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Abstract There is currently no clear consensus on how to calculate, express and
interpret the error when validating methods for age estimation in forensic an-
thropology. For this reason, it is likely that researchers are commonly drawing
erroneous or confusing conclusions about the existence of population differences
or the need to design new and increasingly complex estimation methods. In recent
years, many researchers have highlighted these limitations. They propose new lines
of research focused on the use of rigorous statistics and new technologies for the
development of methods for estimating age. Our main objective in this study is to
contribute to the strengthening of these novel ideas, for which we show the exist-
ing empirical evidence about the inadequacy of some age estimation methods in
calculating, expressing and interpreting the errors obtained. With this aim, a to-
tal of 500 simulations have been performed, in which hypothetical research teams
develop and validate methods for age estimation. The data employed in this study
was obtained from the Centers for Disease Control and Prevention (CDC) Growth
Charts: United States released in 2000. The charts relate age with height, weight
and head circumference of US male children. Five learning algorithms have been
employed as age estimators. We have performed three experiments in which the
following aspects have been analyzed: frequency with which “negative” results can
be obtained in the validation studies; which are the most appropriate criteria to
compare and select the age estimation methods; and what analysis should be em-
ployed to carry out the validation studies. The results show possible errors in the
interpretation of validation studies as a consequence of the confusion of statistical
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concepts. To conclude, we made a proposal of “good practices” for the correct cal-
culation, expression and interpretation of the error when validating age estimation
methods in forensic anthropology.

Keywords age estimation · regression problems · methodological review ·
validation studies

1 Introduction

Among the admissibility criteria for expert testimony there is the reliable assess-
ment of the error rate associated with the forensic methods being used. This is one
of the main requirements of the Daubert standard, which was proposed in 1993 in
the United States as a guide to assist judicial bodies in assessing the admissibil-
ity of testimonies provided by scientists [1]. Currently, the Daubert standard has
been adopted by many countries as part of the requirements for the admissibility
of the expert evidence [2] and its approaches are widely accepted by the scientific
community [3,4]. However, some authors suggest that the Daubert standard has
not had a real impact in Forensic Anthropology (FA) contexts, since it has been
limited to a statement of “good intentions” with little practical impact on the
preparation of expert reports [5]. One possible explanation may be that, although
current methods include indicators for describing the assumed error, this term is
often poorly defined or misinterpreted [1].

Another aspect to keep in mind is that FA is one of the disciplines with a
greater number of methods for its application in human identification [1]. This is
because it must be adapted to many specific circumstances depending, for example,
on the age group, the preservation state or possible taphonomic alterations. As a
consequence, there is often no clear consensus on what methods should be applied
in each circumstance [6], since little emphasis has been placed on defining the
criteria to be used to select the most appropriate method. In relation to this,
Buckberry states that forensic anthropologists tend to use only the methods they
learned during their academic training, or those designed by themselves in the
case of researchers, rather than using more robust scientific-based criteria [7]. This
shows a lack of continuous training that limits the updating of concepts and the
use of a more advanced methodology.

Validation studies are the main tool to provide the necessary criteria to de-
cide which method is most appropriate, since they evaluate its effectiveness and
applicability. When the FA methodology is tested in different samples, in many
cases significant differences are observed between the actual and the estimated
age of the individuals. In these cases, researchers often modify or adapt the origi-
nal methods to obtain better specific results for their study populations [8,9]. As
several authors propose [10,11,12], these errors may be misinterpreted as popula-
tion differences or deficiencies of the original method. Probably, these differences
can be explained (at least in part) as the normal variability of the process or as
differences in structure and distribution of the study sample, so adapting or re-
designing new methods could be unjustified. In other words, errors in validation
studies do not imply population differences, especially when the original method
does not describe sufficiently well the variability of the population under study. If
one compares the training error of a method with the validation error of the same
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method in a different population, the results will not allow to conclude that there
are population differences.

