priced timed au-
tomata (whose locations and transitions are labeled by weights modeling the
price of spending time in a state and executing an action, respectively). The
goals of the players are to minimise and maximise the price to reach a target
location, respectively. We consider priced timed games with one clock and ar-
bitrary integer weights and show that, for an important subclass of theirs (the
so-called simple priced timed games), one can compute, in exponential time,
the optimal values that the players can achieve, with their associated optimal
strategies. As side results, we also show that one-clock priced timed games
are determined and that we can use our result on simple priced timed games
to solve the more general class of so-called negative-reset-acyclic priced timed
games (with arbitrary integer weights and one clock). The decidability status of
the full class of priced timed games with one-clock and arbitrary integer weights
still remains open.

Keywords: Priced timed games, Real-time systems, Game theory

1. Introduction

Game theory is nowadays a well-established framework in theoretical com-
puter science, enabling computer-aided design of computer systems that are
correct-by-construction. It allows one to describe and analyse the possible in-
teractions of antagonistic agents (or players) as in the controller synthesis prob-5

lem, for instance. This problem asks, given a model of the environment of a

IA preliminary version of this work has been published in the proceedings of FSTTCS
2015 [BGH+15]. The research leading to these results was funded by the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no601148 (CASST-
ING)

Email addresses: thomas.brihaye@umons.ac.be (Thomas Brihaye), gigeerae@ulb.ac.be
(Gilles Geeraerts), axel.haddad@umons.ac.be (Axel Haddad), engel.lefaucheux@irisa.fr
(Engel Lefaucheux), benjamin.monmege@univ-amu.fr (Benjamin Monmege)

1During part of the preparation of this article, the last author was (partially) funded by the
DeLTA project (ANR-16-CE40-0007), the SensAS project (INS2I JCJC’17) and the TickTac
project (ANR-18).

Preprint submitted to Information and Computation April 30, 2019

system, and of the possible actions of a controller, to compute a controller that
constraints the environment to respect a given specification. Clearly, one can-
not assume in general that the two players (the environment and the controller)
will collaborate, hence the need to find a strategy for the controller that enforces10

the specification whatever the environment does. This question thus reduces to
computing a so-called winning strategy for the corresponding player in the game
model.

In order to describe precisely the features of complex computer systems,
several game models have been considered in the literature. In this work, we15

focus on the model of Priced Timed Games (PTGs for short), which can be
regarded as an extension (in several directions) of classical finite automata.
First, like timed automata [AD94], PTGs have clocks, which are real-valued
variables whose values evolve with time elapsing, and which can be tested and
reset along the transitions. Second, the locations are associated with price-20

rates and transitions are labeled by discrete prices, as in priced timed au-
tomata [BFH+01, ALTP04, BBBR07]. These prices allow one to associate a
price with each run (or play), which depends on the sequence of transitions tra-
versed by the run, and on the time spent in each visited location. Finally, a PTG
is played by two players, called Min and Max, and each location of the game is25

owned by either of them (we consider a turn-based version of the game). The
player who controls the current location decides how long to wait, and which
transition to take.

In this setting, the goal of Min is to reach a given set of target locations,
while minimising the price of the play to reach such a location. Player Max30

has an antagonistic objective: he tries to avoid the target locations, and, if not
possible, to maximise the accumulated price up to the first visit of a target
location. To reflect these objectives, we define the upper value Val of the game
as a mapping of the configurations of the PTG to the least price that Min can
guarantee while reaching the target, whatever the choices of Max. Similarly, the35

lower value Val returns the greatest price that Max can ensure (letting the price
be +∞ in case the target locations are not reached).

An example of PTG is given in Figure 1, where the locations of Min and
Max are represented by circles and rectangles respectively. The integers next to
the locations are their price-rates, i.e. the price of spending one time unit in the40

location. Moreover, there is only one clock x in the game, which is never reset,
and all guards on transitions are x ∈ [0, 1] (hence this guard is not displayed
and transitions are only labeled by their respective discrete weight): this is an
example of a simple priced timed game (we will define them properly later).
It is easy to check that Min can force reaching the target location `f from all45

configurations (`, ν) of the game, where ` is a location and ν is a real valuation
of the clock in [0, 1]. Let us comment on the optimal strategies for both players.
From a configuration (`4, ν), with ν ∈ [0, 1], Max better waits until the clock
takes value 1, before taking the transition to `f (he is forced to move, by the
rules of the game). Hence, Max’s optimal value is 3(1− ν)− 7 = −3ν − 4 from50

all configurations (`4, ν). Symmetrically, it is easy to check that Min better
waits as long as possible in `7, hence his optimal value is −16(1 − ν) from all
configurations (`7, ν). However, optimal value functions are not always that
simple, see for instance the lower value function of `1 on the bottom of Figure 1,
which is a piecewise affine function. To understand why value functions can55

be piecewise affine, consider the sub-game enclosed in the dotted rectangle in

2

`1

−2

`2

−14
`3

4
`4

3

`5

8

`6

−12

`7
−16

`f

1

2

6
−7

ν
0

1
4

1
2

3
4

9
10 1

Val(`1, ν)
−9.5

−6
−5.5

−2
−0.2

Figure 1: A simple priced timed game (top) and the lower value function of location `1
(bottom). Transitions without label have weight 0.

Figure 1, and consider the value that Min can guarantee from a configuration
of the form (`3, ν) in this sub-game. Clearly, Min must decide how long he
will spend in `3 and whether he will go to `4 or `7. His optimal value from all
(`3, ν) is thus inf06t61−ν min

(
4t+ 3(1− (ν + t))− 7, 4t+ 6− 16(1− (ν + t))

)
=60

min(−3ν − 4, 16ν − 10). Since 16ν − 10 > −3ν − 4 if and only if ν 6 6/19,
the best choice of Min is to move instantaneously to `7 if ν ∈ [0, 6/19] and to
move instantaneously to `4 if ν ∈ (6/19, 1], hence the value function of `3 (in
the subgame) is a piecewise affine function with two pieces.

Related work.65

PTGs are a special case of hybrid games [dAHM01, MPS95, WT97], that
were independently investigated in [BCFL04] and [ABM04]. For (non-necessarily
turn-based) PTGs with non-negative prices, semi-algorithms are given to decide
the value problem that is to say, whether the upper value of a location (the best
price that Min can guarantee starting with a clock valuation 0), is below a given70

threshold. They have also shown that, under the strongly non-Zeno assumption
on prices (asking the existence of κ > 0 such that every cycle in the underly-
ing region graph has a price at least κ), the proposed semi-algorithms always
terminate. This assumption was justified in [BBR05, BBM06] by showing that,
without it, the existence problem, that is to decide whether Min has a strategy75

guaranteeing to reach a target location with a price below a given threshold, is
indeed undecidable for PTGs with non-negative prices and three or more clocks.
This result was recently extended in [BJM14] to show that the value problem
is also undecidable for PTGs with non-negative prices and four or more clocks.
In [BCJ09], the undecidability of the existence problem has also been shown for80

PTGs with arbitrary price-rates (without prices on transitions), and two or more
clocks. On a positive side, the value problem was shown decidable by [BLMR06]
for PTGs with one clock when the prices are non-negative: a 3-exponential time
algorithm was first proposed, further refined in [Rut11, HIJM13] into an expo-
nential time algorithm. The key point of those algorithms is to reduce the85

3

problem to the computation of optimal values in a restricted family of PTGs
called Simple Priced Timed Games (SPTGs for short), where the underlying au-
tomata contain no guard, no reset, and the play is forced to stop after one time
unit. More precisely, the PTG is decomposed into a sequence of SPTGs whose
value functions are computed and re-assembled to yield the value function of the90

original PTG. Alternatively, and with radically different techniques, a pseudo-
polynomial time algorithm to solve one-clock PTGs with arbitrary prices on
transitions, and price-rates restricted to two values amongst {−d, 0,+d} (with
d ∈ N) was given in [BGK+14]. A survey summarising those results was done
in [Bou15].95

Contributions.

Following the decidability results sketched above, we consider PTGs with
one clock. We extend those results by considering arbitrary (positive and neg-
ative) prices. Indeed, all previous works on PTGs with only one clock (except
[BGK+14]) have considered non-negative weights only, and the status of the100

more general case with arbitrary weights has so far remained elusive. Yet, ar-
bitrary weights are an important modeling feature. Consider, for instance, a
system which can consume but also produce energy at different rates. In this
case, energy consumption could be modeled as a positive price-rate, and produc-
tion by a negative price-rate. In the untimed setting, such extension to negative105

weights has been considered in [BGHM15, BGHM16]: our result heavily builds
upon techniques investigated in these works, as we will see later. Our main
contribution is an exponential time algorithm to compute the value of one-clock
SPTGs with arbitrary weights. While this result might sound limited due to
the restricted class of simple PTGs we can handle, we recall that the previous110

works mentioned above [BLMR06, Rut11, HIJM13] have demonstrated that
solving SPTGs is a key result towards solving more general PTGs. Moreover,
this algorithm is, as far as we know, the first to handle the full class of SPTGs
with arbitrary weights, and we note that the solutions (either the algorithms or
the proofs) known so far do not generalise to this case. Finally, as a side result,115

this algorithm allows us to solve the more general class of negative-reset-acyclic
one-clock PTGs that we introduce. Thus, the whole class of PTGs with arbi-
trary weights and one clock remains open so far, our result may be seen as a
potentially important milestone towards this goal.

2. Quantitative reachability games120

The semantics of the priced timed games we study in this work can be
expressed in the setting of quantitative reachability games as defined below.
Intuitively, in such a game, two players (Min and Max) play by changing alter-
natively the current configuration of the game. The game ends when it reaches
a final configuration, and Min has to pay a price associated with the sequence125

of configurations and of transitions taken (hence, he is trying to minimise this
price).

Note that this framework of quantitative reachability games that we develop
here (and for which we prove a determinacy result, see Theorem 1) can be ap-
plied to other settings than our priced timed games. For example, special cases130

of quantitative reachability games are finite quantitative reachability games—
where the set of configurations is finite—that have been thoroughly studied in

4

[BGHM16] under the name of min-cost reachability games. In this paper, we
will rely on quantitative reachability games with uncountably many states as the
semantics of priced timed games. Similarly, our quantitative reachability games135

could be used to fomalise the semantics of hybrid games [BBC06, BBJ+08] or
any (non-probabilistic) game with a reachability objective.

We start our discussion by defining formally those games:

Definition 1 (Quantitative reachability games). A quantitative reachability
game is a tuple G = (C = CMin]CMax,Σ, E, F, p), where C is the set of config-140

urations (that does not need to be finite, nor even countable), partitioned into
the set CMin of configurations of player Min, and the set CMax of configurations
of player Max; Σ is a (potentially infinite) alphabet whose elements are called
letters; E ⊆ C ×Σ×C is the transition relation; F ⊆ C is the set of final con-
figurations; and p : (C×Σ)∗×C → R maps each finite sequence c1a1 · · · ancn+1145

to a real number called the price of c1a1 · · · ancn+1.

For the sake of exposure, we assume that there are no deadlocks in the
game, i.e. for all configurations c ∈ C, there exists c′ ∈ C and a ∈ Σ such
that (c, a, c′) ∈ E. A finite play is a finite sequence ρ = c1a1c2 . . . cn alternating
between configurations and letters, and such that for all i < n: (ci, ai, ci+1) ∈ E.150

In this case, we let |ρ| = n be the length of the finite play. A play is an infinite
sequence ρ = c1a1c2 · · · alternating between configurations and letters satisfying
the same condition, i.e. for all i > 1: (ci, ai, ci+1) ∈ E. In that case, we let |ρ|
be the least position i such that ci ∈ F , and |ρ| = +∞ if there are no such

positions. For the sake of clarity, we denote a play c1a1c2 · · · as c1
a1−→ c2 · · · ,155

and similarly for finite plays.
We take the viewpoint of player Min who wants to reach a final configuration.

Thus, the price of a play ρ = c1
a1−→ c2 · · · , denoted Price(ρ) is either +∞ if

|ρ| = +∞ (this is the worst situation for Min, which explains why the price is

maximal in this case); or p(c1
a1−→ c2 · · · cn) if |ρ| = n.160

A strategy for player Min is a function σMin mapping every finite play ending
in a configuration c ∈ CMin to a transition (c, a, c′) ∈ E. Strategies σMax of player
Max are defined accordingly. We let StratMin(G) and StratMax(G) be the sets
of strategies of Min and Max, respectively. A pair (σMin, σMax) ∈ StratMin(G) ×
StratMax(G) is called a profile of strategies. Together with an initial configuration

c1, it defines a unique play Play(c1, σMin, σMax) = c1
a1−→ c2 · · · such that for

all i > 0: (ci, ai, ci+1) = σMin(c1
a1−→ c2 · · · ci) if ci ∈ CMin; and (ci, ai, ci+1) =

σMax(c1
a1−→ c2 · · · ci) if ci ∈ CMax. We let Play(σMin) (respectively, Play(c1, σMin))

be the set of plays that conform with σMin (and start in c1), and define Play(σMax)
and Play(c1, σMax) accordingly. Given an initial configuration c1, the price of a
strategy σMin of Min is:

Price(c1, σMin) = sup
ρ∈Play(c1,σMin)

Price(ρ) .

It matches the intuition to be the largest price that Min may pay while follow-
ing strategy σMin. This definition is equal to supσMax

Price(Play(c1, σMin, σMax)),
which is intuitively the highest price that Max can force Min to pay if Min follows
σMin. Similarly, given a strategy σMax of Max, we define the price of σMax as:

Price(c1, σMax) = inf
ρ∈Play(c1,σMax)

Price(ρ) = inf
σMin

Price(Play(c1, σMin, σMax)) .

5

It corresponds to the least price that Min can achieve once Max has fixed its
strategy σMax.

From there, two different definitions of the value of a configuration c1 arise,
depending on which player chooses its strategy first. The upper value of c1,
defined as:

Val(c1) = inf
σMin

sup
σMax

Price(Play(c1, σMin, σMax)) ,

corresponds to the least price that Min can ensure when choosing its strategy
before Max, while the lower value, defined as:

Val(c1) = sup
σMax

inf
σMin

Price(Play(c1, σMin, σMax)) ,

corresponds to the least price that Min can ensure when choosing its strategy
after Max. It is easy to see that Val(c1) 6 Val(c1), which explains the chosen
names. Indeed, if Min picks its strategy after Max, he has more information,165

and then can, in general, choose a better response.
In general, the order in which players choose their strategies can modify the

outcome of the game. However, for quantitative reachability games, this makes
no difference, and the value is the same whichever player picks his strategy first.
This result, known as the determinacy property, is formalised here:170

Theorem 1 (Determinacy of quantitative reachability games). For all quanti-
tative reachability games G and configurations c1, Val(c1) = Val(c1).

Proof. To establish this result, we rely on a general determinacy result of Donald
Martin [Mar75]. This result concerns qualitative games (i.e. games where players
either win or lose the game, and do not pay a price), called Gale-Stewart games.175

So, we first explain how to reduce a quantitative reachability game G = (C =
CMin]CMax,Σ, E, F, p) to a family of such Gale-Stewart games Threshold(G, r)
parametrised by a threshold r ∈ R.

The Gale-Stewart game Threshold(G, r) is played on an infinite tree whose
vertices are owned by either of the players. A play is then a maximal branch in180

this tree, built as follows: the player who owns the root of the tree first picks
a successor of the root that becomes the current vertex. Then, the player who
owns this vertex gets to choose a successor that becomes the current one, etc.
The game ends when a leaf is reached, where the winner is declared.

In our case, the vertices of Threshold(G, r) are the finite plays c1
a1−→ c2 · · · cn185

of G starting from configuration c1. Such a vertex v = c1
a1−→ c2 · · · cn is owned

by Min iff cn ∈ CMin; otherwise v belongs to Max. A vertex v = c1
a1−→ c2 · · · cn

has successors iff cn 6∈ F . In this case, the successors of v are all the vertices
v

a−→ c s.t. (cn, a, c) ∈ E. Finally, a leaf c1
a1−→ c2 · · · cn (thus, with cn ∈ F) is

winning for Min iff p(c1
a1−→ c2 · · · cn) 6 r.190

As a consequence, the set of winning plays in Threshold(G, r) is:

Win =
⋃

v∈L s.t. p(v)6r

{branch(v)}

where L is the set of leaves of Threshold(G, r), and branch(v) is the (unique)
branch from c1 to v. Then,

Win =
⋃

v∈L s.t. p(v)6r

Cone(v)

6

where Cone(v) is the set of plays in Threshold(G, r) that visit v. Indeed, when
v is a leaf, the set Cone(v) reduces to the singleton containing only branch(v).
Thus, the set of winning plays (for Min) is an open set, defined in the topology
generated from the Cone(v) sets, and we can apply [Mar75] to conclude that
Threshold(G, r) is a determined game for all quantitative reachability games G195

and all thresholds r ∈ R i.e. either Min or Max has a winning strategy from the
root of the tree. Notice that strategies in G and Threshold(G, r) are isomorphic.

We rely on this result to prove that Val(c1) > Val(c1) in G (the other in-
equality being always true). We consider two cases:200

1. If Val(c1) = −∞, then Val(c1) being at most Val(c1) is −∞ too.

2. If Val(c1) > −∞, consider any real number t such that t < Val(c1). By defi-
nition of the upper value, for all strategies σMin, we have Price(c1, σMin) > t.
Therefore, Min loses in the game Threshold(G, t). By determinacy, Max
wins in this game, i.e. there exists a strategy σtMax such that Price(c1, σ

t
Max) >205

t. By definition of the lower value, this ensures that Val(c1) > t. There-
fore, t < Val(c1) implies t 6 Val(c1): since this holds for all t, we have
Val(c1) 6 Val(c1).