On the other hand, technological advances allow us to design increasingly com-
plex and robust methods. This allows researchers to create more tight-fitting mod-
els for their study samples, with the aim of reducing the error and achieving more
accurate results. In contrast to this, some authors suggest that the increase in
the complexity of the method may lead to an increase in error in the validation
studies, and the increase in precision usually means a decrease in accuracy and
vice versa [7,10,13]. Therefore, many of these new methods may not represent an
improvement in the current methodology used in FA, despite the promising results
obtained in their original study samples.

For one reason or another, there seems to be a trend in FA research marked
by euphoria for designing new methods, increasingly complex and specific to each
population, motivated by the unfavorable results obtained in the validation studies
[1,13]. We argue that this tendency is the direct result of incorrect procedures
being used in computing, reporting and comparing the prediction error. Namely,
we point to two widespread issues:

Lack of testing over unseen data Whenever an age estimation method is de-
rived using a set of data, the prediction ability of the method should be tested
on different, unseen data. It is a well-known and extremely common issue that
any estimation method will perform much better when tested on the very same
data used for its creation (the so-called training data). This tendency is called
overfitting; it occurs because the derivation of the estimation method picks up
some subtle pattern which is only present in the training data, rather than
being part of the real phenomenon under investigation. Due to the possibility
of overfitting, the error obtained over the training data (i.e. the training er-
ror) is useless in assessing the prediction ability of the estimation method. To
measure the latter, the researcher should reserve part of the available data and
create a testing dataset (over which a testing error will be calculated).
Unfortunately, a large number of studies do not include a separated testing pro-
cedure and simply report the training error. The new method is thus believed
to be much more accurate than it actually is [14], and therefore it is likely to
spring replications and validation studies from other researchers. Those studies
are very likely to fail, as the error they are comparing with is unrealistically
low.

Flawed comparison procedure When comparing the performance of an age es-
timation method on different datasets, an appropriate statistical test should
be used. Indeed, the aim of the comparison is to assess the performance of the
method over the two populations from which the datasets have been drawn,
thus it is an example of statistical inference. Instead, many studies simply com-
pare the two mean error values and assume that the same result would apply
to the two populations.

Validation studies are essential to justify the admissibility of the methods as
expert evidence, however, what measure should we take when the results of these
studies are unfavorable? The result of the validation studies should not be a bi-
nary (correct or incorrect) answer, but should instead provide information on the
precision and accuracy of the method [1].
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Unfortunately, the calculation and interpretation of the error are not always
properly addressed in validation studies; Konigsberg [15] argues that this may
be due because anthropologists often work away from statisticians. In order to
arrive at a consensus on the criteria for selecting the most appropriate method,
it is imperative that we first approach a consensus around validation studies,
from an interdisciplinary perspective, concerning both the calculation and the
interpretation of the assumed error.

In this paper, in addition to the theoretical explanation of why the procedures
commonly used in age estimation studies are often flawed, we provide an experi-
mental proof-of-concept of those issues. This is performed by running an extensive
computer simulation (using actual age estimation data) and quantifying how often
such practices can lead to wrong conclusions.

2 Background

2.1 Regression Problems

In most cases, designing a method for forensic age estimation is an example of a
more general task called regression. In regression, the aim is to learn the relation-
ship between a certain continuous outcome variable (e.g. age) and other features

(e.g. height, weight, etc.) from a set of examples (training data), which records
the expected outcome and feature measurements for a set of objects (e.g. peo-
ple). Using these data, we build a prediction model (e.g. a formula or a table),
which should be able to accurately predict the outcome of new, unseen objects.
To create a model from the data, we employ a learning algorithm, which describes
how to tailor the model for the training data (or, in other words, to learn from
the training data). For instance, the algorithm may specify how to calculate the
model’s parameters.1

Regression lies in the overlap between different fields of science, in particular
statistics and machine learning, and the terminology varies accordingly (Table 1).
In this paper we use the more modern terminology of machine learning. In what
follows, Y denotes the outcome variable, while Xi = (X1,i, . . . , Xm,i) is the i-th
vector of m input features. Our training sample (training set or, simply, dataset)
S contains n examples of the form

(Yi, X1,i, . . . , Xm,i) for i = 1, . . . , n

A model is a function f that provides a predicted outcome Ŷ given the features
X, i.e. Ŷ = f(X). The difference between predicted and actual outcome is called
error or residual ε

εi = Yi − Ŷi = Yi − f(Xi)

1 As a model is the result of applying a learning algorithm, the two terms sometimes used
interchangeably. However, whenever more than one training sample is considered, it is impor-
tant to remark that the same algorithm would produce different models, depending on which
dataset is actually used for training.
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Table 1 Alternative terminology used in regression depending on the field of study.

outcome response, dependent variable, output
features predictors, independent variables, inputs
learning algorithm learner, regression method
pattern, example, instance observation, data point

To measure the overall prediction error, the mean squared error (MSE) is often
used2

MSE =
1

n

n∑
i=1

(εi)
2 =

1

n

n∑
i=1

(Yi − f(Xi))
2

The error term can be due to biological variability, noise or measuring errors
in the data, but it could also mean that the model is not suited for the task. The
last element is the learning algorithm L, which is what produces the model M
from the training data S, i.e. L(S) = M . It is important to notice that this M
corresponds to the aforementioned function f .

Consider the example of linear regression, which is a simple but powerful and
popular method. With this learning algorithm, the outcome is modeled as a linear
combination of the features, i.e.

Ŷ = b0 + b1X1 + . . .+ bmXm

The coefficients b0, . . . , bm are the parameters of the model, which are calculated
in order to minimize the MSE over the training sample. The computation of those
parameters is the very core of the learning algorithm, while the resulting formula,
say Ŷ = 3.4 + 7 ·X1 − 2.1 ·X2 is an actual model.

2.2 Overfitting and model validation

Just like the coefficients of the linear regression model are chosen to result in the
smallest possible MSE value, every regression model is fitted to the specific set of
training data. However, the model should be able to make reliable predictions on
new, unseen data, not just the training data. The term overfitting describes the
situation where a model is excessively tailored for the training data, so it even
models the random errors and the noise occurring in the dataset, instead of the
underlying relationship between outcome and features. Figure 1 shows an example
of such scenario.

Overfitting generally occurs when a model is excessively complex, for instance
because it has too many parameters with respect to the size of dataset. A common
example is polynomial regression using a polynomial of higher degree than the

2 Other popular measures of the overall prediction error is the mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|εi| =
1

n

n∑
i=1

|Yi − f(Xi)|

Often, median, maximum and minimum errors, either squared or absolute, are also reported.
For simplicity, here we only use the MSE.
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Fig. 1 Two interpolation lines. While the red line best follows the training data, it is too
dependent on the specific points in the training set, thus it is likely to perform poorly on
unseen data. The green line, instead, seem to capture the underlying pattern. The underfitting
case would be represented by a straight line that due to an excessive bias does not fit data
sufficiently well.

number of available data points in the training set. While essentially unavoidable,
a lot of research has been devoted to reduce overfitting [16,17,18,19].

Because of overfitting, the model’s error over the training data is not at all a
reliable measure of the quality of the model for prediction. This is a key point:
to test the prediction capability, additional, unseen data should be used, creating
what is called testing dataset (or simply test set). It is a very common mistake in
age estimation to simply report the error obtained on training data and assume
that the model would be as accurate on new data. In fact, the difference can be
extremely large.

When new data can not be easily gathered, one solution is to split the available
data between training and testing datasets. Researchers are faced with a trade-off
in choosing what percentage of data to use for training. More training data is likely
to result in a better model, while more testing data makes the assessment more
reliable. The technique called cross-validation (CV) provides an excellent solution
to this issue [20]. Consider any learning algorithm L. In cross-validation, the data
S is randomly split into k disjoint subsets S1, . . . , Sk of the same size, called folds.
The process is performed in k rounds, one for each fold. In the first round, we
build a model M1 using the data S \ S1 = S2 ∪ S3 ∪ . . . ∪ Sk for training. Then,
M1 is tested over S1, which has not been used for training, resulting in a certain
testing error value E1. In the second round, the model M2 is trained on S \S2 and
tested on S2, resulting in an error measure E2. In general, for i = 1, . . . , k, we have
Mi = L(S \ Si) and Ei = MSE(Mi(Si)). Once the k round is over, the errors of
each round are averaged, resulting in an average error

Ecv =
1

k

k∑
i=1

Ei

Cross-validation stands out as a practical and thorough way of assessing the
performance of a learning algorithm. As the whole learning process is repeated
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multiple times, the variability of the performance can be measured and taken into
account in comparing different learning algorithms.