In such determined games, we denote by Val the value of the game, defined
as Val = Val = Val.210

3. Priced timed games

We are now ready to formally introduce the core model of our paper: priced
timed games. We start by the formal definition, then study some properties
of the value function of those games (Section 3.2). Next, we introduce the
restricted class of simple priced timed games (Section 3.3) and close this section215

by discussing some special strategies (called switching strategies, see Section 3.4)
that we will rely upon in our algorithms to solve priced timed games.

3.1. Notations and definitions.

Let x denote a positive real-valued variable called clock. A guard (or clock
constraint) is an interval with endpoints in N ∪ {+∞}. We often abbreviate220

guards, writing for instance x 6 5 instead of [0, 5]. The set of all guards on the
clock x is called Guard(x). Let S ⊆ Guard(x) be a finite set of guards. We let
[[S]] =

⋃
I∈S I. Assuming M0 = 0 < M1 < · · · < Mk are all the endpoints of the

intervals in S (to which we add 0 if needed), we let RegS = {(Mi,Mi+1) | 0 6
i 6 k − 1} ∪ {{Mi} | 0 6 i 6 k} be the set of regions of S. Observe that RegS225

is also a set of guards.
We rely on the notion of cost function to formalise the notion of optimal

value function sketched in the introduction. Formally, for a set of guards S ⊆
Guard(x), a cost function over S is a function f : [[RegS]]→ R = R∪{+∞,−∞}
such that over each region r ∈ RegS , f is either infinite or it is a continuous230

piecewise affine function with a finite set of cutpoints (points where the first
derivative is not defined) {κ1, . . . , κp} ⊆ Q, and satisfying f(κi) ∈ Q for all
1 6 i 6 p. In particular, if f(r) = {f(ν) | ν ∈ r} contains +∞ (respectively,
−∞) for some region r, then f(r) = {+∞} (f(r) = {−∞}). We denote by CFS
the set of all cost functions over S.235

7

In our algorithm to solve SPTGs, we will need to combine cost functions
thanks to the B operator. Let f ∈ CFS and f ′ ∈ CFS′ be two cost functions
on set of guards S, S′ ⊆ Guard(x), such that [[S]] ∩ [[S′]] is a singleton. We
let f B f ′ be the cost function in CFS∪S′ such that (f B f ′)(ν) = f(ν) for all
ν ∈ [[RegS]], and (f B f ′)(ν) = f ′(ν) for all ν ∈ [[RegS′]] \ [[RegS]]. For example,240

let S = {{0}, (0, 1), {1}} and S′ = {{1}}. We define the cost functions f1 and
f2 such that f1 is equal to +∞ on the set of regions RegS and f2 is equal to 0
on the set of regions RegS′ . The cost function f2 B f1 ∈ CFS∪S′ is equal to +∞
on [0, 1) and to 0 on {1} and the cost function f1 B f2 ∈ CFS′ is equal to +∞
on [0, 1]. Thus f1 B f2 is equal to f1 while f2 B f1 extends f2 with a +∞ value245

on [0, 1).
We consider an extended notion of one-clock priced timed games (PTGs for

short) allowing for the use of urgent locations, where only a zero delay can be
spent, and final cost functions which are associated with all final locations and
incur an extra price to be paid when ending the game in this location.250

Definition 2. A priced timed game (PTG for short) G is a tuple (LMin, LMax, Lf ,
Lu,ϕ,∆, π) where:

• LMin and LMax are finite sets of locations belonging respectively to player
Min and Max. We assume LMin ∩LMax = ∅ and let L = LMin ∪LMax be the
set of all locations of the PTG;255

• Lf ⊆ L is a finite set of final locations;

• Lu ⊆ L \ Lf is the set of urgent locations2;

• ∆ ⊆ (L \ Lf) × Guard(x) × {>,⊥} × L is a finite set of transitions. We
denote by SG = {I | ∃`, R, `′ : (`, I, R, `′) ∈ ∆} the set of all guards
occurring on some transitions of the PTG;260

• ϕ = (ϕ`)`∈Lf associates to all locations ` ∈ Lf a final cost function, that
is an affine3 cost function ϕ`;

• π : L ∪ ∆ → Z is a mapping associating an integer weight (also called
price) to all locations and transitions. In the case of a location `, we say
that π(`) is `’s price-rate.265

Intuitively, a transition (`, I, R, `′) changes the current location from ` to `′

if the clock has value in I and the clock is reset according to the Boolean R. We
assume that, in all PTGs, the clock x is bounded, i.e. there is M ∈ N such that for
all guards I ∈ SG , I ⊆ [0,M].4 We denote by RegG the set RegSG of regions of G.

We further denote5 by Πtr
G , Πloc

G and Πfin
G respectively the values maxδ∈∆ |π(δ)|,270

max`∈L |π(`)| and supν∈[0,M] max`∈L |ϕ`(ν)| = max`∈L max(|ϕ`(0)|, |ϕ`(M)|)

2Here we differ from [BLMR06] where Lu ⊆ LMax.
3Not that in our setting, an affine function is of the form f(ν) = a× ν + b.
4Observe that this last restriction is not without loss of generality in the case of PTGs.

While all timed automata A can be turned into an equivalent (with respect to reachability
properties)A′ whose clocks are bounded [BFH+01], this technique cannot be applied to PTGs,
in particular with arbitrary prices.

5Throughout the paper, we often drop the G in the subscript of several notations when the
game is clear from the context.

8

(the last equality holds because we have assumed that ϕ` is affine). That is, Πtr
G ,

Πloc
G and Πfin

G are the largest absolute values of the transition prices, location
prices and final cost functions.

As announced in the first section, the semantics of a PTG G = (LMin, LMax, Lf ,
Lu,ϕ,∆, π) is given by a quantitative reachability game

GG =
(
ConfG ,Σ = (R+ ×∆× R), E, F = (Lf × R+), p

)
that we describe now. Note that, from now on, we often confuse the PTG G with275

its semantics GG , writing, for instance ’the configurations of G’ instead of: ’the
configurations of GG ’. We also lift the Price, Val, Val and Val functions, and the
notions of plays from GG to G. A configuration of G is a pair s = (`, ν) ∈ L×R+,
where ` and ν are respectively the current location and clock value of G. We
denote by ConfG the set of all configurations of G. Let (`, ν) and (`′, ν′) be two280

configurations, let δ = (`, I, R, `′) ∈ ∆ be a transition of G and t ∈ R+ be a
delay. Then, ((`, ν), (t, δ, c), (`′, ν′)) ∈ E, iff:

(i) ` ∈ Lu implies t = 0 (no time can elapse in urgent locations);
(ii) ν + t ∈ I (the guard is satisfied);
(iii) R = > implies ν′ = 0 (when the clock is reset);285

(iv) R = ⊥ implies ν′ = ν + t (when the clock is not reset);
(v) c = π(δ)+ t×π(`) (the price of (t, δ) takes into account the price-rate of `,

the delay spent in `, and the price of δ).

In this case, we say that there is a (t, δ)-transition from (`, ν) to (`′, ν′) with

price c, and we denote this by (`, ν)
t,δ,c−−−→ (`′, ν′). For two configurations s and290

s′, we also write s
c−→ s′ whenever there are t and δ such that s

t,δ,c−−−→ s′. Observe
that, since the alphabet of GG is R+ × ∆ × R, and its set of configurations is

ConfG , plays of G are of the form ρ = (`1, ν1)
t1,δ1,c1−−−−−→ (`2, ν2) · · · . Finally, the

price function p is obtained by summing the price of the play (transitions and
time spent in the locations) and the final cost function if applicable. Formally,295

for a finite play ρ = (`1, ν1)
t1,δ1,c1−−−−−→ (`2, ν2) · · · (`n, νn) with ∀k < n, `k /∈ Lf , if

`n ∈ Lf then p(ρ) =
∑n−1
i=1 ci + ϕ`|ρ|(νn) else p(ρ) =

∑n−1
i=1 ci.

As sketched in the introduction, we consider optimal reachability-price games
on PTGs, where the aim of player Min is to reach a location of Lf while minimis-
ing the price. Since the semantics of PTGs is defined in terms of quantitative300

reachability games, we can apply Theorem 1, and deduce that all PTGs G are
determined. Hence, for all PTGs the value function Val is well-defined, and we
denote it by ValG when we need to emphasise the game it refers to.

For example, consider the PTG on the top of Figure 1. Using the final cost
function ϕ constantly equal to 0, its value function for location `1 is represented305

on the right. The play ρ = (`1, 0)
0,t1,2,0−−−−→ (`2, 0)

1/4,t2,3,−3.5−−−−−−−−→ (`3, 1/4)
0,t3,7,6−−−−→

(`7, 1/4)
3/4,t7,f ,−12−−−−−−−−→ (`f , 1) where tn,m = (`n, [0, 1],⊥, `m) ends in the unique

final location `f and its price is p(ρ) = 0− 3.5 + 6− 12 = −9.5.
Let us fix a PTG G with initial configuration c1. We say that a strategy σMin

of Min is optimal if Price(c1, σMin) = ValG(c1), i.e., it ensures Min to enforce the310

value of the game, whatever Max does. Similarly, σMin is ε-optimal, for ε > 0,
if Price(c1, σMin) 6 ValG(c1) + ε. And, symmetrically, a strategy σMax of Max
is optimal (respectively, ε-optimal) if Price(c1, σMax) = ValG(c1) (respectively,
Price(c1, σMax) > ValG(c1) + ε).

9

3.2. Properties of the value.315

Let us now discuss useful preliminary properties of the value functions of
PTGs. We have already shown the determinacy of the game, ensuring the
existence of the value function. We will now establish a stronger (and, to the
best of our knowledge, original) result. For all locations `, let ValG(`) denote
the function such that ValG(`)(ν) = ValG(`, ν) for all ν ∈ R+. Then, we show320

that, for all `, ValG(`) is a piecewise continuous function that might exhibit
discontinuities only on the borders of the regions of RegG .

Theorem 2. For all (one-clock) PTGs G, for all r ∈ RegG, for all ` ∈ L,
ValG(`) is either infinite or continuous over r.

Proof. Our goal is to show that for every location `, region r ∈ RegG and
valuations ν and ν′ in r,

|Val(`, ν)− Val(`, ν′)| 6 Πloc|ν − ν′|.

This is equivalent to showing:

Val(`, ν) 6 Val(`, ν′) + Πloc|ν − ν′| and Val(`, ν′) 6 Val(`, ν) + Πloc|ν − ν′| .

As those two equations are symmetric with respect to ν and ν′, we only have to
show either of them. We will thus focus on the latter, which, by using the upper
value, can be reformulated as: for all strategies σMin of Min, there exists a strat-
egy σ′Min such that Price((`, ν′), σ′Min) 6 Price((`, ν), σMin)+Πloc|ν−ν′|. Note that
this last equation is equivalent to say that there exists a function g mapping plays
ρ′ from (`, ν′), consistent with σ′Min (i.e. such that ρ′ = Play((`, ν′), σ′Min, σMax)
for some strategy σMax of Max) to plays from (`, ν), consistent with σMin, such
that:

Price(ρ′) 6 Price(g(ρ′)) + Πloc|ν − ν′| .

Let r ∈ RegG , ν, ν′ ∈ r and σMin be a strategy of Min. We define σ′Min and325

g by induction on the length of the finite play that is given as argument; more
precisely, we define σ′Min(ρ

′
1) and g(ρ′2) by induction on k, for all plays ρ′1 and

ρ′2 from (`, ν′), consistent with σ′Min of length k− 1 and k, respectively. We also

show during this induction that for each play ρ′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k)

from (`, ν′), consistent with σ′Min, if we let (`1, ν1)
c1−→ · · · c`−1−−−→ (``, ν`) = g(ρ′):330

(i) ρ′ and g(ρ′) have the same length, i.e. |ρ| = ` = k = |ρ′|,
(ii) for every i ∈ {1, . . . , k}, νi and ν′i are in the same region, i.e. there exists

a region r′ ∈ RegG such that νi ∈ r′ and ν′i ∈ r′,
(iii) |νk − ν′k| 6 |ν − ν′|,
(iv) Price(ρ′) 6 Price(g(ρ′)) + Πloc(|ν − ν′| − |νk − ν′k|).335

Notice that no property is required on the strategy σ′Min for finite plays that do
not start in (`, ν′).

If k = 0, σ′Min does not have to be defined. Moreover, in that case, ρ′ = (`, ν′)
and g(ρ′) = (`, ν). Both plays have length 0, ν and ν′ are in the same region by
hypothesis of the induction, and Price(ρ′) = Price(g(ρ′)) = 0, therefore all four340

properties are true.
Let us suppose now that the construction is done for a given k > 1, and

perform it for k + 1. We start with the construction of σ′Min. To that extent,

10

ν′k
•

νk
• •

(a)

t

t′
νk
•

ν′k• •

(b)

t

t′

νk
• •

ν′k
•

(c)

t

t′

Figure 2: The definition of t′ when (a) ν′k 6 νk, (b) νk < ν′k < νk + t, (c) νk < νk + t < ν′k.

consider a play ρ′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k) from (`, ν′), consistent with

σ′Min such that `k is a location of player Min. Let t and δ be the choice of delay345

and transition made by σMin on g(ρ′), i.e. σMin(g(ρ′)) = (t, δ). Then, we define
σ′Min(ρ

′) = (t′, δ) where t′ = max(0, νk + t− ν′k). The delay t′ respects the guard
of transition δ since either νk + t = ν′k + t′ or νk 6 νk + t 6 ν′k, in which case ν′k
is in the same region as νk + t since νk and ν′k are in the same region. This is
illustrated in Figure 2.350

Let us now build the mapping g. Let ρ′ = (`1, ν
′
1)

c′1−→ · · · c
′
k−→ (`k+1, ν

′
k+1) be

a play from (`, ν′) consistent with σ′Min and ρ̃′ = (`1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (`k, ν

′
k) its

prefix of length k. Let (t′, δ) be the delay and transition taken after ρ̃′. Using the

construction of g over plays of length k by induction, the play g(ρ̃′) = (`1, ν1)
c1−→

· · · ck−1−−−→ (`k, νk) (with (`1, ν1) = (`, ν)) verifies properties i, ii, iii and iv. If `k355

is a location of Min and σMin(g(ρ̃′)) = (t, δ), then g(ρ′) = g(ρ̃′)
ck−→ (`k+1, νk+1)

is obtained by applying those choices on g(ρ̃′). If `k is a location of Max, the
last valuation νk+1 of g(ρ′) is rather obtained by choosing action (t, δ) verifying
t = max(0, ν′k + t′ − νk). Note that transition δ is allowed since both νk + t and
ν′k + t′ are in the same region (for similar reasons as above).360

By induction hypothesis |ρ̃′| = |g(ρ̃′)|, thus: i holds, i.e. |ρ′| = |g(ρ′)|. More-
over, νk+1 and ν′k+1 are also in the same region as either they are equal to νk+ t
and ν′k + t′, respectively, or δ contains a reset in which case νk+1 = ν′k+1 = 0
which proves ii. To prove iii, notice that we always have either νk + t = ν′k + t′

or νk 6 νk + t 6 ν′k = ν′k + t′ or ν′k 6 ν′k + t 6 νk = νk + t. In all of these possi-
bilities, we have |(νk + t)− (ν′k + t′)| 6 |νk − ν′k|. We finally check property iv.
In both cases:

Price(ρ′) = Price(ρ̃′) + π(δ) + t′π(`k)

6 Price(g(ρ̃′)) + Πloc(|ν − ν′| − |νk − ν′k|) + π(δ) + t′π(`k)

= Price(g(ρ′)) + (t′ − t)π(`k) + Πloc(|ν − ν′| − |νk − ν′k|) .

If δ contains no reset, let us prove that

|t′ − t| = |νk − ν′k| − |ν′k+1 − νk+1| . (1)

Indeed, since t′ = ν′k+1 − ν′k and t = νk+1 − νk, we have |t′ − t| = |ν′k+1 − ν′k −
(νk+1 − νk)|. Then, two cases are possible: either t′ = max(0, νk + t − ν′k) or
t = max(0, ν′k + t′ − νk). So we have three different possibilities:

• if t′ + ν′k = t + νk, ν′k+1 = νk+1, thus |t′ − t| = |νk − ν′k| = |νk − ν′k| −
|ν′k+1 − νk+1|.365

11

• if t = 0, then νk = νk+1 > ν′k+1 > ν′k, thus |ν′k+1 − ν′k − (νk+1 − νk)| =
ν′k+1 − ν′k = (νk − ν′k)− (νk − ν′k+1) = |νk − ν′k| − |ν′k+1 − νk+1|.

• if t′ = 0, then ν′k = ν′k+1 > νk+1 > νk, thus |ν′k+1 − ν′k − (νk+1 − νk)| =
νk+1 − νk = (ν′k − νk)− (ν′k − νk+1) = |νk − ν′k| − |ν′k+1 − νk+1|.

If δ contains a reset, then ν′k+1 = νk+1. If t′ = νk + t − ν′k, we have that370

|t′ − t| = |νk − ν′k|. Otherwise, either t = 0 and t′ 6 νk − ν′k, or t′ = 0 and
t 6 ν′k − νk.

In all cases, we have proved (1). Coupled with the fact that |P (`k)| 6 Πloc,
we conclude that:

Price(ρ′) 6 Price(g(ρ′)) + Πloc(|ν − ν′| − |νk+1 − ν′k+1|) .

Now that σ′Min and g are defined (noticing that g is stable by prefix, we
extend naturally its definition to infinite plays), notice that for all plays ρ′ from
(`, ν′) consistent with σ′Min, either ρ′ does not reach a final location and its375

price is +∞, but in this case g(ρ′) has also price +∞; or ρ′ is finite. In this
case let ν′k be the clock valuation of its last configuration, and νk be the clock
valuation of the last configuration of g(ρ′). Combining (iii) and (iv) we have
Price(ρ′) 6 Price(g(ρ′)) + Πloc|ν − ν′| which concludes the proof.

Remark 1. Let us consider the example in Figure 3 (that we describe informally380

since we did not properly define games with multiple clocks), with clocks x and y.
One can easily check that, starting from a configuration (`0, 0, 0.5) in location `0

and where x = 0 and y = 0.5, the following cycle can be taken: (`0, 0, 0.5)
0,δ0,0−−−→

(`1, 0, 0.5)
0.5,δ1,2.5−−−−−−→ (`2, 0.5, 0)

0.5,δ2,−2.5−−−−−−−→ (`0, 0, 0.5), where δ0, δ1 and δ2 denote
respectively the transitions from `0 to `1; from `1 to `2; and from `2 to `0.385

Observe that the price of this cycle is null, and that no other delays can be played,
hence Val(`0, 0, 0.5) = 0. However, starting from a configuration (`0, 0, 0.6), and

following the same path, yields the cycle (`0, 0, 0.6)
0,e0,0−−−−→ (`1, 0, 0.6)

0.4,e1,2−−−−−→
(`2, 0.4, 0)

0.6,e2,−3−−−−−−→ (`0, 0, 0.6) with price −1. Hence, Val(`0, 0, 0.6) = −∞, and
the function is not continuous although both valuations (0, 0.5) and (0, 0.6) are390

in the same region. Observe that this holds even for priced timed automata,
since our example requires only one player.

`0

5

`2−5

`f

`1 5

x = 0

x = 0

y = 1, y := 0

x = 1, x := 0

Figure 3: A PTG with 2 clocks whose value function is not continuous inside a region.

12

3.3. Simple priced timed games.

As sketched in the introduction, our main contribution is to solve the special
case of simple one-clock priced timed games with arbitrary weights. Formally,395

an r-SPTG, with r ∈ Q+∩[0, 1], is a PTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) such
that for all transitions (`, I, R, `′) ∈ ∆, I = [0, r] (the clock is also bounded by
r) and R = ⊥. Hence, transitions of r-SPTGs are henceforth denoted by (`, `′),
dropping the guard and the reset. Then, an SPTG is a 1-SPTG. This paper is
mainly devoted to prove the following result on SPTGs.400

Theorem 3. Let G be an SPTG. Then, for all locations ` ∈ L, the function
Val(`) is either infinite, or continuous and piecewise-affine with at most an
exponential number of cutpoints. The value functions for all locations, as well
as a pair of optimal strategies (σMin, σMax) (that always exist if no values are
infinite) can be computed in exponential time.405

3.4. Switching strategies.

Let us now discuss a class of (simple) strategies that are sufficient to play
optimally. Those strategies, called switching strategies, will be instrumental
in proving the result above. Roughly speaking, Max has always a memoryless
optimal strategy, while Min might need (finite) memory to play optimally—it410

is already the case in untimed quantitative reachability games with arbitrary
weights [BGHM16]. Moreover, these strategies are finitely representable (recall
that even a memoryless strategy depends on the current configuration and that
there are infinitely many in our time setting).

We start by formalising Max’s strategies, thanks to the notion of finite posi-415

tional strategies:

Definition 3 (FP-strategies). A strategy σ is a finite positional strategy (FP-
strategy for short) iff it is a memoryless strategy (i.e. for all finite plays ρ1 =

ρ′1
c1−→ s and ρ2 = ρ′2

c2−→ s ending in the same configuration, we have σ(ρ1) =
σ(ρ2)) and for all locations `, there exists a finite sequence of rationals 0 6 ν`1 <420

ν`2 < · · · < ν`k = 1 and a finite sequence of transitions δ1, . . . , δk ∈ ∆ such that

(i) for all 1 6 i 6 k, for all ν ∈ (ν`i−1, ν
`
i], either σ(`, ν) = (0, δi), or σ(`, ν) =

(ν`i − ν, δi) (assuming ν`0 = min(0, ν`1)); and

(ii) if ν`1 > 0, then σ(`, 0) = (ν`1, δ1).

We let pts(σ) be the set of ν`i for all ` and i, and int(σ) be the set of all425

successive intervals generated by pts(σ). Finally, we let |σ| = |int(σ)| be the
size of σ. Intuitively, in an interval (ν`i−1, ν

`
i], σ always returns the same move:

either to take immediately δi or to wait until the clock reaches the endpoint ν`i
and then take δi.

While Max’s strategies can be memoryless, we observe that Min may require430

memory to play optimally as shown in the following example taken from [BGHM16].
Consider the SPTG of Figure 4, where W is a positive integer, and every loca-
tion has price-rate 0 (thus, it is an untimed game, as originally studied). We
claim that the values of locations `1 and `2 are both −W . Indeed, consider the
following strategy for Min: during each of the first W visits to `2 (if any), go to435

`1; else, go to `f . Clearly, this strategy ensures that the final location `f will
eventually be reached, and that either

(i) transition (`1, `3) (with weight −W) will eventually be traversed; or

13

`1 `2 `f

−W

−1

0

0
0

Figure 4: An SPTG where Min needs memory to play optimally

(ii) transition (`1, `2) (with weight −1) will be traversed at least W times.

Hence, in all plays following this strategy, the price will be at most −W . This440

strategy allows Min to secure −W , but he cannot ensure a lower price, since Max
always has the opportunity to take the transition (`1, `f) (with weight −W)
instead of cycling between `1 and `2. Hence, Max’s optimal choice is to follow
the transition (`1, `f) as soon as `1 is reached, securing a price of −W . The
Min strategy we have just given is optimal, and there is no optimal memoryless445

strategy for Min. Indeed, always playing (`2, `f) does not ensure a price at most
−W ; and, always playing (`2, `1) does not guarantee to reach the target, and
this strategy has thus value +∞.

Informally, we will compute optimal switching strategies, as introduced in [BGHM16]
(in the untimed setting).450

Definition 4 (Switching strategies). A switching strategy is described by a pair
(σ1

Min, σ
2
Min) of FP-strategies and a switch threshold K, and consists in playing

σ1
Min until the total accumulated price of the discrete transitions is below K; and

then to switch to strategy σ2
Min.

The role of σ2
Min is to ensure reaching a final location: it is thus a (clas-455

sical) attractor strategy, i.e. a strategy that ensures to reach a final location.
The role of σ1

Min, on the other hand, is to allow Min to decrease the price low
enough (possibly by forcing negative cycles) to secure a price below K, and the
computation of σ1

Min is thus the critical point in the computation of an optimal
switching strategy. To characterise σ1

Min, we introduce the notion of negative460

cycle strategy (NC-strategy). In the SPTG of Figure 4, σ1
Min is the strategy that

goes from `2 to `1, σ2
Min is the strategy going directly to `f and the switch occurs

after the threshold of K = −W . The value of the game under this strategy is
thus −W .

Formally, an NC-strategy σMin of Min is an FP-strategy such that for all465

runs ρ = (`1, ν)
c1−→ · · · ck−1−−−→ (`k, ν

′) ∈ Play(σMin) with `1 = `k, and ν, ν′ in
the same interval of int(σMin), the sum of prices of discrete transitions is at
most −1, i.e. π(`1, `2) + · · · + π(`k−1, `k) 6 −1. Notice that all finite plays
ρ ∈ Play(σMin) with all clock valuations in the same interval I of int(σMin) verify
Price(ρ) 6 |I|Πloc + |L|Πtr − |ρ|/|L|. Indeed, the price of ρ is the sum of the470

price generated by staying in locations, which is bounded by |I|Πloc, and the
price of the transitions. One can extract at least |ρ|/|L| cycles with transition
prices at most −1 (by definition of an NC-strategy), and what remains is of size
at most |L|, ensuring that the transition price is bounded by |L|Πtr − |ρ|/|L|.

Then, by splitting runs among intervals of int(σMin), we can easily obtain that475

all finite plays ρ ∈ Play(σMin) verify Price(ρ) 6 Πloc+(2|σMin|−1)×|L|Πtr−(|ρ|−
|σMin|)/|L|. Indeed, letting I1, I2, . . . , Ik the interval of int(σMin) visited during ρ

(with k 6 |σMin|), one can split ρ into k runs ρ = ρ1
c1−→ ρ2

c2−→ · · · ρk such that in

14

ρi all clock values are in Ii (remember that SPTGs contain no reset transitions).
By the previous inequality, we have Price(ρi) 6 |Ii|Πloc +|L|Πtr−|ρi|/|L|. Thus,480

also splitting prices ci with respect to discrete price and price of delaying, we
obtain Price(ρ) =

∑k
i=1 Price(ρi) +

∑k−1
i=1 ci 6 (2|σMin| − 1) × |L|Πtr + Πloc −

(|ρ| − |σMin|)/|L, since |ρ| 6
∑
i |ρi|+ k 6

∑
i |ρi|+ |σMin| and

∑
i |Ii| 6 1.

To characterise the fact that σMin must allow Min to reach a price which is
small enough, without necessarily reaching a target state, we define the fake value485

of an NC-strategy σMin from a configuration s as fakeσMin

G (s) = sup{Price(ρ) |
ρ ∈ Play(s, σMin), ρ reaches a target}, i.e. the value obtained when ignoring the
σMin-induced plays that do not reach the target. Thus, clearly, fakeσMin

G (s) 6
ValσMin(s). We say that an NC-strategy is fake-optimal if its fake value, in every
configuration, is equal to the optimal value of the configuration in the game.490

This is justified by the following result whose proof relies on the switching
strategies described before:

Lemma 4. If ValG(`, ν) 6= +∞, for all ` and ν, then for all NC-strategies σMin,

there is a strategy σ′Min such that Val
σ′Min

G (s) 6 fakeσMin

G (s) for all configurations
s. In particular, if σMin is a fake-optimal NC-strategy, then σ′Min is an optimal495

(switching) strategy of the SPTG.

Proof. We suppose known an attractor strategy for Min: it exists thanks to the
hypothesis on the finiteness of the values. From every configuration, it reaches
a final location with a price bounded above by a given constant M . Notice
first that, under the hypothesis that no configurations of the SPTG have value500

−∞, we have fakeσMin

G (s) > −∞ for a configuration s. Otherwise, consider the
strategy σ′Min obtained by playing σMin until having computed a price bounded
above by a fixed integer N ∈ Z, in which case we switch to the attractor strategy.
By the previous inequality, the switch is sure to happen since the right term
tends to −∞ when the length of ρ tends to ∞. Then, we know that the value505

guaranteed by σ′Min is at most N , implying that the optimal value Val(s) is
−∞, which contradicts the hypothesis. Then, to prove the result of the lemma,
consider the strategy σ′Min obtained by playing σMin until having computed a
price bounded above by the finite value fakeσMin

G (s)−M , in which case we switch
to the attractor strategy. Once again, the switch is sure to happen, implying510

that every play conforming to σMin reaches the target: moreover, the price of
such a play is necessarily at most fakeσMin(s) by construction. Then, we directly

obtain that Val
σ′Min

G (s) 6 fakeσMin

G (s).

Then, an SPTG is called finitely optimal if

(i) Min has a fake-optimal NC-strategy;515

(ii) Max has an optimal FP-strategy; and

(iii) ValG(`) is a cost function, for all locations `.

The central point in establishing Theorem 3 will thus be to prove that all
SPTGs are finitely optimal, as this guarantees the existence of well-behaved
optimal strategies and value functions. We will also show that they can be520

computed in exponential time. The proof is by induction on the number of
urgent locations of the SPTG. In Section 4, we address the base case of SPTGs
with urgent locations only (where no time can elapse). Since these SPTGs are
very close to the untimed min-cost reachability games of [BGHM16], we adapt

15

the algorithm in this work and obtain the solveInstant function (Algorithm 1).525

This function can also compute ValG(`, 1) for all ` and all games G (even with
non-urgent locations) since time cannot elapse anymore when the clock has
valuation 1. Next, using the continuity result of Theorem 2, we can detect
locations ` where ValG(`, ν) ∈ {+∞,−∞}, for all ν ∈ [0, 1], and remove them
from the game. Finally, in Section 5 we handle SPTGs with non-urgent locations530

by refining the technique of [BLMR06, Rut11] (that work only on SPTGs with
non-negative prices).

4. SPTGs with only urgent locations

Throughout this section, we consider an r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,
∆, π) where all locations are urgent, i.e. Lu = LMin ∪ LMax. Since all locations535

in G are urgent, we may extract from a play ρ = (`0, ν)
c0−→ (`1, ν)

c1−→ · · · the
clock valuations, as well as prices ci = π(`i, `i+1), hence denoting plays by their
sequence of locations `0`1 · · · . The price of this play is Price(ρ) = +∞ if `k 6∈ Lf
for all k > 0; and Price(ρ) =

∑k−1
i=0 π(`i, `i+1) + ϕ`k(ν) if k is the least position

such that `k ∈ Lf .540

4.1. Computing the value for a particular valuation

We first explain how we can compute the value function of the game for
a fixed clock valuation ν ∈ [0, r]: more precisely, we will compute the vector
(Val(`, ν))`∈L of values for all locations. We will denote by Valν(`) the value
Val(`, ν), so that Valν is the vector we want to compute. Since no time can545

elapse, it consists in an adaptation of the techniques developed in [BGHM16] to
solve (untimed) min-cost reachability games. The main difference concerns the
prices being rational (and not integers) and the presence of final cost functions.

Following the arguments of [BGHM16], we first observe that locations `
with values Valν(`) = +∞ and Valν(`) = −∞ can be pre-computed (using
respectively attractor and mean-payoff techniques) and removed from the game
without changing the other values. Then, because of the particular structure
of the game G (where a real price is paid only on the target location, all other
prices being integers), for all plays ρ, Price(ρ) is a value from the set Zν,ϕ =
Z + {ϕ`(ν) | ` ∈ Lf}. We further define Z+∞

ν,ϕ = Zν,ϕ ∪ {+∞}. Clearly, Zν,ϕ
contains at most |Lf | values between two consecutive integers, i.e.

∀i ∈ Z |[i, i+ 1] ∩ Zν,ϕ| 6 |Lf | (2)

Then, we define an operator F : (Z+∞
ν,ϕ)L → (Z+∞

ν,ϕ)L mapping every vector

x = (x`)`∈L of (Z+∞
ν,ϕ)L to F(x) = (F(x)`)`∈L defined by

F(x)` =


ϕ`(ν) if ` ∈ Lf

max
(`,`′)∈∆

(
π(`, `′) + x`′

)
if ` ∈ LMax

min
(`,`′)∈∆

(
π(`, `′) + x`′

)
if ` ∈ LMin .

We will obtain Valν as the limit of the sequence (x(i))i>0 defined by x
(0)
` = +∞

if ` 6∈ Lf , and x
(0)
` = ϕ`(ν) if ` ∈ Lf , and then x(i) = F(x(i−1)) for i > 0.550

16

The intuition behind is that x(i) is the value of the game (when the clock
takes valuation ν) if we impose that Min must reach the target within i steps
(and pays a price of +∞ if it fails to do so). Formally, for a play ρ = `0`1 · · · ,
we let Price6i(ρ) = Price(ρ) if `k ∈ Lf for some k 6 i, and Price6i(ρ) = +∞
otherwise. We further let

Val
6i
ν (`) = inf

σMin

sup
σMax

Price6i(Play((`, ν), σMax, σMin))

where σMin and σMax are respectively strategies of Min and Max. Lemma 6 of
[BGHM16] allows us to easily obtain that:

Lemma 5. For all i > 0, and ` ∈ L: x
(i)
` = Val

6i
ν (`).

Sketch of proof. This is proved by induction on i. It is trivial for i = 0, and
playing one more step amounts to computing one more iterate of F .555

Now, let us study how the sequence (Val
6i
ν)i>0 behaves and converges to the

finite values of the game. Using again the same arguments as in [BGHM16] (in
particular, that F is a monotonic and Scott-continuous operator over the com-

plete lattice (Z+∞
ν,ϕ)L), the sequence (Val

6i
ν)i>0 converges towards the greatest

fixed point of F . Let us now show that Valν is actually this greatest fixed point.560

First, Corollary 8 of [BGHM16] can be adapted to obtain

Lemma 6. For all ` ∈ L: Val
6|L|
ν (`) 6 |L|Πtr + Πfin .

Proof. Denoting by Attri(S) the i-steps attractor of set S, and assuming that
Attr−1(S) = ∅ for all S, we can establish by induction on j that: for all locations
` ∈ L with 0 6 k 6 |L| such that ` ∈ Attrk(Lf) \ Attrk−1(Lf), and for all565

0 6 j 6 |L|:

(i) j < k implies Val
6j
ν (`) = +∞ and

(ii) j > k implies Val
6j
ν (`) 6 jW + Πfin and Val

6j
ν (`) ∈ Zν,ϕ.

Then, the result is obtained by taking j = |L| in (ii).

The next step is to show that the values that can be computed along the570

sequence (still assuming that Val(`, ν) is finite for all `) are taken from a finite
set:

Lemma 7. For all i > 0 and for all ` ∈ L:

Val
6|L|+i
ν (`) ∈ PossValν = [−(|L| − 1)Πtr −Πfin, |L|Πtr + Πfin] ∩ Zν,ϕ

where PossValν has cardinality bounded by |Lf | ×
(
(2|L| − 1)Πtr + 2Πfin + 1

)
.