The number of folds determines the number of models being trained and tested.
More folds mean more thorough testing but also larger running times. Setting k

to 10 is a common choice. Cross-validation can also be repeated multiple times,
changing the random split of the data into folds. The most comprehensive form
of CV, called leave-one-out, is performed by having each fold containing a single
example (datum), so k = |S|. This can be prohibitively time consuming for large
datasets and, in fact, this validation strategy is mainly applied when training data
are scarce.

Note that, while this matter is traditionally called model validation, the subject
of the procedure is not a model. Rather, what we are actually measuring is the
ability of the learning algorithm to produce good predictive models regardless of
the actual training sample being used.

2.3 Model selection

The term model selection refers to the task of choosing the best learning algorithm
among those available for a regression task. As in the previous section, despite the
traditional terminology, the subject is not really a model but a learning algorithm.
Suppose that we want to compare two learning algorithms LA and LB over certain
regression data S. Using k-fold CV on each algorithm, we obtain the prediction
errors corresponding to the k rounds of the CV procedure, i.e. EA

cv = EA
1 , . . . , E

A
k

and EB
cv = EB

1 , . . . , E
B
k .

One might think that he can just compute the average of the two sets of errors
EA

cv and EB
cv and be done with it. However, that would tell which algorithm has the

lowest average error with respect to the folds S1, . . . , Sk. Instead, what we want to
know is which algorithm has the lowest error when tested on any set of data from
S, and not just the actual sets used in the CV process. In this sense, the errors
EA

1 , . . . , E
A
k are a sample of the population of prediction errors associated with the

algorithm A. As a consequence, the comparison between learning algorithms is
actually an instance of statistical inference, i.e. when somebody wants to conclude
something about populations based on samples. It is indeed analogous to com-
paring the mean height of two populations based on two samples. Following the
recommendation of [21] and many others, we suggest the use of non-parametric
statistical testing procedure such as the Wilcoxon’s test [22].

3 Materials and methods

We used data from the 2000 CDC Growth Charts [23]. These growth charts con-
sist of a series of percentile curves that illustrate the distribution of selected body
measurements in male U.S. children. The growth charts were developed by the
National Center for Health Statistics (NCHS) as a clinical tool for health profes-
sionals to determine if the growth of a child is adequate. The data come in the
form of five charts relating the age of a child with either his head circumference,
weight or length. The 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the
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Fig. 2 The grow chart corresponding to case study I, detailing the distribution of head cir-
cumference of child ages 0–36 months. Taken from [23].

corresponding statistical distribution are reported. This provides detailed informa-
tion about each distribution, allowing us to accurately simulate drawing samples
of individuals from the population covered by the study. All the data samples used
in this paper are obtained by sampling from the statistical distributions described
in the charts.

The detail of the five case studies are provided in Table 2. Note that on each
case study, the age is estimated from a single feature, either head circumference,
weight or length. The grow chart of case study I is shown in Figure 2.

The experiments are performed considering 5 widely used regression algo-
rithms: linear regression (LR), classical calibration (CC)[24], a 6th degree polyno-
mial regression (Poly6), locally weighted scatterplot smoothing (LOESS) [25], and
random forest (RF) [26]. The LOESS algorithm used a span value of 0.75 and a
degree of 2, the default values.