Proof. Following the proof of [BGHM16, Lemma 9], it is easy to show that
if Min can secure, from some vertex `, a price less than −(|L| − 1)Πtr − Πfin,575

i.e. Val(`, ν) < −(|L| − 1)Πtr−Πfin, then it can secure an arbitrarily small price
from that configuration, i.e. Val(`, ν) = −∞, which contradicts our hypothesis
that the value is finite.

17

Algorithm 1: solveInstant(G,ν)

Input: r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π), a valuation ν ∈ [0, r]

1 foreach ` ∈ L do
2 if ` ∈ Lf then X(`) := ϕ`(ν) else X(`) := +∞
3 repeat
4 Xpre := X

5 foreach ` ∈ LMax do X(`) := max(`,`′)∈∆

(
π(`, `′) + Xpre(`

′)
)

6 foreach ` ∈ LMin do X(`) := min(`,`′)∈∆

(
π(`, `′) + Xpre(`

′)
)

7 foreach ` ∈ L such that X(`) < −(|L| − 1)Πtr −Πfin do X(`) := −∞
8 until X = Xpre
9 return X

Hence, for all i > 0, for all `: Val
6i
ν (`) > Val(`, ν) > −(|L| − 1)Πtr − Πfin.

By Lemma 6 and since the sequence is non-increasing, we conclude that, for all
i > 0 and for all ` ∈ L:

−(|L| − 1)Πtr −Πfin < Val
6|L|+i
ν (`) 6 |L|Πtr + Πfin .

Since all Val
6|L|+i
ν (`) are also in Zν,ϕ, we conclude that Val

6|L|+i
ν (`) ∈ PossValν

for all i > 0. The upper bound on the size of PossValν is established by (2).580

This allows us to bound the number of iterations needed for the sequence
to stabilise. The worst case is when all locations are assigned a value bounded
below by −(|L|−1)Πtr−Πfin from the highest possible values where all vertices
are assigned a value bounded above by |L|Πtr +Πfin, which is itself reached after
|L| steps. Hence:585

Corollary 8. The sequence (Val
6i
ν)i>0 stabilises after a number of steps at most

|Lf | × |L| ×
(
(2|L| − 1)Πtr + 2Πfin + 1

)
+ |L|.

Next, the proofs of [BGHM16, Lemma 10 and Corollary 11] allow us to
conclude that this sequence converges towards the value Valν of the game (when
all values are finite), which proves that the value iteration scheme of Algorithm 1590

computes exactly Valν for all ν ∈ [0, r]. Indeed, this algorithm also works when
some values are not finite. As a corollary, we obtain a characterisation of the
possible values of G:

Corollary 9. For all r-SPTGs G with only urgent locations, for all locations ` ∈
L and valuations ν ∈ [0, r], Val(`, ν) is contained in the set PossValν∪{−∞,+∞}595

of cardinal polynomial in |L|, Πtr, and Πfin, i.e. pseudo-polynomial with respect
to the size of G.

Finally, Sections 3.4 of [BGHM16] explain how to compute simultaneously
optimal strategies for both players. In our context, this allows us to obtain for
every valuation ν ∈ [0, r] and location ` of an r-SPTG, such that Val(`, ν) /∈600

{−∞,+∞}, an optimal FP-strategy for Max, and an optimal switching strategy
for Min.

18

ν0 r

Figure 5: Network of affine functions defined by FG : functions in bold are final affine functions
of G, whereas non-bold ones are their translations with weights k ∈ [−(|L|−1)Πtr, |L|Πtr]∩Z.
PossCPG is the set of abscisses of intersections points, represented by black disks.

4.2. Study of the complete value functions: G is finitely optimal

Now let us explain how we can reduce the computation of ValG(`) : ν ∈
[0, r] 7→ Val(`, ν) (for all `) to a finite number of calls to solveInstant. We605

first study a precise characterisation of these functions, in particular showing
that these are cost functions of CF{[0,r]}.

We first define the set FG of affine functions over [0, r] as follows:

FG = {k + ϕ` | ` ∈ Lf ∧ k ∈ [−(|L| − 1)Πtr, |L|Πtr] ∩ Z}

Observe that this set is finite and that its cardinality is 2|L|2Πtr, pseudo-
polynomial in the size of G. Moreover, as a direct consequence of Corollary 9,
this set contains enough information to compute the value of the game in each610

possible valuation of the clock, in the following sense:

Lemma 10. For all ` ∈ L, for all ν ∈ [0, r]: if Val(`, ν) is finite, then there is
f ∈ FG such that Val(`, ν) = f(ν).

Using the continuity of ValG (Theorem 2), this shows that all the cutpoints
of ValG are intersections of functions from FG , i.e. belong to the set of possible
cutpoints

PossCPG = {ν ∈ [0, r] | ∃f1, f2 ∈ FG f1 6= f2 ∧ f1(ν) = f2(ν)} .

This set is depicted in Figure 5 on an example. Observe that PossCPG contains
at most |FG |2 = 4|Lf |4(Πtr)2 points (also a pseudo-polynomial in the size of G)615

since all functions in FG are affine, and can thus intersect at most once with
every other function. Moreover, PossCPG ⊆ Q, since all functions of FG take
rational values in 0 and r ∈ Q. Thus, for all `, ValG(`) is a cost function (with
cutpoints in PossCPG and pieces from FG). Since ValG(`) is a piecewise affine
function, we can characterise it completely by computing only its value on its620

19

cutpoints. Hence, we can reconstruct ValG(`) by calling solveInstant on each
rational valuation ν ∈ PossCPG . From the optimal strategies computed along
solveInstant, we can also reconstruct a fake-optimal NC-strategy for Min and
an optimal FP-strategy for Max, hence:

Proposition 11. Every r-SPTG G with only urgent locations is finitely optimal.625

Moreover, for all locations `, the piecewise affine function ValG(`) has cutpoints
in PossCPG of cardinality 4|Lf |4(Πtr)2, pseudo-polynomial in the size of G.

Notice, that this result allows us to compute Val(`) for every ` ∈ L. First,
we compute the set PossCPG = {y1, y2, . . . , y`}, which can be done in pseudo-
polynomial time in the size of G. Then, for all 1 6 i 6 `, we can compute630

the vectors
(
Val(`, yi)

)
`∈L of values in each location when the clock takes value

yi using Algorithm 1. This provides the value of Val(`) in each cutpoint, for
all locations `, which is sufficient to characterise the whole value function, as
it is continuous and piecewise affine. Observe that all cutpoints, and values
in the cutpoints, in the value function are rational numbers, so Algorithm 1 is635

effective. Thanks to the above discussions, this procedure consists in a pseudo-
polynomial number of calls to a pseudo-polynomial algorithm, hence, it runs
in pseudo-polynomial time. This allows us to conclude that ValG(`) is a cost
function for all `. This proves item (iii) of the definition of finite optimality for
r-SPTGs with only urgent locations.640

Let us conclude the proof that r-SPTGs with only urgent locations are
finitely optimal by showing that Min has a fake-optimal NC-strategy, and Max
has an optimal FP-strategy. Let ν1, ν2, . . . , νk be the sequence of elements from
PossCPG in increasing order, and let us assume ν0 = 0. For all 0 6 i 6 k let f `i
be the function from FG that defines the piece of ValG(`) in the interval [νi−1, νi]
(we have shown above that such an f `i always exists). Formally, for all 0 6 i 6 k,
f `i ∈ FG verifies Val(`, ν) = f `i (ν), for all ν ∈ [ν`i−1, ν

`
i]. Next, for all 1 6 i 6 k,

let µi be a value taken in the middle of [νi−1, νi], i.e. µi = νi+νi−1

2 . Note that
all µi’s are rational values since all νi’s are. By applying solveInstant in each
µi, we can compute (ValG(`, µi))`∈L, and we can extract an optimal memoryless
strategy σiMax for Max and an optimal switching strategy σiMin for Min. Thus
we know that, for all ` ∈ L, playing σiMin (respectively, σiMax) from (`, µi) al-
lows Min (respectively, Max) to ensure a price at most (respectively, at least)
ValG(`, µi) = f `i (µi). However, it is easy to check that the bound given by f `i (µi)
holds in every valuation, i.e. for all `, for all ν

Price((`, ν), σiMin) 6 f `i (ν) and Price((`, ν), σiMax) > f `i (ν) .

This holds because:

(i) Min can play σiMin from all clock valuations (in [0, r]) since we are consid-
ering an r-SPTG; and

(ii) Max does not have more possible strategies from an arbitrary valuation
ν ∈ [0, r] than from µi, because all locations are urgent and time cannot645

elapse (neither from ν, nor from µi).

And symmetrically for Max.
We conclude that Min can consistently play the same strategy σiMin from

all configurations (`, ν) with ν ∈ [νi−1, νi] and secure a price which is at most
f `i (ν) = ValG(`, ν), i.e. σiMin is optimal on this interval. By definition of σiMin, it is650

20

easy to extract from it a fake-optimal NC-strategy (actually, σiMin is a switching
strategy described by a pair (σ1

Min, σ
2
Min), and σ1

Min can be used to obtain the
fake-optimal NC-strategy). The same reasoning applies to strategies of Max
and we conclude that Max has an optimal FP-strategy.

5. Finite optimality of general SPTGs655

In this section, we consider SPTGs with non-urgent locations. We first prove
that all such SPTGs are finitely optimal. Then, we introduce Algorithm 2 to
compute optimal values and strategies of SPTGs. Throughout the section, we
fix an SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) with non-urgent locations. Be-
fore presenting our core contributions, let us explain how we can detect locations660

with infinite values. As already argued, we can compute Val(`, 1) for all ` assum-
ing all locations are urgent, since time cannot elapse anymore when the clock
has valuation 1. This can be done with solveInstant. Then, by continuity,
Val(`, 1) = +∞ (respectively, Val(`, 1) = −∞) if and only if Val(`, ν) = +∞
(respectively, Val(`, ν) = −∞) for all ν ∈ [0, 1]. We remove from the game665

all locations with infinite value without changing the values of other locations.
Thus, we henceforth assume that Val(`, ν) ∈ R for all (`, ν).

5.1. The GL′,r construction.

To prove finite optimality of SPTGs and to establish correctness of our
algorithm, we rely in both cases on a construction that consists in decomposing G670

into a sequence of SPTGs with more urgent locations. Intuitively, a game with
more urgent locations is easier to solve since it is closer to an untimed game
(in particular, when all locations are urgent, we can apply the techniques of
Section 4). More precisely, given a set L′ of non-urgent locations, and a valuation
r0 ∈ [0, 1], we will define a (possibly infinite) sequence of valuations 1 = r0 >675

r1 > · · · and a sequence GL′,r0 , GL′,r1 , . . . of SPTGs such that

(i) all locations of G are also present in each GL′,ri , except that the locations
of L′ are now urgent; and

(ii) for all i > 0, the value function of GL′,ri is equal to ValG on the interval
[ri+1, ri]. Hence, we can re-construct ValG by assembling well-chosen parts680

of the values functions of the GL′,ri (assuming infi ri = 0).

This basic result will be exploited in two directions. First, we prove by induction
on the number of urgent locations that all SPTGs are finitely optimal, by re-
constructing ValG (as well as optimal strategies) as a B-concatenation of the
value functions of a finite sequence of SPTGs with one more urgent locations.685

The base case, with only urgent locations, is solved by Proposition 11. This
construction suggests a recursive algorithm in the spirit of [BLMR06, Rut11] (for
non-negative prices). Second, we show that this recursion can be avoided (see
Algorithm 2). Instead of turning locations urgent one at a time, this algorithm
makes them all urgent and computes directly the sequence of SPTGs with only690

urgent locations. Its proof of correctness relies on the finite optimality of SPTGs
and, again, on our basic result linking the values functions of G and games GL′,ri .

Let us formalise these constructions. Let G be an SPTG, let r ∈ [0, 1]
be an endpoint, and let x = (x`)`∈L be a vector of rational values. Then,
wait(G, r,x) is an r-SPTG in which both players may now decide, in all non-695

urgent locations `, to wait until the clock takes value r, and then to stop

21

ValG`,r (`, ν)

νa r

•

•

ν1 ν2

ValG`,r (`, ν1)

ValG`,r (`, ν2)

Figure 6: The condition (3) (in the case L′ = ∅ and ` ∈ LMin): graphically, it means that the
slope between every two points of the plot in [a, r] (represented with a thick line) is greater
than or equal to −π(`) (represented with dashed line).

the game, adding the price x` to the current price of the play. Formally,
wait(G, r,x) = (LMin, LMax, L

′
f , Lu,ϕ

′, T ′, π′) is such that

• L′f = Lf] {`f | ` ∈ L \ Lu};

• for all `′ ∈ Lf and ν ∈ [0, r], ϕ′`′(ν) = ϕ`′(ν), for all ` ∈ L \ Lu, ϕ′`f (ν) =700

(r − ν) · π(`) + x`;

• T ′ = T ∪ {(`, [0, r],⊥, `f) | ` ∈ L \ Lu};

• for all δ ∈ T ′, π′(δ) = π(δ) if δ ∈ T , and π′(δ) = 0 otherwise.

Then, we let Gr = wait
(
G, r, (ValG(`, r))`∈L

)
, i.e. the game obtained thanks to

wait by letting x be the value of G in r. This first transformation does not alter705

the value of the game, for valuations before r:

Lemma 12. For all ν ∈ [0, r] and locations `, ValG(`, ν) = ValGr (`, ν).

Next, we make locations urgent. For a set L′ ⊆ L\Lu of non-urgent locations,
we let GL′,r be the SPTG obtained from Gr by making urgent every location `
of L′. Observe that, although all locations ` ∈ L′ are now urgent in GL′,r, their710

clones `f allow the players to wait until r. When L′ is a singleton {`}, we write
G`,r instead of G{`},r.

While the construction of Gr does not change the value of the game, in-
troducing urgent locations does. Yet, we can characterise an interval [a, r] on
which the value functions of H = GL′,r and H+ = GL′∪{`},r coincide, as stated715

by the next proposition. The interval [a, r] depends on the slopes of the pieces
of ValH+ as depicted in Figure 6: for each location ` of Min, the slopes of the
pieces of ValH+ contained in [a, r] should be 6 −π(`) (and > −π(`) when `

22

belongs to Max). It is proved by lifting optimal strategies of H+ into H, and
strongly relies on the determinacy result of Theorem 1. Hereafter, we denote720

the slope of ValG(`) in-between ν and ν′ by slope`G(ν, ν′), formally defined by

slope`G(ν, ν′) = ValG(`,ν′)−ValG(`,ν)
ν′−ν .

Proposition 13. Let 0 6 a < r 6 1, L′ ⊆ L \Lu and ` /∈ L′ ∪Lu a non-urgent
location of Min (respectively, Max). Assume that GL′∪{`},r is finitely optimal,
and for all a 6 ν1 < ν2 6 r

slope`GL′∪{`},r (ν1, ν2) > −π(`) (respectively, 6 −π(`)) . (3)

Then, for all ν ∈ [a, r] and `′ ∈ L, ValGL′∪{`},r (`
′, ν) = ValGL′,r (`

′, ν). Further-
more, fake-optimal NC-strategies and optimal FP-strategies in GL′∪{`},r are also
fake-optimal and optimal over [a, r] in GL′,r.725

Before proving this result, we start with an auxiliary lemma showing a prop-
erty of the rates of change of the value functions associated to non-urgent loca-
tions

Lemma 14. Let G be an r-SPTG, ` and `′ be non-urgent locations of Min and
Max, respectively. Then for all 0 6 ν < ν′ 6 r:

slope`G(ν, ν′) > −π(`) and slope`G(ν, ν′) 6 −π(`′) .

Proof. For the location `, the inequality rewrites in

ValG(`, ν) 6 (ν′ − ν)π(`) + ValG(`, ν′) .

Using the upper definition of the value (thanks to the determinacy result of
Theorem 1), it suffices to prove, for all ε > 0, the existence of a strategy σMin

such that for all strategies σMax of the opponent

Price(Play((`, ν), σMin, σMax)) 6 (ν′ − ν)π(`) + ValG(`, ν′) + ε .

First, the definition of the value implies the existence of a strategy σ′Min such
that for all strategies σMax

Price(Play((`, ν′), σ′Min, σMax)) 6 ValG(`, ν′) + ε .

Then, σMin can be obtained by playing from (`, ν), at the first turn, as prescribed
by σ′Min but delaying ν′−ν time units more (that we are allowed to do since ` is730

non-urgent), and, for other turns, directly like σ′Min. A similar reasoning allows
us to obtain the result for `′.

Now, we show that, even if the locations in L′ are turned into urgent loca-
tions, we may still obtain for them a similar result of the rates of change as the
one of Lemma 14:735

Lemma 15. For all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax), and
ν ∈ [0, r], ValGL′,r (`, ν) 6 (r − ν)π(`) + ValG(`, r) (respectively, ValGL′,r (`, ν) >
(r − ν)π(`) + ValG(`, r)).

Proof. It suffices to notice that from (`, ν), Min (respectively, Max) may choose
to go directly in `f ensuring the value (r − ν)π(`) + ValG(`, r).740

23

Proof of Proposition 13. Let σMin and σMax be a fake-optimal NC-strategy of
Min and an optimal FP-strategy of Max in GL′∪{`},r, respectively. Notice that
both strategies are also well-defined finite positional strategies in GL′,r.

First, let us show that σMin is indeed an NC-strategy in GL′,r. Take a finite

play (`0, ν0)
c0−→ · · · ck−1−−−→ (`k, νk), of length k > 2, that conforms with σMin in745

GL′,r, and with `0 = `k and ν0, νk in the same interval I of int(σMin). For every
`i that is in LMin, and ν ∈ I, σMin(`i, ν) must have a 0 delay, otherwise νk would

not be in the same interval as ν0. Thus, the play (`0, ν0)
c′0−→ · · ·

c′k−1−−−→ (`k, ν0)
also conforms with σMin (with possibly different prices). Furthermore, as all the
delays are 0 we are sure that this play is also a valid play in GL′∪{`},r, in which750

σMin is an NC-strategy. Therefore, π(`0, `1) + · · · + π(`k−1, `k) 6 −1, and σMin

is an NC-strategy in GL′,r.
We now show the result for ` ∈ LMin. The proof for ` ∈ LMax is a straight-

forward adaptation. Notice that every play in GL′,r that conforms with σMin is
also a play in GL′∪{`},r that conforms with σMin, as σMin is defined in GL′∪{`},r
and thus plays with no delay in location `. Thus, for all ν ∈ [a, r] and `′ ∈ L,
by the optimality result of Lemma 4,

ValGL′,r (`
′, ν) 6 fakeσMin

GL′,r (`
′, ν) = fakeσMin

GL′∪{`},r (`
′, ν) = ValGL′∪{`},r (`

′, ν) . (4)

To obtain that ValGL′,r (`
′, ν) = ValGL′∪{`},r (`

′, ν), it remains to show the re-
verse inequality. To that extent, let ρ be a finite play in GL′,r that conforms with
σMax, starts in a configuration (`′, ν) with ν ∈ [a, r], and ends in a final location.755

We show by induction on the length of ρ that Price(ρ) > ValGL′∪{`},r (`
′, ν). If

ρ has size 1 then `′ is a final configuration and Price(ρ) = ValGL′∪{`},r (`
′, ν) =

ϕ′`′(ν).

Otherwise ρ = (`′, ν)
c−→ ρ′ where ρ′ is a run that conforms with σMax, starting

in a configuration (`′′, ν′′) and ending in a final configuration. By induction760

hypothesis, we have Price(ρ′) > ValGL′∪{`},r (`
′′, ν′′). We now distinguish three

cases, the two first being immediate:

• If `′ ∈ LMax, then σMax(`
′, ν) leads to the next configuration (`′′, ν′′), thus

ValGL′∪{`},r (`
′, ν) = PriceGL′∪{`},r ((`

′, ν), σMax)

= c+ PriceGL′∪{`},r ((`
′′, ν′′), σMax)

6 c+ Price(ρ′) = Price(ρ) .

• If `′ ∈ LMin, and `′ 6= ` or ν′′ = ν, we have that (`′, ν)
c−→ (`′′, ν′′) is a valid

transition in G′. Therefore, ValGL′∪{`},r (`
′, ν) 6 c + ValGL′∪{`},r (`

′′, ν′′),
hence

Price(ρ) = c+ Price(ρ′) > c+ ValGL′∪{`},r (`
′′, ν′′) > ValGL′∪{`},r (`

′, ν).

• Finally, if `′ = ` and ν′′ > ν, then c = (ν′′−ν)π(`)+π(`, `′′). As (`, ν′′)
π(`,`′′)−−−−→

(`′′, ν′′) is a valid transition in GL′∪{`},r, we have ValGL′∪{`},r (`, ν
′′) 6

π(`, `′′) + ValGL′∪{`},r (`
′′, ν′′). Furthermore, since ν′′ ∈ [a, r], we can use

(3) to obtain

ValGL′∪{`},r (`, ν) 6 ValGL′∪{`},r (`, ν
′′) + (ν′′ − ν)π(`)

6 ValGL′∪{`},r (`
′′, ν′′) + π(`, `′′) + (ν′′ − ν)π(`) .

24

Therefore

Price(ρ) = (ν′′ − ν)π(`) + π(`, `′′) + Price(ρ′)

> (ν′′ − ν)π(`) + π(`, `′′) + ValGL′∪{`},r (`
′′, ν′′) > ValGL′∪{`},r (`

′, ν) .

This concludes the induction. As a consequence,

inf
σ′Min∈StratMin(GL′,r)

PriceGL′,r (Play((`′, ν), σ′Min, σMax)) > ValGL′∪{`},r (`
′, ν)

for all locations `′ and ν ∈ [a, r], which finally proves that ValGL′,r (`
′, ν) >

ValGL′∪{`},r (`
′, ν). Fake-optimality of σMin over [a, r] in GL′∪{`},r is then obtained

by (4).765

Given an SPTG G and some finitely optimal GL′,r, we now characterise
precisely the left endpoint of the maximal interval ending in r where the value
functions of G and GL′,r coincide, with the operator leftL′ : (0, 1] → [0, 1] (or
simply left, if L′ is clear) defined as:

leftL′(r) = inf{r′ 6 r | ∀` ∈ L ∀ν ∈ [r′, r] ValGL′,r (`, ν) = ValG(`, ν)} .

By continuity of the value (Theorem 2), this infimum exists and ValG(`, leftL′(r)) =
ValGL′,r (`, leftL′(r)). Moreover, ValG(`) is a cost function on [left(r), r], since
GL′,r is finitely optimal. However, this definition of left(r) is semantical. Yet,
building on the ideas of Proposition 13, we can effectively compute left(r), given
ValGL′,r . We claim that leftL′(r) is the minimal valuation such that for all loca-770

tions ` ∈ L′ ∩LMin (respectively, ` ∈ L′ ∩LMax), the slopes of the affine sections
of the cost function ValGL′,r (`) on [left(r), r] are at least (at most) −π(`). Hence,
left(r) can be obtained (see Figure 7) by inspecting iteratively, for all ` of Min
(respectively, Max), the slopes of ValGL′,r (`) by decreasing valuations until we
find a piece with a slope greater than −π(`) (respectively, smaller than −π(`)).775

This enumeration of the slopes is effective as ValGL′,r has finitely many pieces,
by hypothesis. Moreover, this guarantees that left(r) < r, as shown in the
following lemma.

Lemma 16. Let G be an SPTG, L′ ⊆ L \ Lu, and r ∈ (0, 1], such that GL′′,r
is finitely optimal for all L′′ ⊆ L′. Then, leftL′(r) is the minimal valuation780

such that for all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax), the slopes
of the affine sections of the cost function ValGL′,r (`) on [left(r), r] are at least
(respectively, at most) −π(`). Moreover, left(r) < r.

Proof. Since ValGL′,r (`) = ValG(`) on [left(r), r], and as ` is non-urgent in G,
Lemma 14 states that all the slopes of ValG(`) are at least (respectively, at785

most) −π(`) on [left(r), r].
We now show the minimality property by contradiction. Therefore, let r′ <

left(r) such that all cost functions ValGL′,r (`) are affine on [r′, left(r)], and assume
that for all ` ∈ L′∩LMin (respectively, ` ∈ L′∩LMax), the slopes of ValGL′,r (`) on
[r′, left(r)] are at least (respectively, at most) −π(`). Hence, this property holds790

on [r′, r]. Then, by applying Proposition 13 |L′| times (here, we use the finite
optimality of the games GL′′,r with L′′ ⊆ L′), we have that for all ν ∈ [r′, r]
ValGr (`, ν) = ValGL′,r (`, ν). Using Lemma 12, we also know that for all ν 6 r,

25

ValG`?,r (`
?, ν)

ν

ValG(`?, r)

left(r) r

Figure 7: In this example L′ = {`?} and `? ∈ LMin. left(r) is the leftmost point such that all
slopes on its right are smaller than or equal to −π(`?) in the graph of ValG`?,r (`?, ν). Dashed

lines have slope −π(`?).

and `, ValGr (`, ν) = ValG(`, ν). Thus, ValGr,L′ (`, ν) = ValG(`, ν). As r′ < left(r),
this contradicts the definition of leftL′(r).795

We finally prove that left(r) < r. This is immediate in case left(r) = 0,
since r > 0. Otherwise, from the result obtained previously, we know that there
exists r′ < left(r), and `? ∈ L′ such that ValGL′,r (`

?) is affine on [r′, left(r)]
of slope smaller (respectively, greater) than −π(`?) if `? ∈ LMin (respectively,
`? ∈ LMax), i.e.{

ValGL′,r (`
?, r′) > ValGL′,r (`

?, left(r)) + (left(r)− r′)π(`?) if `? ∈ LMin

ValGL′,r (`
?, r′) < ValGL′,r (`

?, left(r)) + (left(r)− r′)π(`?) if `? ∈ LMax .

From Lemma 15, we also know that{
ValGL′,r (`

?, r′) 6 ValGL′,r (`
?, r) + (r − r′)π(`?) if `? ∈ LMin

ValGL′,r (`
?, r′) > ValGL′,r (`

?, r) + (r − r′)π(`?) if `? ∈ LMax .

Both equations combined imply{
ValGL′,r (`

?, r) > ValGL′,r (`
?, left(r)) + (left(r)− r)π(`?) if `? ∈ LMin

ValGL′,r (`
?, r) < ValGL′,r (`

?, left(r)) + (left(r)− r)π(`?) if `? ∈ LMax

which is not possible if left(r) = r.

Thus, one can reconstruct ValG on [infi ri, r0] from the value functions of the
(potentially infinite) sequence of games GL′,r0 , GL′,r1 , . . . where ri+1 = left(ri)
for all i such that ri > 0, for all possible choices of non-urgent locations L′.
Next, we will define two different ways of choosing L′: the former to prove finite800

optimality of all SPTGs, the latter to obtain an algorithm to solve them.

26

5.2. SPTGs are finitely optimal.

To prove finite optimality of all SPTGs we reason by induction on the number
of non-urgent locations and instantiate the previous results to the case where
L′ = {`?} where `? is a non-urgent location of minimum price-rate (i.e. for805

all ` ∈ L, π(`?) 6 π(`)). Given r0 ∈ [0, 1], we let r0 > r1 > · · · be the
decreasing sequence of valuations such that ri = left`?(ri−1) for all i > 0. As
explained before, we will build ValG on [infi ri, r0] from the value functions of
games G`?,ri . Assuming finite optimality of those games, this will prove that
G is finitely optimal under the condition that r0 > r1 > · · · eventually stops,810

i.e. ri = 0 for some i. Lemma 18 will prove this property. First, we relate the
optimal value functions with the final cost functions.

Lemma 17. Assume that G`?,r is finitely optimal. If ValG`?,r (`
?) is affine on

a non-singleton interval I ⊆ [0, r] with a slope greater6 than −π(`?), then there
exists f ∈ FG (see definition in page 19) such that for all ν ∈ I, ValG`?,r (`

?, ν) =815

f(ν).

Proof. Let σMin and σMax be some fake-optimal NC-strategy and optimal FP-
strategy in G`?,r. As I is a non-singleton interval, there exists a subinterval
I ′ ⊂ I, which is not a singleton and is contained in an interval of σMin and of
σMax. Let σ′Min the optimal switching strategy obtained from σMin in Lemma 4:820

notice that both strategies have the same intervals.
Let ν ∈ I ′. Since ValG`?,r (`

?, ν) < +∞, the play Play((`?, ν), σ′Min, σMax)

necessarily reaches a final location and has price ValG`?,r (`
?, ν). Let (`0, ν0)

c0−→
· · · (`k, νk) be its prefix until the first final location `k (the prefix used to compute
the price of the play). We also let ν′ ∈ I ′ be a valuation such that ν < ν′.825

Assume by contradiction that there exists an index i such that ν < νi and
let i be the smallest of such indices. For each j < i, if `j ∈ LMin, let (t, δ) =
σ′Min(`j , ν) and (t′, δ′) = σ′Min(`j , ν

′). Similarly, if `j ∈ LMax, we let (t, δ) =
σMax(`j , ν) and (t′, δ′) = σMax(`j , ν

′). As I ′ is contained in an interval of σ′Min and
σMax, we have δ = δ′ and either t = t′ = 0, or ν+t = ν′+t′. Applying this result

for all j < i, we obtain that (`0, ν
′)

c′0−→ · · · (`i−1, ν
′)

c′i−1−−−→ (`i, νi)
ci−→ · · · (`k, νk)

is a prefix of Play((`?, ν′), σ′Min, σMax): notice moreover that, as before, this prefix
has price ValG`?,r (`

?, ν′). In particular,

ValG`?,r (`
?, ν′) = ValG`?,r (`

?, ν)− (ν′−ν)π(`i−1) 6 ValG`?,r (`
?, ν)− (ν′−ν)π(`?)

which implies that the slope of ValG`?,r (`
?) is at most −π(`?), and therefore

contradicts the hypothesis. As a consequence, we have that νi = ν for all i.
Again by contradiction, assume now that `k = `f for some ` ∈ L\Lu. By the

same reasoning as before, we then would have ValG`?,r (`
?, ν′) = ValG`?,r (`

?, ν)−
(ν′ − ν)π(`), which again contradicts the hypothesis.830

Therefore, `k ∈ Lf . Suppose, for a contradiction, that the prefix (`0, ν)
c0−→

· · · (`k, ν) contains a cycle. Since σ′Min is a switching strategy and σMax is a
memoryless strategy, this implies that the cycle is contained in the part of σ′Min

where the decision is taken by the strategy σMin: since it is an NC-strategy,

6For this result, the order does not depend on the owner of the location, but on the fact
that `? has minimal price amongst locations of G.

27

this implies that the sum of the weights along the cycle is at most −1. But if835

this is the case, we may modify the switching strategy σ′Min to loop more in the
same cycle (this is indeed a cycle in the timed game, not only in the untimed
region game): against the optimal memoryless strategy σMax, this would imply
that Min has a sequence of strategies to obtain a value as small as he wants,
and thus ValG`?,r (`

?, ν) = −∞. This contradicts the absence of values −∞ in840

the game. Thus, the prefix (`0, ν)
c0−→ · · · (`k, ν) contains no cycles. Thus, the

sum of the discrete weights w = π(`0, `1) + · · · + π(`k−1, `k) belongs to the set
[−(|L| − 1)Πtr, |L|Πtr] ∩ Z, and we have ValG`?,r (`

?, ν) = w + ϕ`k(ν). Notice
that the previous developments also show that for all ν′ ∈ I ′ (here, ν < ν′

is not needed), ValG`?,r (`
?, ν′) = w + ϕ`k(ν′), with the same location `k, and845

weight k. Since this equality holds on I ′ ⊆ I which is not a singleton, and
ValG`?,r (`

?) is affine on I, it holds everywhere on I. This shows the result since
w + ϕ`k ∈ FG .

We now prove the termination of the sequence of ri’s described earlier. This
is achieved by showing why, for all i, the owner of `? has a strictly better strategy850

in configuration (`?, ri+1) than waiting until ri in location `?.

Lemma 18. If G`?,ri is finitely optimal for all i > 0, then

(i) if `? ∈ LMin (respectively, LMax), ValG(`?, ri+1) < ValG(`?, ri) + (ri −
ri+1)π(`?) (respectively, ValG(`?, ri+1) > ValG(`?, ri) + (ri − ri+1)π(`?)),
for all i; and855

(ii) there is i 6 |FG |2 + 2 such that ri = 0.

Proof. For the first item, we assume `? ∈ LMin, since the proof of the other
case only differ with respect to the sense of the inequalities. From Lemma 16,
we know that in G`?,ri there exists r′ < ri+1 such that ValG`?,ri (`

?) is affine of

[r′, ri+1] and its slope is smaller that−π(`?), i.e. ValG`?,ri (`
?, ri+1) < ValG`?,ri (r

′)−860

(ri+1 − r′)π(`?). Lemma 15 also ensures that ValG`?,ri (`
?, r′) 6 ValG(`?, ri) +

(ri − r′)π(`?). Combining both inequalities allows us to conclude.
We now turn to the proof of the second item, showing the stationarity of

sequence (ri)i>0. We consider first the case where `? ∈ LMax. Let i > 0 such
that ri 6= 0 (if there exist no such i then r1 = 0). Recall from Lemma 16 that
there exists r′i < ri such that ValG`?,ri−1

(`?) is affine on [r′i, ri], of slope greater

than −π(`?). In particular,

ValG`?,ri−1
(`?, ri)− ValG`?,ri−1

(`?, r′i)

ri − r′i
> −π(`?) .

Lemma 17 states that on [r′i, ri], ValG`?,ri−1
(`?) is equal to some fi ∈ FG . As fi

is an affine function, fi(ri) = ValG`?,ri−1
(`?, ri), and fi(r

′
i) = ValG`?,ri−1

(`?, r′i).

Thus, for all ν,

fi(ν) = ValG`?,ri−1
(`?, ri) +

ValG`?,ri−1
(`?, r′i)− ValG`?,ri−1

(`?, ri)

ri − r′i
(ri − ν).

Since G`?,ri−1
is assumed to be finitely optimal, we know that ValG`?,ri−1

(`?, ri) =

ValG(`?, ri), by definition of ri = left`?(ri−1). Therefore, combining both equal-
ities above, for all valuations ν < ri, we have fi(ν) < ValG(`?, ri)+π(`?)(ri−ν).865

28

ValG(`?, ν)

ν

−π(`?)

fi

fj

rj ri

Figure 8: The case `? ∈ LMax: a geometric proof of fi 6= fj . The dotted lines represents fi
and fj , the dashed lines have slope −π(`?), and the plain line depicts ValG(`?). Because the
slope of fi is strictly smaller than −π(`?), and the value at rj is above the dashed line it
cannot be the case that fi(rj) = ValG(`?, rj) = fj(rj).

Consider then j > i such that rj 6= 0. We claim that fj 6= fi. Indeed, we
have ValG(`?, rj) = fj(rj). As, in G, `? is a non-urgent location, Lemma 14
ensures that

ValG(`?, rj) > ValG(`?, ri) + π(`?)(ri − rj) .