Considering multiple algorithms ensures that our findings do not depend on a
particular feature of a specific regression technique. Besides, we wanted to encom-
pass a variety of methods: linear models (LR, CC), polynomial models (Poly6),
non-parametric methods (LOESS) and even computationally intensive approaches
like ensemble-based methods (RF). It is very important to remark that our aim
is not to find the best possible regression method for age estimation; instead, we
want to establish guidelines about how to calculate, express and interpret the error
when validating age estimation methods in forensic anthropology.
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Table 2 Detailed information over the case studies.

case study feature age range
I head circumference 0–36 months
II length 0–36 months
III weight 0–36 months
IV length 24–240 months
V weight 24–240 months

In what follows, three experiments are described. Each experiment simulates
the actions of a research team developing a method for age estimation. This in-
volves collecting a sample of data, training different models and testing them. By
performing the simulation hundreds of times, we can show how much the results
can vary due to the randomness of the sampling.

3.1 Experiment one: testing the fallibility of validation studies

In the first experiment, we simulate the validation of an existing age estimation
method using a different data collection. Say that research team A has collected
a data sample SA and, by applying some learning algorithm, obtained an age
estimation method (i.e. a model) MA. Suppose that the model is assessed using
the training error MSE(MA, SA), which is an incorrect but unfortunately common
practice. Team B wants to validate the method MA on their own sample SB ,
which may or may not have been collected from the same population. Therefore,
the latter team tests MA over SB and computes the error value MSE(MA, SB). If
the two error values are substantially different, the validation is considered to be
failed.

A common misconception is that, if the validation fails, this must be due to
differences between the populations from which the samples were drawn. The
underlying assumption is that if data from the same population had been used,
the two error values would have been very similar. In this experiment we test
this idea. For each case study, we simulate the training of a model MA and its
validation on a different sample from the same population. The simulation has
been repeated 500 times, using 500 · 2 = 1000 different samples of 100 elements.
Then, we measured the percentage of the simulations in which the performance of
MA deteriorated when applied to SB , considering a 20% or more increase in MSE
value as a significant deterioration.

3.2 Experiment two: testing the inadequacy of using the training error as
validation error

The second experiment aims to show how the predictive ability of a learning al-
gorithm cannot be assessed using the training error. Instead, the algorithm must
be tested on new, unseen data, used for testing purposes only.

For each algorithm we simulated the complete training and testing process
500 times over completely independent data samples, obtaining 500 training MSE
values and the corresponding 500 testing MSE values.
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3.3 Experiment three: using cross-validation to obtain a more realistic estimation
of the validation error

In this third experiment, we show that using cross-validation, the MSE values
are much closer to the testing performance compared to the training error. As in
the previous experiment, for each algorithm we simulated the complete training,
testing and cross-validation process 500 times. Training and cross-validation used
the same data samples, while testing was performed over completely different data.

4 Results and discussion

4.1 Experiment one

Table 3 reports the rate of failed validations. For all algorithms and case studies,
the failure rate is higher than 19%. That means that even in the best scenario,
almost one time out of five the second team could have wrongly concluded that
there are population differences between their collection and the other team’s. This
percentage gets much higher depending on the algorithm, with RF scoring 100%
and poly6 scoring above 37%.

This clearly shows that a difference between training and validation errors is
not necessarily a sign of the samples belonging to different populations. Never-
theless, many papers reach this conclusion. As Jayaraman et al. [27] points out,
differences among populations should not be rashly concluded due to those ob-
served in the validation studies. These authors emphasize the importance of other
factors such as the distribution of age and sex of the sample, differences due to
social status, ethnic (non-regional) differences, different times of the samples, etc.
However, researchers usually do not include as possible explanation for their re-
sults the variability of the process being studied. In many cases, the methods used
in FA have been designed from samples unrepresentative of the actual underlying
population. One of the reasons for this is that these methods have been designed
for being applied in unusual circumstances. Therefore, the samples from which
they come may be difficult to obtain. Some examples may be the analysis of the
sternal end of the fourth rib [28], degenerative processes in the pubic symphysis
[29], transparency of the dental root [30] or the great majority of methods that
analyze the skeleton of children [14,31,32,33]. The use of unsuitable study sam-
ples does not necessarily imply bad methods, as these may be used in exceptional
circumstances. However, it is especially important in these cases that validation
studies are carried out properly. Separating a fraction of the sample to test the
method is not a good option when reduced samples are available; for this reason,
as observed in experiment three, CV will be the most appropriate option in these
cases. Furthermore, as Konigsberg argues [15], when only small samples are avail-
able, it is more important to analyze them collectively to obtain larger samples
than to look for population differences.
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Table 3 Portion of experiments in which the validation resulted in a ≥ 20% increment in
MSE value compared to training.