As for all i′, ValG(`?, ri′) = fi′(ri′), the equality above is equivalent to fj(rj) >
fi(ri) + π(`?)(ri − rj). Recall that fi has a slope strictly greater that −π(`?),
therefore fi(rj) < fi(ri) + π(`?)(ri − rj) 6 fj(rj). As a consequence fi 6= fj
(this is depicted in Figure 8).

Therefore, there cannot be more than |FG | + 1 non-null elements in the870

sequence r0 > r1 > · · · , which proves that there exists i 6 |FG | + 2 such that
ri = 0.

We continue with the case where `? ∈ LMin. Let r∞ = inf{ri | i > 0}. In this
case, we look at the affine parts of ValG(`?) with a slope greater than −π(`?),
and we show that there can only be finitely many such segments in [r∞, 1]. We875

then show that there is at least one such segment contained in [ri+1, ri] for all
i, bounding the size of the sequence.

In the following, we call segment every interval [a, b] ⊂ (r∞, 1] such that a
and b, are two consecutive cutpoints of the cost function ValG(`?) over (r∞, 1].
Recall that it means that ValG(`?) is affine on [a, b], and if we let a′ be the880

greatest cutpoint smaller than a, and b′ the smallest cutpoint greater than b,
the slopes of ValG(`?) on [a′, a] and [b, b′] are different from the slope on [a, b].
We abuse the notations by referring to the slope of a segment [a, b] for the slope
of ValG(`?) on [a, b] and simply call cutpoint a cutpoint of ValG(`?).

To every segment [a, b] with a slope greater than −π(`?), we associate a885

function f[a,b] ∈ FG as follows. Let i be the smallest index such that [a, b] ∩
[ri+1, ri] is a non singleton interval [a′, b′]. Lemma 17 ensures that there exists
f[a,b] ∈ FG such that for all ν ∈ [a′, b′], ValG(`?, ν) = f[a,b](ν).

Consider now two disjoint segments [a, b] and [c, d] with a slope strictly
greater than −π(`?), and assume that f[a,b] = f[c,d] (in particular both segments890

29

a

b

e

g

α

c

d

•
x

Figure 9: In order for the segments [a, b] and [c, d] to be aligned, there must exist a segment
with a biggest slope crossing f[a,b] (represented by a dashed line) between b and c.

have the same slope). Without loss of generality, assume that b < c. We claim
that there exists a segment [e, g] in-between [a, b] and [c, d] with a slope greater
than the slope of [c, d], and that f[e,g] and f[a,b] intersect over [b, c], in a point of
abscisse x, i.e. x ∈ [b, c] verifies f[e,g](x) = f[a,b](x) (depicted in Figure 9). We
prove it now.895

Let α be the greatest cutpoint smaller than c. We know that the slope of [α, c]
is different from the one of [c, d]. If it is greater then define e = α and x = g = c,
those indeed satisfy the property. If the slope of [α, c] is smaller than the one
of [c, d], then for all ν ∈ [α, c), ValG(`?, ν) > f[c,d](ν). Let x be the greatest
point in [b, α] such that ValG(`?, x) = f[c,d](x). We know that it exists since900

ValG(`?, b) = f[c,d](b), and ValG(`?) is continuous. Observe that ValG(`?, ν) >
f[c,d](ν), for all x < ν < c. Finally, let g be the smallest cutpoint of ValG(`?)
strictly greater than x, and e the greatest cutpoint of ValG(`?) smaller than or
equal to x. By construction [e, g] is a segment that contains x. The slope of the

segment [e, g] is s[e,g] = ValG(`?,g)−ValG(`?,x)
g−x , and the slope of the segment [c, d]905

is equal to s[c,d] =
f[c,d](g)−f[c,d](x)

g−x . Remembering that ValG(`?, x) = f[c,d](x),

and that ValG(`?, g) > f[c,d](g) since g ∈ (x, c), we obtain that s[e,g] > s[c,d].
Finally, since ValG(`?, x) = f[c,d](x) = f[e,g](x), it is indeed the abscisse of the
intersection point of f[c,d] = f[a,b] and f[e,g], which concludes the proof of the
previous claim.910

For every function f ∈ FG , there are less than |FG | intersection points be-
tween f and the other functions of FG (at most one for each pair (f, f ′)). If f
has a slope greater than −π(`?), thanks to the previous paragraph, we know
that there are at most |FG | segments [a, b] such that f[a,b] = f . Summing over
all possible functions f , there are at most |FG |2 segments with a slope greater915

than −π(`?).
Now, we link those segments with the valuations ri’s, for i > 0. By item

30

ValG(`?, ν)

ν

−π(`?)

ri+1 ri

•

•

ValG(ri)+
π(`?)(ri − ri+1)

Figure 10: The case `? ∈ LMin: as the value at ri+1 is strictly below ValG(ri)+π(`?)(ri−ri+1),
as the slope on the left of ri and of ri+1 is −π(`?), there must exist a segment (represented
with a double line) with slope greater than −π(`?) in [ri+1, ri).

(i), thanks to the finite-optimality of G`?,ri , ValG(`?, ri+1) < (ri − ri+1)π(`?) +
ValG(`?, ri). Furthermore, Proposition 20 states that the slope of the segment
directly on the left of ri is equal to −π(`?). With the previous inequality in920

mind, this cannot be the case if ValG(`?) is affine over the whole interval [ri+1, ri].
Thus, there exists a segment [a, b] of slope strictly greater than −π(`?) such that
b ∈ [ri+1, ri]. As we also know that the slope left to ri+1 is −π(`?), it must be
the case that a ∈ [ri+1, ri]. Hence, we have shown that in-between ri+1 and ri,
there is always a segment (this is depicted in Figure 10). As the number of such925

segments is bounded by |FG |2, we know that the sequence ri is stationary in at
most |FG |2 + 1 steps, i.e. that there exists i 6 |FG |2 + 1 such that ri = 0.

By iterating this construction, we make all locations urgent iteratively, and
obtain:

Theorem 19. Every SPTG G is finitely optimal and for all locations `, ValG(`)930

has at most O
(
(Πtr|L|2)2|L|+2

)
cutpoints.

Proof. As announced, we show by induction on n > 0 that every r-SPTG G with
n non-urgent locations is finitely optimal, and that the number of cutpoints of
ValG(`) is at most O

(
(Πtr(|Lf |+ n2))2n+2

)
, which suffices to show the above

bound, since |Lf |+ n2 6 |L|2.935

The base case n = 0 is given by Proposition 11. Now, assume that G
has at least one non-urgent location, and consider `? one with minimum price-
rate. By induction hypothesis, all r′-SPTGs G`?,r′ are finitely optimal for all
r′ ∈ [0, r]. Let r0 > r1 > · · · be the decreasing sequence defined by r0 = r
and ri = left`?(ri−1) for all i > 1. By Lemma 18, there exists j 6 |FG |2 + 2940

such that rj = 0. Moreover, for all 0 < i 6 j, ValG = ValG`?,ri−1
on [ri, ri−1]

by definition of ri = left`?(ri−1), so that ValG(`) is a cost function on this in-
terval, for all `, and the number of cutpoints on this interval is bounded by
O
(
(Πtr(|Lf |+ (n− 1)2 + n))2(n−1)+2

)
= O

(
(Πtr(|Lf |+ n2))2(n−1)+2

)
by in-

duction hypothesis (notice that maximal transition prices are the same in G and945

31

G`?,ri−1
, but that we add n more final locations in G`?,ri−1

). Adding the cutpoint
1, summing over i from 0 to j 6 |FG |2 + 2, and observing that |FG | 6 2Πtr|Lf |,
we bound the number of cutpoints of ValG(`) by O

(
(Πtr(|Lf |+ n2))2n+2

)
. Fi-

nally, we can reconstruct fake-optimal and optimal strategies in G from the
fake-optimal and optimal strategies of G`?,ri .950

6. Algorithms to compute the value function

The finite optimality of SPTGs allows us to compute the value functions.
The proof of Theorem 19 suggests a recursive algorithm to do so: from an
SPTG G with minimal non-urgent location `?, solve recursively G`?,1, G`?,left(1),
G`?,left(left(1)), etc. handling the base case where all locations are urgent with955

Algorithm 1. While our results above show that this is correct and terminates,
we propose instead to solve—without the need for recursion—the sequence of
games GL\Lu,1, GL\Lu,left(1), . . . i.e. making all locations urgent at once. Again,
the arguments given above prove that this scheme is correct, but the key ar-
gument of Lemma 18 that ensures termination cannot be applied in this case.960

Instead, we rely on the following result, stating, that there will be at least one
cutpoint of ValG in each interval [left(r), r]. Observe that this lemma relies on
the fact that G is finitely optimal, hence the need to first prove this fact inde-
pendently with the sequence G`?,1, G`?,left(1), G`?,left(left(1)),. . . Termination then
follows from the fact that ValG has finitely many cutpoints by finite optimality.965

Proposition 20. Let r0 ∈ (0, 1] such that GL′,r0 is finitely optimal. Suppose
that r1 = leftL′(r0) > 0, and let r2 = leftL′(r1). There exists r′ ∈ [r2, r1) and
` ∈ L′ such that

(i) ValG(`) is affine on [r′, r1], of slope equal to −π(`), and

(ii) ValG(`, r1) 6= ValG(`, r0) + π(`)(r0 − r1).970

As a consequence, ValG(`) has a cutpoint in [r1, r0).

Proof. We denote by r′ the smallest valuation (smaller than r1) such that for all
locations `, ValG(`) is affine over [r′, r1]. Then, the proof goes by contradiction:
using Lemma 16, we assume that for all ` ∈ L′∩LMin (respectively, ` ∈ L′∩LMax)

• either (¬(i)) the slope of ValG(`) on [r′, r1] is greater (respectively, smaller)975

than −π(`),

• or ((i) ∧ ¬(ii)) for all ν ∈ [r′, r1], ValG(`, ν) = ValG(`, r0) + π(`)(r0 − ν).

Let σ0
Min and σ0

Max (respectively, σ1
Min and σ1

Max) be a fake-optimal NC-
strategy and an optimal FP-strategy in GL′,r0 (respectively, GL′,r1). Let r′′ =
max(pts(σ1

Min) ∪ pts(σ1
Max)) ∩ [r′, r1), so that strategies σ1

Min and σ1
Max have the980

same behaviour on all valuations of the interval (r′′, r1), i.e. either always play
urgently the same transition, or wait, in a non-urgent location, until reaching
some valuation greater than or equal to r1 and then play the same transition.

Observe preliminarily that for all ` ∈ L′ ∩LMin (respectively, ` ∈ L′ ∩LMax),
if on the interval (r′′, r1), σ1

Min (respectively, σ1
Max) goes to `f then the slope on985

[r′′, r1] (and thus on [r′, r1]) is −π(`). Thus for such a location `, we know that
(i) ∧ ¬(ii) holds for ` (by letting r′ be r′′).

32

For other locations `, we will construct a new pair of NC- and FP-strategies
σMin and σMax in GL′,r0 such that for all locations ` and valuations ν ∈ (r′′, r1)

fakeσMin

GL′,r0
(`, ν) 6 ValG(`, ν) 6 PriceGL′,r0 ((`, ν), σMax) . (5)

As a consequence, with Lemma 4 (over game GL′,r0), one would have that
ValGL′,r0 (`, ν) = ValG(`, ν), which will raise a contradiction with the definition

of r1 as leftL′(r0) < r0 (by Lemma 16), and conclude the proof.990

We only show the construction for σMin, as it is very similar for σMax. Strategy
σMin is obtained by combining strategies σ1

Min over [0, r1], and σ0
Min over [r1, r0]:

a special care has to be spent in case σ1
Min performs a jump to a location `f ,

since then, in σMin, we rather glue this move with the decision of strategy σ0
Min

in (`, r1). Formally, let (`, ν) be a configuration of GL′,r0 with ` ∈ LMin. We995

construct σMin(`, ν) as follows:

• if ν > r1, σMin(`, ν) = σ0
Min(`, ν);

• if ν < r1, ` 6∈ L′ and σ1
Min(`, ν) =

(
t, (`, `f)

)
for some delay t (such that

ν + t 6 r1), we let σMin(`, ν) =
(
r1 − ν + t′, (`, `′)

)
where (t′, (`, `′)) =

σ0
Min(`, r1);1000

• otherwise σMin(`, ν) = σ1
Min(`, ν).

For all finite plays ρ in GL′,r0 that conform to σMin, start in a configuration

(`, ν) such that ν ∈ (r′′, r0] and ` /∈ {`′f | `′ ∈ L}, and end in a final location,
we show by induction that PriceGL′,r0 (ρ) 6 ValG(`, ν). Note that ρ either only

contains valuations in [r1, r0], or is of the form (`, ν)
c−→ (`f , ν′), or is of the form1005

(`, ν)
c−→ ρ′ with ρ′ a run that satisfies the above restriction.

• If ν ∈ [r1, r0], then ρ conforms with σ0
Min, thus, as σ0

Min is fake-optimal,
PriceGL′,r0 (ρ) 6 ValGL′,r0 (`, ν) = ValG(`, ν) (the last inequality comes from

the definition of r1 = leftL′(r0)). Therefore, in the following cases, we
assume that ν ∈ (r′′, r1).1010

• Consider then the case where ρ is of the form (`, ν)
c−→ (`f , ν′).

– if ` ∈ L′ ∩LMin, ` is urgent in GL′,r0 , thus ν′ = ν. Furthermore, since
ρ conforms with σMin, by construction of σMin, the choice of σ1

Min on
(r′′, r1) consists in going to `f , thus, as observed above, (i) ∧ ¬(ii)
holds for `. Therefore, ValG(`, ν) = ValG(`, r0) + π(`)(r0 − ν) =1015

ϕ`f (ν) = PriceGL′,r0 (ρ).

– If ` ∈ LMin \L′, by construction, it must be the case that σMin(`, ν) =(
r1 − ν + t′, (`, `f)

)
where

(
t, (`, `f)

)
= σ1

Min(`, ν) and
(
t′, (`, `f)

)
=

σ0
Min(`, r1). Thus, ν′ = r1+t′. In particular, observe that PriceGL′,r0 (ρ) =

(r1 − ν)π(`) + PriceGL′,r0 (ρ′) where ρ′ = (`, r1)
c′−→ (`f , ν′). As ρ′1020

conforms with σ0
Min which is fake-optimal in GL′,r0 , PriceGL′,r0 (ρ′) 6

ValGL′,r0 (`, r1) = ValG(`, r1) (since r1 = left(r0)). Thus PriceGL′,r0 (ρ) 6

(r1 − ν)π(`) + ValG(`, r1) = PriceGL′,r1 (ρ′′) where ρ′′ = (`, ν)
c′′−→

(`f , ν+ t) conforms with σ1
Min which is fake-optimal in GL′,r1 . There-

fore, PriceGL′,r0 (ρ) 6 ValGL′,r1 (`, ν) = ValG(`, ν) (since r1 = left(r0)).1025

33

– If ` ∈ LMax then PriceGL′,r0 (ρ) = (ν′ − ν)π(`) + ϕ`f (ν′) = (ν′ −
ν)π(`) + (r0 − ν′)π(`) + ValG(`, r0) = (r0 − ν)π(`) + ValG(`, r0). By
Lemma 14, since ` ∈ LMax \ Lu (` is not urgent in G since `f exists),
ValG(`, r1) > (r0 − r1)π(`) + ValG(`, r0). Furthermore, observe that

if we define ρ′ as the play (`, ν)
c′−→ (`f , ν) in GL′,r1 , then ρ′ conforms

with σ1
Min and

PriceGL′,r1 (ρ′) = (r1 − ν)π(`) + ValG(`, r1)

> (r1 − ν)π(`) + (r0 − r1)π(`) + ValG(`, r0)

= (r0 − ν)π(`) + ValG(`, r0)

= PriceGL′,r0 (ρ) .

Thus, as σ1
Min is fake-optimal in GL′,r1 , PriceGL′,r0 (ρ) 6 PriceGL′,r1 (ρ′) 6

ValGL′,r1 (`, ν) = ValG(`, ν).

• We finally consider the case where ρ = (`, ν)
c−→ ρ′ with ρ′ that starts

in configuration (`′, ν′) such that `′ /∈ {`′′f | `′′ ∈ L}. By induction
hypothesis PriceGL′,r0 (ρ′) 6 ValG(`′, ν′).1030

– If ν′ 6 r1, let ρ′′ be the play of GL′,r1 starting in (`′, ν′) that con-
forms with σ1

Min and σ1
Max. If ρ′′ does not reach a final location,

since σ1
Min is an NC-strategy, the prices of its prefixes tend to −∞.

By considering the strategy σ′Min of Lemma 4, we would obtain a
run conforming with σ1

Max of price smaller than ValGL′,r1 (`′, ν′) which

would contradict the optimality of σ1
Max. Hence, ρ′′ reaches the tar-

get. Moreover, since σ1
Max is optimal and σ1

Min is fake-optimal, we fi-
nally know that PriceGL′,r1 (ρ′′) = ValGL′,r1 (`′, ν′) = ValG(`′, ν′) (since

ν′ ∈ [left(r1), r1]). Therefore,

PriceGL′,r0 (ρ) = (ν′ − ν)π(`) + π(`, `′) + PriceGL′,r0 (ρ′)

6 (ν′ − ν)π(`) + π(`, `′) + ValG(`′, ν′)

= (ν′ − ν)π(`) + π(`, `′) + Price(ρ′′) = Price((`, ν)
c′−→ ρ′′)

Since the play (`, ν)
c′−→ ρ′′ conforms with σ1

Min, we finally have

PriceGL′,r0 (ρ) 6 Price((`, ν)
c′−→ ρ′′) 6 ValGL′,r1 (`, ν) = ValG(`, ν).