case study learning algorithm failed validations

I

LOESS 33.0%
LR 19.0%

Poly6 45.0%
RF 100.0%
CC 27.0%

II

LOESS 33.0%
LR 23.0%

Poly6 37.0%
RF 100.0%
CC 26.0%

III

LOESS 37.0%
LR 23.0%

Poly6 43.0%
RF 100.0%
CC 26.0%

IV

LOESS 32.0%
LR 27.0%

Poly6 44.0%
RF 100.0%
CC 28.0%

V

LOESS 34.0%
LR 21.0%

Poly6 56.0%
RF 100.0%
CC 27.0%

4.2 Experiment two

Table 4 reports mean and standard deviation of the results obtained in experi-
ment two. Consider the mean error, for LR the difference is very small, with the
testing error being just slightly larger than the training error. In the case of RF,
the testing error can be as large as four times the training one. This is a clear sign
of overfitting, which is not surprising due to the large complexity of the models
produced by RF, especially with data having a single feature. LOESS training
error values are just moderately smaller than the testing ones. Poly6 and CC are
also showing overfitting, while CC is generally the worst performing algorithm.
When considering the standard deviation of the MSE, training values are con-
sistently smaller than testing ones. This means that the variability experienced
during a validation is larger than that of the training process, which can explain
why some many validation studies are (incorrectly) considered negative. Note that
all those differences have been successfully tested for statistical significance at 99%
confidence level, using Wilcoxon signed rank test and adjusting for multiple com-
parisons using Holm’s method [34].

These results support our thesis: a comparison based on the training error
would have incorrectly chosen RF as the best algorithm in all case studies. Nev-
ertheless, RF ranks at the bottom (third, fourth or fifth place) when considering
the testing MSE. On the other hand, LOESS performs consistently better that
all other algorithms in testing (thus it should be considered the ’winner’ of this



xii Andrea Valsecchi et al.

Table 4 Difference between average training and testing errors.

case study learning algorithm
MSE

p-valuemean sd
training test training test

I

LOESS 31.1 33.7 5.2 6.1 4.5E-10
LR 39.4 40.7 5.2 5.4 1.8E-03

Poly6 31.4 142.9 5.2 845.1 1.7E-27
RF 10.6 43.0 2.0 7.9 3.2E-82
CC 59.6 63.2 11.2 17.3 1.2E-03

II

LOESS 8.7 9.4 1.6 1.7 1.9E-08
LR 12.2 12.7 1.7 1.8 6.9E-04

Poly6 8.5 9.9 1.6 4.2 5.3E-15
RF 3.0 11.9 0.6 2.2 3.2E-82
CC 13.6 14.4 2.0 2.6 6.5E-08

III

LOESS 20.9 23.2 3.6 4.3 3.6E-17
LR 24.7 25.7 3.4 3.7 1.2E-04

Poly6 20.9 27.6 3.7 40.4 4.2E-27
RF 7.1 29.6 1.4 5.6 3.2E-82
CC 31.3 33.0 5.5 6.2 1.5E-07

IV

LOESS 256.0 278.1 40.9 50.1 2.2E-10
LR 284.2 291.7 47.4 52.0 3.3E-02

Poly6 247.4 306.3 41.4 230.5 1.1E-27
RF 88.7 345.7 17.0 63.8 3.2E-82
CC 306.4 317.9 55.0 55.1 1.8E-03

V

LOESS 235.1 256.2 40.6 46.0 3.4E-12
LR 379.9 397.2 59.5 63.6 1.1E-03

Poly6 228.0 420.1 40.8 1899.5 3.4E-42
RF 82.8 331.0 16.5 62.7 3.2E-82
CC 431.4 446.4 79.2 81.7 5.3E-03

particular comparison) but it ranks in the middle when considering the training
error.