– If ν′ > r1 and ` ∈ LMax, let ρ1 be the play in GL′,r1 defined by

ρ1 = (`, ν)
c′−→ (`f , ν) and ρ0 the play in GL′,r0 defined by ρ0 =

(`, r1)
c′′−→ ρ′. We have

PriceGL′,r0 (ρ) = (ν′ − ν)π(`) + π(`, `′) + PriceGL′,r0 (ρ′)

= ϕ`f (ν)︸ ︷︷ ︸
= PriceG

L′,r1
(ρ1)

−ValG(`, r1) + (ν′ − r1)π(`) + π(`, `′) + PriceGL′,r0 (ρ′)︸ ︷︷ ︸
= PriceG

L′,r0
(ρ0)

.

Since ρ0 conforms with σ0
Min, fake-optimal, and reaches a final lo-

cation, PriceGL′,r0 (ρ0) 6 ValGL′,r0 (`, r1) = ValG(`, r1) (since r1 =

34

Algorithm 2: solve(G)

Input: SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π)
1 f = (f`)`∈L := solveInstant(G, 1) /* f` : {1} → R */

2 r := 1

3 while 0 < r do /* Invariant: f` : [r, 1]→ R */

4 G′ := wait(G, r,f(r)) /* r-SPTG
G′ = (LMin, LMax, L

′
f , L

′
u,ϕ

′, T ′, π′) */

5 L′u := L′u ∪ L /* every location is made urgent */

6 b := r

7 repeat /* Invariant:f` : [b, 1]→ R */

8 a := max(PossCPG′ ∩ [0, b))
9 x = (x`)`∈L := solveInstant(G′, a) /* x` = ValG′(`, a) */

10 if ∀` ∈ LMin
f`(b)−x`
b−a 6 −π(`) ∧ ∀` ∈ LMax

f`(b)−x`
b−a > −π(`) then

11 foreach ` ∈ L do

f` :=
(
ν ∈ [a, b] 7→ f`(b) + (ν − b) f`(b)−x`b−a

)
B f`

12 b := a ; stop := false

13 else stop := true

14 until b = 0 or stop
15 r := b

16 return f

leftL′(r0)). We also have that ρ1 conforms with σ1
Min, so the pre-1035

vious explanations already proved that PriceGL′,r1 (ρ1) 6 ValG(`, ν).

As a consequence PriceGL′,r0 (ρ) 6 ValG(`, ν).

– If ν′ > r1 and ` ∈ LMin, we know that ` is non-urgent, so that ` 6∈ L′.
Therefore, by definition of σMin, σMin(`, ν) = (r1−ν+t′, (`, `′)) where
σ1
Min(`, ν) = (t, (`, `f)) for some delay t, and σ0

Min(`, r1) = (t′, (`, `′)).1040

If we let ρ1 be the play in GL′,r1 defined by ρ1 = (`, ν)
c′−→ (`f , ν) and

ρ0 the play in GL′,r0 defined by ρ0 = (`, r1)
c′′−→ ρ′, as in the previous

case, we obtain that PriceGL′,r0 (ρ) 6 ValG(`, ν).

As a consequence of this induction, we have shown that for all ` ∈ L, and
for all ν ∈ (r′′, r1), fakeσMin

GL′,r0
(`, ν) 6 ValG(`, ν), which shows one inequality of1045

(5), the other being obtained very similarly.

Algorithm 2 implements these ideas. Each iteration of the while loop com-
putes a new game in the sequence GL\Lu,1, GL\Lu,left(1), . . . described above;
solves it thanks to solveInstant; and thus computes a new portion of ValG
on an interval on the left of the current point r ∈ [0, 1]. More precisely, the1050

vector (ValG(`, 1))`∈L is first computed in line 1. Then, the algorithm enters the
while loop, and the game G′ obtained when reaching line 6 is GL\Lu,1. Then,
the algorithm enters the repeat loop to analyse this game. Instead of build-
ing the whole value function of G′, Algorithm 2 builds only the parts of ValG′
that coincide with ValG . It proceeds by enumerating the possible cutpoints a of1055

ValG′ , starting in r, by decreasing valuations (line 8), and computes the value

35

of ValG′ in each cutpoint thanks to solveInstant (line 9), which yields a new
piece of ValG′ . Then, the if in line 10 checks whether this new piece coincides
with ValG , using the condition given by Proposition 13. If it is the case, the
piece of ValG′ is added to f` (line 11); repeat is stopped otherwise. When ex-1060

iting the repeat loop, variable b has value left(1). Hence, at the next iteration
of the while loop, G′ = GL\Lu,left(1) when reaching line 6. By continuing this
reasoning inductively, one concludes that the successive iterations of the while
loop compute the sequence GL\Lu,1, GL\Lu,left(1), . . . as announced, and rebuilds
ValG from them. Termination in exponential time is ensured by Proposition 20:1065

each iteration of the while loop discovers at least one new cutpoint of ValG ,
and there are at most exponentially many (note that a tighter bound on this
number of cutpoints would entail a better complexity of our algorithm).

Example 1. Figure 11 shows the value functions of the SPTG of Figure 1.
Here is how the algorithm Algorithm 2 obtains those functions. During the first1070

iteration of the while loop, the algorithm computes the correct value functions
until the cutpoint 3

4 : in the repeat loop, at first a = 9/10 but the slope in `1 is
smaller than the slope that would be granted by waiting, as depicted in Figure 1.
Then, a = 3/4 where the algorithm gives a slope of value −16 in `2 while the
price of this location of Max is −14. During the first iteration of the while loop,1075

the inner repeat loop thus ends with r = 3/4. The next iterations of the while
loop end with r = 1

2 (because `1 does not pass the test in line 10); r = 1
4 (because

of `2) and finally with r = 0, giving us the value functions on the entire interval
[0, 1].

7. Towards more complex PTGs1080

In [BLMR06, Rut11, HIJM13], general PTGs with non-negative prices are
solved by reducing them to a finite sequence of SPTGs, by eliminating guards
and resets. It is thus natural to try and adapt these techniques to our general
case, in which case Algorithm 2 would allow us to solve general PTGs with
arbitrary prices. Let us explain where are the difficulties of such a generalisation.1085

The technique used to remove strict guards from the transitions of the PTGs,
i.e. guards of the form (a, b], [b, a) or (a, b) with a, b ∈ N, consists in enhancing
the locations with regions while keeping an equivalent game. This technique
can be adapted to arbitrary weights.

Formally, let G = (LMin, LMax, Lf , Lu,ϕ,∆, π) be a PTG. We define the1090

region-PTG of G as G′ = (L′Min, L
′
Max, L

′
f , L

′
u,ϕ

′,∆′, π′) where:

• L′Min = {(`, I) | ` ∈ LMin, I ∈ RegG};

• L′Max = {(`, I) | ` ∈ LMax, I ∈ RegG};

• Lf = {(`, I) | ` ∈ Lf , I ∈ RegG};

• Lu = {(`, I) | ` ∈ Lu, I ∈ RegG};1095

• ∀(`, I) ∈ L′f , ϕ′`,I = ϕ`;

36

x
0

1
4

1
2

3
4

1

Val(`2, x)
−9.5

−6 −5.5

−2

1

x
0

1
4

1
2

3
4

9
10 1

Val(`1, x)
−9.5

−6 −5.5

−2
−0.2

x
0

1
4

1
2 1

Val(`3, x)

−10

−6 −5.5
−7

x
0 1

Val(`4, x)

−4

−7

x
0

3
4 1

Val(`5, x)
−14

−2
1

x
0 1

Val(`6, x)

−11

1

x
0 1

Val(`7, x)
−16

0

Figure 11: Value functions of the SPTG of Figure 1

37

•

∆′ =

{
((`, I), Ig ∩ I,R, (`′, I ′)) | (`, Ig, R, `′) ∈ ∆, I ′ =

{
I if R = ⊥
{0} otherwise

}
∪
{

((`, (Mk,Mk+1)), {Mk+1},⊥, (`, {Mk+1})) | ` ∈ L, (Mk,Mk+1) ∈ RegG
}

∪
{

((`, {Mk}), {Mk},⊥, (`, (Mk,Mk+1))) | ` ∈ L, (Mk,Mk+1) ∈ RegG
}

;

Transitions belonging to the last two sets are called waiting transition
denoted by WaitTr.

• ∀(`, I) ∈ L′, π′(`, I) = π(`); and ∀((`, I), Ig, R, (`
′, I ′)) ∈ ∆′, if (`, Ig, R, `

′) ∈
∆, then π((`, I), Ig, R, (`

′, I ′)) = π(`, Ig, R, `), else π((`, I), Ig, R, (`
′, I ′)) =1100

0.

It is easy to verify that, in all configurations ((`, {Mk}), ν) reachable from the
null valuation, the valuation ν is Mk. More interestingly, in all configurations
((`, (Mk,Mk+1)), ν) reachable from the null valuation, the valuation ν is in
[Mk,Mk+1]: indeed if ν = Mk (respectively, Mk+1), it intuitively simulates a1105

configuration of the original game with a valuation arbitrarily close to Mk, but
greater than Mk (respectively, smaller than Mk+1). The game can thus take
transitions with guard x > Mk, but cannot take transitions with guard x = Mk

anymore.

Lemma 21. Let G be a PTG, and G′ be its region-PTG defined as before.1110

For (`, I) ∈ L × RegG and ν ∈ I, ValG(`, ν) = ValG′((`, I), ν). Moreover, we
can transform an ε-optimal strategy of G′ into an ε′-optimal strategy of G with
ε′ < 2ε and vice-versa.

Proof. The proof consists in replacing strategies of G′ where players can play
on the borders of regions, by strategies of G that play increasingly close to the1115

border as time passes. If played close enough, the loss created can be chosen as
small as we want.

Let G be a PTG, G′ be its region-PTG. First, for ε > 0, we create a trans-
formation g of the plays of G′ which does not end with a waiting transition to
the plays of G. g is defined by induction on the length n of the plays so that for1120

a play ρ of length n we have (1) |Price(ρ) − Price(g(ρ))| 6 2Πloc(1 − 1
2n)ε and

(2) there exists ` ∈ L and I ∈ RegG such that g(ρ) and ρ ends in the states `
and (`, I) and their valuations are both in I and differ of at most 1

2n+1 ε.
If n = 0, let ρ = ((`, I), ν) be a play of G′ of length 0, then g(ρ) = (`, ν′),

where ν′ = ν ± ε
2 if I is not an interval and ν is an endpoint of I, and ν′ = ν1125

otherwise (so that ν′ ∈ I in every case).
For n > 0, we suppose g defined on every play of length at most n which does

not end with a waiting transition. Let ρ = ((q1, I1), ν1)
t1,δ1,c1−−−−−→ . . .

tn,δn,cn−−−−−→
((qn, In), νn)

tn+1,δn+1,cn+1−−−−−−−−−−→ ((qn+1, In+1), νn+1) with δn+1 /∈ WaitTr. Let
last = max({k 6 n | trk /∈ WaitTr}) (with max ∅ = 0). Then, by induc-1130

tion, there exists ρ′ = (q1, ν1)→ · · · → (qlast+1, v
′
last+1) such that g(ρ|last) = ρ′

(where ρ|last is the prefix of length last of ρ), |Price(ρ|last)− Price(g(ρ|last))| 6
2Πloc(1 − 1

2last
)ε and |ν′last+1 − νlast+1| 6 1

2last+1 ε. Then we choose g(ρ) =

ρ′
t,δn+1,c−−−−−→ (qn+1, ν

′
n+1) where

38

• if δn+1 is enabled in G in (qlast+1 = qn, νn + tn+1), t = νn + tn+1 − ν′last;1135

• otherwise, as the permissive interval of G′ are the closure of the permissive
interval of G, then there exists z ∈ {+1;−1} such that for t = νn + tn+1−
ν′last + zε

2n+2 , δn+1 is enabled in G and ν′last + t and νn + tn+1 belong to
the same region.

Thus, in both cases, |νn+1 − ν′n+1| 6 ε
2n+2 and νn+1 6= ν′n+1 iff I is not a

singleton, νn+1 is on a border, ν′n+1 is close to this border and δn+1 does not
contain a reset. Moreover,

|Price(ρ)− Price(g(ρ))| = |Price(ρ|last) + (νn+1 − νlast)π(qlast) + π(δn+1)− Price(g(ρ))|
6 |Price(ρ|last)− Price(g(ρ|last))|

+ |(νn+1 − νlast)π(qlast) + π(δn+1) + Price(g(ρ|last))− Price(g(ρ))|

6 2Πloc(1− 1

2last
)ε+ |(ν′last − νlast)π(qlast) + (νn+1 − ν′n+1)π(qlast)|

6 2Πloc(1− 1

2last
)ε+

∣∣∣ ε

2last+1
π(qlast)

∣∣∣+
∣∣∣ ε

2n+2
π(qlast)

∣∣∣
6 2Πloc(1− 1

2last
)ε+

Πlocε

2last+1
+

Πlocε

2n+2

6 2Πloc(1− 1

2last+1
)ε

6 2Πloc(1− 1

2n+1
)ε .

Let σMin be a strategy of Min in G. Using the transformation g, we will build1140

by induction a strategy σ′Min in G′ such that for all plays ρ whose last transition
does not belong to WaitTr and conforming with σ′Min, g(ρ) conforms with σMin.

Let ρ be a play of G′ whose last transition does not belong to WaitTr such
that g(ρ) conforms with σMin (which is the case of all plays of length 0). ρ and
g(ρ) ends in the locations (q, I) and q respectively.1145

• If ρ ends in a configuration of Max, then the choice does not depend on
σMin or σ′Min. Let (t, δ) be a choice of Max in G′ with price c. If δ belongs
to WaitTr, then the new configuration also belongs to Max where he will
make another choice. Let ρ′ be the extension of ρ until the first transition
δ′ such that δ′ /∈ WaitTr. g(ρ′) conforms with σMin as the configuration1150

where g(ρ) ends is controlled by Max and g(ρ′) only has one more transition
than g(ρ).

• If ρ ends in configuration of Min, then there exists t, δ, c, q′, ν′ such that

g(ρ)
t,δ,c−−−→ (q′, ν′) conforms with σMin. As taking a waiting transition does

not change the ownership of the configuration, we consider here multiple1155

successive choices of Min as one choice: σ′Min(ρ) is such that ρ′ = ρ
t1,δ1,c1−−−−−→

. . .
tk,δk,ck−−−−−→ ((q, I ′′), ν)

tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), ν′) where ∀i 6 k, δi ∈ WaitTr
conforms with σ′Min. This is possible as if δ is allowed in a configuration
(q, ν) in G then it is allowed too in a configuration ((q, I), ν) with the

appropriate I. Then g(ρ′) = g(ρ)
δ,tr,c−−−→ (q′, ν′), thus g(ρ′) conforms with1160

σMin.

39

As no accepting plays of G′ end with a transition of WaitTr, every accepting
play ρ conforming with σ′Min verifies that g(ρ) conforms with σMin. Thus for
every configuration s, PriceG′(s, σ

′
Min) 6 PriceG(s, σMin) + 2Πlocε. Therefore

ValG′(s) 6 ValG(s).1165

Reciprocally, let σ′Min be a strategy of Min in G′. We will now build by
induction a strategy σMin in G such that for all plays ρ conforming with σMin,
there exists a play in g−1(ρ) that conforms with σ′Min.

Let ρ be a play of G conforming with σMin such that there exists ρ′ ∈ g−1(ρ)
conforming with σ′Min (which is the case of all plays of length 0). ρ′ and ρ ends1170

in the configuration ((q, I), ν′) and (q, ν).

• If ρ ends in configuration of Max, then the choice does not depend on σMin

or σ′Min. Let (t, δ) be a choice of Max in G with price c and let ρ̃ be the
extension of ρ by this choice. There exists (t1, δ1, c1), . . . , (tk+1, δk+1, ck+1)

such that ∀i 6 k, δi ∈ WaitTr, δk+1 = δ and
∑k+1
i=1 ti = ν + t − ν′. Let1175

ρc = ρ′
t1,δ1,c1−−−−−→ . . .

tk,δk,ck−−−−−→ ((q, I ′′), νk)
tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), νk+1), then ρc

conforms with σ′Min (as Min did not take a single decision) and g(ρc) = ρ̃.

• If ρ ends in a configuration of Min, then there exists a play ρc = ρ
t1,δ1,c1−−−−−→

. . .
tk,δk,ck−−−−−→ ((q, I ′′), νk)

tk+1,δ,ck+1−−−−−−−→ ((q′, I ′), νk+1) such that ρc conforms
with σ′Min. We choose σMin(ρ) = (t, δ) such that for the adequate price c,1180

g(ρc) = ρ
t,δ,c−−−→ (q′, v′′). This is possible as t+ ν′ ∈ I ′′.

Every accepting play ρ conforming with σMin verifies ∃ρ′ ∈ g−1(ρ) conforming
with σMin. Thus for every configuration s, PriceG(s, σMin) 6 PriceG′(s, σMin) +
2Πlocε. Therefore ValG′(s) > ValG(s). Hence ValG′(s) = ValG(s).

The technique to handle resets, however, consists in bounding the number of1185

clock resets that can occur in each play following an optimal strategy of Min or
Max. Then, the PTG can be unfolded into a reset-acyclic PTG with the same
value. By reset-acyclic, we mean that no cycle in the configuration graph visits
a transition with a reset. This reset-acyclic PTG can be decomposed into a
finite number of components that contain no reset and are linked by transitions1190

with resets. These components can be solved iteratively, from the bottom to
the top, turning them into SPTGs. Thus, if we assume that the PTGs we are
given as input are reset-acyclic, we can solve them in exponential time, and show
that their value functions are cost functions with at most exponentially many
cutpoints, using our techniques. In [BLMR06] the authors showed that with1195

one-clock PTG and positive prices only we could bound the number of reset by
n, the number of states, without changing the value functions. Unfortunately,
the arguments to bound the number of resets do not hold for arbitrary prices,
as shown by the PTG in Figure 12. We claim that Val(`0) = 0; that Min has
no optimal strategy, but a family of ε-optimal strategies σεMin each with value ε;1200

and that each σεMin requires memory whose size depends on ε and might yield a
play visiting at least 1/ε times the reset between `0 and `1 (hence the number
of resets cannot be bounded). For all ε > 0, σεMin consists in: waiting 1− ε time
units in `0, then going to `1 during the d1/εe first visits to `0; and to go directly
to `f afterwards. Against σεMin, Max has two possible choices:1205

(i) either wait 0 time unit in `1, wait ε time units in `2, then reach `f ; or

40

`00 `1

−1

`2

1

`f
x = 1x 6 1x 6 1

x = 1, x := 0

1

Figure 12: A PTG where the number of resets in optimal plays cannot be bounded a priori.

(ii) wait ε time unit in `1 then force the cycle by going back to `0 and wait for
Min’s next move.

Thus, all plays according to σεMin will visit a sequence of locations which is either

of the form `0(`1`0)k`1`2`f , with 0 6 k < d1/εe; or of the form `0(`1`0)d
1
εe`f .1210

In the former case, the price of the play will be −kε + 0 + ε = −(k − 1)ε 6 ε;
in the latter, −ε(d1/εe) + 1 6 0. This shows that Val(`0) = 0, but there is no
optimal strategy as none of these strategies allow one to guarantee a price of 0
(neither does the strategy that waits 1 time unit in `0).

If bounding the number of resets is not possible in the general case, it could1215

be done if one adds constraints on the cycles of the game. This kind of restriction
was used in [BCR14] where they introduce the notion of robust games. Such
games requires among other things that there exists κ > 0 such that every
play starting and ending in the same pair location and time region has either
a positive price or a price smaller than −κ. Here we require a less powerful1220

assumption as we put this restriction only on cycles containing a reset.

Definition 5. Given κ > 0, a κ-negative-reset-acyclic PTG (NRAPTG) is a
PTG where for every state ` ∈ L and every cyclic finite play ρ starting and
ending in (`, 0), either Price(ρ) > 0 or Price(ρ) < −κ.

The PTG of Figure 12 is not a κ-NRAPTG for any κ > 0 as the play1225

(`0, 0)
0−→ (`1, 1 − κ/2)

−κ/2−−−→ (`0, 0) is a cycle containing a reset and with a
negative price strictly greater than −κ. On the contrary, in Figure 13 we show
a −1-NRAPTG and its region PTG. Here, every cycle containing a reset is
between `0 and `1 and such cycles have at most price −1. The value of this
PTG is 0 but no strategies for Max can achieve it because of the guard x > 0.1230

As this guard is not strict anymore in the region PTG, both player have an
optimal strategy in this game (this is not always the case).

In order to bound the number of resets of a κ-NRAPTG we first prove a
bound on the value of such games, that will be useful in the following. We let
k = |RegG | be the number of regions.1235

Lemma 22. For all κ-NRAPTGs G, for all (`, ν) ∈ ConfG: either ValG(`, ν) ∈
{−∞,+∞}, or

−|L|MΠloc − |L|2(|L|+ 2)Πtr 6 ValG(`, ν) 6 |L|MΠloc + |L|kΠtr .

Proof. Consider the case where ValG(`, ν) /∈ {−∞,+∞}. Let κ > 2ε > 0. Then,
there exist σMin and σMax ε-optimal strategies for Min and Max, respectively.

Let σ¬cMin be any memoryless strategy of Min in the reachability timed game
induced by G such that no play consistent with σ¬cMin goes twice in the same couple
(location, region). If such a strategy does not exist, as the clock constraints are

41

`0

0

`1−1

`f

(`0, {0})

0

(`0, [0, 1])0 (`1, [0, 1]) −1

(`1, {0})

−1

`f

1, x < 1

1 > x > 0

x < 1
−1, x < 1

x := 0 x = 0 x = 0

1

1

−1, x := 0

−1

Figure 13: A −1-NRAPTG and its region PTG (some guards were removed for a better
readability)

the same during the first and second occurrences of this couple, Max can enforce
the cycle infinitely often, thus the reachability game is winning for him and the
value of G is +∞. Let us note ρ = Play((`, ν), σ¬cMin, σMax). By ε-optimality
of σMax, Price(ρ) > ValG(`, ν) − ε. Let Pricetr(ρ) be the price of ρ due to the

prices of the transitions, and Priceloc(ρ) be the price due to the time elapsed
in the locations of the game: Price(ρ) = Pricetr(ρ) + Priceloc(ρ). As there are
no cycles in the game according to couples (location, region), there are at most
|L|k transitions, thus Pricetr(ρ) 6 |L|kΠtr. Moreover, the absence of cycles also
implies that we do not take two transitions with a reset ending in the same
location or one transition with a reset ending in the initial location, thus we
take at most |L| − 1 such transitions. Therefore at most |L|M units of time
elapsed and Priceloc(ρ) 6 |L|MΠloc. This implies that

ValG(`, ν)− ε 6 Price(ρ) 6 |L|MΠloc + |L|kΠtr .

By taking the limit of ε towards 0, we obtain the announced upper bound.
We now prove the lower bound on the value. To that extent, consider now

the play ρ = Play((`, ν), σMin, σMax). We have that Price(ρ) 6 ValG(`, ν) + ε.1240

We want to lower bound the prince of ρ, therefore non-negative cycles can be
safely ignored. Let us show that there are no negative cycles around a transition
with a reset. If it was the case, since the game is a κ-NRAPTG, this cycle has
weight at most −κ. Since the strategy σMax is ε-optimal, and κ > ε, it is not
possible that σMax decides alone to take this bad cycle. Therefore, σMin has1245

the capability to enforce this cycle, and to exit it (otherwise, Max would keep
him inside to get value +∞): but then, Min could decide to cycle as long as he
wants, then guaranteeing a value as low as possible, which contradicts the fact
that Val(`, ν) /∈ {−∞,+∞}. Therefore, the only cycles in ρ around transitions
with resets, are non-negative cycles. This implies that its price is bounded below1250

by the price of a subplay obtained by removing the cycles in ρ.
We now consider a play where each reset transition is taken at most once in

ρ, and lower-bound its price.

42

If ρ contains a cycle around a location `′ ∈ LMax without reset transitions,

this cycle has the form (`′, ν′)
c′−→ (`′′, ν′ + t) · · · c′′−→ (`′, ν′′) with ν′′ > ν′,1255

followed in ρ by a transition towards configuration (`′′′, ν′′ + t′). Thus, another
strategy for Max could have consisted in skipping the cycle by choosing as delay
in the first location `′, ν′′ − ν′ + t′ instead of t. This would get a new strategy
that cannot make the price increase above ValG(`, ν) + ε, since it is still playing
against an ε-optimal strategy of Min. Therefore, we can consider the subplay ρf1260

of ρ where all such cycles are removes: we still have Price(ρf) 6 ValG(`, ν) + ε.
Suppose now that ρf contains a cycle around a location `′ ∈ LMin without

reset transitions, of the form (`′, ν′)
c′−→ (`′′, ν′ + t) · · · c

′′

−→ (`′, ν′′) with ν and
ν′ in the same region, composed of Min’s locations only, and followed in ρ by a
transition towards configuration (`′′′, ν′′+ t′). Then, the transition price of this1265

cycle is non-negative, otherwise Min could enforce this cycle he entirely controls,
while letting only a bounded time pass (smaller and smaller as the number of
cycles grow). This is not possible.

Therefore, we have that two occurrences of a same Max’s location in ρf
are separated by a reset transition and two occurrences of a same Min’s couple
(location,region) are either separated by a reset or by a Max’s location. As there
is at most |L| − 1 resets, |L| locations of Max and |L|k couples (location,region)
for Min, ρt contains at most |L|2 states of Max and |L|k(|L|2 + |L| − 1 + 1)
locations of Min, which makes for at most |L|2(|L|k + k + 1) locations. Thus
Priceloc(ρt) > −|L|2(|L|k + k + 1)Πloc. Moreover, as at most |L| − 1 resets are
taken in ρf and that the game is bounded by M , Priceloc(ρf) > −|L|MΠloc.
This implies that

ValG(`, ν) + ε > Priceloc(ρf) +Pricetr(ρt) > −|L|MΠloc − |L|2(|L|k+ k+ 1)Πtr .

Taking the limit when ε tends to 0, we obtain the desired lower bound.

Using this bound on the value of a κ-NRAPTG one can give a bound on1270

the number of cycles needed to be allowed. The idea is that if a reset is taken
twice then if the generated cycle has positive price, either Min can modify its
strategy so that it does not take this cycle or the value of the game is +∞ as
Max can stop Min to reach an accepting state. On the contrary if the cycle has
negative price, then by definition of a κ-NRAPTG, this price is less than −κ.1275

Thus by allowing enough such cycles, as we have bounds on the values of the
game, we know when we will have enough cycles to get under the lower bound
of the value of the game. By solving the copies of the game, if we reach a value
that is smaller than the lower bound of the value, then it means that the value
is −∞.1280

Lemma 23. For all κ > 0, the value of a κ-NRAPTG can be computed by
solving k = dκ× 2n(νsup − νinf)e PTGs without resets and using the same set
of guards where νsup and νinf are the upper and lower bound of the value of
the game given by Lemma 22. Moreover, from ε-optimal strategies on those k
games, we can build kε-optimal strategies in the original game.1285

With this, we can conclude:

Theorem 24. Let κ > 0 and G be a κ-NRAPTG. Then for every location q ∈ Q,
the function v 7→ V alG(q, ν) is computable in EXPTIME and are piecewise-
affine functions with at most an exponential number of cutpoints. Moreover, for

43

every ε > 0, there exists (and we can effectively compute) ε-optimal strategies1290

for both players.

The robust games defined in [BCR14] restricted to one-clock are a subset of
the NRAPTG, therefore their value is computable with the same complexity.
While we cannot extend the computation of the value to all (one-clock) PTGs,
we can still obtain information on the nature of the value function:1295

Theorem 25. The value functions of all one-clock PTGs are cost functions
with at most exponentially many cutpoints.

Proof. Let G be a one-clock PTG. Let us replace all transitions (`, g,>, `′) re-
setting the clock by (`, g,⊥, `′′), where `′′ is a new final location with ϕ`′′ =
ValG(`, 0)—observe that ValG(`, 0) exists even if we cannot compute it, so this1300

transformation is well-defined. This yields a reset-acyclic PTG G′ such that
ValG′ = ValG .

8. Conclusion

In this work, we study, for the first time, priced timed games with arbitrary
weights and one clock, showing how to compute optimal values and strategies in1305

exponential time for the special case of simple games. This complexity result is
comparable with previously obtained results in the case of non-negative weights
only [HIJM13, Rut11], even though we follow different paths to prove termina-
tion and correction (due to the presence of negative prices). In order to push
our algorithm as far as we can, we introduce the class of negative-reset-acyclic1310

games for which we obtain the same result: as a particular case, we can solve all
priced timed games with one clock for which the clock is reset in every cycle of
the underlying region automaton. As future works, it is appealing to solve the
full class of priced timed games with arbitrary weights and one clock. We have
shown why our technique seems to break in this more general setting, thus it1315

could be interesting to study the difficult negative cycles without reset as their
own, with different techniques.

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal
reachability for weighted timed games. In Proceedings of the 31st In-
ternational Colloquium on Automata, Languages and Programming1320

(ICALP’04), volume 3142 of Lecture Notes in Computer Science,
pages 122–133. Springer, 2004.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183–235, 1994.

[ALTP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal1325

paths in weighted timed automata. Theoretical Computer Science,
318(3):297–322, 2004.

[BBBR07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-
François Raskin. On the optimal reachability problem of weighted
timed automata. Formal Methods in System Design, 31(2):135–175,1330

2007.

44

[BBC06] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control
in o-minimal hybrid systems. In Proceedings of the Twenty-first
Annual IEEE Symposium on Logic In Computer Science (LICS’06),
pages 367–378. IEEE Computer Society Press, 2006.1335

[BBJ+08] Patricia Bouyer, Thomas Brihaye, Marcin Jurdziński, Ranko Lazić,
and Micha l Rutkowski. Average-price and reachability-price games
on hybrid automata with strong resets. In Proceedings of the 6th in-
ternational conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’08), volume 5215 of Lecture Notes in Com-1340

puter Science, pages 63–77. Springer, 2008.

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved
undecidability results on weighted timed automata. Information
Processing Letters, 98(5):188–194, 2006.

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin.1345

On optimal timed strategies. In Proceedings of the Third interna-
tional conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS’05), volume 3829 of Lecture Notes in Computer
Science, pages 49–64. Springer, 2005.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G.1350

Larsen. Optimal strategies in priced timed game automata. In Pro-
ceedings of the 24th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS’04), volume 3328
of Lecture Notes in Computer Science, pages 148–160. Springer,
2004.1355

[BCJ09] J. Berendsen, T. Chen, and D. Jansen. Undecidability of cost-
bounded reachability in priced probabilistic timed automata. In
Theory and Applications of Models of Computation, volume 5532 of
LNCS, pages 128–137. Springer, 2009.

[BCR14] Romain Brenguier, Franck Cassez, and Jean-François Raskin. En-1360

ergy and mean-payoff timed games. In Proceedings of the 17th In-
ternational Conference on Hybrid Systems: Computation and Con-
trol, HSCC’14, Berlin, Germany, April 15-17, 2014, pages 283–292,
2014.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,1365

Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachabil-
ity for priced timed automata. In Proceedings of the 4th Inter-
national Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Computer Science,
pages 147–161. Springer, 2001.1370

[BGH+15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux,
and Benjamin Monmege. Simple priced timed games are not
that simple. In Prahladh Harsha and G. Ramalingam, editors,
Proceedings of the 35th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science1375

(FSTTCS’15), volume 45 of Leibniz International Proceedings in

45

Informatics (LIPIcs), pages 278–292. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, December 2015.

[BGHM15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin
Monmege. To reach or not to reach? Efficient algorithms for total-1380

payoff games. In Luca Aceto and David de Frutos Escrig, editors,
Proceedings of the 26th International Conference on Concurrency
Theory (CONCUR’15), volume 42 of LIPIcs, pages 297–310. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, September 2015.

[BGHM16] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin1385

Monmege. Pseudopolynomial iterative algorithm to solve total-
payoff games and min-cost reachability games. Acta Informatica,
2016.

[BGK+14] Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna,
Lakshmi Manasa, Benjamin Monmege, and Ashutosh Trivedi.1390

Adding Negative Prices to Priced Timed Games. In Proceedings of
the 25th International Conference on Concurrency Theory (CON-
CUR’13), volume 8704 of Lecture Notes in Computer Science, pages
560–575. Springer, 2014.

[BJM14] Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value1395

problem in weighted timed games. Research Report LSV-14-12,
Laboratoire Spécification et Vérification, ENS Cachan, France, Oc-
tober 2014. 24 pages.

[BLMR06] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Il-
lum Rasmussen. Almost optimal strategies in one-clock priced1400

timed games. In Proceedings of the 26th Conference on Foun-
dations of Software Technology and Theoretical Computer Science
(FSTTCS’06), volume 4337 of Lecture Notes in Computer Science,
pages 345–356. Springer, 2006.

[Bou15] Patricia Bouyer. On the optimal reachability problem in weighted1405

timed automata and games. In Proceedings of the 7th Workshop on
Non-Classical Models of Automata and Applications (NCMA’15),
volume 318 of books@ocg.at, pages 11–36. Austrian Computer Soci-
ety, 2015.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Sym-1410

bolic algorithms for infinite-state games. In Proceedings of the 12th
International Conference on Concurrecy Theory (CONCUR’01),
volume 2154 of Lecture Notes in Computer Science, pages 536–550.
Springer, 2001.

[HIJM13] Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro1415

Miltersen. A faster algorithm for solving one-clock priced timed
games. In Proceedings of the 24th International Conference on Con-
currency Theory (CONCUR’13), volume 8052 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2013.

46

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics,1420

102(2):363–371, 1975.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of
discrete controllers for timed systems. In Proceedings of the 12th
Annual Symposium on Theoretical Aspects of Computer Science
(STACS’95), volume 900 of Lecture Notes in Computer Science,1425

pages 229–242. Springer, 1995.

[Rut11] Micha l Rutkowski. Two-player reachability-price games on single-
clock timed automata. In Proceedings of the 9th Workshop on Quan-
titative Aspects of Programming Languages (QAPL’11), volume 57
of Electronic Proceedings in Theoretical Computer Science, pages1430

31–46, 2011.

[WT97] Howard Wong-Toi. The synthesis of controllers for linear hybrid
automata. In Proceedings of the 36th IEEE Conference on Decision
and Control (CDC’97), pages 4607–4612. IEEE Computer Society
Press, 1997.1435

47

	Introduction
	Quantitative reachability games
	Priced timed games
	Notations and definitions.
	Properties of the value.
	Simple priced timed games.
	Switching strategies.

	SPTGs with only urgent locations
	Computing the value for a particular valuation
	Study of the complete value functions: G is finitely optimal

	Finite optimality of general SPTGs
	The GL',r construction.
	SPTGs are finitely optimal.

	Algorithms to compute the value function
	Towards more complex PTGs
	Conclusion