4.3 Experiment three

The resulting MSE values are reported in Table 5. For all algorithms and case
studies, the testing error is always closer to CV error than training error. In most
cases, the difference between CV and testing error is very small, while that of
training and testing is large. Figure 3 clearly shows this pattern. LR and CC are
the least affected, while the effect is much stronger on Poly6 and RF. Overall, the
experiment shows how performing CV is a sound and efficient way to assess the
testing error without requiring additional data.

5 Conclusion

This paper aims to highlight the limitations that exist in many studies where
the training set is used indistinctly to train and validate the proposed models.
From this point of view, the regression methods used in this article, as well as
the prediction error metric, are no more than mere tools to empirically show this
phenomenon: how the validation of a regression method through the same data
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Table 5 Difference between average training, cross-validation and testing errors.

case study learning algorithm
mean MSE

training cross-validation test

I

LOESS 31.1 34.0 33.7
LR 39.4 40.8 40.7

Poly6 31.4 158.7 142.9
RF 10.6 43.2 43.0
CC 59.6 64.3 63.2

II

LOESS 8.7 9.5 9.4
LR 12.2 12.7 12.7

Poly6 8.5 10.5 9.9
RF 3.0 11.9 11.9
CC 13.6 14.3 14.4

III

LOESS 20.9 22.6 23.2
LR 24.7 25.3 25.7

Poly6 20.9 24.9 27.6
RF 7.1 28.9 29.6
CC 31.3 32.9 33.0

IV

LOESS 256.0 278.5 278.1
LR 284.2 294.0 291.7

Poly6 247.4 295.0 306.3
RF 88.7 349.1 345.7
CC 306.4 320.1 317.9

V

LOESS 235.1 256.8 256.2
LR 379.9 395.4 397.2

Poly6 228.0 390.3 420.1
RF 82.8 325.9 331.0
CC 431.4 452.3 446.4

IV V

I II III

LOESS LR Poly6 RF CC LOESS LR Poly6 RF CC

LOESS LR Poly6 RF CC LOESS LR Poly6 RF CC LOESS LR Poly6 RF CC

0

10

20

30

0

5

10

15

0

100

200

300

400

0

50

100

150

0

100

200

300

algorithm

E
rr

or

mode

testing

cross−validation

training

Fig. 3 Difference between average training, cross-validation and testing errors.
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set with which it was trained, produces regressors whose performance is overesti-
mated. In opposition, cross-validation represents a rigorous validation technique
for assessing how the results of a statistical analysis will generalize to an unseen
data set. In particular, we have, first, shown that a difference between training
and validation errors is not necessarily a sign of the samples belonging to different
populations. Second, we have tested the inadequacy of using the training error
as validation error. And, finally, we have shown how cross-validation provides a
realistic estimation of the validation error.

There is a clear consensus in the scientific community regarding the need to
discuss aspects related to the methodological review in forensic anthropology [1,
6,7,15]. In order to contribute to this demand, we present as conclusions of this
study a proposal of good practices for the validation of age estimation methods:

– An adequate calculation and interpretation of the error must be the priority
when designing and validating methods for age estimation. It is necessary to
use appropriate validation studies and to put emphasis on getting adequate
samples.

– All methods must report the testing error and not the training error. This
testing error must be employed when making estimates and comparing age
estimation methods, and not the training error.

– Differences between groups cannot be assessed by simply comparing mean error
values. The use of statistical tests is recommended to evaluate the existence of
statistically significant differences. In particular, the use of nonparametric tests
(such as the Wilcoxon signed-rank test) is recommended, to avoid a decrease
in the reliability of the conclusions obtained when using parametric statistical
tests whose assumptions (homoscedasticity, normality) are not met.

– Complex or very specific methods, apparently good because they present a
reduced training error, can yield poor results in validation studies. For this
reason, we must always use the testing error as an indication of the reliability
of a method.

– When only small samples are available, cross-validation has traditionally proven
to be an effective protocol of experimental validation. In case the size of the
dataset to train the regression model is extremely reduced, the use of the leave-
one-out validation protocol is a recommendable alternative.
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